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Current-induced spin polarization (CISP), which appears when the inversion symmetry is broken, has been
experimentally shown to generate spin currents. We have demonstrated in our recent theory that the antiparallel
CISP in a double-quantum-well structure with the inversion symmetry can also create spin currents. In this paper
we consider the sublattice-staggered CISP in a group-IV buckled atomic layer and theoretically study the spin
current extracted from the spin-polarized atomic layer into another with identical structure. We derive a formula
for the interlayer spin current in both the presence and the absence of the inversion symmetry and show that
the interlayer spin current, in the inversion-symmetric case, additionally has a contribution from intersubband
spin matrix elements due to spin degeneracy which is comparable in magnitude to that from intrasubband matrix
elements. We calculate the interlayer spin current as a function of the interlayer twist angle using the tight-
binding model and the Boltzmann equation in the relaxation-time approximation and choosing silicene as an
example atomic layer. We show that the interlayer spin current created by the sublattice-staggered CISP in
inversion-symmetric silicene is comparable in magnitude to that obtained from silicene with a 1 V/nm out-of-
plane electric field applied to break the inversion symmetry. We find that the calculated interlayer spin current
exhibits various features by twisting two layers. Most interesting is that the twist, which breaks the mirror
symmetry to make the system chiral, gives rise to the component of the interlayer spin current with in-plane spin
direction perpendicular to the CISP in addition to that parallel to the CISP.

DOI: 10.1103/PhysRevB.108.115431

I. INTRODUCTION

Interlayer twist has been shown to effectively control
physical properties of atomic layer materials. The most pro-
nounced is the appearance of superconductivity observed in
a magic-angle twisted bilayer graphene [1,2]. In spintronics,
the twist angle dependence of the spin-orbit coupling has been
studied theoretically and experimentally in a heterostructure
of graphene and transition-metal dichalcogenides [3–10]. Be-
sides such equilibrium properties, transport properties such
as charge and spin currents are expected to show interesting
dependences on the twist angle. In fact a recent experiment
[11] has demonstrated a strong dependence on the twist angle
of the interlayer charge current. In this paper we consider
the spin current, which is an important transport property in
spintronics, between two atomic layers with the interlayer
twist and theoretically study the dependence of the interlayer
spin current on the twist angle.

One of the efficient methods to generate the spin current in
nonmagnetic materials is to use the current-induced spin po-
larization (CISP) [12–22]. The total CISP in the whole volume
appears only when the inversion symmetry is broken to create
the spin splitting. In an inversion-symmetric system, on the
other hand, the local CISP is present in the form of antiparallel
CISP [23–27], when the inversion symmetry is locally broken,
owing to the local spin polarization which a pair of degenerate

states exhibits [28–35]. In our recent paper [27] we have pro-
posed generating the spin current from this antiparallel CISP
in a system with the inversion symmetry and demonstrated
it in a double-quantum-well structure (DQWS). Although the
local CISP in two wells of DQWS is in the opposite direction,
an electrode placed on the DQWS selectively extracts the local
CISP of the well in the electrode side, resulting in a nonzero
spin current into the electrode. Another typical candidate for
this approach is a group-IV buckled atomic layer which has
an inversion-symmetric structure with sublattices A and B and
therefore exhibits the sublattice-staggered CISP. This atomic
layer can also produce a nonzero spin current to an attached
electrode because the out-of-plane buckling in this structure
places one sublattice closer to the electrode than the other.

In this study we add another atomic layer between the
electrode and the atomic layer with the sublattice-staggered
CISP and theoretically investigate the interlayer spin current
between two identical group-IV buckled atomic layers. One
layer with the current flow has the sublattice-staggered CISP
which is extracted into the other layer in equilibrium with the
electrode. The added atomic layer plays a role to make a better
contact for an efficient extraction of CISP. In addition, the
interlayer twist is expected to effectively control the interlayer
spin current. In fact we show in this paper that the twist
changes the magnitude and the sign of the interlayer spin
current. More remarkable is that the twist gives rise to the
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FIG. 1. (a) Side view of an atomic layer with sublattices A and
B. In the presence of the in-plane electric field E, the atomic layer
locally exhibits the spin polarization which can be extracted into an
electrode through the spin diffusion from the atomic layer. (b) Side
view of the two-layer structure. The local spin polarization in the
lower layer (layer l) diffuses into the upper layer (layer u) through
the interlayer spin current. As shown in overall views, the spin
polarization is subsequently extracted as a diffusive spin current in
the electrode which can be detected, for example, by the inverse spin
Hall effect.

component of the spin current with the in-plane spin direction
perpendicular to the CISP. We also compare the interlayer spin
current generated from this inversion-symmetric atomic layer
with that from a layer with out-of-plane electric field applied
to break the inversion symmetry.

This paper is organized as follows. In Sec. II we present
the model and describe the Hamiltonian in the tight-binding
model. In Sec. III we derive the formula for the local CISP in
each of sublattices A and B using the Boltzmann equation in
the relaxation-time approximation. We also derive the formula
for the interlayer spin current in the second order of the inter-
layer tunneling perturbation. Section IV presents calculated
results of the CISP and the interlayer spin current by choosing
silicene as an example atomic layer. Conclusions are given in
Sec. V.

II. MODEL AND HAMILTONIAN

We consider a group-IV atomic layer with the buckled
honeycomb structure [36,37] [Fig. 1(a)] such as silicene
[38–43], germanene [39,44], and stanene [45,46]. When the
current flows in the atomic layer, staggered CISP is induced
in two sublattices A and B. Owing to the buckling, the local
CISP of sublattice A is extracted more than that of sublattice
B by an electrode attached on the atomic layer.

To obtain a good contact between the atomic layer and the
electrode in Fig. 1(a), we place another atomic layer between
these two as shown in Fig. 1(b). We assume that the added
layer is in equilibrium with the electrode. Then our model

FIG. 2. Top view of the two-layer structure consisting of layer u
(solid line) and layer l (dashed line).

is a two-layer structure which consists of the lower layer
(layer index α = l) with the sublattice-staggered CISP and the
upper layer (α = u) in equilibrium. The side view and the top
view of the two-layer structure is shown in Figs. 1(b) and 2,
respectively. These layers are the identical group-IV atomic
layer with lattice constant a and buckling b. The unit cell of
each layer contains two atoms λ = A and B which constitute
sublattices A and B. Layers l and u are separated by d in the z
direction [Fig. 1(b)] and twisted by θt (Fig. 2). The two-layer
structure, in the presence of twist, preserves the C3 rotational
symmetry of the group-IV atomic layer.

We employ the tight-binding model with s and p orbitals
in each atom. We express the atomic basis vector of orbital
X (= s, px, py, pz ) and spin σ (=↑,↓) by |Rα

λXσ 〉, where Rα
λ

is the position vector of an atom in sublattice λ (= A, B) of
layer α (= l, u). Then the crystal basis vector of each layer is
given by the sum over N atoms in the same sublattice of the
same layer

|αkλXσ 〉 = 1√
N

∑
Rα

λ

eik·Rα
λ

∣∣Rα
λXσ

〉
, (1)

where k is the two-dimensional Bloch wave vector.
We express the Hamiltonian H by

H = H0 + HT, (2)

where HT describes interlayer tunneling as perturbation and
H0 is the Hamiltonian of two layers without interlayer tun-
neling. In the unperturbed Hamiltonian H0 we consider the
nearest neighbor hopping expressed by the Slater-Koster pa-
rameter [47] and take into account the spin-orbit interaction
by the LS coupling in each atom. We denote the eigenvector
and eigenvalue of H0 by |αnk〉 and εα

nk, respectively, where n is
the band index and |αnk〉 is expressed in a linear combination
of basis vectors in Eq. (1).

To demonstrate the interlayer spin current we adopt sil-
icene and use the Slater-Koster parameter and the spin-orbit
coupling strength of silicene given in Ref. [48]. Figure 3
presents the Fermi surface of two layers [Fig. 3(a)], the band
structure of monolayer silicene [Fig. 3(b)], and the close-up
of the conduction and valence bands in the vicinity of the K
point [Fig. 3(c)]. The band structure of monolayer silicene ex-
hibits spin degeneracy because of the presence of the inversion
symmetry.
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FIG. 3. Electronic states of silicene. (a) The Fermi surface of
layer u (solid line) and layer l (dashed line). (b) Band structure of
monolayer silicene. (c) Close-up of the conduction and valence bands
in the vicinity of the K point. K [= (2/3)(2π/a)] is the distance
between the K and � points. Insets show the in-plane component of
the local spin expectation value at A (blue arrow) and B (red arrow)
sublattices at an energy (indicated by dashed and dotted lines) in the
conduction and valence bands.

Figure 4 presents deviations of the Fermi surface from a
circle by plotting the directional dependence of the distance
of the Fermi surface to the K point at four values of the Fermi
energy εF in the conduction band. We find that the Fermi
surface can be well approximated by a circle except at large
values of the Fermi energy. This is also the case in the valence
band.

The formula for the matrix element of HT is given in the
previous theories [49–51]. The tunneling matrix element is
nonzero only when the momentum conservation ku + Gu =
kl + Gl is satisfied, where ku and kl (Gu and Gl ) are wave vec-
tors (reciprocal lattice vectors) of layers u and l , respectively.
Since the magnitude of the matrix element decays rapidly with

FIG. 4. Directional dependence of the distance k of the Fermi
surface to the K point in monolayer silicene at four values of the
Fermi energy εF in the conduction band. The angle θ is measured
from the positive kx direction.

FIG. 5. Interlayer tunneling can occur between ku and kl

(denoted by ×) near the K′ point because they satisfy the momentum
conservation ku = kl + ξ (bu1 − bl1) in Eq. (3).

increasing |ku + Gu|, we only consider contributions from

ku =
⎧⎨
⎩

kl ,

kl + ξ (bu1 − bl1),
kl − ξ (bu2 − bl2),

(3)

where the valley index ξ is defined by ξ = −1 (ξ = 1) in the
K (K′) valley and bα1, bα2 are the primitive reciprocal lattice
vectors of layer α (bu1 and bu2 are shown in Fig. 5). Figure 5
shows an example of ku and kl near the K′ point satisfying
ku = kl + ξ (bu1 − bl1).

Except that electron densities of the two layers exactly
coincide, the two-layer structure with no twist does not sat-
isfy the momentum conservation at the Fermi energy and
therefore the interlayer tunneling does not occur at absolute
zero. However, in a certain range of the twist angle θt , the
Fermi surfaces of the two layers have intersections (see, as an
example, Fig. 5) where the interlayer tunneling can occur.

III. CALCULATION METHOD

A. Local current-induced spin polarization

We derive the formula for the local CISP in monolayer
with electronic states described by the eigenvector |nk〉 and
the eigenvalue εnk. Introducing the projection operator onto
sublattice λ (= A, B), Pλ = |λ〉〈λ|, the local spin expecta-
tion value in sublattice λ is expressed by 〈nk|σPλ|nk〉. The
global spin expectation value is 〈nk|σ|nk〉 = 〈nk|σPA|nk〉 +
〈nk|σPB|nk〉. The local CISP is defined by

〈σ〉λ = 1

S

∑
nk

fnk〈nk|σPλ|nk〉 (4)

and the global CISP is given by

〈σ〉global = 〈σ〉A + 〈σ〉B, (5)

where S is the area of monolayer and fnk is the distribution
function. We assume kBT � εF with kB the Boltzmann con-
stant and take the summation over two bands at the Fermi
level. To obtain fnk, we use the steady-state Boltzmann equa-
tion in the relaxation time approximation and in the linear
response,

−eE
h̄

· ∂ f0(εnk)

∂k
= − fnk − f0(εnk)

τ
, (6)
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where E (= EeE with E = |E|) is the in-plane electric field,
e (> 0) is the absolute value of the electron charge, h̄ is the
Dirac constant, f0(ε) is the Fermi distribution function, and
τ is the momentum relaxation time. Because deviations of
the Fermi surface from a circle are small as shown in Fig. 4,
we assume the circular symmetry of the energy and the spin
expectation value. Then the in-plane component of the spin
expectation value is in the direction tangential to the Fermi
circle and the out-of-plane component is constant on the Fermi
circle.

Here we assume that τ is constant. On the other hand, if
we solve the Boltzmann equation with the collision term for
a particular model impurity potential, we will obtain the εF

dependence of τ (the dependence on the spin-subband index
n will be small because the spin splitting is much smaller
than εF). In this paper we do not consider the εF dependence
because this study focuses on features of the CISP and the
interlayer spin current, in which the symmetry of the system
plays an important role.

First we consider an inversion-symmetric atomic layer with
spin degeneracy. The summation over two degenerate states
of the local spin expectation value is given, in the assumed
circular symmetry, by∑

n

〈nk|σPλ|nk〉 = λ
(
σ̄

β
t et + ξ σ̄ β

z ez
)
. (7)

Here λ takes 1 and −1 for sublattices A and B, respectively,
while ξ takes 1 and −1 for valleys K′ and K, respectively. The
unit vector et is in the tangential direction of the Fermi circle,
defined by et = k−1k × ez, where k is the wave vector with
the origin taken at the K or K′ point, k = |k|, and ez is the
unit vector in the z direction. σ̄ β

t and ξ σ̄ β
z , which depend on k,

are the local spin expectation values in the et and ez directions,
respectively, of sublattice A in valley ξ of the conduction (β =
c) and valence (β = v) bands. Both the in-plane component
σ̄

β
t , illustrated in the inset of Fig. 3(c), and the z compo-

nent σ̄ β
z are opposite in direction between the conduction

and valence bands with approximately the same magnitude:
σ̄ c

t (k) ≈ −σ̄ v
t (k) and σ̄ c

z (k) ≈ −σ̄ v
z (k). The values calculated

in the present tight-binding model are σ̄ c
t (k) = 0.0026 and

σ̄ c
z (k) = −0.021 at k = 0.02K in silicene. Substituting Eq. (7)

into Eq. (4), the local CISP becomes

〈σ〉λ = λ

S

∑
k

fk
(
σ̄

β
t et + ξ σ̄ β

z ez
)
, (8)

where we have used the absence of n dependence in fnk due to
the spin degeneracy. Owing to the assumption of kBT � εF,
the local CISP is obtained as

〈σ〉λ = 〈σ⊥〉λez × eE , (9)

with

〈σ⊥〉λ = λ
τ eEkFσ̄

β
t (kF)

2π h̄
, (10)

where kF is the radius of the Fermi circle. The out-of-plane
component of the local CISP is absent and the in-plane com-
ponent appears in the direction perpendicular to E. The local
CISP in sublattices A and B are in the opposite direction and

FIG. 6. Expectation value of the in-plane spin (schematic) in
(a) the conduction and (b) valence bands around the K point in the
globally broken inversion symmetry. The band ν = 0 (ν = 1) is the
lower (higher) energy band.

have the same magnitude. Accordingly, the global CISP is
absent as expected from the inversion symmetry.

Next we consider an atomic layer without the inversion
symmetry. In the assumed circular symmetry, the local spin
expectation value of band n is given by

〈nk|σPλ|nk〉 = σ̄
βν

λt et + ξ σ̄
βν

λz ez, (11)

where σ̄
βν

λt and ξ σ̄
βν

λz are the local spin expectation values in
the et and ez directions, respectively, of sublattice λ in valley
ξ . Here n = (β, ν) and the index ν is introduced to distin-
guish two spin-split subbands in the conduction (β = c) and
valence (β = v) bands. The in-plane component of the local
spin expectation value on the Fermi circle around the K point
is schematically shown in Fig. 6. The values calculated in
the present tight-binding model are σ̄ c0

At (k) = 0.060, σ̄ c0
Bt (k) −

σ̄ c0
At (k) = −0.0022, σ̄ c0

Az (k) = −0.51, and σ̄ c0
Bz (k) − σ̄ c0

Az (k) =
0.018 at k = 0.02K in silicene with �AB = 1 meV, where
�AB is the difference in the potential energy between sublat-
tices, introduced to break the inversion symmetry: −�AB/2
in sublattice A and �AB/2 in sublattice B. The local CISP in
the absence of the inversion symmetry is obtained as 〈σ〉λ =
〈σ⊥〉λez × eE with

〈σ⊥〉λ = τ eE

2π h̄

∑
ν=0,1

kFν σ̄
βν

λt (kFν ), (12)

where kFν is the radius of the Fermi circle in the νth subband.
Because the inversion symmetry is broken, the global CISP
〈σ〉global arises.

B. Interlayer spin current

In this section we consider a system consisting of two
layers u and l and derive the formula for the spin current
between the two layers. First we define the spin angular mo-
mentum in the i direction of electrons in layer α per unit area
by

Si
α = 1

S
tr

(
ρ

h̄σi

2
Pα

)
, (13)

where ρ is the density operator of the two-layer system and
Pα is the projection operator onto layer α defined by

Pα =
∑

nk

|αnk〉〈αnk|. (14)
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Then the spin angular momentum in the i direction flowing
into layer α per unit area per unit time is given by

Ji
α = dSi

α

dt
. (15)

As the spin direction i we take the direction parallel to
E (i =‖), that perpendicular to E in the plane (i =⊥), and the
z direction (i = z). In the presence of the spin-orbit coupling,
the total spin angular momentum Si

u + Si
l is not conserved

(that is, Ji
u + Ji

l �= 0) and therefore the spin current flowing
into layer u, Ji

u, and that flowing out of layer l , −Ji
l , are differ-

ent. However, we neglect this difference because Ji
u + Ji

l is of
the second order of the spin-orbit coupling. In the following
we evaluate the spin current by calculating Ji

u.
We calculate Ji

u up to the second order of HT. We slowly
switch on the tunneling perturbation as HTeηt (η > 0) and
evaluate Ji

u at t = 0. Such adiabatic switch-on of HT is intro-
duced to incorporate our device geometry [Fig. 1(b)] in which
layer u only partially contacts layer l and therefore wave pack-
ets describing electrons in layer l are affected by HT within the
finite contact area. The finiteness of the contact area is taken
into account by a finite duration time of HT in the wave-packet
formalism. In the above switch-on model the duration time is
given by η−1. The finiteness of the duration time η−1 gives
rise to an energy uncertainty h̄η in the interlayer transition.
The interlayer spin current evaluated at t = 0 is written as

Ji
u = i

2S

∑
nn′′k

∑
n′k′

〈unk|HT|ln′k′〉〈ln′k′|HT|un′′k〉

×
[

f l
n′k′ − f u

nk

εl
n′k′ − εu

nk + ih̄η
− f u

n′′k − f l
n′k′

εu
n′′k − εl

n′k′ + ih̄η

]

× 2ih̄η

εu
n′′k − εu

nk + 2ih̄η
〈un′′k|σi|unk〉. (16)

We assume that the temperature is low enough that only the
two lowest (highest) subbands ν = 0, 1 in the conduction
(valence) band contribute to the interlayer spin current.

Equation (16) shows that the interlayer spin current de-
pends on the ratio of the spin splitting |εu

n′′k − εu
nk| (n′′ �= n)

and h̄η. When |εu
n′′k − εu

nk| � h̄η, we have

2ih̄η

εu
n′′k − εu

nk + 2ih̄η
≈ 1. (17)

Then, in the limit of small η compared to the Fermi energy,
we obtain

Ji
u = π

S

∑
n,n′,n′′

∑
k,k′

〈unk|HT|ln′k′〉〈ln′k′|HT|un′′k〉

× δ
(
εl

n′k′ − εu
nk

)(
f l
n′k′ − f u

nk

)〈un′′k|σi|unk〉. (18)

We find that intersubband matrix elements 〈un′′k|σi|unk〉
(n′′ �= n) contribute to the interlayer spin current when the spin
splitting is so small that |εu

n′′k − εu
nk| � h̄η.

On the other hand, when |εu
n′′k − εu

nk|  h̄η, we have

2ih̄η

εu
n′′k − εu

nk + 2ih̄η
≈ 0. (19)

(a)

(b) (c)

FIG. 7. (a) Local CISP 〈σ⊥〉A, 〈σ⊥〉B and the global CISP
〈σ⊥〉A + 〈σ⊥〉B as functions of �AB, the potential difference between
A and B sublattices, at kF0 = 0.02K in the conduction band. 〈σ⊥〉A0

is the value of 〈σ⊥〉A at �AB = 0. (b) Spin-split energy bands at
�AB = 50 meV in the vicinity of the K point. CB and VB denote
the conduction band and the valence band, respectively. (c) �AB

dependence of the spin splitting at k = 0.02K in the conduction
band.

Then terms with n′′ �= n do not contribute to the interlayer spin
current and

Ji
u = h̄

2S

∑
n,n′

∑
k,k′

W u,l
nk,n′k′

(
f l
n′k′ − f u

nk

)〈unk|σi|unk〉, (20)

where W u,l
nk,n′k′ is the transition rate given by

W u,l
nk,n′k′ = 2π

h̄
|〈unk|HT|ln′k′〉|2δ(εl

n′k′ − εu
nk

)
. (21)

Therefore, the interlayer spin current is expressed only by
intrasubband matrix elements 〈unk|σi|unk〉 when the spin
splitting is large enough that |εu

n′′k − εu
nk|  h̄η.

The spin current with spin in the z direction, Jz
u , is absent

in a two-layer system with the C3 rotational symmetry. This
absence can be derived by noting that Jz

u does not change when
the direction of the in-plane electric field is rotated by ±2π/3
around the z axis and that the sum of in-plane electric fields at
three directions separated by 2π/3 is zero.

IV. CALCULATED RESULTS

First we present the local and global CISPs of monolayer
silicene calculated using the absolute-zero formula Eq. (12)
for an atomic layer without the inversion symmetry. We break
the inversion symmetry by introducing the potential energy
−�AB/2 in sublattice A and �AB/2 in sublattice B. Calcu-
lated �AB dependences of the local CISP 〈σ⊥〉A, 〈σ⊥〉B and
the global CISP 〈σ⊥〉A + 〈σ⊥〉B are presented in Fig. 7(a).
Here we place the Fermi level in the conduction band and fix
the Fermi wave number of the n = 0 band at kF0 = 0.02K ,
where K is the distance between the K and � points in Fig. 3.
Because of the spin splitting present at �AB > 0 the Fermi
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FIG. 8. Interlayer spin current J̃⊥
u = J⊥

u /J0 as a function of the
twist angle θt . J0 = τ eEk0V 0

ppπ/(4π h̄), where V 0
ppπ is |Vppπ | between

the nearest neighbor atoms in monolayer silicene and k0 = 0.02K .
The Fermi wave numbers kFu and kFl of layers u and l are chosen to
be kFu = 0.04K and kFl = 0.02K , respectively.

wave number of the n = 1 band, kF1, is smaller than kF0 in the
conduction band [Fig. 7(b)] and the electron density decreases
with increasing �AB. However, the change of the electron
density within 0 < �AB � 50 meV is negligible since the spin
splitting is small compared to the Fermi energy at �AB �
50 meV [Fig. 7(c)]. The electron density at kF = 0.02K is
1.5×1012 cm−2, which can be reached in a typical graphene
experiment [52].

As shown in Fig. 7(a), the magnitude of the local
CISP is comparable to that of the global CISP in the re-
gion of �AB < 50 meV. The global CISP, 〈σ⊥〉A + 〈σ⊥〉B,
which increases with �AB, reaches the value of the local
CISP, 〈σ⊥〉A (at �AB = 0), around �AB = 50 meV, which
corresponds to the potential difference generated by the out-
of-plane electric field of the order of 1 V/nm, nearly the
maximum value realized in experiment [53]. This suggests
that the spin current created by the local CISP in a system
with inversion symmetry (�AB = 0) can be comparable to
that obtained from the global CISP in a system with strongly
broken inversion symmetry.

Now we present, in Figs. 8 and 9, the interlayer spin
current between two silicene layers calculated at T = 0 us-
ing Eqs. (18) and (20). In calculating the interlayer spin
current we have assumed the circular Fermi surface as in
the calculation of the CISP in Sec. III A and additionally
used the linear-in-k dependence of the energy in evaluating
δ(εl

n′k′ − εu
nk). In contrast to the CISP calculation, we have

used numerical eigenvectors to obtain matrix elements of σi

as well as those of HT. In calculating matrix elements of HT

we have used the interlayer distance d = 3.19 Å of bilayer
silicene [54] and the decay length of the interlayer hopping
amplitude 0.184a used in the calculation of bilayer graphene
[51,55].

The interlayer spin current with the spin direction per-
pendicular to the in-plane electric field E, J⊥

u , is presented
in Fig. 8, while that with the spin direction parallel to E,
J‖

u , is presented in Fig. 9. Each figure shows spin currents

FIG. 9. Interlayer spin current J̃‖
u = J‖

u /J0 as a function of the
twist angle θt . See Fig. 8 for more explanation.

calculated in four different cases where the Fermi level in
each of u and l layers is placed in either the conduction or
valence band. In all cases the Fermi wave number is chosen
to be kFu = 0.04K in layer u and kFl = 0.02K in layer l . In
each case the interlayer spin current is plotted as a function
of θt , the twist angle defined in Fig. 2. Solid and dashed
lines show the interlayer spin current in the presence of the
spin degeneracy (�AB = 0) [Eq. (18)] and that in its absence
[Eq. (20)], respectively. To remove the spin degeneracy with-
out appreciably changing electronic states, we have chosen the
value of �AB = 1×10−9 eV in the latter case.

When two layers are twisted (θt �= 0), the parallel-to-E
spin component, J‖

u , appears as demonstrated in Fig. 9. This
is in contrast to the monolayer CISP which is induced only in
the direction ez×eE that is perpendicular to E. The appearance
of J‖

u is caused by the disappearance at θt �= 0 of the mirror
symmetry with respect to the plane including E and ez. In
other words, the chirality of the twisted-two-layer structure
gives rise to the spin current between two layers with the spin
perpendicular to the CISP in layer l . The interlayer spin cur-
rent is present only in the region of θt where the Fermi circles
of two layers have intersecting points so that the momentum
conservation Eq. (3) can be satisfied at the Fermi level. At the
boundary of the θt region the interlayer spin current diverges
because the number of interlayer transitions satisfying the
momentum conservation diverges when the two Fermi circles
touch. We also find that J⊥

u (θt ) and J‖
u (θt ) are even and odd

functions of θt .
We notice, in these plots as a function of θt , that the

interlayer spin current reverses the sign with changing θt .
The interlayer spin current is the sum of contributions from
different intersections of Fermi circles of two layers (Fig. 5),
k and k′, which move on each Fermi circle as θt changes. The
sign of each contribution in the case of no spin degeneracy
[Eq. (20)] is determined by the sign of the spin expectation
value 〈unk|σi|unk〉 (i =⊥, ‖) and that of the distribution func-
tion f l

n′k′ − f u
nk(∝ E · k′). These signs depend on directions of

k and k′ from the center of each Fermi circle. Such depen-
dences on directions of k and k′ give the sign reversal of the
interlayer spin current with changing θt .
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Interestingly, we find in both Figs. 8 and 9 that the inter-
layer spin current in the presence of spin degeneracy (solid
line) and that in its absence (dashed line) are significantly
different despite a negligible difference in the value of �AB.
This shows that intersubband spin matrix elements, which
appear only in the formula Eq. (18) for the presence of spin
degeneracy, play an important role. Such a considerable con-
tribution from intersubband matrix elements of in-plane spin,
σ⊥ and σ‖, can be understood by noting that the spin, in the
spin-split subbands n = 0 and 1, orients approximately the
positive z and negative z directions as we have presented in
Sec. III A.

Which of the spin-degenerate formula Eq. (18) and the
spin-nondegenerate formula Eq. (20) applies is determined by
whether the magnitude of the spin splitting is smaller or larger
than h̄η. Here we estimate η in a two-layer system employed
in the previous experiment [11]. In this system layer u contacts
layer l in a region of 1 μm. The inverse of η, which is the
duration time of the tunneling perturbation HT, corresponds
in this system to the time span for an electron in layer l to
pass under the contact region. Using the group velocity at
kF = 0.02K , 6×105 m/s, η−1 is estimated to be 2×10−12 s,
which gives h̄η ≈ 0.4 meV. Then the spin-degenerate for-
mula Eq. (18) applies for the spin splitting much smaller
than 0.4 meV, which corresponds to �AB � 20 meV [see
Fig. 7(c)].

Finally we show that the interlayer spin current extracted
from the local CISP in the inversion symmetric silicene is
comparable to that from the CISP in silicene with a large
electric field applied perpendicular to the layer. We have ex-
amined the �AB dependence of J⊥

u and J‖
u in four choices of

the Fermi level location, the conduction or valence band in
each layer. Then we find that the typical value of |J⊥

u | and
|J‖

u | at �AB = 100 meV, corresponding to the electric field of
1 V/nm, is of the same order of that produced by the inversion
symmetric silicene at �AB = 0.

V. CONCLUSIONS

We have considered a two-layer system consisting of iden-
tical group-IV buckled atomic layers and theoretically studied
the interlayer spin current generated by the monolayer CISP
in one of the two layers as a function of the interlayer twist

angle. Although the total CISP is zero in this atomic layer with
inversion symmetry, sublattices A and B locally exhibit the
staggered CISP, from which a nonzero interlayer spin current
is obtained owing to the out-of-plane buckling with sublattice
A closer to the other layer than sublattice B.

We have derived the formula for the interlayer spin current
in the second order of the interlayer tunneling perturbation.
The derived formula depends on whether the spin degeneracy
is present or not—more precisely whether the spin splitting
is smaller or larger than the energy uncertainty brought by
the finite duration time of the tunneling perturbation. The
spin-degenerate formula includes both the intersubband and
intrasubband matrix elements of the spin operator, while the
spin-nondegenerate formula only has the intrasubband matrix
element. We have found that the contribution from this in-
tersubband spin matrix element in the spin-degenerate case
makes the calculated interlayer spin current markedly differ-
ent from that in the spin-nondegenerate case.

We have calculated the interlayer spin current using the
tight-binding model and the Boltzmann equation in the
relaxation-time approximation by choosing silicene as an
example atomic layer. We have found that the interlayer
spin current created by the sublattice-staggered CISP in
inversion-symmetric silicene is comparable in magnitude to
that obtained from silicene with a 1 V/nm out-of-plane elec-
tric field applied to break the inversion symmetry. This result
is consistent with the calculated CISP in sublattices A and B,
which shows that the CISP of each sublattice in inversion-
symmetric silicene is comparable in magnitude to that in
silicene with inversion symmetry broken.

The calculated interlayer spin current exhibits various fea-
tures by twisting two layers: it is switched on and off, diverges
to infinity, and reverses its sign as the twist angle changes.
Most interestingly the twist, which breaks the mirror symme-
try to make the system chiral, gives rise to the component of
the interlayer spin current with in-plane spin direction perpen-
dicular to the CISP in addition to that parallel to the CISP.
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