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Generalization of microscopic multipoles and
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2Department of Applied Physics, the University of Tokyo, Tokyo 113-8656, Japan
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Abstract. The generalization of the atomic-scale multipoles is discussed. By introducing the
augmented multipoles defined in the hybrid orbitals or in the site/bond-cluster, any of electronic
degrees of freedom can be expressed in accordance with the crystallographic point group. These
multipoles are useful to describe the cross-correlated phenomena, band-structure deformation,
and generation of effective spin-orbit coupling due to antiferromagnetic ordering in a systematic
and comprehensive manner. Such a symmetry-adapted multipole basis set could be a promising
descriptor for materials design and informatics.

1. Introduction
Diversity of physical phenomena is the most attractive feature in condensed matter physics.
Although an electron has only charge and spin degrees of freedom in a vacuum, it acquires
many nontrivial degrees of freedom in crystals, exhibiting a wide variety of physical responses
through their mutual interplay. It is to say that the most of research on electronic properties in
solids is the search for nontrivial degrees of freedom, their realization in specific materials,
and clarification of quirky physical properties brought about by such degrees of freedom.
Nevertheless, diversity often tends to lead to merely complexity such as a specific physical
property in a specific material, giving an impression of the absence of universality.

Symmetry is a suitable concept that unifies systematically the various degrees of freedom
of electrons in crystals. For example, macroscopic physical responses to external fields, such as
electrical conductivity, elastic constants and so on, are determined completely by the macroscopic
symmetry of a system. The symmetry of an electronic system is not only determined by that of its
crystal structure, but also by the spontaneous symmetry breaking due to the emergence of long-
range order, and its physical properties change accordingly. In the Landau’s phenomenological
theory of phase transitions, physical properties are discussed by considering candidate order
parameters, whose interactions are taken into account by introducing a free energy that satisfies
the full symmetry of a disordered phase. It is a natural approach to examining the physical
properties of crystals in a universal manner since the symmetry is closely related to their
emergence, and have succeeded especially in describing peculiar phases in rare-earth and actinide
compounds, which contain a large number of orbitals that are entangled with spins by strong
spin-orbit coupling.

In the early stage of research, atomic-scale multipoles have been introduced to describe
systematically such entangled degrees of freedoms in f -electron systems. The exotic features of
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Figure 1. Four types of multipoles and their parities with respect to space-time reversals [8].
They are abbreviated as electric multipole (E), magnetic multipole (M), magnetic toroidal
multipole (MT), and electric toroidal multipole (ET), respectively, and denoted by the symbols,
Q, M , T , and G.

hidden orders and their multiferroic responses have been unveiled by using higher-rank atomic-
scale multipoles [1, 2, 3, 4]. However, under the restriction to the Hilbert space within one type
of orbital in a single atom, there exist transitions only between the states with the same spatial
parity, so that the even-parity electric and magnetic multipoles only become active. In recent
years, a generalization of microscopic multipoles has been carried out in the direction to include
other degrees of freedoms to describe such as the odd-parity systems, by expanding the Hilbert
space to plural types of orbitals in a cluster of atoms in a unit cell in accordance with their
symmetries [5, 6, 7, 8, 9, 10, 11].

In this paper, we first introduce four types of augmented microscopic multipoles with definite
spatial and time-reversal parities, which can be used as the complete basis set to describe
any electronic degrees of freedom. In the following sections, the classification of augmented
multipoles and cross-correlated phenomena by them, and the outline of some examples of their
applications are given [7, 8, 12, 13, 14, 15, 16, 17].

2. Four types of multipoles
The concept of multipoles appears in classical electromagnetism as a quantity to characterize
the anisotropy of the source charge and electric current distributions of an electromagnetic
field [18, 19, 20]. In this context, the electric and magnetic multipoles are well known. A
quantity with the same spatial parity as a polynomial of position vector r, i.e, (−1)l is
called “polar”, and one with the opposite parity (−1)l+1 is “axial”, where l is the rank of
a multipole. In addition, the electric charge (current) is even (odd) parity in terms of the
time-reversal operation. Thus, the electric (magnetic) multipole is characterized by a polar
(an axial) tensor with time-reversal even (odd). There also exist less familiar multipoles, i.e.,
toroidal multipoles, which have opposite spatial parities with conventional electric and magnetic
multipoles [21, 22, 23, 24, 25, 26, 27, 28]. The conventional and toroidal multipoles are related
with each other by the contraction procedure with r× or

∑
jk ϵijkrjXk··· (ϵijk is the Levi-Civita



fully anti-symmetric tensor). For example, a quantity consisting of the vortex-like arrangement
of the electric dipoles is characterized by an electric toroidal dipole, while that of magnetic
dipoles by a magnetic toroidal dipole, and so on. These four types of multipoles with their
space-time parities are shown in Fig. 1. Note that the even-rank polar and odd-rank axial
multipoles are even parity, while the odd-rank polar and even-rank axial multipoles are odd
parity.

The three types of multipoles except for the electric toroidal multipoles have long been known
because they appear in multipole expansions of scalar and vector potentials. On the other hand,
the electric toroidal multipole was introduced around the mid 1980s as a useful quantity to
describe macroscopic electric axial quantities [22]. In order to describe these multipoles quantum
mechanically, operator expressions corresponding to these classical multipoles are necessary.
They can be directly derived from their classical definitions for three types of multipoles [1].
However, since the electric toroidal multipole does not appear in the multipole expansions, its
operator expression was obtained only quite recently [7, 11]. Once the operator expressions of
these four types of multipoles are obtained, one can construct a complete basis set in terms of
these operators to describe any electronic degrees of freedom. In other words, arbitrary electronic
degrees of freedom, not only in the restricted atomic states in one type of orbital in a single
atom, but also in any Hilbert space of plural types of orbitals in a cluster of atoms in a unit cell
can be expressed by a complete basis set of multipoles, as shown in the following sections.

Multipoles are usually classified according to the parities with respect to space-time
inversions, and the irreducible representations of the rotation group, i.e., the orbital angular
momentum and its component, l and m. Since the crystallographic point group is a subgroup of
the rotation group, its irreducible representation is represented by a linear combination of those
of the rotation group. Therefore, the four types of multipole operators can be used to represent
any electronic degrees of freedom in crystals as well. In this sense, it is the best representation for
classifying any electronic degrees of freedom in accordance with the crystallographic symmetry.
The order parameter in the Landau theory is a classical macroscopic quantity to describe the
change of the symmetry, while the present multipole operators are regarded as microscopic
quantum variables and their expectation values correspond to the order parameters.

According to the Neumann’s principle, “The symmetry group of any physical properties of
crystals will include the symmetry elements of the point group of the crystal.”, the microscopic
multipoles classified by the crystallographic point group are sufficient to describe physical
response tensors in terms of their expectation values. Although it is often misunderstood that the
microscopic multipole description does not contain more than symmetry argument, the presence
or absence of microscopic multipoles is closely related to the Hilbert space to consider them,
and hence, it depends strongly on the electronic states in question. This point is important to
answer why materials with the same crystal structure (symmetry) do not all exhibit the same
physical properties. In other words, different electronic states under the same symmetry can
exhibit different physical properties, and the difference is reflected in which type of multipole is
active or not. It is quite useful to narrow down possible physical responses to occur depending
on the active multipoles.

3. Active multipoles, Hilbert space, and order parameters
As mentioned above, the properties of the electronic states are reflected in the active multipoles
which determine physical responses. Let us first consider active multipoles for the spinless orbital
states within a single atom.

The matrix element ⟨L1,M1|Xlm|L2,M2⟩ of the multipole operator Xlm (X = Q,M, T,G)
with respect to the states, |L,M⟩ of the orbital angular momentum L and its component M is
proportional to the overlap integral of the spherical harmonics,

∫
dr̂Y ∗

L1M1
(r̂)Ylm(r̂)YL2M2

(r̂).
Thus, whether it is active or not is determined by the addition rule of the angular momentum.



Table 1. Active multipoles in the orbital basis, (L1, L2)[7]. The number of independent
multipoles is indicated in the parenthesis. Even-parity (odd-parity) multipoles are above (below)
the middle solid line.

basis l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

s-s (1) E – – – – – –
p-p (9) E M E – – – –
d-d (25) E M E M E – –
f -f (49) E M E M E M E

s-d (10) – – E/MT – – – –
p-f (42) – – E/MT M/ET E/MT – –

s-p (6) – E/MT – – – – –
s-f (14) – – – E/MT – – –
p-d (30) – E/MT M/ET E/MT – – –
d-f (70) – E/MT M/ET E/MT M/ET E/MT –

Namely, the multipoles with the rank l satisfying |L1 − L2| ≤ l ≤ L1 + L2 can be active.
Moreover, since the spatial parity of YLM is (−1)L, it is active only when (−1)L1+L2 = (−1)L.
For instance, when we consider one type of orbital, i.e., L1 = L2, even-parity multipoles Xlm

are only active. On the other hand, when L1 ̸= L2, a pair of (E,MT) or (M,ET) with the same
spatial parity are active. The active multipoles in different types of orbitals are referred to as
“hybrid” multipole. The above selection rules are summarized in Table 1 [7].

A similar discussion can be made for spinful states, |J,M⟩ of the total angular momentum
J and its component M . In this case, the selection rule with respect to L becomes slightly
complicated since there are two types of orbitals L = J ± 1/2 for half-integer J . The resultant
selection rules are summarized in Ref. [8] for example. Note that the explicit expressions of
matrix elements for four types of multipoles in the complete basis set are given in Ref. [11].

The number of independent multipole operators is 2(2J1 + 1)(2J2 + 1) which coincides with
the total number of matrix elements in the Hilbert spaces of J1 and J2 (J1 ̸= J2), where the
pre-factor 2 appears as the off-diagonal matrix elements can be complex1. When the symmetry
becomes lower from the rotation group to the crystallographic point group, the degeneracy of
|J,M⟩ is lifted, and the relevant Hilbert space is narrowed. As a result, some of multipoles
that were independent in the rotation group become linearly dependent with each other in the
narrowed subspace. This is related to the fact that spherical harmonics (nodal positions) that
could be distinguished by the continuous spherical coordinate in the rotation group become
indistinguishable in the discrete coordinate in the point group.

Examples of compatibility relation among the irreducible representations in the symmetry
lowering2 is shown in Table 2. It should be emphasized that the multipoles belonging only to the
identity irreducible representation can have finite expectation value (A1g , A1, Ag, A in Table 2
for example). Therefore, a multipole that falls into the identity irreducible representation as a
result of symmetry lowering is a candidate of the order parameter of its phase transition.

1 The number of independent multipoles is (2J1 + 1)2 for J1 = J2.
2 The more detailed table is given in Ref. [8] for example.



Table 2. Compatibility relation of the multipoles (up to rank 2) with the irreducible
representation among cubic and tetragonal groups [8]. The even-parity (odd-parity) multipoles
are shown in the upper (lower) panel. The subscript, 0, represents monopole, x, y, z are the
component of dipole, u = 3z2 − r2, v = x2 − y2, yz, zx, xy are the component of quadrupole.

multipole Oh O Td Th T D4h D4 C4h D2d C4v C4 S4

Q0, T0 A1g A1 A1 Ag A A1g A1 Ag A1 A1 A A
— A2g A2 A2 Ag A B1g B1 Bg B1 B1 B B
Qu, Tu Eg E E Eg E A1g A1 Ag A1 A1 A A
Qv, Tv B1g B1 Bg B1 B1 B B
Gx, Mx T1g T1 T1 Tg T Eg E Eg E E E E
Gy, My

Gz, Mz A2g A2 Ag A2 A2 A A
Qyz, Tyz T2g T2 T2 Tg T Eg E Eg E E E E
Qzx, Tzx

Qxy, Txy B2g B2 Bg B2 B2 B B

G0, M0 A1u A1 A2 Au A A1u A1 Au B1 A2 A B
— A2u A2 A1 Au A B1u B1 Bu A1 B2 B A
Gu, Mu Eu E E Eu E A1u A1 Au B1 A2 A B
Gv, Mv B1u B1 Bu A1 B2 B A
Qx, Tx T1u T1 T2 Tu T Eu E Eu E E E E
Qy, Ty

Qz, Tz A2u A2 Au B2 A1 A B
Gyz, Myz T2u T2 T1 Tu T Eu E Eu E E E E
Gzx, Mzx

Gxy, Mxy B2u B2 Bu A2 B1 B A

4. Cross-correlated response in terms of multipole
The four types of multipoles are closely related to the component of the response tensors [8].
In particular, they are suitable for describing the cross-correlated responses such as the linear
magnetoelectric effect, in which magnetization (electric polarization) is induced by an electric
field (magnetic field), piezoelectric effect (electric polarization is induced by stress), spin Hall
effect, and (thermal) current-induced magnetization. Let us demonstrate the relation by taking
the magnetoelectric effect as a typical example. The linear magnetoelectric effect is characterized
by the tensor αij , by which Mi =

∑
j αijEj (i, j = x, y, z). αij has 9 independent components

by the combination of 3 input and 3 output. Since the linear relation must be invariant by the
rotation of the coordinate axes, αij transforms like a rank-2 tensor. As the electric field is a
polar vector and the magnetic field is an axial vector, the ranks of the multipoles involved in
the response tensor are determined as 0, 1, and 2 from the addition law of two vectors (their
angular momenta are 1). Thus, the response tensor can be expressed by using scalar X0, vector
X ′ and second-rank tensor X ′′

ij as αij = δijX0 +
∑

k ϵijkX
′
k + X ′′

ij . The total number of these
components, 1 + 3 + 5 = 9, is the same as that of αij . αij is magnetic (odd under time-reversal
operation) since electric and magnetic fields have different time-reversal properties. Moreover,
αij connecting polar and axial quantities must be axial. Noting that δij and ϵijk are the polar and
axial tensors, X0 and X ′′

ij are axial tensors, while X ′ is polar. Thus, X0 and X ′′
ij are magnetic



monopole and quadrupole, while X ′ is magnetic toroidal dipole. It is explicitly expressed as3

α =

 M0 −Mu +Mv Mxy + Tz Mxz − Ty

Mxy − Tz M0 −Mu −Mv Myz + Tx

Mxz + Ty Myz − Tx M0 + 2Mu

 . (1)

The magnetic monopole M0 describes the isotropic longitudinal response, while the magnetic
quadrupole Mij represents the anisotropic symmetric response. On the other hand, the magnetic
toroidal dipole Tk is the anti-symmetric component. Both the time-reversal and spatial inversion
symmetries must be broken to obtain the finite expectation value of the multipoles appeared in
Eq. (1). Moreover, the multipoles belonging to the identity irreducible representation can have
finite expectation value. For example, in the point group D4, M0 and Mu belong to A1 from
Table 2. Thus, αij only has diagonal components and αxx = αyy ̸= αzz if Mu is finite.

In a similar way, we consider the current-induced magnetization, so-called Edelstein effect.
Since the input is replaced as E → j (from electric to magnetic quantity), the response tensor,
αCM
ij is the electric axial tensor, and hence the components of Eq. 1 are replaced as M → G

and T → Q from the symmetry point of view. In this case, only the spatial inversion symmetry
breaking is necessary. For example, the elemental Te belonging to the space group of D4

3 or
D6

3 (the associated point group is D3) indeed shows the Edelstein effect [29, 30]. Since G0 and
Gu are the identity irreducible representation, only the diagonal components can be finite as
αCM
xx = αCM

yy ̸= αCM
zz . The symmetry argument cannot allow further discussion, however, taking

account of the fact that the electronic states near the Fermi energy consist of Jz = ±3/2, we
would obtain G0 ∼ Gu. As a result, αCM

xx = αCM
yy ∼ 0 [29]. In this way, the multipole description

contains the information of the relevant electronic states more than the symmetry.
Although the magnetoelectric and Edelstein effects are characterized by different response

tensors, they are both discussed by the current-magnetization response function in the linear-
response theory. The difference between them comes from qualitatively different contributions in
the response function [31, 8, 16]. Namely, one is the intra-band contribution and the other is the
inter-band contribution. The latter is driven essentially by an electric field, which is relevant to
the magnetoelectric effect both in metal and insulator, while the former is driven by an electric
current that sensitively depends on the purity of a sample. When considering the response to
the electric field, discrimination of these contributions is important. Typical cross-correlated
responses and the relevant multipoles are summarized in Table 3.

5. Site-cluster multipole
In the previous sections, it has been shown that extending the Hilbert space to plural orbitals
makes all four types of multipoles active, and they contribute to response tensors in various cross-
correlated phenomena. At present, a representative case involving hybrid multipole has not been
found, and further elaborate study would be required on this topic. The actinide compounds
and 5d systems with strong orbital hybridization, exciton insulators, organic conductors, and
quantum dots would be good candidates to explore hybrid multipoles [32, 33, 34, 35, 36, 37, 38].

On the other hand, studies of “cluster” multipoles, which are activated on the multi-site
or multi-bond cluster, have been performed extensively in recent years [39, 40, 41, 42, 43, 44,
45, 5, 46, 31, 47, 48, 49, 50, 51, 52, 54, 53, 55]. From the symmetry point of view, complex
magnetic structures, such as spiral magnetic order, had better to be treated not in pieces but
with a clump by bundling them. This is because the symmetry of the clump, rather than
the individual magnetic moment, determines the symmetry of the system, which motivates the
introduction of the site-cluster or bond-cluster multipoles. Figure 2(a) shows examples of the
site-cluster multipoles. The bond-cluster multipoles are discussed in the next section.

3 We define M0 = (Mxx +Myy +Mzz)/3, Mu = (2Mzz −Mxx −Myy)/6, Mv = (Mxx −Myy)/2



Table 3. Representative cross-correlated responses [8]. E, H, −∇T , εij represent an electric
field, magnetic field, thermal gradient, and strain, respectively. Q, j, jh, j

ij
s = (jiσj + jjσi)/2 =

[jiσj ]s denote the heat, electric current, thermal current, and spin current, respectively. The
odd-parity multipoles are necessary in the lower panel, and the spatial inversion symmetry is
broken. The “i” tensors are characterized by the electric (toroidal) multipole, while “c” tensors
are characterized by magnetic (toroidal) multipoles. The latter is active only when the time-
reversal symmetry is broken.

response space-time rank input output relevant multipoles
inversion

magneto-carolic coefficient axial (c) 1 H Q M1m

Seebeck coefficient polar (i) 2 −∇T E Q0, G1m, Q2m

spin-current conductivity axial (i) 3 E jijs G1m, Q2m, G3m

magneto striction axial (c) 3 H εij M1m, T2m, M3m

Nernst coefficient axial (i) 3 [H ijjh]s E G1m, Q2m, G3m

electro-carolic coefficient polar (i) 1 E Q Q1m

magnetoelectric effect axial (c) 2 E M M0, T1m, M2m

Edelstein effect axial (i) 2 j M G0, Q1m, G2m

piezoelectric effect polar (i) 3 εij E Q1m, G2m, Q3m

current-induced strain effect polar (c) 3 j εij T1m, M2m, T3m

(a) site-cluster multipoles

E dipole ET dipole ET quad.E octupole

M quad. MT dipole MT octupoleM octupole

(b) bond-cluster multpoles

E quad.

M dipole

Figure 2. Examples of (a) site-cluster multipoles and (b) bond-cluster multipoles. The
correspondences between the alignments of charge or magnetic moment or hopping modulations,
and the cluster multipole are shown. The red arrows in the bond-cluster multipoles represent
the imaginary hopping modulation.

For example, Q = 0 non-collinear magnetic structure found in the hexagonal antiferromagnet
Mn3Sn corresponds to the cluster magnetic octupole or anisotropic magnetic dipole order, and
the magnitude of the cluster multipole has a strong correlation with the giant anomalous Hall
coefficient despite that the net magnetization is very small [56, 44]. However, following the
discussion in the previous section, anomalous Hall conductivity must be related to less than
rank 2 multipoles. It is considered that the cluster magnetic octupole, which is a localized
degree of freedom, may be related to the Hall conductivity via the Berry curvature (axial vector)



Figure 3. Outline of the generation procedure of the symmetry-adapted magnetic structure
basis set. See [71] in detail.

defined in the momentum space [44, 57]. Similarly, Q = 0 antiferromagnetic order in the zig-zag
structure can be regarded as the cluster magnetic toroidal dipole order [40, 58, 5, 59, 46]. From
these viewpoints, one can immediately conclude that the occurrence of the magnetoelectric effect
or the non-reciprocal magnon dispersion [59, 60] with no inversion symmetry in such magnetic
ordering. With the concept of the site-cluster multipole, the analyses for the current-induced
magnetization effect [41, 61, 62] observed in UNi4B and Ce3TiBi5, the magnetic-field-angle
controlled electric polarization [63, 64, 65, 48, 66] found in Co4Nb2O9, the current-induced
strain [31] in BaMn2As2, the non-reciprocal magnon [67, 68, 69, 59, 70] observed in α-Cu2V2O7,
etc. are in progress.

One of the important applications of the site-cluster multipole is the generation of the
symmetry-adapted magnetic structure basis [71, 72, 73, 74]. To obtain a stable solution especially
for non-collinear magnetic structure in the density-functional theory, it is significant to use the
symmetry-adapted magnetic structure basis. The outline of the basis generation scheme using
the site-cluster multipole is as follows.

First, we set up a virtual cluster consisting of general points of the corresponding point
group of the original lattice, where the symmetry operations except the partial translations are
common between the original space group and the point group of the virtual cluster. Then, we
construct the symmetry-adapted magnetic structures on the virtual cluster corresponding to the
site-cluster magnetic or magnetic toroidal multipoles from the lowest rank. By mapping back
the obtained magnetic structure basis to the original lattice, the resultant magnetic structures
constitute the symmetry-adapted basis set in the original lattice. The outline of the generation
procedure is shown in Fig. 3. It should be emphasized that the resultant multipole basis set
is uniquely determined irrespective of the choice of the unit cell and the origin of the original
lattice.
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Figure 4. Inversion-symmetry breaking in Cd2Re2O7 by the electric toroidal quadrupoles [12].

6. Bond-cluster multipole
The concept of the cluster multipole can also be applied to a modulation of electron hopping.
A spontaneous modulation of electron hopping amplitude is usually called the bond ordering.
Such a hopping modulation degree of freedom can also be classified according to the point-
group symmetry, and it is regarded as a bond-cluster multipole [12, 15]. Considering a one-
body tight-binding model, and the site potentials and hopping amplitudes are expressed in a
matrix form of the sublattice, the diagonal degrees of freedom are described by the site-cluster
multipoles, while the off-diagonal ones are described by the bond-cluster multipoles. Since the
hopping amplitude is complex in general, one can consider real and imaginary modulations.
By symmetry operations, the real hopping amplitude is transformed like a point charge on the
center of the corresponding bond. Similarly, the imaginary hopping amplitude is transformed
like a magnetic toroidal dipole along the bond at the center. Therefore, these hopping amplitude
degrees of freedom can be expressed by the bond-cluster multipoles, which consist of a specific
arrangement of point charges or magnetic toroidal dipoles on the bond centers. See, Fig. 2(b)
for example. Note again that in order to construct a unique symmetry-adapted basis set in
crystal systems, mapping to the virtual cluster is useful as discussed in the last section.

An example application of the bond-cluster multipole is the spontaneous inversion-symmetry
breaking [75, 76, 77, 78, 79, 12] observed in Cd2Re2O7. The X-ray diffraction measurements
have shown that the symmetry of the system changes from Fd3̄m in the disordered phase (phase
I) to I4̄m2 in the intermediate phase (phase II) and to I4122 in the low temperature phase (phase
III) [75]. The associated point groups are Oh, D2d, and D4, respectively.

By considering the facts of these experiments, compatibility relation in Table 2, and no
magnetic anomaly [80] observed at the phase transitions, the plausible candidate of the order
parameters are the electric toroidal quadrupole (ETQ), Gv and Gu in the phases II and III,
respectively [12]. Furthermore, the considerably small structural changes indicate that these



transitions are caused by electronic origin [81]. Since the Re d orbitals are dominant components
near the Fermi level, the hybrid multipoles might be inactive in this compound. The even-parity
atomic multipoles are only active within d orbitals, and the Re ions are located at inversion
center. Thus, the ordinary on-site order parameters cannot break the inversion symmetry. By
taking these observations into account, the bond ordering is the most plausible candidate of order
parameter in this system. The candidate order parameters (hopping amplitude modulations) are
depicted in the upper panel of Fig. 4. These order parameters breaking the inversion symmetry
cause the spin splitting in the electronic band structure via the spin-orbit coupling. The expected
spin splittings are shown in the lower panel of Fig. 4.

In the presence of the ETQs, the current-induced magnetization is expected as discussed in
section 4. Moreover, under the external magnetic field, one expects the non-reciprocal current
proportional to the square of the external electric fields and current-induced strain. As these
4th rank response tensors contain the information of the ETQ order parameters, the related
experiments are on-going. The analysis of the microscopic origin of such bond orderings is left
for future study.

7. Band structure in terms of multipole
When an expectation value of a certain multipole becomes finite, it acts as a molecular field
yielding a band deformation and/or spin splitting according to its symmetry. Since the
Hamiltonian must be fully symmetric with respect to any symmetry operations, one-body
hopping-type Hamiltonian (for a single band) is expressed in a “scalar” form [8] as4

H =
∑
k

∑
σσ′

∑
lm

Xσσ′
lm (k)Xext∗

lm c†kσckσ′ , (2)

where c†kσ (ckσ) is creation (annihilation) operator of electron with the momentum k and spin
σ. Here, Xext

lm is the source of molecular field due to the presence of finite expectation value of
the multipole Xlm. An ordinary form of the tight-binding model is always rearranged in terms
of the Fourier transform of the multipole degrees of freedom Xlm(k) as Eq. (2). When a phase
transition characterized by a certain multipole takes place, one can immediately identify which
type of band deformation and/or spin splitting occurs from Eq. (2).

For example, since the electric dipole, magnetic toroidal dipole, and electric octupole are
expressed as Q(k) ∝ k×σ, T (k) ∝ k, Qxyz(k) ∝ kx(k

2
y − k2z)σx+ ky(k

2
z − k2x)σy + kz(k

2
x− k2y)σz

in the momentum space, the polar (molecular) electric field Qext causes the Rashba spin
splitting via the anti-symmetric spin-orbit coupling, Q(k) ·Qext. Similarly, in the cubic systems
without inversion symmetry, e.g., Td, Q

ext
xyz can exist as it belongs to the identity irreducible

representation. In this case, the Dresselhaus spin-orbit coupling, Qxyz(k)Q
ext
xyz causes rather

complicated spin splitting. Moreover, in the presence of T ext, the band shift with keeping spin
degeneracy occurs through the coupling T (k) · T ext. In this way, the band deformations in the
presence of the multipole ordering are easily identified by means of Eq. (2). Examples of typical
band deformations are shown in Fig. 5. The spin splitting occurs only when the product of time-
reversal T and inversion P symmetries is broken. On the other hand, the anti-symmetric band
deformation with spin degeneracy requires both T and P breakings with preserving T P . The
relation between the band deformations and the source multipoles is summarized5 in Table. 4.

——————–

4 For simplicity, we consider the situation as k ∼ 0. For general k, the periodicity of the lattice must be
considered, e.g., kx → sin(kxa), k

2
x → cos(kxa) and so on.

5 Note that in the case of single-band system, the operator expressions of the odd-parity Mlm(k) (l =even) and
even-parity Glm(k) (l =odd) do not exist. For these multipoles, an effective spin-orbital entanglement band
structure denoted as “spin-orbital-momentum locking occurs in the multi-orbital system [82].



Figure 5. Examples of band-structure deformation (kz = 0 plane) due to the presence of
multipoles [8]. The dashed line represents the band structure due to the pure electric monopole,
Q0 ∝ k2x + k2y. The red (blue) line represents the up (down) spin component, while the arrows
represent the in-plane components.

Table 4. Band modulation and corresponding multipoles [8]。

type of deformation l =even l =odd

symmetric modulation Qext
lm Gext

lm
anti-symmetric modulation M ext

lm T ext
lm

symmetric spin splitting T ext
lm M ext

lm
anti-symmetric spin splitting Gext

lm Qext
lm

From this perspective, it is possible to generate a spin-orbit-like coupling by the
antiferromagnetic orderings without the atomic spin-orbit coupling. For example, it is often
understood that a spin splitting originates from the atomic spin-orbit coupling, however, it can
arise when the multipoles listed in the lower panel of Table. 4 become active [13, 14, 15]. As an
example, we show the case of the collinear Q = 0 antiferromagnetic ordering in the sublattice
system [13]. The k component of the molecular-field Hamiltonian of such a system is described
in the following form,

H(k) =
∑
Γγ

Qbond-cluster
Γγ QΓγ(k)−

∑
Γγ

Qsite-cluster
Γγ hΓγσ, (3)



where the first term is the hopping term, and the second term is the molecular field due to Q = 0
collinear antiferromagnetic order in the sublattice, and Γ and γ are the irreducible representation
and its component. Let us consider a certain alignment of antiferromagnetic ordering that occurs
in the sublattice, e.g., γ = xy-type. The molecular field, hxy, induces quantities belonging to the
same irreducible representation and component as hxyσ → Qsite-cluster

xy → Qbond-cluster
xy → Qxy(k).

As a result, the effective coupling as Qxy(k)σ arises. Since Qxy(k) ∼ kxky, we obtain xy-
type spin splitting. Note that within the collinear magnetic ordering in the absence of the
spin-orbit coupling, we obtain only the symmetric spin splitting which is proven by using the
spin rotation. A spin-current generation by means of this symmetric spin-splitting is proposed
in the organic conductor and the 3d transition metal oxide with relatively weak spin-orbit
coupling [83, 84, 85, 86].

In the case of the non-collinear magnetic ordering, e.g., 120◦ structure in the trigonal lattices,
the anti-symmetric spin splitting is also expected [14, 15]. The higher-order coupling between
the antiferromagnetic order parameter and the multipole in the momentum space is the origin of
the anti-symmetric spin splitting. Moreover, in a way similar to decomposing the tight-binding
Hamiltonian, the spin exchange coupling can also be decomposed by the multipole basis set.
Then, the possibility of generating effective Dzyaloshinskii-Moriya interaction without spin-orbit
coupling is examined [87].

8. Summary
In this paper, we have shown that the concept of multipole is extremely useful and allows us to
deal with physical phenomena in a general and comprehensive manner. Using the symmetry-
adapted multipole basis set, which consists of the site-cluster or bond-cluster basis with atomic
multipole on each cluster site, not only electronic degrees of freedom, but also the lattice
deformation (phonon dispersion), two-body interaction including spin exchange coupling and
so on are also expressed and classified according to the crystallographic point group. Such a
description provides a new direction in the fields of materials design and informatics where the
symmetry-adapted multipole can be used as a good descriptor or a building block of the neural
network.
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