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Abstract. We consider how many users we need to query in order to
estimate the extent to which multi-value opinions (information) have
propagated in a social network. For example, if the launch date of a new
product has changed many times, the company might want to know to
which people the most current information has reached. In the propaga-
tion model we consider, the social network is represented as a directed
graph, and an agent (node) updates its state if it receives a stronger
opinion (updated information) and then forwards the opinion in accor-
dance with the direction of its edges. Previous work evaluated opinion
propagation in a social network by using the probably approximately
correct (PAC) learning framework and considered only binary opinions.
In general, PAC learnability, i.e., the finiteness of the number of sam-
ples needed, is not guaranteed when generalizing from a binary-value
model to a multi-value model. We show that the PAC learnability of
multi-value opinions propagating in a social network. We first prove that
the number of samples needed in a multi-opinion model is sufficient for
(k−1) log(k−1) times the number of samples needed in a binary-opinion
model, when k (≥ 3) is the number of opinions. We next prove that the
upper and lower bounds on the number of samples needed to learn a
multi-opinion model can be determined from the Natarajan dimension,
which is a generalization of the Vapnik-Chervonenkis dimension.

Keywords: PAC Learning · Opinion Estimation · Social Network

1 Introduction

Today, many people exchange various opinions and information via social net-
work services (SNSs). Therefore, SNSs have become an important means for
individuals, companies, and other information sources to disseminate and prop-
agate information such as opinions and product advertisements. To measure the
effectiveness of an advertising campaign, it is necessary to know to whom the
information has reached. However, for a large network, it is impractical to check
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whether everyone has received the information, so we have to rely on estimation
based on sampling.

A recently proposed method [4] for estimating the extent of propagation of
binary opinions in a social network uses the probably approximately correct
(PAC) learning framework [10] to obtain the number of samples needed for
estimation. The PAC learning framework is typically used for estimating the
number of samples needed to learn an accurate classification model with high
probability. PAC learning is a classical theory in the field of machine learning that
has in recent years been applied to various multi-agent system (MAS) problems.
For example, PAC learning has been applied to cooperative games [1, 7, 9, 11]
and has been combined with incentive design [12].

Conitzer et al. represented a social network as a directed graph with nodes
as agents and edges as relations among agents and assumed that opinions prop-
agated in accordance with the direction of edges [4]. The state of each agent is
binary: either it has received an opinion (1) or it has not (0). Once an opin-
ion enters an agent node through an incoming edge, the agent propagates the
opinion through its outgoing edges. PAC learning is used to calculate the order
of the number of samples (agents) that need to be asked whether they have an
opinion needed to estimate, within a predefined error margin, the opinions of
other agents in the network once opinion propagation has completed.

In their study, Conitzer et al. considered only binary opinions, but opinions
are not always expressed in binary form. For example, a company may announce
the scheduled release date of a new product and then change the date or product
specifications. In this case, the company would probably want to know the extent
to which the old information and the updated information have propagated. As
another example, knowledge about a new infectious disease is constantly being
updated, and knowing who has each stage of the information would be helpful
in implementing effective countermeasures. Thus, the degree to which opinions
and information have spread in social networks can have multiple uses. It is also
practically necessary to determine the sample size needed to estimate the extent
to which opinions have been reached in a social network.

Here, we generalize the problem setting used by Conitzer et al. [4]. More
specifically, when k(≥ 3) types of opinions (labels) propagate in a social net-
work represented by a directed graph, we use PAC learning to determine the
number of samples required to estimate labels other agents have when opinion
propagation is completed. In general, when a binary model is extended to a
multi-valued model, PAC learnability, i.e., the finiteness of the required number
of samples, is not guaranteed. However, in our model of opinion propagation on a
directed graph, generalization is possible because the hypothesis class H (the set
of candidate labelings to be estimated) representing possible labeling patterns
is determined from the propagation conditions of labels on the graph. We first
show, as a relative comparison, that for a k (≥ 3)-valued model, (k−1) log(k−1)
times the number of samples required for PAC learning of a binary model is suf-
ficient. Next, we determine specific upper and lower bounds on the number of
samples required for PAC training of a k (≥ 3)-valued model.
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The rest of this paper is organized as follows. We first introduce previous
related work in Section 2. In Section 3, we describe PAC learning for binary and
multi-valued models. In Section 4, we present the problem setting considered in
this paper. We compare binary and multi-valued models in Section 5. In Sec-
tion 6, we define the Natarajan dimension in our problem setting and determine
the upper and lower bounds on the number of samples needed for estimating the
overall propagation of multiple opinions in a social network.

2 Previous Work

As mentioned in Section 1, PAC learning has been applied to various MAS
problems.

Procaccia and Rosenschein investigated PAC learning for simple cooperative
games in which the coalitions are partitioned into winning and losing coali-
tions. They analyzed the complexity of learning a suitable concept class via the
Vapnik-Chervonenkis (VC) dimension and developed an algorithm that learns
its class [9]. Balcan et al. concentrated on the core stability in cooperative games
when agents’ preferences are fully unknown [1]. They established a connection
between PAC learnability and core stability: for games that are efficiently learn-
able, payoff divisions that are likely to be stable can be found by using a poly-
nomial number of samples. Their defining of PAC stability led to studies of PAC
stability. Sliwinski and Zick studied PAC stability in hedonic games (which are
a variant of cooperative games) when agents’ preferences are fully unknown [11].

Berenbrink et al. investigated an agent-based model for opinion formation in a
social network in which the opinion of an agent depends both on its own intrinsic
opinion and on those of its network neighbors [3]. They analyzed the convergence
time of asynchronous Hegselmann-Krause opinion dynamics in arbitrary social
networks. Irfan et al. addressed the problem of how to maximize the spread of
information while minimizing the spread to unintended recipients under budget
constraints [8].

Zhang and Conitzer considered PAC learning in the presence of strategic
manipulation [12]. They addressed an incentive problem in which a point being
classified may strategically modify its features in order to receive a more desirable
outcome. Incentive design is an important MAS research area, and Zhang and
Conitzer presented a new direction for combining machine learning and MAS
techniques.

3 PAC Learning

In this section, we present several fundamental concepts of PAC learning.

3.1 PAC learning for binary labels

PAC learning provides an estimate of the number of samples required to learn
a hypothesis that guarantees a confidence level δ and generalization error ε for
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a learning problem with a hypothesis class H. Suppose there exists a data set
X (|X| = n) and a label set W = {0, 1, 2, . . . , k − 1} (k ≥ 2). Suppose that
each data item x ∈ X is given a label f(x) ∈ W , and let WX be the set of all
possible labelings on X. The learner independently selects m points on the basis
of probability distribution D on X and knows the value of f at each point. As
an estimation of the label value f = {f(x)}x∈X from the sample data, one h is
selected from the predefined hypothesis set H ⊆ WX .

The error between the true labeling f and its hypothesis h is defined as the
probability that f(x) and h(x) differ when x is chosen on the basis of D and is
denoted as

LD,f (h) = PD(f(x) ̸= h(x)), (1)

where PD denotes the probability of choosing the point x ∈ X in accordance
with D. That is, LD,f (h) represents the error rate (measured in D) of h when f
is the correct answer.

For a given ε, δ > 0, the goal of PAC learning is to determine the hypothesis
h ∈ H satisfying LD,f (h) ≤ ε with probability greater than 1−δ. The procedure
to achieve this goal is outlined below.

1. The learner is given a hypothesis class H, which is a subset of all possible
labelings WX . The learner knows nothing about the true labeling f to be
guessed except that it is an element of WX .

2. The m points (x1, x2, . . . , xm) ∈ Xm chosen from X and the values of f at
those points (f(x1), f(x2), . . . , f(xm)) are called a training set. The learner
determines an algorithm to find a hypothesis h ∈ H as a guess of f from the
given training set. We call the algorithm A henceforth.

3. True labeling f ∈ WX and probability distribution D on X are determined.

4. The m points (x1, x2, . . . , xm) chosen independently from X in accordance
with probability distribution D and labels (f(x1), f(x2), . . . , f(xm)) at those
points are given to the learner as a training set. The learner determines
hypothesis h ∈ H using algorithm A.

5. The obtained hypothesis h is evaluated using LD,f (h), and if the value ob-
tained is less than ε, the learning is considered successful.

The m points x1, x2, . . . , xm chosen in step 2 must be considered in the case
of overlap. The learner must decide algorithm A before step 3, i.e., without
any information about f,D. That is, A is a mapping from (X × W )m to H.
Let mL(ε, δ) be the smallest integer m for which algorithm A can be defined
such that the probability of success in guessing is uniformly greater than 1 − δ
regardless of D and f . The condition corresponding to the assumption that f
given in step 3 is in particular an element of H; i.e.

min
h∈H

LD,f (h) = 0 (2)

is called the realizability condition. Here, PAC learning is performed under the
assumption of this condition.
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3.2 Vapnik-Chervonenkis dimension

The VC dimension is used to characterize the sample complexity of learning a
given hypothesis class H for a binary label set W = {0, 1}.

Definition 1. VC dimension Let X be a non-empty set, and let H be a hy-
pothesis class of functions from X to {0, 1}; i.e., H ⊆ {0, 1}X . We say that a
subset S ⊆ X is shattered by H if the restriction H|S of H to S is identical
to {0, 1}S. The VC dimension of a hypothesis class H, denoted dV C(H), is the
maximum size of a set S ⊆ X that can be shattered by H. If H can shatter sets
of arbitrarily large size, we say that H has an infinite VC dimension.

In other words, the VC dimension is the maximum size of a set of agents in
which all combinations for any labels are feasible.

Example 1. We set W = {0, 1} and X = {a, b, c}. If we denote the elements of
H in the form (h(a), h(b), h(c)), the hypothesis class is H = {(1, 0, 0),
(0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

If we set Sabc = {a, b, c}, we have H|Sabc
= H. H|Sabc

does not include (0, 0, 0)
and (1, 1, 1), so Sabc is not shattered by H. If we set Sab = {a, b}, we have
H|Sab

= {(0, 0), (0, 1), (1, 1), (1, 0)}. H|S12 consists of all feasible combinations
for W . As a result, Sab is shattered by H, and dV C(H) = 2. Furthermore, if we
set Sac = {a, c} and Sbc = {b, c}, both Sac and Sbc are shattered by H.

We estimate mL(ε, δ) by applying the VC dimension under realizability as-
sumption (2).

Theorem 1. [10] Let H be a hypothesis class of functions from a domain X to
{0, 1}; that is, H ⊆ {0, 1}X . Assume that dV C(H) < ∞. Then, there are absolute
constants C1, C2 > 0 such that

C1
dV C(H) + log(1/δ)

ε
≤ mL(ε, δ) ≤ C2

dV C(H) log(1/ε) + log(1/δ)

ε
. (3)

This fundamental theorem states that, even if X is an infinite set, H is PAC
learnable if its VC dimension is finite.

3.3 PAC learning for multiple labels

We introduce PAC learning for k(≥ 2) labels W = {0, 1, 2, . . . , k − 1} under
realizability assumption (2) in which there exists a true label f in hypothesis
class H.

To estimate the accuracy of hypothesis h, we define lD,f (h) in addition to
error rate LD,f (h):

lD,f (h) = ED(|f(x)− h(x)|). (4)

lD,f (h) represents the expected value of the error rate, taking into account the
difference in size between f and h, measured with respect to probability distri-
bution D. From this definition, we get

LD,f (h) ≤ lD,f (h) ≤ (k − 1)LD,f (h). (5)
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a b c
0 0 2 2
1 1,2 0,1 0,1

a 0 0 1 1
b 0 2 0 2
c 0 2 0 2

a 0 0 1 1
b 1 0 1 0
c 1 0 1 0

(a) Hypothesis H (b) Function g (c)  Labels g

Fig. 1. Example of calculating Graph dimension

If k = 2, we have LD,f (h) = lD,f (h) because the only possible values of f
and h are 0 and 1. In PAC learning for multiple labels, when hypothesis h is
estimated using lD,f (h) or LD,f (h), we say that the learner has succeeded in
its prediction if the estimation does not exceed ε. Furthermore, the amount of
training data needed so that the probability of successful prediction is equal to
or more than 1 − δ is denoted by mL(ε, δ) or ml(ε, δ) in accordance with the
evaluation criterion.

To extend the VC dimension so that we can measure the complexity of hy-
pothesis class H in the multi-valued case, consider H|S , which restricts H to S.
As in Definition 1, one might think that one should look for the largest S such

that H|S coincides with {0, 1, . . . , k−1}S and define d
(k)
V C(H) as the number of its

elements. However, it is known that, for k > 2, the case mL(ε, δ),ml(ε, δ) = ∞
occurs even if d

(k)
V C(H) < ∞. Therefore, d

(k)
V C(H) defined above is not useful for

determining PAC learnability in the multi-valued case.

3.4 Graph and Natarajan dimensions

We give the definitions of the Graph and Natarajan dimensions for PAC learning
for multiple labels [5].

Definition 2. (Graph dimension) Let X be a non-empty set, and let H be a hy-
pothesis class of functions from X to {0, 1, . . . , k−1}; i.e., H ⊆ {0, 1, . . . , k−1}X .
We say that a subset S ⊆ X is G-shattered by H if there exists a {0, 1, 2, . . . , k−
1}-value function g over S such that, for any subset T ⊆ S, there exists an h ∈ H
such that

∀x ∈ T, h(x) = g(x), and ∀x ∈ S\T, h(x) ̸= g(x). (6)

The Graph dimension of hypothesis class H, denoted dG(H), is the maximum
size of a set S ⊆ X that can be G-shattered by H.

Function g converts multiple labels into binary labels by separating k labels into
a single label and a set containing the remaining labels. It may differ by agent.
The Graph dimension is the maximum size of a set of agents in which certain
combinations of labels determined in accordance with g are feasible. We show
an example of determining the Graph dimension.
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a
b
c

a 0 0 1 1
b 0 2 0 2
c 0 2 0 2

(a) Hypothesis H (b) Functions g1 ,  g2 (c)  Labels g1 ,  g2

a b c
0 2 0
1 0 2

Fig. 2. Example of calculating Natarajan dimension

Example 2. Let W be {0, 1, 2} and X be {a, b, c}. If we denote the elements of
H in the form (h(a), h(b), h(c)), the hypothesis class is H = {(0, 0, 0),
(0, 2, 2), (1, 0, 0), (1, 2, 2)}, as shown in table (a) in Figure 1.

Let us set function g as shown in table (b) in Figure 1. Function g relabels 0
as 0 and 1 and 2 as 1 for agent a and relabels 2 as 0 and 0 and 1 as 1 for agents b
and c. There exist all combinations of labels determined in accordance with g in
S = {a, b} shown in table (c) in Figure 1. Furthermore, setting S = {a, c} creates
a set of agents in which all combinations for labels determined in accordance with
function g are feasible. If S = {a, b, c}, certain combinations for labels determined
in accordance with functions g are infeasible. As a result, the Graph dimension
is 2.

Definition 3. (Natarajan dimension) Let X be a non-empty set, and let H be
a hypothesis class of functions from X to {0, 1, . . . , k−1}; i.e., H ⊆ {0, 1, . . . , k−
1}X . We say that a subset S ⊆ X is N-shattered by H if there exists {0, 1, 2, . . . ,
k − 1}-value functions g1 and g2 over S such that for any subset T ⊆ S, there
exists an h ∈ H such that

∀x ∈ T, h(x) = g1(x), and ∀x ∈ S\T, h(x) = g2(x). (7)

The Natarajan dimension of hypothesis class H, denoted dN (H), is the maximum
size of a set S ⊆ X that can be N-shattered by H.

Intuitively, we first select binary labels from multiple labels. Then we consider the
selected binary labels as g1 and g2; g1 and g2 may differ by agent. The Natarajan
dimension is the maximum size of a set of agents in which all combinations for
labels determined in accordance with functions g1 and g2 are feasible.

Example 3. Let W be {0, 1, 2} and X be {a, b, c}. If we denote the elements of
H in the form (h(a), h(b), h(c)), the hypothesis class is H = {(0, 0, 0),
(0, 2, 2), (1, 0, 0), (1, 2, 2)}, as shown in table (a) in Figure 2.

Let us set functions g1 and g2 as shown in table (b) in Figure 2. For agent a,
0 and 1 indicate g1 and g2, respectively. There exist all combinations of labels
determined in accordance with g1 and g2 in S = {a, b}, as shown in table (c)
in Figure 2. Furthermore, setting S = {a, c} creates a set of agents in which all
combinations for labels determined in accordance with functions g1 and g2 are
feasible. If S = {a, b, c}, all combinations for labels determined in accordance
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with functions g1 and g2 are infeasible. As a result, the Natarajan dimension is
2.

The Natarajan and Graph dimensions are identical to the VC dimension

when W = {0, 1}. From the definitions, if d
(k)
V C(H) ≤ dN (H) ≤ dG(H) for any

k(≥ 2), we can estimate mL(ε, δ) by using the Natarajan and Graph dimensions
as follows.

Theorem 2. ([5]) Let us assume that dG(H) < ∞. For the constants C1, C2,
from Theorem 1, for every H, we have

C1
dN (H) + log(1/δ)

ε
≤ mL(ε, δ) ≤ C2

dG(H) log(1/ε) + log(1/δ)

ε
. (8)

The Natarajan and Graph dimensions can be used to estimate the amount of
training data required for a general multi-valued model. Furthermore, Ben-David
et al. proved the following relationships between dN (H) and dG(H) [2].

dN (H) ≤ dG(H) ≤ 4.67 log2 k dN (H). (9)

Thus, there is an equivalence between dN (H) being finite and dG(H) being finite.

4 Problem Setting

Let G = (V,E) be a directed graph. The node set V corresponds to the set X
in the general theory described in the previous section. When V is a finite set,
the number of nodes is |V | = n. Let (u, v) ∈ E denote the directed edge from
node u to node v.

If there exists a sequence of nodes u, u1, u2, . . . , ul−1, v connecting two nodes
u, v ∈ V by directed edges (u0 = u, ul = v, then, for 1 ≤ i ≤ l (ui−1, ui) ∈ E),
the relationship is denoted as u → v. Then, let ρ(u, v) be the number of edges
(l in the above notation) when the two nodes are connected by the shortest
directed edge sequence. If u → v does not hold, then ρ(u, v) = ∞. Note that we
write ρU (u, v) when we restrict the sequence of nodes connecting two nodes to
those contained in the subset U of V . For u, v ∈ U , ρ(u, v) ≤ ρU (u, v).

The set of labels given to each node is W = {0, 1, 2, . . . , k − 1}. The case
k = 2 corresponds to binary labels. Each node u is given one of these k kinds of
values, which we denote by f(u). A greater or lesser value of this label represents
greater or lesser information about a certain matter, and this information spreads
through the directed edges of the graph; i.e.,

u → v =⇒ f(u) ≤ f(v) (10)

is assumed to be satisfied.
In Conitzer et al.’s model [4], the state of each node is binary (k = 2) (it has or

does not have the target information), and the set of nodes S0 ⊆ V that initially
have that information is given as the initial state. The final state is represented
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c
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c

e

d

f

0 1 2

Fig. 3. Example of opinion flow

a b

c

Fig. 4. Example of social network

by S∞, and the objective is to estimate it. Once the information is acquired, it
is not forgotten; i.e., if u ∈ S0, then u ∈ S∞ is assumed. It is also assumed that
the information is transmitted through directed edges; i.e., if u ∈ S0 and u → v,
then v ∈ S∞ is also assumed. In our model, the above condition (10) is given by
specifying the conditions that the final state must satisfy. We assume that each
node u obtains information from nodes other than those connected by directed
edges, and we allow the states u → v and f(u) < f(v).

Example 4. Figure 3 shows how multiple opinions propagate in a social network.
In this example, three opinions propagate. Initially, agent a has 2, agents b and
d have 1, and the other agents have 0 as an opinion. Then, they share their
opinions in accordance with the directions of their outgoing edges. Next, agents
a, b, and e have 2 and d has 1. The opinion of agent b changes from 1 to 2
because 2 is stronger than 1. Although agent e receives both 1 and 2, opinion 2
is kept for the same reason. Finally, agents a, b, c, and e have 2, agent d has 1,
and agent f still has 0.

Of all possible labeling sets WV on V , the subset that satisfies condition
(10) is the hypothesis class and is denoted by H. Hypothesis class H, which is
restricted to a subset V ′ of the node set V , is denoted by H|V ′ .

Example 5. Let V = {a, b, c} denote the node set E = {(a, b), (b, c), (c, b)}, the
edge set, as shown in Figure 4. Let k = 3 be the number of labels. If we denote
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the elements of H in the form (h(a), h(b), h(c)), the hypothesis class is

H = {(0, 0, 0), (0, 1, 1), (0, 2, 2), (1, 1, 1), (1, 2, 2), (2, 2, 2)};

and if we restrict the node set to V ′ = {a, c}, the restricted hypothesis class is

H|V ′ = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 2)}.

In Conitzer et al. ’s model [4] and the model used in this study, the learner
is given information on the directed graph G = (V,E) in step 1 of the learning
procedure, as described in Section 3.1. At this point, the learner can define a
subset of WV that satisfies condition (10) as the hypothesis class H. In the case
of binary labels treated in Conitzer et al. ’s study, the VC dimension of the
hypothesis class H satisfying condition (10) is determined to be the maximum
number of nodes in the graph that do not affect each other. Since the value
of this dimension is determined from G, it is written as dV C(G). That is, the
following holds for binary labels.

dV C(G) = max
U⊆V

{ |U | | ∀u, v ∈ U, ρU (u, v) = ∞} (11)

Note that, if there exists a cycle in a directed graph G, i.e., a sequence
of directed edges starting from u ∈ V and returning to u, the label values of
the nodes in the cycle must all be identical by condition (10). Therefore, it
is sufficient to consider a directed acyclic graph in which all the nodes in a
cycle in G are reduced to a single node, thereby removing all cycles. A directed
acyclic graph can also be regarded as a partially ordered set. A subset of a
partially ordered set for which none of its elements can be ordered is called an
antichain. The number of elements in the largest antichain is called the width of
the partially ordered set, which is in fact the right-hand side of Equation (11).
It is known that the width of a partially ordered set can be determined by the
polynomial order of the number of elements, which is the number of nodes in
the corresponding directed acyclic graph [6]. Thus, variable d in inequality (3)
of Theorem 1, which represents the estimated amount of training data needed,
can be replaced by the width of the partially ordered set, which is a directed
acyclic graph with cycles removed from the directed graph G.

In the following, we consider the case in which there are k kinds of labels
W = {0, 1, 2, . . . , k − 1}, and hypothesis class H, which is a set of candidate
labelings of the entire V , is defined as the set of all f satisfying condition (10). In
other words, realizability condition (2) is necessarily satisfied here. The learning
problem is therefore to find f among the elements of the set H of W -valued
functions on V . If parameters ε and δ are given, the amounts of training data

required for PAC learning on lD,f (h) and LD,f (h) are defined as m
(k)
l (ε, δ) and

m
(k)
L (ε, δ), respectively.

5 Comparison between Binary and Multi-valued Models

In this section, we evaluate m
(k)
l (ε, δ) for a k-valued model compared with the

binary model by using the following theorem.
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Theorem 3. Let the number of labels be k ≥ 2. The following holds for m
(k)
l (ε, δ),

i.e., the amount of training data required for PAC labeling.

m
(2)
l

(
ε

k − 1
, δ

)
≤ m

(k)
l (ε, δ) ≤ m

(2)
l

(
ε

k − 1
,

δ

k − 1

)
(12)

This theorem says that approximately (k − 1) log(k − 1) times the number of
samples is sufficient for PAC learning for the k-valued model compared with the

binary model. As for m
(k)
l (ε, δ) regarding the error rate, a similar evaluation

formula can be obtained from the theorem and inequality (5).

Proof. The inequality on the left-hand side in Theorem 3 is shown because the
error rate is exactly k − 1 times the error rate when the case in which the label
of each node takes the value {0, 1} in the binary model matches the case in
which the label takes the value {0, k − 1} in the k-valued model. The right-
hand side inequality is shown below. Since the label of each node v ∈ V can
take k different values of W = {0, 1, 2, . . . , k−1}, we divide these values into the
following k−1 binary models: (i) f(v) = 0 or f(v) > 0, (ii) f(v) ≤ 1 or f(v) > 1,

and (iii) f(v) ≤ 2 or f(v) > 2 · · · . Then, each instance of

(
ε

k − 1
,

δ

k − 1

)
-PAC

learning is performed. That is, PAC learning of binary models (i), (ii), (iii),

· · · is simultaneously performed using m
(2)
L

(
ε

k − 1
,

δ

k − 1

)
training data. This

enables the following relationships to be satisfied.

(i) The probability of PD(f(u) = 0, h(u) ≥ 1) + PD(f(u) ≥ 1, h(u) = 0) ≤
ε

k − 1
is 1− δ

k − 1
or more.

(ii) The probability of PD(f(u) ≤ 1, h(u) ≥ 2) + PD(f(u) ≥ 2, h(u) ≤ 1) ≤
ε

k − 1
is 1− δ

k − 1
or more.

(iii) · · ·
The probability that all PAC learning of these k− 1 binary models will succeed,

i.e., that the respective error rates will all be less than or equal to
ε

k − 1
, is

greater than or equal to 1− δ. From this, it can be shown that

ED(|f(u)− h(u)|)
=

∑
i<j

(j − i)PD(f(u) = i, h(u) = j) +
∑
i>j

(i− j)PD(f(u) = i, h(u) = j)

=
∑

i≤l<j

PD(f(u) = i, h(u) = j) +
∑

i>l≥j

PD(f(u) = i, h(u) = j)

≤
k−2∑
l=0

ε

k − 1
= ε.

We obtain inequality (12) since m
(2)
L

(
ε

k − 1
,

δ

k − 1

)
= m

(2)
l

(
ε

k − 1
,

δ

k − 1

)
when k = 2. ⊓⊔
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Next, we consider PAC learning when the possible label values are extended
to real values. Let W = [a, b], i.e., the label f(u) of each node is a real value
in the closed interval of a and b, and let H be the set of functions from V to
W that satisfy condition (10). In this setting, as shown below, PAC learning is
possible even though |H| = ∞. The minimum number of samples for which the
probability of selecting h ∈ H satisfying ED(|f(u)−h(u)|) ≤ ε is more than 1−δ

is m
[a,b]
l (ε, δ). In this case, the following theorem can be obtained compared with

that for the binary model.

Theorem 4.

m
(2)
l

(
ε

b− a
,

δ

b− a

)
≤ m

[a,b]
l (ε, δ) ≤ m

(2)
l

(
ε2

2(b− a)
,

εδ

b− a

)
(13)

Proof. Divide the interval W = [a, b] into K = ⌈b− a

ε
⌉ intervals of width ε or

less: [a, a1], (a1, a2], (a2, a3], . . . , (aK−1, b]. If a0 = a, aK = b, then, for 1 ≤ i ≤ K,
ai − ai−1 ≤ ε. We shall guess which interval the value of f(u) at each node u is

in and determine that, if f(u) ∈ (ai−1, ai], then h(u) =
1

2
(ai−1 + ai). Similar to

the proof of Theorem 3, we define the following K − 1 binary models: [a0, a1] or
(a1, aK ], [a0, a2] or (a2, aK ], · · · , [a0, aK−1] or (aK−1, aK ]. For these K−1 binary

models,

(
ε

2(K − 1)
,

δ

K − 1

)
-PAC learnings are performed simultaneously. The

probability that all the PAC learnings successfully estimate f(u) within the range

of error
ε

2(K − 1)
is 1 − δ or better. The error rate in this case is within

ε

2
. In

addition, the difference between a point within each interval and the midpoint

of that interval is within a maximum of
ε

2
, which means that the error rate is

kept within ε, the sum of these values. ⊓⊔

6 Dimensions in Directed Graphs

The VC, Natarajan, and Graph dimensions are introduced as measures of the
complexity of the set H of all possible labelings on V . The values of these dimen-
sions are important when considering PAC learning, and in particular, whether
these values are finite is a criterion for PAC learnability. According to Theo-
rem 2, the Natarajan and Graph dimensions are used to estimate the upper and
lower bounds on the amount of training data required for a multi-level model.
As a comparison between these dimensions, inequality (9) holds as described in
Section 3.4. Therefore, the evaluation of (8) can be expressed in terms of the
Natarajan dimension only. It is known that the VC dimension of H satisfying
condition (10) in the case of binary labels is determined from graph G as (11).
Here, we show that the Natarajan and Graph dimensions of H, which are de-
fined as the set satisfying condition (10) in the case of multi-valued labels, can
be specifically determined from G. This enables the upper and lower bounds on



Sample Complexity of Learning Multi-Value Opinions in Social Networks 13

the amount of training data required for PAC learning to be expressed in terms
of the properties of graph G.

Proposition 1. The following holds for H, which is defined as the set satisfying
condition (10) on directed graph G = (V,E).

d
(k)
N (H) = d

(k)
G (H) = max

U⊆V
{ |U | | ∀u, v ∈ U, ρU (u, v) ̸= k − 1} (14)

Since the dimensions that can be determined as above are the values known
from directed graph G, we will write them as d

(k)
N (G) and d

(k)
G (G). Note that

condition ρv(u, v) ̸= k − 1 on the right-hand side of Equation (14) means that
no directed edge sequence of length k − 1 or more is contained within a subset
U of V . Note that this coincides with (11) when k = 2. Also note that, in the

k-valued model on directed graph G, the value of d
(k)
V C(H) described in Section

3.2 coincides with dV C(G) defined by (11). Putting these together, we obtain

dV C(G) = d
(2)
N (G) = d

(2)
G (G) ≤ d

(k)
N (G) = d

(k)
G (G). (15)

Proof. It suffices to show the following. (i) If U is a subset V and contains no
directed edge sequence of length k − 1 or more, then U is N-shattered by H,
which is determined from G. (ii) When U is a directed edge sequence of length
k − 1 or more in G, U is not G-shattered by H determined from G.

(i) Let U be a subset of V that contains no directed edge sequence of length
k − 1 or more. For each point u in this U , define β(u) as

β(u) = Maximum length of directed edge sequence ending at u in U,

where 0 ≤ β(u) ≤ k − 2. Using this β, we define g1(u) = β(u), g2(u) = β(u) + 1.
Then 0 ≤ g1(u) < g2(u) ≤ k− 1, and g2(u) = g1(u) + 1 ≤ g1(v) for any u, v ∈ U
satisfying u → v. Let h be defined as follows. For any subset T of U , h(u) = g1(u)
if u ∈ T and h(u) = g2(u) if u ̸∈ T . Such an h is contained in H determined
from G because it satisfies h(u) ≤ h(v) if u, v ∈ U and u → v.

(ii) Suppose U = {u0, u1, u2, . . . , uk−1} and (ui−1, ui) ∈ E for 1 ≤ i ≤ k − 1.
Also suppose that function g from U to {0, 1, . . . , k− 1} is contained in H; that
is, if i ≤ j, then g(ui) ≤ g(uj) is satisfied. If we define a subset T of U from this
g, as explained below, there does not exist an h ∈ H satisfying h(u) = g(u) if
u ∈ T and h(u) ̸= g(u) if u /∈ T .

(I) Let u0 ∈ T if g(u0) > 0. Let u0 ̸∈ T if g(u0) = 0.
(II) For 1 ≤ i ≤ k − 1
(a) Let ui ∈ T if ui−1 ∈ T and g(ui−1) < g(ui).
(b) Let ui ̸∈ T if ui−1 ∈ T and g(ui−1) = g(ui).
(c) Let ui ∈ T if ui−1 ̸∈ T and g(ui−1) + 1 < g(ui).
(d) Let ui ̸∈ T if ui−1 ̸∈ T and g(ui−1) + 1 = g(ui).
(e) Let ui ∈ T if ui−1 ̸∈ T and g(ui−1) = g(ui).

For T defined in this way, let H0 be the set of functions h from U to
{0, 1, . . . , k − 1} that satisfy the following conditions: h(ui) ≤ h(uj) if i ≤ j,
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Fig. 5. Example of calculating Natarajan dimension on basis of Proposition 1

h(u) = g(u) if u ∈ T , and h(u) ̸= g(u) if u ̸∈ T . We show that H0 is an empty
set.

If H0 is not an empty set, we define h̃(ui) = minh∈H0
h(ui). If i ≤ j, then

h̃(ui) ≤ h̃(uj), so h̃ is also included in H0. From (I), h̃(u0) ≥ 1; furthermore,

h̃(u0) = 1 if u0 ̸∈ T . From the way (b) and (d) are determined, we know by
induction with respect to i that h̃(ui) = g(ui) + 1 if ui ̸∈ T . Therefore, if
ui ∈ T is determined by (e), then h̃(ui−1) > g(ui−1) = g(ui) = h̃(ui), which is
a contradiction. When ui ∈ T or ui ̸∈ T is determined by (a), (b), (c), and (d),
h̃(ui−1) < h̃(ui) for 1 ≤ i ≤ k− 1. Therefore, h̃(uk−1) > h̃(u0)+ (k− 1) > k− 1,
which violates the assumption. ⊓⊔

We show how we calculate the Natarajan dimension in the following example.

Example 6. Let X be {a, b, c} and W be {0, 1, 2}. The structure of the social
network is a line in which the edge from agent a goes to agent b and the edge
from agent b goes to agent c. Here, since k = 3, we determine the maximum
number of agents who do not have an edge sequence of length 2(= k − 1) or
more.

For agents a and b, when we determine g1 and g2 as shown in (a) in Figure 5,
any assignment of g1 and g2 to agents a and b is monotonically non-decreasing
on the path. Thus, S = {a, b} is N-shattered by hypothesis H. For agents S =
{a, b, c}, we define g as shown in (b) in Figure 5 for example. If we set T = {b, c},
then there is no h that satisfies h(x) = g(x) for x ∈ T , h(x) ̸= g(x) for x ∈ S\T
and is monotonically non-decreasing on the path. Thus, the Natarajan dimension
is 2.

As a result, Theorem 2 can be rewritten in terms of the structure of directed
graph G as follows.

Theorem 5. When function f from V to W = {0, 1, . . . , k − 1} on directed

graph G = (V,E) satisfies condition (10), we assume that the value d
(k)
N (G)

defined by Equation (14) is finite in PAC learning to guess this f . In this case,

there exist positive constants C1 and C2 independent of d
(k)
N (G), ε, δ, and the
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following holds.

C1
d
(k)
N (G) + log(1/δ)

ε
≤ mL(ε, δ) ≤ C2

d
(k)
N (G) log(1/ε) + log(1/δ)

ε
(16)

Moreover, in this model of a directed graph, we see that d
(k)
N (G) has an upper

bound depending on the value of the VC dimension determined from G, as in
the proposition below.

Proposition 2. For a hypothesis class H defined as a set satisfying condition
(10) on directed graph G = (V,E), the following holds.

d
(k)
N (G) ≤ (k − 1)dV C(G) (17)

From this proposition, it follows that models on directed graphs cannot have

d
(k)
N (G) < ∞ and dV C(G) = ∞. Therefore, it can be seen that a finite width of

the partially ordered set corresponding to a directed acyclic graph is a necessary
and sufficient condition for PAC learnability.

Proof. Let U be a subset of V that contains no directed edge sequence of length
k−1 or more. If we define β(u) for each node u in U as in the proof of Proposition
1, then 0 ≤ β(u) ≤ k − 2. From this definition, if β(u) = β(v) for u, v ∈ U , then
u ̸→ v and v ̸→ u in U . Let Ul = {u ∈ U |β(u) = l} for 0 ≤ l ≤ k − 2.

Each Ul is an antichain, and at least one Ul satisfies |Ul| ≥
1

k − 1
|U |. Therefore,

dV C(G) ≥ max
l

|Ul| ≥
1

k − 1
|U | holds. ⊓⊔

7 Conclusion

We used the PAC learning framework to determine the number of samples needed
to estimate the degree of propagation of multiple opinions in a social network.
First, we compared the binary and multi-valued opinion cases. Next, we showed
that the Natarajan dimension in this problem setup is determined by the size
of the largest subset that does not contain directed edge sequences of length
k−1 or more. We showed that the required number of samples can be estimated
from above and below by using the Natarajan dimension. Furthermore, when
the number of nodes in the graph is infinite, PAC learnability is determined by
the structure of the graph, and the condition is the same for the binary and
multi-valued cases.

Future work includes estimating the required sample size when the social
network structure known to the learner is incorrect, when there is an agent that
propagates a false opinion, and when agents follow the majority opinion upon
receiving multiple opinions.
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