
 

Instructions for use

Title Iron/Photosensitizer Hybrid System Enables the Synthesis of Polyaryl-Substituted Azafluoranthenes

Author(s) Kato, Yoshimi; Yoshino, Tatsuhiko; Gao, Min; Hasegawa, Jun-ya; Kojima, Masahiro; Matsunaga, Shigeki

Citation Journal of the American Chemical Society, 144(40), 18450-18458
https://doi.org/10.1021/jacs.2c06993

Issue Date 2022-09-27

Doc URL http://hdl.handle.net/2115/90653

Rights
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the
American Chemical Society, copyright c American Chemical Society after peer review and technical editing by the
publisher. To access the final edited and published work see https://pubs.acs.org/articlesonrequest/AOR-
TDH8KU5KKS6KYPU7JJAT.

Type article (author version)

File Information Fe_220916_3.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Iron/Photosensitizer Hybrid System Enables the Synthesis of 
Polyaryl-Substituted Azafluoranthenes 
Yoshimi Kato,1 Tatsuhiko Yoshino,1,2 Min Gao,3 Jun-ya Hasegawa,3 Masahiro Kojima,1* and Shigeki 
Matsunaga.1,2* 
1 Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan. 
2 Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan 
3 Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan. 

ABSTRACT: Photosensitization of organometallics is a privileged strategy that enables challenging transformations in transition 
metal catalysis. However, the usefulness of such photocatalyst-induced energy transfer has remained opaque in iron-catalyzed 
reactions despite the intriguing prospects of iron catalysis in synthetic chemistry. Herein, we demonstrate the use of 
iron/photosensitizer-cocatalyzed cycloaddition to synthesize polyarylpyridines and azafluoranthenes, which have been scarcely 
accessible using the established iron-catalyzed protocols. Mechanistic studies indicate that triplet energy transfer from the 
photocatalyst to a ferracyclic intermediate facilitates the thermally demanding nitrile insertion and accounts for the distinct reactivity 
of the hybrid system. This study thus provides the first demonstration of the role of photosensitization in overcoming the limitations 
of iron catalysis. 

INTRODUCTION 
  Photochemistry plays indispensable roles in molecular 
sciences, as it enables reactions that are not feasible using the 
reactants in their ground state.1 While direct photoexcitation is 
a straightforward approach to access excited states, its 
efficiency depends on the various absorption spectra of the 
compounds, which occasionally leads to limited generality in 
synthetic applications. On the other hand, photosensitization 
using photocatalysts provides a more general strategy to 
achieve excited state reactivities.2 In this regard, the 
photosensitization of organometallic intermediates in a catalytic 
cycle has recently been recognized as a privileged strategy for 
the development of new reactions (Figure 1A, top). 
Nevertheless, successful merger of the transition metal catalysis 
and photosensitizer-induced energy transfer (EnT) has so far 
been limited to reactions via organonickel,3 organopalladium,4 
or organogold5 intermediates, and application of the 
photosensitization strategy to other transition metal catalysis 
remains elusive.6,7 
  In this context, the photosensitization of organoiron species 
deserves particular attention, considering the sustainability and 
unique reactivity of iron catalysts.8 However, few such attempts 
have been reported in synthetic chemistry, despite the well-
known roles of organoiron compounds in catalytic bond-
forming reactions (Figure 1A, bottom). Notably, Chakraborty 
and Jacobi von Wangelin reported an iron/9,10-
diphenylanthracene(DPA)-cocatalyzed trimerization of alkynes 
in which dissociation of the iron catalyst and the product is 
promoted by photosensitization (Figure 1B).9 Nonetheless, the 
substrate scope of this reaction does not exceed the scope of 
thermal iron catalysis,10 and the unique synthetic advantages of 
combining iron catalysis and photocatalysis have yet to be 
elucidated.11 
  Transition-metal-catalyzed [2+2+2] cycloaddition of diynes 
and nitriles, by which pyridines are constructed in one step, is 

an atom-economical method to access natural products and π-
extended molecules.12 In thermal systems, iron-catalyzed 
[2+2+2] cycloaddition has been achieved using low-valent iron 
complexes13 or iron/additive systems in which low-valent iron 
species are generated in situ.10,14 However, applicable diynes 
have been limited to alkyl-substituted ones, and there are no 
reports using aryl-substituted diynes to enable the synthesis of 
polyarylpyridines, which are common motifs in functional 
molecules (Figure 1C). As a result of our effort to overcome 
the limitations of iron catalysis using photosensitization, herein 
we report an iron/photosensitizer-cocatalyzed [2+2+2] 
cycloaddition using aryl-substituted diynes and nitriles, which 
enables the chemoselective synthesis of polyarylpyridines 
(Figure 1D). In addition, modular synthesis of polyaryl-
substituted azafluoranthenes, which are promising scaffolds for 
organic electro-luminescence materials, was also realized. 
Mechanistic experiments, DFT, and SAC-CI calculations 
suggest that energy transfer from the photosensitizer to an 
organoiron intermediate is likely to be responsible for the 
distinct reactivity of the developed catalytic system. 

RESULTS AND DISCUSSION 
  Studies of reaction conditions and substrate scope. After 
several trials, iron-catalyzed [2+2+2] cycloaddition of aryl-
substituted diyne 1a with benzonitrile 2a proceeded in high 
yield in the presence of FeI2 (99.99% metals basis), dppp, 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 and triethylamine (an electron 
donor for generating a low-valent iron catalyst in situ) under 
blue LED irradiation (Table 1, entry 1). The high purity of FeI2 
indicates that the effect of the contamination of other transition 
metals is negligible. When FeBr2 (entry 2) and FeCl2 (entry 3) 
were used instead of FeI2, the yields decreased in the order FeI2 
> FeBr2 > FeCl2. Fe(OAc)2, Fe(acac)2 and Fe(BF4)·nH2O 
(entries 4–6) did not afford the desired product 4aa, suggesting 
that halide is crucial for this reaction to proceed.15 Evaluation 
of other ligands revealed that dppp is specifically suitable for  
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Figure 1. (A) Photosensitization as an enabling strategy in transition metal catalysis. (B) Iron/photoredox catalysis for the 
trimerization of alkynes. (C) Iron-catalyzed [2+2+2] cycloaddition using diynes and nitriles under thermal conditions. (D) This work: 
Synthesis of polyarylpyridines and azafluoranthenes using an iron/photosensitizer hybrid system. 
Table 1. Evaluation of reaction conditions for [2+2+2] 
cycloaddition under the iron/photosensitizer hybrid 
system.a 
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Entry Variation from above Yieldb (%) 
1 none 85c 
2 FeBr2 instead of FeI2 57 
3 FeCl2 instead of FeI2 26 
4 Fe(OAc)2 instead of FeI2 0 
5 Fe(acac)2 instead of FeI2 0 
6 Fe(BF4)2·nH2O instead of FeI2 0 
7 dppe instead of dppp 16 
8 dppb instead of dppp 0 

9 dppbz instead of dppp 9 
10 cis-dppen instead of dppp 60 
11 PPh3 (12 mol%) instead of dppp 0 
12 1,10-phenanthroline instead of dppp 9 
13 dtbbpy instead of dppp 0 
14 4CzIPN instead of 

[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 
86c 

15 without [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 0 
aReaction conditions: 1a (0.10 mmol), 2a (0.50 mmol), FeI2 
(99.99% metals basis, 10 µmol, 10 mol%), dppp (12 µmol, 12 
mol%), photocatalyst (1.0 µmol, 1 mol%), Et3N (0.10 mmol, 100 
mol%) in THF (0.5 mL) at room temperature for 22 hours under 
blue LED irradiation. b1H NMR yield. cIsolated yield. For details, 
see Supporting Information. 

this reaction, while cis-dppen manifested certain reactivity 
(entries 7–13). The origin of the beneficial effect of dppp is 
unclear, but it is occasionally identified to be suitable for 
reactions catalyzed by low-valent first-row metals.16 When 
4CzIPN was used instead of [Ir(dF(CF3)ppy)2(dtbbpy)]PF6, the 
reaction proceeded smoothly (entry 14), suggesting that the 
iron/photosensitizer hybrid catalysis is also operative under 
noble-metal-free conditions. The desired product was not 
obtained in the absence of the photocatalyst (entry 15). 
  The scope of the iron/photosensitizer-catalyzed 
cycloaddition in terms of diynes 1 and nitriles 2 is summarized 
in Scheme 1. Nitriles possessing various aromatic rings or alkyl 
groups underwent the desired cycloaddition (4aa–4am). It is 
noteworthy that synthesis of 4aa can be performed on a 1 gram 



 

scale in 80% yield. The cycloaddition of various aryl-
substituted diynes 1 also proceeded smoothly (4ba, 4ca, 4db, 
4ea). Different tethers and alkyl substituents were tolerated in 
the pyridine synthesis (4fa–4ja). The amount of the iron 
catalyst could be decreased to 5 mol% and the amount of nitrile 
to 2.5 equivalents when methyl-substituted diynes were used 
(4ga–4ia). The catalyst loading of iron could be decreased to 1 
mol% and photocatalyst to 0.1 mol% by modifying the reaction 
conditions (4ha).  
Scheme 1. Substrate scope of polyaryl-substituted 
pyridinesa 
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aReaction conditions: 1 (0.30 mmol), 2 (1.5 mmol), FeI2 (99.99%, 
trace metal basis, 30 µmol, 10 mol%), dppp (36 µmol, 12 mol%), 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (3.0 µmol, 1.0 mol%), Et3N (0.30 
mmol, 100 mol%), THF (1.5 mL) at room temperature for 22 hours 
under blue LED irradiation. Isolated yields. bUsing 1a (1.0 g, 2.8 
mmol) and blue LED panel × 2 (see Supporting Information for the 
detailed reaction setup) under temperature control for 72 hours. 
c4CzIPN (1.0 mol%) was used instead of 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6. d2 (2.4 mmol). e2 (3.0 mmol). fFeI2 
(15 µmol, 5.0 mol%), dppp (18 µmol, 6.0 mol%), 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (1.5 µmol, 0.50 mol%), 2 (0.75 
mmol). gFeI2 (3.0 µmol, 1.0 mol%), dppp (3.6 µmol, 1.2 mol%), 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (0.30 µmol, 0.10 mol%), Et3N (0.15 
mmol, 50 mol%), 2 (0.75 mmol), THF (300 µL).     

  Azafluoranthenes, an azaheterocycle possessing a 6/6/5/6-
fused 16π-antiaromatic system, represent an actively studied 
structural motif in electroluminescent materials.17 However, the 
known preparative methods for azafluoranthenes suffer from 
high temperature requirements (250–300 °C),17a limited 
generality17b,17c or the use of isonitriles.17d Gratifyingly, by 
applying the iron/photosensitizer hybrid system to the [2+2+2] 
cycloaddition of diyne 3 and nitrile 2, a variety of polyaryl-
substituted azafluoranthenes were prepared in a modular 
manner (Scheme 2). The cycloaddition of 1,8-
bis(phenylethynyl)naphthalene 3a and 2a afforded the 
corresponding azafluoranthene nearly quantitatively (5aa, 
97%). In addition, 5aa can be obtained in 73% yield on a 1.0 
mmol scale. The cycloaddition also proceeded in synthetically 
useful yield under noble-metal-free conditions using 4CzIPN as 
the organic photosensitizer (5aa, 71%). Other nitriles provided 
the desired products in 34–98% yield (5aa–5ae, 5an, 5ah, 5ai). 
The structure of azafluoranthene 5ac was unambiguously 
confirmed via single-crystal X-ray diffraction analysis. Diynes 
with different electronic character afforded the desired products 
in 46–98% yield (5ba, 5ca, 5cb, 5da).18,19 In addition, 5da was 
also obtained using iron/4CzIPN hybrid system in 69% 
yield.20,21  
 

  



 

Scheme 2. Substrate scope of polyaryl-substituted azafluoranthenesa 
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aReaction conditions: 3 (0.30 mmol), 2 (3.0 mmol), FeI2 (99.99%, trace metal basis, 30 µmol, 10 mol%), dppp (36 µmol, 12 mol%), 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (3.0 µmol, 1.0 mol%), Et3N (0.30 mmol, 100 mol%), THF (1.5 mL) at room temperature for 22 hours under 
blue LED irradiation. Isolated yields. bUsing 3a (1.0 mmol) for 72 hours. cBlue LED panel × 2 (see Supporting Information for the detailed 
reaction setup) under temperature control. d4CzIPN was used instead of [Ir(dF(CF3)ppy)2(dtbbpy)]PF6. e0.20 mmol scale. f0.05 M. g0.10 
mmol scale.

  Comparison with thermal iron catalysis. The difference 
between the developed method and the previous iron-catalyzed 
[2+2+2] cycloaddition is summarized in Scheme 3. When 1f 
and 3a were subjected to Chakraborty and Jacobi von 
Wangelin’s conditions,9 the corresponding pyridine was not 
observed (Scheme 3A, (i)(ii)). Under Wan’s conditions,14a the 
yield of pyridine was very low when 1f or 3a was used (Scheme 
3A, (iii)(iv)). These results suggest that our iron/photosensitizer 

hybrid catalysis is uniquely suitable for polyarylpyridine 
synthesis compared to known iron catalysis.  
  Mechanistic studies. To gain insight into the unique 
reactivity of this reaction system, we performed two 
experiments: (1) light irradiation to Wan’s conditions and (2) 
light irradiation to Wan’s conditions in the presence of the 
photocatalyst (Scheme 3B). In case (1), the yield of 4fa 
increased slightly (Scheme 3B, (v), 33%) compared to that  
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aSee Supporting Information for details. 

under the original conditions (Scheme 3A, (iii), 14%),22,23 
suggesting an inefficient yet certain acceleration of the 
cycloaddition via the direct photoexcitation of an iron 
complex24 generated in situ. In case (2), the reactivity increased 
dramatically, and 4fa was obtained in >99% yield (Scheme 3B, 
(vi)). These results indicate that photoinduced energy transfer 
to a catalytic intermediate, rather than photoredox-induced 
electron transfer, is more likely to be responsible for 
accelerating the challenging cycloaddition toward 
polyarylpyridines. 
  To get insight of the catalytically active iron species, we 
conducted the cyclic voltammetry studies (Figure 2). The 
mixture of FeI2 and dppp (molar ratio = 1:1.05) shows the Fe-
centered reduction at –1.371 V vs. SCE (FeII/FeI) and at –1.869 

V (FeI/Fe0) (Figure 2, a). When the mixture of FeI2, dppp and 
diyne 1a (molar ratio = 1:1.05:10) were subjected to analysis, 
the Fe-centered reduction at –1.365 V (FeII/FeI) and –1.877 V 
(FeI/Fe0) were observed (Figure 2, b). These results and the 
reduction potential of [Ir(dF(CF3)ppy)2(dtbbpy)]PF6 
(Ered(IrIII/IrII) = –1.37 V vs. SCE) suggest that the catalytically 
active iron species is likely to be FeI and the reduction potential 
of iron was not affected in the presence of the diyne. 
Figure 2. Cyclic voltammogram of Fe(dppp)I2 in the 
absence or presence of 1a.a 

 
aSee Supporting Information for details. 

  Next, we performed DFT calculations and obtained the 
energy diagrams of the iron-catalyzed [2+2+2] cycloaddition 
(Scheme 4a).25 Based on the indispensability of halide anions 
(Table 1), propensity of dppp to form a 1:1 adduct with Fe(II) 
halide in the presence of THF,26 and the results of the 
electrochemical study (Figure 2), the iodide-ligated Fe(I) 
diphenylphosphinopropane complex, which should be readily 
generated in situ by reduction of Fe(dppp)I2, was employed as 
the catalyst in the theoretical study. In both the doublet and 
quartet states, the insertion of nitrile into the five-membered 
ferracycle intermediate was identified as the turnover-limiting 
step. The energy barrier of the insertion in quartet state was too 
high (quartet INT1’ to quartet TS2: 40.3 kcal/mol) for the 
reaction to proceed at room temperature. In case spin crossover 
occurs at this step, the energy barrier is still high (quartet INT1’ 
to doublet TS2: 22.8 kcal/mol), which is consistent with the 
experimental result that only 14% of 4fa was obtained under 
thermal conditions. We surmise that the photoexcitation of the 
quartet INT1’ accounts for the distinct reactivity of the 
iron/photosensitizer hybrid system. In the presence of the 
photocatalyst, energy transfer from the excited photocatalyst to 
quartet INT1’ brings the organoiron intermediate into its 
doublet excited state Dn. Then, spin-allowed decay of Dn to 
doublet INT1’ allows the nitrile insertion to proceed through 
the doublet energy surface (doublet INT1’ to doublet TS2: 8.6 
kcal/mol). 
  The validity of this mechanistic hypothesis was more 
accurately elucidated by the SAC-CI method27 (Scheme 4b). 
The excited states of the quartet INT1’ (Q0) were calculated, 
and three doublet excited states (D0, D1, D2) and one quartet 
excited state (Q1) were identified. The three doublet excited 
states were respectively at 27.5, 28.5, and 36.8 kcal/mol with 
respect to the ground state Q0 at –11.8 kcal/mol. The excitation 
energy to D0, D1, and D2 were, therefore, 39.3, 40.3, and 48.6 
kcal/mol, respectively. Thus, they are within an accessible 
range by photosensitization of Q0 by 
[Ir(dF(CF3)ppy)2(dtbbpy)]PF6 (E(T1) = 61.8 kcal/mol:2a 
reachable up to 50.0 kcal/mol in relative energy) or by 4CzIPN 

-2.5-2-1.5-1-0.50

2 µA 

Potential (V vs. SCE) 

(b) Fe(dppp)I2 + 1a (a) Fe(dppp)I2 



 

Scheme 4. Rationale of the unique reactivity of the iron/photosensitizer-catalyzed [2+2+2] cycloaddition.  

 
a) Computed energy diagrams of the cycloaddition using DFT. b) Relative energies of the excited states of INT1’ calculated using 
the SAC-CI method. The energy of the quartet ground state Q0 is equalized to that of INT1’ (–11.8 kcal/mol) to facilitate interpretation. 
 
(E(T1) = 61.6 kcal/mol: reachable up to 49.8 kcal/mol).28 On the 
other hand, spin-allowed direct photoexcitation of Q0 to Q1 in 
the absence of a photosensitizer requires an energy as large as 
69.5 kcal/mol. This value is larger than that available from the 
peak intensity of the blue LED (447 nm: 64.0 kcal/mol; 
reachable up to 52.2 kcal/mol), which may account for the 
limited efficiency of the cycloaddition under blue LED 
irradiation in the absence of the photocatalyst (Scheme 3B, (v)). 
  To elucidate the feasibility of the mechanism proposed in 
Scheme 4, in which one photon is required per each catalytic 
turnover, a couple of photochemical studies were conducted. 
First, quantum yield (Φ) of the cycloaddition toward 4fa was 
measured (Scheme 5A) since the theoretical limit of Φ is 1 if 
the mechanism in Scheme 4 is mainly responsible for the 
product formation. Thus, Φ of the overall transformation was 
determined to be 7%.29 Second, light/dark experiment was 
conducted (Scheme 5B). In entry 1, the reaction mixture for the 
iron/photosensitizer-catalyzed [2+2+2] cycloaddition was 
irradiated for 3 hours and was worked up immediately. In entry 
2, the reaction mixture was irradiated for 3 hours and then was 
stirred in the dark for the following 19 hours. Thus, 4fa was 
obtained in 47% yield in entry 1 and in 45% yield in entry 2.30 
The small quantum yield of the reaction (Φ < 1) and the minute 
difference of the yield of two trials in Scheme 5 suggest that 
dark catalytic turnover of photochemically generated species 
may not play a substantial role in the iron/photosensitizer-
catalyzed cycloaddition. These observations agree with the 
proposed mechanism in Scheme 4 which demands one photon 
for the photosensitization of INT1’ in each catalytic cycle. 
Scheme 5. Photochemical experiments toward mechanistic 
elucidation.a 
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aSee Supporting Information for experimental details. 

CONCLUSIONS 
  In conclusion, we have developed an iron/photosensitizer-
hybrid system that enables the hitherto-challenging iron-
catalyzed [2+2+2] cycloaddition of diynes and nitriles toward 
the synthesis of polyarylpyridines. The unique reactivity of the 
developed method is highlighted by the modular syntheses of 
azafluoranthenes under mild and operationally benign 
conditions. Since the cycloaddition proceeds in only low yield 
under the reported iron-catalyzed protocol, our study clarified 
the potential of the iron/photocatalyst dual system to overcome 
the limitation of thermal iron catalysis. Experimental results 
and quantum chemical calculations suggest that 



 

photosensitization of an organoiron intermediate is responsible 
for facilitating the thermally sluggish step in the catalytic cycle. 
The applicability of iron/photosensitizer dual catalysis in other 
modes of iron-catalysis is under investigation in our group. 
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