

HOKKAIDO UNIVERSITY

Title	Necroptosis of neuronal cells is related to the neuropathology of tick-borne encephalitis
Author(s)	Tsujino, Dai; Yoshii, Kentaro; Kajiyama, Misa; Takahashi, Yuji; Maekawa, Naoya; Kariwa, Hiroaki; Kobayashi, Shintaro
Citation	Virus Research, 321, 198914 https://doi.org/10.1016/j.virusres.2022.198914
Issue Date	2022-11
Doc URL	http://hdl.handle.net/2115/90730
Rights	© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	TBEV necroptosis 3rd clear version.pdf

1	Necroptosis of neuronal cells is related to the neuropathology of tick-borne encephalitis
2	
3	Dai Tsujino ¹ , Kentaro Yoshii ^{1, 2} *, Misa Kajiyama ¹ , Yuji Takahashi ¹ , Naoya Maekawa ³ , Hiroaki
4	Kariwa ¹ , and Shintaro Kobayashi ¹ *
5	
6	¹ Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
7	² National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki
8	University, Nagasaki, Japan
9	³ Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University,
10	Sapporo, Japan
11	
12	*Co-Corresponding author
13	Shintaro Kobayashi
14	E-mail: shin-kobayashi@vetmed.hokudai.ac.jp
15	Kentaro Yoshii
16	E-mail: kyoshii@nagasaki-u.ac.jp
17	
18	Keywords
19	tick-borne encephalitis virus, programmed cell death, necroptosis
20	
21	Abstract
22	Tick-borne encephalitis virus (TBEV) is a zoonotic virus that causes tick-borne encephalitis (TBE)
23	in humans. Infections of Sapporo-17-Io1 (Sapporo) and Oshima 5-10 (Oshima) TBEV strains
24	showed different pathogenic effects in mice. However, the differences between the two strains are
25	unknown. In this study, we examined neuronal degeneration and death, and activation of glial cells
26	in mice inoculated with each strain to investigate the pathogenesis of TBE. Viral growth was similar
27	between Sapporo and Oshima, but neuronal degeneration and death, and activation of glial cells, was
28	more prominent with Oshima. In human neuroblastoma cells, apoptosis and pyroptosis were not
29	observed after TBEV infection. However, the expression of the necroptosis marker, mixed lineage
30	kinase domain-like (MLKL) protein, was upregulated by TBEV infection, and this upregulation was

1	more pronounced in Oshima than Sapporo infections. As necroptosis is a pro-inflammatory type of
2	cell death, differences in necroptosis induction might be involved in the differences in
3	neuropathogenicity of TBE.
4	
5	Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus and the family
6	Flaviviridae, causes tick-borne encephalitis (TBE) and long-term neurological sequelae (Gritsun et
7	al., 2003). TBEV is prevalent throughout northern Eurasia, including Europe, Russia, Far East Asia,
8	and Japan (Gritsun et al., 2003; Takahashi et al., 2020; Takashima et al., 1997). The global incidence
9	of TBE exceeds 10,000 patients per year (Takahashi et al., 2020). TBEV causes central nervous
10	system (CNS) infection with clinical manifestations ranging from mild biphasic fever to severe
11	encephalitis and meningoencephalitis (Dumpis et al., 1999; Ecker et al., 1999). It has a mortality rate
12	of 0.5–30% (Gritsun et al., 2003). Although there are several effective vaccines, there is no specific
13	therapeutic treatment for TBE (Andersson et al., 2010; Morozova et al., 2014; Petry et al., 2021).
14	
15	TBEV is primarily transmitted to humans by the Ixodes sp., but is also occasionally acquired by the
16	consumption of unpasteurized dairy products from infected livestock (Balogh et al., 2010;
17	Brockmann et al., 2018). The virus causes encephalitis, along with neuronal cell degeneration and
18	death, glial cell activation, and immune cell infiltration (Pokorna Formanova et al., 2019). TBEV
19	mainly targets the CNS and causes neuronal cell death through two pathways: direct induction of
20	programmed cell death or neuronal injury through an uncontrolled inflammatory response involving
21	glial cytokines and chemokines (Hayasaka et al., 2009; Ruzek et al., 2009a; Ye et al., 2013).
22	However, the details of these pathways and underlying molecular mechanisms are still largely
23	unknown.
24	

1	Programmed cell death, including apoptosis, pyroptosis, and necroptosis, plays a vital role in
2	maintaining homeostasis, and in anti-viral responses (Okamoto et al., 2017; Wen et al., 2021).
3	Apoptosis is tightly controlled cell death designed to avoid inflammation (Fricker et al., 2018;
4	Galluzzi et al., 2018). Pyroptosis and necroptosis, which are programmed forms of necrosis, cause
5	membrane disruption and allow the release of pro-inflammatory and immunogenic cellular contents
6	(Frank and Vince, 2019; Fricker et al., 2018; Galluzzi et al., 2018; McKenzie et al., 2020; Mocarski
7	et al., 2015; Vanden Berghe et al., 2014). It has been reported that TBEV infection triggers apoptosis
8	and pyroptosis, while other flavivirus infection, such as West Nile virus or Japanese encephalitis
9	virus infection, induces apoptosis, pyroptosis, and necroptosis (Bian et al., 2017; Cheung et al.,
10	2018; Fares et al., 2020; Fares et al., 2021; He et al., 2020; Kobayashi et al., 2012; Lim et al., 2017;
11	Okamoto et al., 2017; Ruzek et al., 2009b; Wang et al., 2020; Wen et al., 2021). It is important to
12	elucidate the relationship between programmed cell death and TBEV infection to understand the
13	neuropathogenesis of TBE.
13 14	neuropathogenesis of TBE.
	neuropathogenesis of TBE. We previously reported differences in pathogenicity among TBEV strains with high homology
14	
14 15	We previously reported differences in pathogenicity among TBEV strains with high homology
14 15 16	We previously reported differences in pathogenicity among TBEV strains with high homology (Takahashi et al., 2020), which is important for understanding TBE pathogenesis. Therefore, in this
14 15 16 17	We previously reported differences in pathogenicity among TBEV strains with high homology (Takahashi et al., 2020), which is important for understanding TBE pathogenesis. Therefore, in this study, we performed histopathological analysis of mouse brains infected with different strains, and
14 15 16 17 18	We previously reported differences in pathogenicity among TBEV strains with high homology (Takahashi et al., 2020), which is important for understanding TBE pathogenesis. Therefore, in this study, we performed histopathological analysis of mouse brains infected with different strains, and found differences in neuronal degeneration and death, as well as glial activation. We found that the
14 15 16 17 18 19	We previously reported differences in pathogenicity among TBEV strains with high homology (Takahashi et al., 2020), which is important for understanding TBE pathogenesis. Therefore, in this study, we performed histopathological analysis of mouse brains infected with different strains, and found differences in neuronal degeneration and death, as well as glial activation. We found that the
14 15 16 17 18 19 20	We previously reported differences in pathogenicity among TBEV strains with high homology (Takahashi et al., 2020), which is important for understanding TBE pathogenesis. Therefore, in this study, we performed histopathological analysis of mouse brains infected with different strains, and found differences in neuronal degeneration and death, as well as glial activation. We found that the induction of necroptosis in cultured cells was different between the two strains.
14 15 16 17 18 19 20 21	We previously reported differences in pathogenicity among TBEV strains with high homology (Takahashi et al., 2020), which is important for understanding TBE pathogenesis. Therefore, in this study, we performed histopathological analysis of mouse brains infected with different strains, and found differences in neuronal degeneration and death, as well as glial activation. We found that the induction of necroptosis in cultured cells was different between the two strains. Recombinant TBEV Oshima 5-10 and Sapporo-17-Io1 strains (GenBank accession nos. AB062063.2

2	3 (BSL-3) facilities located at the Graduate School of Veterinary Medicine, Hokkaido University.
3	
4	The mice were intracerebrally inoculated with TBEV using a previously described method
5	(Takahashi et al., 2020). Either 10 μ L of virus stock containing 50 plaque forming units (pfu) of
6	TBEV or the same volume of PBS was injected intracerebrally into female BALB/c mice (5 weeks
7	old; Japan SLC, Shizuoka, Japan). All animal experiments were performed at the Animal Biosafety
8	Level 3 (ABSL-3) facility of the Graduate School of Veterinary Medicine, Hokkaido University in
9	accordance with institutional guidelines. Ethical approval was obtained from the Hokkaido
10	University Animal Care and Use Committee (19-0142). The mice were sacrificed at 1, 4, or 7 days
11	post inoculation (dpi), and viral titers in the brain were measured using plaque assays, as described
12	previously (Takahashi et al., 2020). The virus was not detected in the brains at 1 dpi and the viral
13	titers were similar between brains inoculated with the Sapporo and Oshima strains at both 4 and 7
14	dpi (Fig. 1a). The left brains' halves of TBEV-inoculated mice were collected in formalin, fixed, and
15	then embedded in paraffin. The sections were stained with hematoxylin and eosin for
16	histopathological analysis. For immunohistochemical (IHC) analysis, the sections were subjected to
17	antigen retrieval using a pressure cooker in the presence of 10 mM sodium citrate buffer. The
18	histopathological analysis of inoculated brains showed cell shrinkage and neuronophagia in regions
19	close to the TBEV-antigen-positive cells in the cerebral cortices (Fig. 1b). Although the number of
20	viral antigen-positive cells was almost the same, cell shrinkage was more frequent in Oshima-
21	compared to Sapporo-inoculated mice (Fig. 1b). This suggested that mice infected with the Oshima
22	strain were more susceptible to cell degeneration and death. As the viral growth properties of the two
23	strains were not different, the difference in cell degeneration and death was not related to viral
24	growth.

propagated once in BHK-21 cells. Experiments using live TBEV were conducted in Biosafety Level

1

2	Next, we analysed the morphologies of TBEV-infected neurons. It has been reported that a decrease
3	in fluorescence intensity of neuronal cell markers and cell shrinkage are associated with neuronal
4	cell degeneration and death (Clarke et al., 2021). The neurons were visualized using the Alexa Fluor
5	647 Anti-MAP2 antibody (Abcam, Cambridge, UK) and evaluated for cell morphology and
6	fluorescence intensity using ZEN 3.1.0 software (Carl Zeiss AG, Oberkochen, Germany). Based on a
7	previous study, MAP2-positive cells in PBS-inoculated mice were used as controls to obtain the
8	morphological scores of TBEV-inoculated mice (range: 1-4; 1, severe shrinkage; 2, moderate
9	shrinkage; 3, mild shrinkage; 4, almost the same as control) (Petry et al., 2021). Fluorescence
10	intensity and morphological scores were lower in viral antigen-positive cells compared to controls,
11	and the reduction was more marked in Oshima-inoculated cells (Fig. 1c-e). This suggested that
12	Oshima inoculation induced a greater degree of neuronal cell degeneration and death than Sapporo
13	inoculation.
13 14	inoculation.
	inoculation. Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak
14	
14 15	Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak
14 15 16	Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak et al., 2014; Nedergaard et al., 2003; Sofroniew and Vinters, 2010). We examined the activation of
14 15 16 17	Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak et al., 2014; Nedergaard et al., 2003; Sofroniew and Vinters, 2010). We examined the activation of astrocytes and microglia after inoculation with each strain to determine the differences in
14 15 16 17 18	Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak et al., 2014; Nedergaard et al., 2003; Sofroniew and Vinters, 2010). We examined the activation of astrocytes and microglia after inoculation with each strain to determine the differences in encephalitis caused by Sapporo and Oshima infections. We counted the number of glial fibrillary
14 15 16 17 18 19	Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak et al., 2014; Nedergaard et al., 2003; Sofroniew and Vinters, 2010). We examined the activation of astrocytes and microglia after inoculation with each strain to determine the differences in encephalitis caused by Sapporo and Oshima infections. We counted the number of glial fibrillary acidic protein (GFAP, astrocyte marker)-positive cells and ionized calcium-binding adapter molecule
14 15 16 17 18 19 20	Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak et al., 2014; Nedergaard et al., 2003; Sofroniew and Vinters, 2010). We examined the activation of astrocytes and microglia after inoculation with each strain to determine the differences in encephalitis caused by Sapporo and Oshima infections. We counted the number of glial fibrillary acidic protein (GFAP, astrocyte marker)-positive cells and ionized calcium-binding adapter molecule 1 (Iba-1, microglia marker)-positive cells in the cerebral cortices in five fields of three different
14 15 16 17 18 19 20 21	Astrocytes and microglia contribute to immunity and inflammation in the CNS (Barres, 2008; Nayak et al., 2014; Nedergaard et al., 2003; Sofroniew and Vinters, 2010). We examined the activation of astrocytes and microglia after inoculation with each strain to determine the differences in encephalitis caused by Sapporo and Oshima infections. We counted the number of glial fibrillary acidic protein (GFAP, astrocyte marker)-positive cells and ionized calcium-binding adapter molecule 1 (Iba-1, microglia marker)-positive cells in the cerebral cortices in five fields of three different mice, inoculated with TBEV or PBS. The number of GFAP- and Iba-1-positive cells was greater in

1	TBEV-inoculated mice was measured and compared to that of PBS mice using ImageJ software
2	(https://imagej.nih.gov/ij/index.html). The size of GFAP-positive cells in Oshima-inoculated brains
3	was larger compared to Sapporo-inoculated brains (Fig. 2c). Activated microglia have an amoeboid
4	morphology, with larger cell bodies and fewer dendrites compared to normal microglia (Nayak et al.,
5	2014; Subhramanyam et al., 2019). We counted the Iba-1-positive amoeboid cells. Few amoeboid
6	Iba-1-positive cells were observed in PBS-inoculated brains. However, the number of these cells was
7	increased significantly in Oshima- compared to Sapporo-inoculated brains (Fig. 2f). This suggested
8	that the Oshima strain induced more neuroinflammation than the Sapporo strain.
9	We previously reported that Oshima infection was more pathogenic for mice than Sapporo infection
10	(Takahashi et al., 2020). It was suggested that the neuropathogenesis of TBEV infection in mice was
11	associated with neuronal cell death and neuroinflammation.
12	
13	It is known that the type of cell death affects the induction of inflammation (Frank and Vince, 2019;
13 14	It is known that the type of cell death affects the induction of inflammation (Frank and Vince, 2019; Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and
14	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and
14 15	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and inflammatory responses, in the brain were observed between Sapporo and Oshima infections.
14 15 16	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and inflammatory responses, in the brain were observed between Sapporo and Oshima infections. Therefore, we analysed the types of programmed cell death caused by each TBEV strain. Human
14 15 16 17	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and inflammatory responses, in the brain were observed between Sapporo and Oshima infections. Therefore, we analysed the types of programmed cell death caused by each TBEV strain. Human neuroblastoma SH-SY5Y cells were inoculated with Sapporo or Oshima at a multiplicity of infection
14 15 16 17 18	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and inflammatory responses, in the brain were observed between Sapporo and Oshima infections. Therefore, we analysed the types of programmed cell death caused by each TBEV strain. Human neuroblastoma SH-SY5Y cells were inoculated with Sapporo or Oshima at a multiplicity of infection of 1, and then stained with propidium iodide (PI) to explore the extents to which the TBEVs induce
14 15 16 17 18 19	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and inflammatory responses, in the brain were observed between Sapporo and Oshima infections. Therefore, we analysed the types of programmed cell death caused by each TBEV strain. Human neuroblastoma SH-SY5Y cells were inoculated with Sapporo or Oshima at a multiplicity of infection of 1, and then stained with propidium iodide (PI) to explore the extents to which the TBEVs induce cell death. Few PI-positive cells were detected at 24 hpi (Fig. 3a). The PI-positive rate was
14 15 16 17 18 19 20	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and inflammatory responses, in the brain were observed between Sapporo and Oshima infections. Therefore, we analysed the types of programmed cell death caused by each TBEV strain. Human neuroblastoma SH-SY5Y cells were inoculated with Sapporo or Oshima at a multiplicity of infection of 1, and then stained with propidium iodide (PI) to explore the extents to which the TBEVs induce cell death. Few PI-positive cells were detected at 24 hpi (Fig. 3a). The PI-positive rate was significantly higher in the cells infected with TBEV as compared to control cells and the increase
14 15 16 17 18 19 20 21	Mocarski et al., 2015). Differences in the degeneration and death of neuronal cells, and inflammatory responses, in the brain were observed between Sapporo and Oshima infections. Therefore, we analysed the types of programmed cell death caused by each TBEV strain. Human neuroblastoma SH-SY5Y cells were inoculated with Sapporo or Oshima at a multiplicity of infection of 1, and then stained with propidium iodide (PI) to explore the extents to which the TBEVs induce cell death. Few PI-positive cells were detected at 24 hpi (Fig. 3a). The PI-positive rate was significantly higher in the cells infected with TBEV as compared to control cells and the increase was more evident in Oshima-infected cells than in Sapporo-infected cells at 48 hpi (Fig. 3a). At 72

1	pH 8.0) with a protease inhibitor (Nacalai Tesque, Kyoto, Japan) and phosphatase inhibitor cocktail
2	2 and 3 (Sigma-Aldrich, St. Louis, MO, USA). The expression of the apoptosis marker, cleaved-
3	caspase 3, was undetectable in the cells infected with TBEV (Fig. 3b). Then, we examined caspase 1
4	and gasdermin D (GSDMD), which are markers of pyroptosis, and no difference was observed
5	between control and TBEV-inoculated cells (Fig. 3c). Next, the expression levels of mixed lineage
6	kinase domain-like (MLKL), phosphorylated MLKL (p-MLKL), RIP, and RIP3 were examined;
7	these proteins are markers of necroptosis. The MLKL, p-MLKL, and RIP3 levels were increased by
8	TBEV inoculation, and the increase was greater in Oshima- than Sapporo-infected cells (Fig. 3d and
9	e). Subtle RIP upregulation was observed in TBEV-inoculated cells as compared to control; a greater
10	increase was apparent in Oshima-inoculated cells (Fig. 3d). Addition of a necroptosis inhibitor
11	(necrostatin-1s; Cell Signaling Technology, Beverly, MA, USA), decreased the PI-positive
12	proportion of TBEV-infected cells (Fig. 3f). Furthermore, MLKL-positive cells were found in mouse
13	brains inoculated with the Oshima (Fig. 3g). These results suggested that necroptosis, and not
14	apoptosis or pyroptosis, was induced by TBEV infection, and that Oshima infection induced
15	necroptosis more strongly than Sapporo infection.
16	
17	In this study, we found that the incidence rates of neuronal degeneration and death, and
18	inflammation with glial activation, differed between TBEV strains. Furthermore, the occurrence of
19	necroptosis also differed between strains. TBEV strains more pathogenic for mice induced
20	necroptosis more strongly than stains with lower pathogenicity. This suggested that necroptosis was
21	important for its neuropathogenesis.
22	
23	Since cytopathic effects and morphological characteristics of cell death were observed in TBEV-
24	infected cultured cells, it appears that TBEV infection directly induces neuronal cell death (Gelpi et

24 infected cultured cells, it appears that TBEV infection directly induces neuronal cell death (Gelpi et

1	al., 2005). However, previous studies demonstrated that excessive immune responses were induced
2	by TBEV and other flaviviruses, which may cause neuronal cell death (Ghoshal et al., 2007;
3	Hayasaka et al., 2009; Luo et al., 2018; Ruzek et al., 2009a). In this study, we demonstrated that
4	necroptosis was induced in cultured human neuroblastoma cells infected with TBEV, suggesting that
5	TBEV infection could induce necroptosis of neuronal cells without any influence of external factors.
6	In the neuropathogenesis of TBE, viral infection induces necroptosis directly, and necroptosis might
7	then activate glial cells, leading to encephalitis.
8	
9	Elucidation of its neuropathogenesis may lead to the development of effective therapies for TBEV
10	infection. Comparison of the two TBEV strains with high amino acid homology may lead to the
11	elucidation of molecular mechanisms of necroptosis induced by TBEV, and aid identification of
12	potential therapeutic targets for TBE.
13	
14	Author statements
15	Authors and contributions
16	D.T.: validation, formal analysis, investigation, data curation, write - original draft preparation,
17	visualization. K.Y.: write - review and editing, supervision, funding. M.K.: validation, formal
18	analysis, investigation, data curation. Y.T.: resources, write - review and editing. N.M.:
19	investigation, data curation. H.K.: resources, write - review and editing. S.K.: conceptualization,
20	methodology, resources, write – review and editing, supervision, funding.
21	
22	Conflicts of interest
23	The authors declare that there are no conflicts of interest.
24	

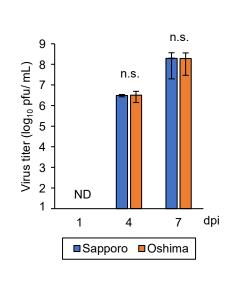
1	Funding	infor	mation

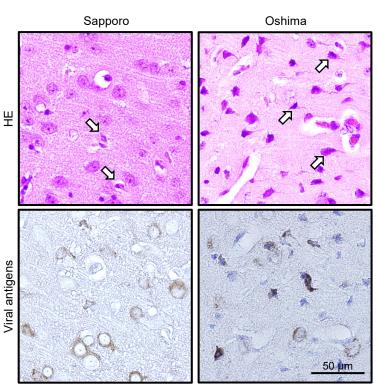
2	This work was supported in part by the Japan Society for the Promotion of Science (JSPS)
3	KAKENHI Grant Numbers, 18K14574, 20K06406, 17H03910, 19K22353, 20H03136 and
4	21KK0123; the Research Program on Emerging and Re-emerging Infectious Diseases from Japan
5	Agency for Medical Research and Development, AMED (21fk0108614h0301,
6	JP21fk0108567h0001); Takeda Science Foundation; Suhara Memorial Foundation; Kuribayashi
7	Foundation; MSD Life Science Foundation, Public Interest Incorporated Foundation; The Akiyama
8	Life Science Foundation ;Grant for Joint Research Program of the Institute for Genetic Medicine,
9	Hokkaido University; Joint Usage / Research Center on Tropical Disease, Institute of Tropical
10	Medicine, Nagasaki University (2021-Ippan-14); the World-leading Innovative and Smart Education
11	(WISE) Program (1801) from the Ministry of Education, Culture, Sports, and Technology, Japan.
12	
13	Ethical approval
14	All animal experiments were performed following the basic guidelines for animal experiments of the
15	Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The President of
16	Hokkaido University approved all animal experiments after review by the Institutional Animal Care
17	and Use Committee of Hokkaido University (approval no. 19-0142).
18	
19	References
20 21 22	Andersson, C.R., Vene, S., Insulander, M., Lindquist, L., Lundkvist, A., Gunther, G., 2010. Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine 28(16), 2827- 2831.
23	Balogh, Z., Ferenczi, E., Szeles, K., Stefanoff, P., Gut, W., Szomor, K.N., Takacs, M., Berencsi, G.,
24	2010. Tick-borne encephalitis outbreak in Hungary due to consumption of raw goat milk. J
25	Virol Methods 163(2), 481-485.
26	Barres, B.A., 2008. The mystery and magic of glia: a perspective on their roles in health and disease.
27	Neuron 60(3), 430-440.

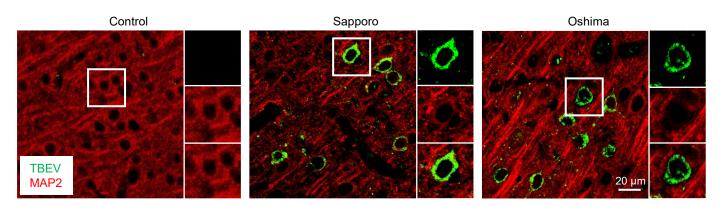
1	Bian, P., Zheng, X., Wei, L., Ye, C., Fan, H., Cai, Y., Zhang, Y., Zhang, F., Jia, Z., Lei, Y., 2017.
2	MLKL Mediated Necroptosis Accelerates JEV-Induced Neuroinflammation in Mice. Front
3	Microbiol 8, 303.
4	Brockmann, S.O., Oehme, R., Buckenmaier, T., Beer, M., Jeffery-Smith, A., Spannenkrebs, M.,
5	Haag-Milz, S., Wagner-Wiening, C., Schlegel, C., Fritz, J., Zange, S., Bestehorn, M.,
6	Lindau, A., Hoffmann, D., Tiberi, S., Mackenstedt, U., Dobler, G., 2018. A cluster of two
7	human cases of tick-borne encephalitis (TBE) transmitted by unpasteurised goat milk and
8	cheese in Germany, May 2016. Euro Surveill 23(15).
9	Cheung, K.T., Sze, D.M., Chan, K.H., Leung, P.H., 2018. Involvement of caspase-4 in IL-1 beta
10	production and pyroptosis in human macrophages during dengue virus infection.
11	Immunobiology 223(4-5), 356-364.
12	Clarke, P., Leser, J.S., Tyler, K.L., 2021. Intrinsic Innate Immune Responses Control Viral Growth
13	and Protect against Neuronal Death in an Ex Vivo Model of West Nile Virus-Induced
14	Central Nervous System Disease. J Virol 95(18), e0083521.
15	Dumpis, U., Crook, D., Oksi, J., 1999. Tick-borne encephalitis. Clin Infect Dis 28(4), 882-890.
16	Ecker, M., Allison, S.L., Meixner, T., Heinz, F.X., 1999. Sequence analysis and genetic classification
17	of tick-borne encephalitis viruses from Europe and Asia. The Journal of general virology 80
18	(Pt 1), 179-185.
19	Fares, M., Cochet-Bernoin, M., Gonzalez, G., Montero-Menei, C.N., Blanchet, O., Benchoua, A.,
20	Boissart, C., Lecollinet, S., Richardson, J., Haddad, N., Coulpier, M., 2020. Pathological
21	modeling of TBEV infection reveals differential innate immune responses in human neurons
22	and astrocytes that correlate with their susceptibility to infection. J Neuroinflammation
23	17(1), 76.
24	Fares, M., Gorna, K., Berry, N., Cochet-Bernoin, M., Piumi, F., Blanchet, O., Haddad, N.,
25	Richardson, J., Coulpier, M., 2021. Transcriptomic Studies Suggest a Coincident Role for
26	Apoptosis and Pyroptosis but Not for Autophagic Neuronal Death in TBEV-Infected Human
27	Neuronal/Glial Cells. Viruses 13(11).
28	Frank, D., Vince, J.E., 2019. Pyroptosis versus necroptosis: similarities, differences, and crosstalk.
29	Cell Death Differ 26(1), 99-114.
30	Fricker, M., Tolkovsky, A.M., Borutaite, V., Coleman, M., Brown, G.C., 2018. Neuronal Cell Death.
31	Physiol Rev 98(2), 813-880.
32	Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S.,
33	Altucci, L., Amelio, I., Andrews, D.W., Annicchiarico-Petruzzelli, M., Antonov, A.V.,
34	Arama, E., Baehrecke, E.H., Barlev, N.A., Bazan, N.G., Bernassola, F., Bertrand, M.J.M.,
35	Bianchi, K., Blagosklonny, M.V., Blomgren, K., Borner, C., Boya, P., Brenner, C.,
36	Campanella, M., Candi, E., Carmona-Gutierrez, D., Cecconi, F., Chan, F.K., Chandel, N.S.,

1	Cheng, E.H., Chipuk, J.E., Cidlowski, J.A., Ciechanover, A., Cohen, G.M., Conrad, M.,
2	Cubillos-Ruiz, J.R., Czabotar, P.E., D'Angiolella, V., Dawson, T.M., Dawson, V.L., De
3	Laurenzi, V., De Maria, R., Debatin, K.M., DeBerardinis, R.J., Deshmukh, M., Di Daniele,
4	N., Di Virgilio, F., Dixit, V.M., Dixon, S.J., Duckett, C.S., Dynlacht, B.D., El-Deiry, W.S.,
5	Elrod, J.W., Fimia, G.M., Fulda, S., Garcia-Saez, A.J., Garg, A.D., Garrido, C., Gavathiotis,
6	E., Golstein, P., Gottlieb, E., Green, D.R., Greene, L.A., Gronemeyer, H., Gross, A.,
7	Hajnoczky, G., Hardwick, J.M., Harris, I.S., Hengartner, M.O., Hetz, C., Ichijo, H., Jaattela,
8	M., Joseph, B., Jost, P.J., Juin, P.P., Kaiser, W.J., Karin, M., Kaufmann, T., Kepp, O.,
9	Kimchi, A., Kitsis, R.N., Klionsky, D.J., Knight, R.A., Kumar, S., Lee, S.W., Lemasters,
10	J.J., Levine, B., Linkermann, A., Lipton, S.A., Lockshin, R.A., Lopez-Otin, C., Lowe, S.W.,
11	Luedde, T., Lugli, E., MacFarlane, M., Madeo, F., Malewicz, M., Malorni, W., Manic, G., et
12	al., 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature
13	Committee on Cell Death 2018. Cell Death Differ 25(3), 486-541.
14 Ge	elpi, E., Preusser, M., Garzuly, F., Holzmann, H., Heinz, F.X., Budka, H., 2005. Visualization of
15	Central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp
16	Neurol 64(6), 506-512.
17 Gl	hoshal, A., Das, S., Ghosh, S., Mishra, M.K., Sharma, V., Koli, P., Sen, E., Basu, A., 2007.
18	Proinflammatory mediators released by activated microglia induces neuronal death in
19	Japanese encephalitis. Glia 55(5), 483-496.
20 Gi	ritsun, T.S., Lashkevich, V.A., Gould, E.A., 2003. Tick-borne encephalitis. Antiviral Res 57(1-2),
21	129-146.
22 Ha	ayasaka, D., Nagata, N., Fujii, Y., Hasegawa, H., Sata, T., Suzuki, R., Gould, E.A., Takashima, I.,
23	Koike, S., 2009. Mortality following peripheral infection with tick-borne encephalitis virus
24	results from a combination of central nervous system pathology, systemic inflammatory and
25	stress responses. Virology 390(1), 139-150.
26 He	e, Z., An, S., Chen, J., Zhang, S., Tan, C., Yu, J., Ye, H., Wu, Y., Yuan, J., Wu, J., Zhu, X., Li, M.,
27	2020. Neural progenitor cell pyroptosis contributes to Zika virus-induced brain atrophy and
28	represents a therapeutic target. Proc Natl Acad Sci U S A 117(38), 23869-23878.
29 Ko	obayashi, S., Orba, Y., Yamaguchi, H., Kimura, T., Sawa, H., 2012. Accumulation of ubiquitinated
30	proteins is related to West Nile virus-induced neuronal apoptosis. Neuropathology 32(4),
31	398-405.
32 Li	m, S.M., van den Ham, H.J., Oduber, M., Martina, E., Zaaraoui-Boutahar, F., Roose, J.M., van,
33	I.W.F.J., Osterhaus, A., Andeweg, A.C., Koraka, P., Martina, B.E.E., 2017. Transcriptomic
34	Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the
35	Brains of Mice Infected with West Nile Virus and Chikungunya Virus. Front Microbiol 8,
36	1556.
35	Brains of Mice Infected with West Nile Virus and Chikungunya Virus. From

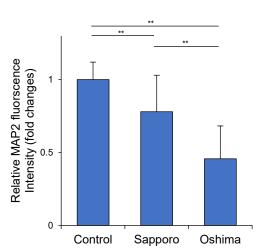
1	Luo, H., Winkelmann, E.R., Zhu, S., Ru, W., Mays, E., Silvas, J.A., Vollmer, L.L., Gao, J., Peng,
2	B.H., Bopp, N.E., Cromer, C., Shan, C., Xie, G., Li, G., Tesh, R., Popov, V.L., Shi, P.Y.,
3	Sun, S.C., Wu, P., Klein, R.S., Tang, S.J., Zhang, W., Aguilar, P.V., Wang, T., 2018. Peli1
4	facilitates virus replication and promotes neuroinflammation during West Nile virus
5	infection. J Clin Invest 128(11), 4980-4991.
6	McKenzie, B.A., Dixit, V.M., Power, C., 2020. Fiery Cell Death: Pyroptosis in the Central Nervous
7	System. Trends Neurosci 43(1), 55-73.
8	Mocarski, E.S., Guo, H., Kaiser, W.J., 2015. Necroptosis: The Trojan horse in cell autonomous
9	antiviral host defense. Virology 479-480, 160-166.
10	Morozova, O.V., Bakhvalova, V.N., Potapova, O.F., Grishechkin, A.E., Isaeva, E.I., Aldarov, K.V.,
11	Klinov, D.V., Vorovich, M.F., 2014. Evaluation of immune response and protective effect of
12	four vaccines against the tick-borne encephalitis virus. Vaccine 32(25), 3101-3106.
13	Nayak, D., Roth, T.L., McGavern, D.B., 2014. Microglia development and function. Annu Rev
14	Immunol 32, 367-402.
15	Nedergaard, M., Ransom, B., Goldman, S.A., 2003. New roles for astrocytes: redefining the
16	functional architecture of the brain. Trends Neurosci 26(10), 523-530.
17	Okamoto, T., Suzuki, T., Kusakabe, S., Tokunaga, M., Hirano, J., Miyata, Y., Matsuura, Y., 2017.
18	Regulation of Apoptosis during Flavivirus Infection. Viruses 9(9).
19	Petry, M., Palus, M., Leitzen, E., Mitterreiter, J.G., Huang, B., Kroger, A., Verjans, G., Baumgartner,
20	W., Rimmelzwaan, G.F., Ruzek, D., Osterhaus, A., Prajeeth, C.K., 2021. Immunity to TBEV
21	Related Flaviviruses with Reduced Pathogenicity Protects Mice from Disease but Not from
22	TBEV Entry into the CNS. Vaccines (Basel) 9(3).
23	Pokorna Formanova, P., Palus, M., Salat, J., Honig, V., Stefanik, M., Svoboda, P., Ruzek, D., 2019.
24	Changes in cytokine and chemokine profiles in mouse serum and brain, and in human
25	neural cells, upon tick-borne encephalitis virus infection. J Neuroinflammation 16(1), 205.
26	Ruzek, D., Salat, J., Palus, M., Gritsun, T.S., Gould, E.A., Dykova, I., Skallova, A., Jelinek, J.,
27	Kopecky, J., Grubhoffer, L., 2009a. CD8+ T-cells mediate immunopathology in tick-borne
28	encephalitis. Virology 384(1), 1-6.
29	Ruzek, D., Vancova, M., Tesarova, M., Ahantarig, A., Kopecky, J., Grubhoffer, L., 2009b.
30	Morphological changes in human neural cells following tick-borne encephalitis virus
31	infection. The Journal of general virology 90(Pt 7), 1649-1658.
32	Sofroniew, M.V., Vinters, H.V., 2010. Astrocytes: biology and pathology. Acta Neuropathol 119(1),
33	7-35.
34	Sticozzi, C., Belmonte, G., Meini, A., Carbotti, P., Grasso, G., Palmi, M., 2013. IL-1beta induces
35	GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated
36	apoptosis in rat brain striatum via NFkappaB/Ca(2)(+)-calmodulin/ERK mitogen-activated

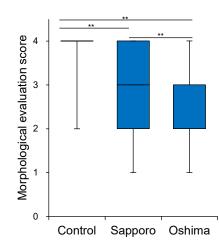

1	protein kinase signaling pathway. Neuroscience 252, 367-383.
2	Subhramanyam, C.S., Wang, C., Hu, Q., Dheen, S.T., 2019. Microglia-mediated neuroinflammation
3	in neurodegenerative diseases. Semin Cell Dev Biol 94, 112-120.
4	Takahashi, Y., Kobayashi, S., Ishizuka, M., Hirano, M., Muto, M., Nishiyama, S., Kariwa, H.,
5	Yoshii, K., 2020. Characterization of tick-borne encephalitis virus isolated from a tick in
6	central Hokkaido in 2017. The Journal of general virology 101(5), 497-509.
7	Takano, A., Yoshii, K., Omori-Urabe, Y., Yokozawa, K., Kariwa, H., Takashima, I., 2011.
8	Construction of a replicon and an infectious cDNA clone of the Sofjin strain of the Far-
9	Eastern subtype of tick-borne encephalitis virus. Archives of virology 156(11), 1931-1941.
10	Takashima, I., Morita, K., Chiba, M., Hayasaka, D., Sato, T., Takezawa, C., Igarashi, A., Kariwa, H.,
11	Yoshimatsu, K., Arikawa, J., Hashimoto, N., 1997. A case of tick-borne encephalitis in
12	Japan and isolation of the the virus. J Clin Microbiol 35(8), 1943-1947.
13	Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., Vandenabeele, P., 2014.
14	Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev
15	Mol Cell Biol 15(2), 135-147.
16	Wang, Z.Y., Zhen, Z.D., Fan, D.Y., Wang, P.G., An, J., 2020. Transcriptomic Analysis Suggests the
17	M1 Polarization and Launch of Diverse Programmed Cell Death Pathways in Japanese
18	Encephalitis Virus-Infected Macrophages. Viruses 12(3).
19	Wen, C., Yu, Y., Gao, C., Qi, X., Cardona, C.J., Xing, Z., 2021. RIPK3-Dependent Necroptosis Is
20	Induced and Restricts Viral Replication in Human Astrocytes Infected With Zika Virus.
21	Front Cell Infect Microbiol 11, 637710.
22	Ye, J., Zhu, B., Fu, Z.F., Chen, H., Cao, S., 2013. Immune evasion strategies of flaviviruses. Vaccine
23	31(3), 461-471.
24	Zhou, R., Wu, X., Skalli, O., 2001. TGF-alpha induces a stationary, radial-glia like phenotype in
25	cultured astrocytes. Brain Res Bull 56(1), 37-42.
26	
27	
28	Figure legends
29	Fig. 1. Cell degeneration and death in mouse brains induced by TBEV infection. Oshima induced
30	more cell degeneration and death than Sapporo.
31	(a) Virus titers in mouse brains were determined using plaque assay. The brains were weighted and
32	homogenised (10% w/v suspension in PBS). The data are presented as mean \pm SD. The Student's t

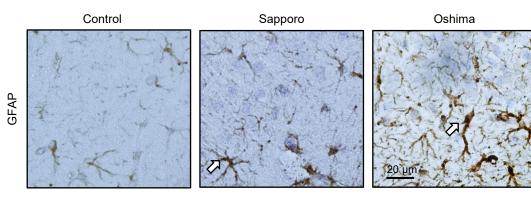

1 test revealed no significant differences between the two strains.


2	(b) The serial sections were stained by hematoxylin and eosin (upper panels). Immunohistochemistry
3	was performed for the TBEV E-protein (lower panels). Arrows indicate representative degenerative
4	cells. (c) Double staining with TBEV E-protein (green) and MAP2 (red). (d) Relative MAP2
5	fluorescence intensity was measured. MAP2 fluorescence intensity was measured in eight
6	fields/mouse ($n = 3$ and $n = 1$; for Sapporo- and Oshima-inoculated mice, and a control mouse,
7	respectively). The data are presented as mean + SD; Tukey-Kramer test, $**p < 0.01$. (e)
8	Morphological score of TBEV-infected neurons. Scores were based on the size of the clear area
9	around TBEV-positive neurons. Scores ranged from 1 to 4 (1, $< 60\%$ of the MAP2-positive cell area
10	of controls; 2, 60–69%; 3, 70–79%; 4, \geq 80%). Scoring was performed using a ×20 objective lens.
11	Morphological scores were derived for eight fields/mouse ($n = 3$ and $n = 1$; Sapporo- and Oshima-
12	inoculated mice, and a control mouse, respectively). The data are presented as a box plot. Tukey-
13	Kramer test, **p < 0.01.
14	
15	Fig. 2. Astrocytes and microglia were activated by TBEV infection in vivo. Oshima caused greater
16	glial activation than Sapporo.
17	(a) Representative micrographs showing the immunohistochemistry of brain sections stained for
18	GFAP. Arrows indicate hypertrophic cells. (b) The number of GFAP-positive cells in cerebral
19	cortices was counted in high-power fields. (c) The relative sizes of GFAP-positive cells were
20	measured using a fluorescent secondary antibody by ImageJ. (d) Representative micrographs
21	showing the immunohistochemistry of brain sections stained for Iba-1. Arrows indicate the
22	amoeboid form of microglia. (e, f) The number of Iba-1-positive cells (e) and Iba-1-positive
23	amoeboid cells (f) in the cerebral cortices was counted in high-power fields. Data are presented as
24	mean +SD; Tukey-Kramer test, **p < 0.01.

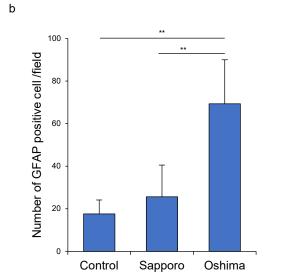
2	Fig. 3. TBEV infection induced necroptosis in the SH-SY5Y cell line rather than apoptosis or
3	pyroptosis.
4	(a) The death of the SH-SY5Y cells infected with TBEV. PI-positive cells were counted at 24, 48,
5	and 72 h. Data are presented as mean +SD; Scheffe's F test, $**p < 0.01$ and $*p < 0.05$. (b) CASP3 (a
6	marker of apoptosis) expression was analyzed. (c) CASP1 and GSDMD (markers of pyroptosis)
7	expression were analyzed. (d) MLKL, p-MLKL, RIP and RIP3 (markers of necroptosis) expression
8	levels were analyzed. (e) The relative band intensities of MLKL normalized to that of the internal
9	control were measured (n = 4). Data are presented as mean +SD; Steel-Dwass test, $*p < 0.05$. (f) The
10	necroptosis inhibitor necrostatin-1s (10 or 5 mM) prevented cell death after TBEV infection. Data
11	are presented as mean +SD; Scheffe's F test, $**p < 0.01$ and $*p < 0.05$. (g) Brains inoculated with
12	the control or either TBEV strain were immunostained for MLKL. Arrowheads indicate MLKL-
13	positive cells.

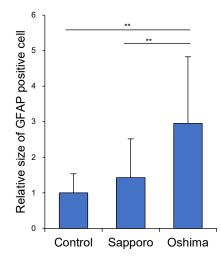


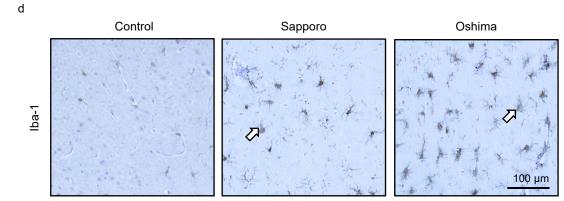


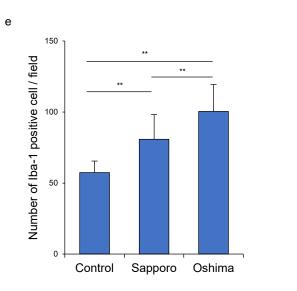


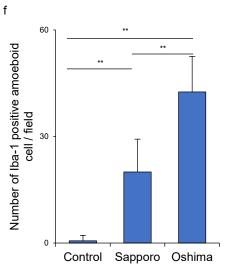
е

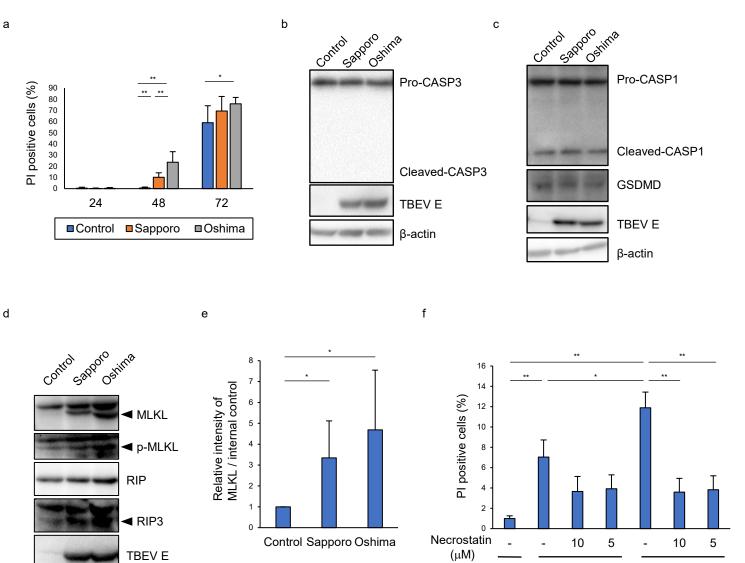


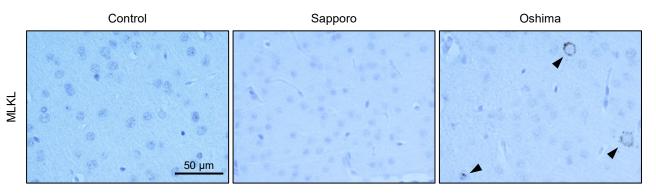







С





Control

Sapporo

Oshima

GAPDH

