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ABSTRACT: A Ni-catalyzed cross-coupling reaction between aryl fluorides and dialkyl phosphonates [HP(O)(OR)2] (R = secondary 
alkyl groups) in the presence of potassium tert-butoxide as a base is reported. The reaction converted various aryl fluorides into the 
corresponding aryl phosphonates even when electron-donating substituents were present on the aromatic ring. The combined exper-
imental and computational studies suggested Ni–K+ cooperative action of a Ni(0) complex chelated with a strongly electron-donating 
ion-bridged dimeric phosphite ligand system [P(OR)2O−K+]2 that facilitates turnover-limiting C–F bond oxidative addition of aryl 
fluorides.

INTRODUCTION  
The direct functionalization of C–F bonds has attracted in-

creasing attention in recent years because of the increasing 
abundance of fluorinated compounds in pharmaceuticals1 and 
other functional materials,2 affording various opportunities for 
diversity-oriented synthesis through late-stage functionaliza-
tion of complicated molecules. Whereas numerous methods for 
converting C–F bonds into C–C, C–H, C–O, and C–N bonds 
have been developed,3 few methods exist for forming weaker 
C–P bonds toward the synthesis of organophosphorus com-
pounds. The classical approach to C–F to C–P bond transfor-
mation involves a nucleophilic aromatic substitution (SNAr) re-
action with phosphide anions,4 which are generated using haz-
ardous alkali metals.5 Würthwein and coworkers have demon-
strated that silylphosphines undergo SNAr phosphination of aryl 
fluorides at high temperatures (>170 °C) (Scheme 1a).6 In these 
SNAr-type reactions, the pronucleophiles are limited to second-
ary phosphines and phosphine oxides; the successful use of 
more electron-deficient phosphonic acid diesters [HP(O)(OR)2] 
has not been reported. Organophosphonic acids [RP(O)(OH)2] 
and their derivatives are widely used as drugs or pro-drugs,7 
chelators of metallic salts,8 surface modifiers,9 and phosphoan-
tigens.10 Thus, the development of a phosphonylation reaction 
for aryl fluorides is demanded. To the best of our knowledge, 

however, the literature contains only one example of C(sp2)–F 
bond phosphonylation, which was achieved via a photoinduced 
single-electron-transfer (SET) process (Figure 1b)11 that re-
quired irradiation with ultraviolet light (λ = 254 nm). We re-
cently reported a nucleophile-dependent SNAr reaction of non-
activated aryl fluorides with potassium diorganophosphinites 
(R2PO−K+) (Figure 1c).12 In this reaction, the potassium cation 
plays a critical role, stabilizing the negative charge of the leav-
ing fluoride anion. With this knowledge, we envisaged combin-
ing the unique property of the K+ cation with the well-estab-
lished ability of a Ni catalyst to activate C–F bonds3,13 and 
thereby achieve phosphonylation of aryl fluorides (Figure 1d).14 

Herein, we report a Ni-catalyzed cross-coupling reaction 
between aryl fluorides and dialkyl phosphonates [HP(O)(OR)2] 
in the presence of potassium tert-butoxide (KOtBu) as a stoi-
chiometric base. The reaction uses commercially available Ni 
complexes as catalyst precursors and requires no exogeneous 
ligand. Not only electron-deficient but also electron-neutral and 
even electron-rich aryl fluorides were successfully converted 
into the corresponding aryl phosphonates. Interestingly, the pre-
sent coupling reaction proceeds specifically with di-sec-alkyl 
phosphonates; no reaction occurs with primary or tertiary alkyl 
phosphonates. Mechanistic studies by kinetic experiments and 
density functional theory (DFT) calculations suggested that the 
catalytic cycle involves turnover-limiting oxidative addition of 



 

the aryl fluoride to a Ni(0) complex coordinated with potassium 
dialkyl phosphites [P(OR)2O−K+], which occurs through coop-
erative action of a Ni(0)–K+ bimetallic system. 
 

 

Figure 1. Defluorinative C–P bond formation reactions (KHMDS 
= potassium hexamethyldisilazide; KOtBu = potassium tert-butox-
ide). 

RESULTS AND DISCUSSION  
Specifically, the reaction between 4-fluorobiphenyl (1a, 

0.125 mmol) and dicyclohexyl phosphonate (2a, 0.25 mmol) in 
the presence of NiBr2·diglyme (5 mol%, 0.00625 mmol) and 
KOtBu (0.25 mmol) in toluene (0.5 mL) at 120 °C led to the 
clean and complete conversion of 2a to the corresponding 
defluorinative phosphonylation product (3a) in quantitative 
yield (99% based on 1H NMR spectroscopy) (Table 1, entry 1). 
When the amount of KOtBu was decreased to 0.125 mmol (1 
equiv to 1a, 0.5 equiv to 2a), product 3a was not obtained, sug-
gesting the formation of an inactive Ni species through the di-
rect reaction of a Ni species with nondeprotonated dialkyl phos-
phonate 2a (entry 2).15 NiI2 exhibited a catalytic performance 
similar to that of NiBr2·diglyme (entry 3), whereas other Ni(II) 
complexes such as NiCl2 and Ni(acac)2 (acac = acetylacetonate) 
gave 3a in moderate yields (entries 4–6). Notably, the Ni(0) 
complex Ni(cod)2 (cod = 1,5-cyclooctadiene) also catalyzed the 
present reaction, suggesting that Ni(0) is an active species in the 
catalytic process (entry 7). No reaction occurred in the absence 
of a Ni catalyst (entry 8). The base strongly influenced the re-
action efficiency. Specifically, the use of bases that have 
smaller cations (e.g., NaOtBu and LiOtBu) in place of KOtBu 
in entry 1 resulted in a substantial decrease in the product yield 
(entries 9 and 10). The addition of 18-crown-6 (2 equiv) inhib-
ited the reaction completely, suggesting direct participation of 
a potassium cation in the catalysis (entry 11). The phosphonyla-
tion product 3a was not obtained at all with less basic potassium 
salts such as K2CO3 and K3PO4 (entries 12 and 13). Potassium 
hexamethyldisilazide (KHMDS), which is sufficiently basic to 

deprotonate dialkyl phosphonates, also failed to give 3a (entry 
14). By contrast, the use of KHMDS with Ni(cod)2 instead of 
NiBr2·diglyme afforded 3a in a quantitative yield, suggesting 
that the reduction of a Ni(II) precatalyst occurred with tert-
butoxide but not with KHMDS (entry 15). The addition of ex-
ogeneous ligands did not substantially affect the product yield.16 
 
Table 1. Ni-catalyzed phosphonylation of 4-fluorobiphenyl 
(1a) with dicyclohexyl phosphonate (2a).a 

 

Entry [Ni] Base Yield [%]b 

1 NiBr2·diglyme KOtBu 99 
2c NiBr2·diglyme KOtBu 0 
3 NiI2 KOtBu 99 
4 NiBr2 KOtBu 55 
5 NiCl2 KOtBu 62 
6 Ni(acac)2 KOtBu 77 
7 Ni(cod)2 KOtBu 70 
8 none KOtBu 0 
9 NiBr2·diglyme NaOtBu 33 

10 NiBr2·diglyme LiOtBu 2 
 11d NiBr2·diglyme KOtBu 0 
12 NiBr2·diglyme K2CO3 0 
13 NiBr2·diglyme K3PO4 0 
14 NiBr2·diglyme KHMDS 0 
15 Ni(cod)2 KHMDS 99 

a Reaction conditions: 1a (0.125 mmol), 2a (0.25 mmol), Ni com-
plexes (0.00625 mmol, 5 mol% to 1a), base (0.25 mmol), toluene 
(0.5 mL), 120 °C, 15 h. b 1H NMR yield obtained using 1,3,5-tri-
methoxybenzene as an internal standard. c 0.125 mmol of base. d 
18-Crown-6 (0.250 mmol, 2.0 equiv) was added. 

acac = acetylacetonate, cod = 1,5-cyclooctadiene, HMDS = hexa-
methyldisilazide. 

 
With the optimal conditions in hand, we investigated the 

substrate scope (Table 2). Aryl fluorides possessing electron-
donating substituents such as methoxy (OMe), dimethylamino 
(NMe2), diphenylamino (NPh2), and methyl (Me) groups par-
ticipated in the phosphonylation reaction to afford the corre-
sponding aryl phosphonates in good yields (3b–3e). Simple 
fluorobenzene also exhibited excellent reactivity, forming 3f in 
90% yield. Electron-withdrawing amide groups were tolerated 
on the aromatic ring, and the corresponding products 3g and 3h 
were obtained in 86% and 74% yields, respectively. However, 
the aryl fluoride with a highly electron-withdrawing trifluoro-
methyl group resulted in a low yield of 3i (15% yield). π-Ex-
tended aryl fluorides were suitable substrates for the present 
phosphonylation reaction, and the corresponding products were 
obtained in excellent yields (3j–3l). However, 2-fluorobiphenyl 
and 1-fluoro-2,6-dimethylbenzene did not give products 3m 
and 3n. Heteroaryl fluorides were successfully converted to the 



 

corresponding phosphonates (3o and 3p). For the synthesis of 
3b,d,k, the reaction was conducted with Ni(cod)2 and KHMDS 
because the protocol with NiBr2·diglyme and KOtBu produced 
small amounts of phosphorus-containing byproducts, which 
hampered the isolation of the products in pure form. 

Next, the scope of dialkyl phosphonates was examined. 
Diisopropyl phosphite (2b) afforded the corresponding phos-
phonate 3q in 84% yield, whereas dialkyl phosphonates with 
tertiary (2c) or primary (2d) O-alkyl groups failed to give the 
products (3r, 3s). Diphenyl phosphonate (2e) also exhibited no 
reactivity. Thus, the present reaction was specifically possible 
with phosphonates with two secondary O-alkyl groups. This un-
usual reactivity trend disfavoring the smallest pronucleophile 
[HP(O)(OEt)2] can be explained by assuming the formation of 
inactive Ni species through over-coordination of the relatively 
small potassium diethyl phosphite ligand [P(OEt)2O−K+] to a Ni 
 
Table 2. Scope of aryl fluorides and dialkyl phosphonates.a 

 
a Reaction conditions: 1 (0.125 mmol), 2 (0.25 mmol), NiBr2·di-
glyme (0.00625 mmol, 5 mol% to 1), KOtBu (0.25 mmol), PhMe 
(0.5 mL), 120 °C, 20 h. Yields of isolated products are shown. b 
Ni(cod)2 (0.00625 mmol) as catalyst, KHMDS (0.25 mmol) as base. 
c THF as a solvent, 80 °C, 20 h. 

center or through aggregation of a Ni–P(OEt)2OK complex. Ra-
cemic phosphinate 3u was obtained in 53% yield from 4-
fluorobiphenyl and cyclohexyl phenylphosphinate (2f) under 
slightly modified reaction conditions. The synthetic applica-
tions are summarized in Scheme 1. The reaction was applicable 
for a gram-scale synthesis. When the reaction of aryl fluoride 
1b with phosphonate 2b was carried out on a 5.0 mmol scale, 
1.1 g of arylphosphonate 3v was isolated (84% yield, Scheme 
1a). Defluorinative phosphonylation of N-methyl paroxetine, an 
antidepressant, afforded the corresponding arylphosphonate 3w 
in 50% yield, demonstrating the potential of the present proto-
col for the synthesis of structurally complicated organophos-
phorus compounds using scaffolds of biologically functional 
molecules (Scheme 1b). Twofold defluorophosphonylation oc-
curred with 1,4-difluorobenzene (4) under slightly modified re-
action conditions, affording the corresponding phenylenedi-
phosphonic acid ester (5) in 63% yield (Scheme 1c). 
Scheme 1. Synthetic applications.  

 

 
Scheme 2. Mechanistic experiments.  

 



 

 
Figure 2. (a) Calculated oxidative addition pathways. (b) Calculated reductive elimination pathways. 

 

To gain insights into the mechanism, we performed kinetic 
studies by in situ infrared (IR) spectroscopy for the reaction of 
potassium salt K[2a–H], which was formed in situ from 2a and 
KOtBu, with 4-methoxylphenyl fluoride (1b) promoted by 
Ni(cod)2 in toluene at 120 °C (Scheme 2a). The rate was found 
to be first order in both 1b and Ni(cod)2, suggesting that a reac-
tion of the aryl fluoride with a monomeric Ni complex would 
be a turnover-limiting step. However, we failed to determine the 
reaction order for K[2a–H] because of its low solubility.16  

To explain the specific reactivity of di-sec-alkyl phospho-
nates, we conducted reactions with a mixture of phosphonates 
with different O-alkyl groups (Scheme 2b). When aryl fluoride 
1b was treated with a 1:1 mixture of diisopropyl and diethyl 
phosphonates (1b : 2b : 2d = 1:1:1) in the presence of NiBr2·di-
glyme (5 mol%) and KOtBu (2 equiv), no C–P coupling product 
was obtained, indicating that diethyl phosphonate (2d) inhibited 
the reaction of diisopropyl phosphonate (2b). Thus, the irre-
versible formation of a catalytically inactive species from 2d 
and NiBr2·diglyme is strongly suggested. 

For computational investigations, we assume metal chela-
tion by ion-bridged dimers of the potassium dialkyl phosphites 
{M[P(OR)2O−K+]2} on the basis of analogy with the chelation 
by hydrogen-bonded phosphorus dimers 
[(RO)2POH···−OP(OR)2] reported in the literature.15,17,18 Calcu-
lations were performed at the M06/SDD,6-
311+G(d,p)/SMD//M06/lanl2dz,6-31G(d) level of theory using 
the Gaussian 16 package. To include solvent effects, the explicit 
coordination of a toluene molecule to each K+ cation was con-
sidered in all the calculations. Energy profiles are given in Fig-
ure 2 for the oxidative addition of fluorobenzene (1f) to the 
Ni(0) complex {Ni0[P(OiPr)2OK]2·(toluene)2} coordinated 
with two P(OiPr)2OK ligands (Figure 2a) and for reductive 
elimination of the arylphosphonates [PhP(O)(OiPr)2] from 
Ni(II) complexes 
{[P(OiPr)2OK]2NiII(Ph)[P(O)(OiPr)2]·(toluene)2} (Figure 2b).  

As shown in Figure 2a, the C–F bond oxidative addition of 
fluorobenzene to the Ni center of Ni(0) intermediate Int-1a (R 
= iPr) to produce the corresponding pseudo-square-planar 
Ni(II) intermediate (Int-2a) occurs with Lewis acidic direct par-
ticipation of one of the K+ cations, as indicated by the increase 
of the K···F interaction (from 2.76 Å to 2.46 Å) as the reaction 
proceeds from Int-1a to transition state TS1a–2a. This process is 
10.9 kcal·mol−1 exergonic with a barrier of 14.1 kcal·mol−1, 

altering the P–Ni–P bite angle from 105° (for Int-1a) to 96° (for 
Int-2a). We reason that not only the push–pull effect of the Ni–
K+ bimetallic system but also strong electron donation by the 
two anionic phosphorus ligands [P(OiPr)2O−] facilitate the C–F 
bond oxidative addition.19 

We next attempted to identify a transition state for the direct 
reductive elimination of PhP(O)(OiPr)2 from Int-2a; however, 
a reasonable transition-state structure was not found. This fail-
ure prompted us to investigate reductive elimination after ligand 
exchange at the Ni(II) center from the F− anion to P(OiPr)2O−. 
The geometry-optimized Ni(II) complex (Int-3a) with three an-
ionic P ligands adopts a pseudo-square-planar geometry. The 
P–Ni–P bite angle (96°) with the original two P ligands is un-
changed upon this ligand exchange. The computational estima-
tion of the relative energy between Int-2a and Int-3a is too 
challenging because of the insoluble natures of KF and 
P(OiPr)2OK in the reaction system and was therefore not pur-
sued in the present study. Reductive elimination from Int-3a 
proceeds through TS3a-4a with an energy barrier (10.9 
kcal·mol−1) much lower than that for the oxidative addition pro-
cess (14.1 kcal·mol−1) to afford Int-4a with an η2-coordinated 
phosphonylbenzene via a 7.2 kcal·mol−1 exergonic process. 

We also conducted a computational study for the less favor-
able reaction with the bulkier phosphorus agent di-tert-butyl 
phosphonate (R = tBu). The corresponding energy diagrams are 
given in Figure 2 as blue lines. As in the case with diisopropyl 
phosphonate (R = iPr), the C–F bond oxidative addition (Int-
1b–TS1b-2b–Int-2b) proceeds with Lewis acidic participation of 
the K+ cation, with an energy barrier of 15.8 kcal·mol−1, which 
is only 1.7 kcal·mol−1 larger than that for the reaction with diiso-
propyl phosphate (R = iPr) (Figure 2a). Thus, the oxidative ad-
dition step is likely not responsible for the lower reactivity of 
di-tert-butyl phosphonate compared with that of diisopropyl 
phosphate. By contrast, the change of the phosphonate alkyl 
groups from iPr (TS3a-4a) to tBu (TS3b-4b) strongly influenced 
the ease of reductive elimination, increasing the energy barrier 
to 20.1 kcal·mol−1 (Figure 2b). The energy barrier of TS3b-4b is 
9.2 kcal·mol−1 higher in energy than that for the reaction with 
the diisopropyl phosphonate, which is thereby deduced to be a 
reason for the experimentally observed inertness of 
HP(O)(OtBu)2 (2c). Steric congestion in TS3b-4b is likely respon-
sible for the increased energy barrier.20 



 

On the basis of the results of the experimental and theoreti-
cal studies, we propose the reaction mechanism shown in 
Scheme 3. The catalyst precursor NiBr2·diglyme is activated by 
P(OR)2O−K+

 (K[2–H]) generated by deprotonation of dialkyl 
phosphonate 2 with KOtBu to afford Ni(0) complexes 
{Ni[P(OR)2OK]n (n = 3, 4)} that chelated with a strongly elec-
tron-donating ion-bridged dimeric phosphite ligand system 
[P(OR)2O–K+]2.21 Ligand exchange between one or two mole-
cules of K[2–H] and aryl fluoride 1 gives a Ni(0) complex (A) 
η2-coordinated with the aryl fluoride. The pronounced inhibi-
tory effect by diethyl phosphonate 2d is deduced to be attribut-
able to the inertness of Ni0[P(OEt)2OK]n (n = 3, 4) toward lig-
and dissociation. Then, turnover-limiting oxidative addition of 
aryl fluoride 1 to the Ni center of A gives an aryl nickel(II) flu-
oride (B). Next, replacement of the F− anion on the Ni center 
with a phosphonate anion [2a–H]− forms aryl(phospho-
nyl)nickel(II) complex C. Finally, reductive elimination of ar-
ylphosphonate 3 from C and re-coordination of aryl fluoride 1 
regenerates Ni(0) complex A to complete the catalytic cycle. 

 
Scheme 3. A proposed catalytic cycle. 

 

 
CONCLUSIONS  

In summary, Ni-catalyzed defluorinative phosphonylations 
of aryl fluorides with dialkyl phosphonates [HP(O)(OR)2] have 
been achieved using KOtBu as a base. The reaction required no 
exogeneous ligands, and commercially available and bench-sta-
ble Ni(II) complexes exhibited high catalytic activities. Various 
aryl fluorides were successfully converted to the corresponding 
arylphosphonates irrespective of their electronic natures. The 
reaction proceeded specifically with di-sec-alkyl phosphonates. 
Experimental and computational mechanistic investigations 
suggested that Ni–K+ cooperative action of a Ni(0) complex 
chelated with a strongly electron-donating ion-bridged dimeric 
phosphite ligand [P(OR)2O−K+]2 facilitates turnover-limiting 
C–F bond oxidative addition of aryl fluorides. Further reaction 
development with metal complexes with ion-bridged dimeric 
phosphonate ligands is underway in our laboratory. 

EXPERIMENTAL SECTION 

Typical Procedure for the Ni-catalyzed defluorophosphonylation 
of aryl fluorides 

In a nitrogen-filled glovebox, NiBr2·diglyme (2.2 mg, 0.00625 mmol, 
5 mol%) and PhMe (0.1 mL) were placed in an oven-dried 10 mL glass 
tube containing a magnetic stirring bar. Next, 1a (21.5 mg, 0.125 mmol, 
1 equiv), 2a (61.6 mg, 0.25 mmol, 2 equiv), and PhMe (0.2 mL) were 
added to the mixture. After stirring for 5 min, KOtBu (28.1 mg, 0.25 
mmol, 2 equiv) and PhMe (0.2 mL) were added, and the color of the 
mixture turned into orange upon stirring. The glass tube was sealed 
with a screw cap and was removed from the glove box. The mixture 
was stirred at 120 °C for 20 h. After cooling to room temperature, the 
dark-red reaction mixture was passed through a short plug of silica gel 
with a CH2Cl2/MeOH (9:1) eluent. Volatiles were removed by evapo-
ration under reduced pressure. In order to remove recovered dial-
kylphosphonates, the crude reaction mixture was heated to 90 °C under 
high vacuum (140 Pa) for 12 h. After cooling to room temperature, a 
rsidue was purified by flash chromatography on silica gel with slow 
gradient elution (CH2Cl2/MeOH 100:0-to-98:2) followed by prepara-
tive thin layer chromatography (CH2Cl2/MeOH 98:2) to give 3a as a 
light-brownish oil (48.4 mg, 0.12 mmol, 97% yield). 
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