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1. INTRODUCTION

In this thesis, we consider complements of real space line arrangements
and linearly embedded graphs with half-lines.

Let A = {A1, . . . , Am} be a subspace arrangement in Rn and M(A) =

Rn \
m∪
i=1

Ai be the complement of the subspace arrangement A. The ho-

mology of M(A) is well known and it is determined by the intersection
poset of the arrangement P(A) (Goresky, MacPherson [6]). Furthermore,
de Longueville and Schultz give the ring structure of the integral cohomol-
ogy ofM(A) [3]. In general, the homotopy type ofM(A) is not determined
by the intersection poset of arrangements (Ziegler [20]).

Therefore, we focus on real space line arrangements and we find the ho-
motopy (diffeomorphism) type of a complement of a real space line arrange-
ment is determined by the intersection poset. More precisely, it is deter-
mined by the cardinality m and the number of multiple points (p2, . . . , pm)
of the real space line arrangement. We obtain the following theorem:

Theorem 1.1. (Theorem 5.4, Ishikawa, Oyama [8]) Let B = {l1, . . . , lm}
be a real space line arrangement in Rn of cardinality m. Let pk denote the
number of k-multiple points of B. If n ≥ 3, then M(B) is diffeomorphic to

the interior of the space obtained by attaching trivially m +
m∑
k=2

(k − 1)pk

pieces of n-dimensional (n− 2)-handles to the n-dimensional closed ball.

Let X be a topological space. X is called minimal if it is homotopy
equivalent to a cell complex with as many i-cells as its i-th Betti num-
ber, for each i ≥ 0. It is known that complements of complex hyper-
plane arrangements are minimal by Dimca, Papadima [4], Randell [18].
However, according to the Björner [2], it is known that there exists a sub-
space arrangement such that complements are not minimal. On the other
hand, minimality of the complements of subspace arrangements in spe-
cial cases has been studied by Mori, Salvetti [13] and Adiprasito [1]. Let
A = {A1, . . . , Am} be a hyperplane arrangement in Rn and d be a positive
integer. The new subspace arrangement A(d) in (Rn)d consists of the sub-
space H(d)

i = {(x(1), . . . , x(d)) ∈ (Rn)d|ai · x(1) = 0, . . . , ai · x(d) = 0}
in A(d) for any Hi = {x ∈ Rn|ai · x = 0} ∈ A, where · is the Euclidean
inner product in Rn. Mori and Salvetti showed the complement of A(d) is
minimal [13]. Let c ≥ 1. A c-arrangement is a finite collection of distinct
affine subspace of Rn, all of codimension c, with the property that the codi-
mension of the non-empty intersection of any subset of it is a multiple of
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c. Adiprasito showed complements of essential c-arrangements are mini-
mal [1]. Note that A is called essential subspace arrangement in Rn if there
exist 0-dimensional intersections.

By Theorem 1.1, we find complements of real space line arrangements
are minimal (Corollary 4.4).

Graph embeddings are generalizations of knots and have been studied by
many researchers. In particular, graph linear embedding has application to
the polymer chemistry ([15]). Furthermore, we can regard the unions of
real space line arrangements as linearly embedded graphs with half-lines.

In this thesis, we studied differomorphism types for complements to lin-
ear embeddings of graphs with half-lines. Let V be an arbitrary set and it is
called the set of vertices. Assume that P (V, 1) := {{u} | u ∈ V } and

P (V, 2) := {{u, u} | u ∈ V } t {{u, v} | u, v ∈ V, u 6= v}.

Let E be a multiset of P (V, 2). It is called the set of edges. When e ∈ E
satisfies that there exists ẽ ∈ E \ {e} such that e = ẽ, it is called a multiple
edge. And when e ∈ E satisfies that there exists u ∈ V such that e =
{u, u}, it is called a loop. Let E ′ be a multiset of P (V, 1). E ′ is called the
set of half-lines. We call G = (V,E,E ′) a graph with half-lines. A graph
with half-lines G = (V,E,E ′) is called finite if cardinalities of sets V and
E,E ′ are finite respectively, and is called simple if (V,E) is a simple graph,
and is called connected if a graph G̃ = (Ṽ , Ẽ) is a connected graph, where
Ṽ = V ∪ {v∞} and Ẽ = E ∪ {{v, v∞}|{v} ∈ E

′} and v∞ /∈ V . Besides,
let G = (V,E,E ′) be a finite simple graph with half-lines. Let

ρ : V → Rn, µ : E
′ → Sn−1 = {x ∈ Rn | ‖x‖ = 1}

be maps. Then, we call f := (ρ, µ) a linear map of a graph with half-lines
G. It is denoted by f : G → Rn. And we define f(G) as the union of
ρ(V ) and

∪
e
′∈E′

u∈e′

hℓ(ρ(u), µ(e
′
)) and

∪
{u,v}∈E

ρ(u), ρ(v), where a, c ∈ Rn, b ∈

Rn \ {0}, hℓ(a, b) := {a + sb ∈ Rn | s ≥ 0}, a, c := {sa + (1 − s)c ∈
Rn | 0 ≤ s ≤ 1}. Let f := (ρ, µ) be a linear map of a graph with half-lines
G. It is called a linear embedding if ρ is an injection and any two distinct
elements of

{hℓ(µ(u), µ(e′)) ∈ Rn | e′ ∈ E
′
, u ∈ e

′}∪{ρ(u), ρ(v) ∈ Rn | {u, v} ∈ E}

intersect only at the common vertex. Let G = (V,E,E ′) be a finite graph
with half-lines. We define

χ(G) := card(V )− card(E)− card(E ′),
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where card(A) is the cardinality of the finite set A. Note that if G does not
have half-lines, χ(G) is equal to the Euler characteristic of the graph G. We
obtain the following theorem:

Theorem 1.2. (Theorem 6.19) Let G = (V,E,E ′) be a finite simple con-
nected graph with half-lines. Let f : G → Rn be a linear embedding and
n ≥ 4. Then, M(G, f) = Rn \ f(G) is diffeomorphic to the interior of
the space obtained by attaching trivially −χ(G) pieces of n-dimensional
(n− 2)-handles to the n-dimensional closed ball.

We obtain the following theorem (see Definition 6.12 ):

Theorem 1.3. (Theorem 6.20) Let G = (V,E,E ′) be a finite simple con-
nected graph with half-lines. Let f : G → R3 be a linear embedding. If
there exists a linear embedding which has a complete ascending direction
and is linear isotopic to f , then R3 \ f(G) is diffeomorphic to the interior
of the handle body which has genus −χ(G).

Let G = (V,E,E ′) be a finite graph with half-lines. Then, G is regarded
as the topological space which consists the following way:

(1) First, any u ∈ V is regarded as a 0-cell and V is regarded as a
discrete points of which the number is equal to cardinallty of V .
This topological space is denoted by G0.

(2) Second, elements of E are regarded as a 1-cells and any edges are
attached to G0. This 1-dimensional cell complex is denoted by G1.

(3) Finally, elements of E ′ are regareded as half-open intervals and any
half-lines are attached to G1. This space is regarded as a graph G,
when we consider a graph embedding.

Note that when G does not have half-lines, G is regarded as a cell complex.
Let M be a topological manifold. A continuous map f : G → M is called
embedding if f is a topological embedding map.

Remark 1.4. LetG = (V,E,E ′) be a finite simple graph with half-lines and
f := (ρ, µ) be a linear embedding of a graph with half-lines G, where

ρ : V → Rn, µ : E
′ → Sn−1.

Then, it is obvious that there exists an embedding g : G → Rn such that
g(G) = f(G).

Furthermore, we study the existense of a graph embedding such that the
fundamental group of complement is free group. In embedding in the 3-
sphere S3, there are previous works by Kobayashi [9], Endo, Otsuki [5].
Kobayashi [9], Endo, Otsuki [5] proved following properties with respect
to locally unknotted graph embedding.
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Definition 1.5. (Kobayashi [9]) Let G be a finite simple connected graph
which does not have vertices with degree 1 and cut edges. Let f : G → S3

be an embedding. A spatial graph f(G) is a locally unknotted if there are a

base {x1, . . . , xγ} of H1(G : Z) and a map ψ :

γ∪
i=1

D2
i → S3 such that

(1) ψ(∂D2
i ) = Ci, where Ci is a representation curve of xi in f(G) for

i = 1, 2, . . . , γ.

(2) ψ(
γ∪

i=1

D2
i ) = f(G).

(3) ψ|D2
i

is an embedding for i = 1, 2, . . . , γ.
(4) ψ(int(D2

i )) ∩ ψ(int(D2
j )) = ∅ for i 6= j.

(5) ψ(D2
i ) ∩ f(G) = ψ(∂D2

i ) ∩ f(G) = Ci for i = 1, 2, . . . , γ.

Theorem 1.6. (Kobayashi [9], [10]) Assume that the graph G is finite, con-
nected, simple and does not have vertices with degree 1 and cut edges. Let
f : G → S3 is a embedding. If a spatial graph f(G) is locally unknotted
then the fundamental group of S3 \ f(G) is free group.

Theorem 1.7. (Endo, Otsuki [5], Kobayashi [10]) Assume that the graph G
is finite, connected, simple and does not have vertices with degree 1 and cut
edges. Then any graph G has a graph embedding f : G → S3 such that
f(G) satisfies a locally unknotted spatial graph.

By Theorem 1.6, 1.7, when we assume that the graph G is finite, con-
nected, simple and does not have vertices with degree 1 and cut edges, it is
obvious that an existense of a graph embedding such that the fundamental
group of complement is free group. In embedding in R3, Huh, Lee proved
the following theorem (see Remark 6.17):

Theorem 1.8. (Huh, Lee [7]) If a linear embedding of a simple graph in R3

has a descending direction, then the fundamental group of the complement
of this embedded graph is a free group.

In embedding in S3, we assume only finite connected graphs and give an
another proof without going through a locally unknotted graph embedding.

Theorem 1.9. (Theorem 6.23) If G = (V,E) is a finite connected graph,
then there exists graph embedding f : G → S3 suth that S3 \ f(G) is
diffeomorphic to the interior of the handle body which has genus 1−χ(G),
where χ(G) is the Euler characteristic of graphs.

By Theorem 1.9, we obtain the following corollary:

Corollary 1.10. (Corollary 6.24) If G = (V,E) is a finite connected graph,
then there exists a graph embedding f : G→ S3 such that the fundamental
group of S3 \ f(G) is a free group.



6

In embedding in R3, we prove any finite connected simple graph has a
linear embedding which has a descending direction.

Theorem 1.11. (Theorem 6.25) If G = (V,E) is a finite connected simple
graph, then there exists a linear embedding f : G → R3 which has a
descending direction.

By Theorem 1.8, 1.11, we obtain the following corollary:

Corollary 1.12. (Corollary 6.26) If G = (V,E) is a finite connected (sim-
ple) graph, then there exists a (linear) embedding f : G→ R3 such that the
fundamental group of R3 \ f(G) is a free group.

2. HOMOLOGY GROUPS OF COMPLEMENTS OF REAL SPACE LINE
ARRANGEMENTS IN Rn

2.1. Homology groups of complements of subspace arrangements in
Rn.

Definition 2.1. If A = {A1, . . . , Am} is a set of affine subspaces in the
n-dimensional affine space Rn then it is called a subspace arrangement in
Rn.

Suppose that A1, . . . , Am are distinct. The complement of the union of

these subspaces is denoted byM(A) = Rn\
m∪
i=1

Ai. Let A = {A1, . . . , Am}

be a subspace arrengement in Rn. Associated to this collection A of sub-
spaces there is a partially ordered set P(A) whose element v corresponds to
an affine subspace v = Ai1 ∩Ai2 ∩ · · · ∩Air 6= ∅ partially ordered by inclu-
sion, with one maximal element T corresponding to the ambient space Rn.
We shall use the notation v < w if v and w are distinct elements of P(A)
such that v is contained in w. We define the ranking function d, whose value
on the v is the dimension d(v) = dimR(v).

For any partially ordered set P , we may consider the order complex
K(P). This is a simplicial complex with one vertex for each element v ∈ P
and one k-simplex for each chain v0 < v1 < · · · < vk−1 < vk of elements
of P . We define the following subsets

P(v,w) = {x ∈ P|v < x < w}, P>v = {x ∈ P|v < x}
of P . Let Cp(K(P)) be the free abelian group generated by all the p-
simplices of K(P). We also define the cochain group C∗(K(P)) and the
coboundary map δ of K(P) as follows:

C∗(K(P)) =
⊕
p∈Z

Cp(K(P)),
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whereCp(K(P)) isHom(Cp(K(P)),Z). The coboundary map δ : Cp(K(P)) →
Cp+1(K(P)) is defined by

δ([v0, . . . vp]
∗) :=

∑
v0<···<vj−1<w<vj<···<vp

(−1)j[v0, . . . , vj−1, w, vj, . . . , vp]
∗,

where [v0, . . . vp]
∗ is the dual basis to the basis {[v0, . . . vp]} ⊂ Cp(K(P))

consisting of p-simplices of K(P). The next theorem is introduced in [6].

Theorem 2.2. (Goresky, MacPherson [6]) The homology of the complement
M(A) is given by

Hi(M(A);Z) ∼=
⊕

v∈P(A)

Hn−d(v)−i−1(K(P(A)>v), K(P(A)(v,T ));Z),

where we make the convention that H−1(∅, ∅;Z) ∼= Z i.e. the top vertex
v = T contribute a copy of Z to the homology group H0(M(A);Z).

2.2. Homology groups of complements of real space line arrangements
in Rn.

Definition 2.3. We call a subspace arrangement A = {A1, . . . , Am} a real
space line arrangement if dimRAi = 1 (i = 1, . . . ,m).

Definition 2.4. Let B = {l1, . . . , lm} be a real space line arrangement in
Rn. Suppose l1, . . . , lm are distinct. We call x ∈

∪
1≤i≤m

li a k-multiple point

of B if the cardinality of {li ∈ B|x ∈ li} is equal to k.

Let B = {l1, . . . , lm} be a real space line arrangement of distinct m lines.
Then we obtain the following theorem:

Theorem 2.5. Let B = {l1, . . . , lm} be a real space line arrangement in Rn

having pk number of k-multiple points. Assume that l1, . . . , lm are distinct.
If n ≥ 3, then the homology of the complement M(B) is given by

H0(M(B);Z) ∼= Z,
Hn−2(M(B);Z) ∼= Zm+

∑m
k=2(k−1)pk ,

Hi(M(B);Z) ∼= 0, (i 6= 0, n− 2).

If n = 2, Then

H0(M(B);Z) ∼= Zm+1+
∑m

k=2(k−1)pk ,

Hi(M(B);Z) ∼= 0 (i 6= 0).
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Proof. Firstly, we consider the case n ≥ 3. By the Theorem 2.2,

H0(M(A);Z) ∼=
⊕

v∈P(A)

Hn−d(v)−1(K(P(A)>v), K(P(A)(v,T ));Z)

∼= H−1(∅, ∅;Z)
∼= Z.

When i = n− 2,

Hn−2(M(A);Z) ∼=
⊕

v∈P(A)

H1−d(v)(K(P(A)>v), K(P(A)(v,T ));Z).

If d(v) = 1, then 0-cocycle is Z[T ]∗. If d(v) = 0 and v is k-multiple point
then 1-cocycle is

⊕
v∈lij

Z[lij , T ]∗ and 1-coboundary is

δ([T ]∗) = [li1 , T ]
∗ + · · ·+ [lik , T ]

∗ (v ∈ lij , 1 ≤ j ≤ k).

Therefore, H1(K(P(A)>v), K(P(A)(v,T ));Z) ∼= Zk−1. From the above,
Hn−2(M(A);Z) ∼= Zm+

∑m
k=2(k−1)pk . When i 6= 0, n − 2, we have to con-

sider

Hi(M(A);Z) ∼=
⊕

v∈P(A)

Hn−d(v)−i−1(K(P(A)>v), K(P(A)(v,T ));Z).

If d(v) = 0, then Hn−i−1(K(P(A)>v), K(P(A)(v,T ));Z) ∼= 0. Because
there is no (n− i− 1)-cocycle. If d(v) = 1, then

Hn−i−2(K(P(A)>v), K(P(A)(v,T ));Z) ∼= 0.

Clearly, if v = T , then H−i−1(K(P(A)>v), K(P(A)(v,T ));Z) ∼= 0. From
the above Hi(M(B);Z) ∼= 0 (i 6= 0, n− 2).

Finally, we consider the case n = 2.

H0(M(A);Z) ∼=
⊕

v∈P(A)

H1−d(v)(K(P(A)>v), K(P(A)(v,T ));Z)

∼= Zm+1+
∑m

k=2(k−1)pk . (Since H−1(∅, ∅;Z) ∼= Z.)

If i 6= 0,

Hi(M(A);Z) ∼=
⊕

v∈P(A)

H1−d(v)−i(K(P(A)>v), K(P(A)(v,T ));Z) ∼= 0.

Thus we have the theorem. □
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3. WHITNEY STRATIFICATION AND STRATIFIED MORSE THEORY

We study the homotopy type of the complement of real space line ar-
rangements in Rn. We find that these have relation to the number of the
multiple points and the dimension of real space. In order to prove our re-
sult, we use the Whitney stratification and stratified Morse theory.

3.1. P-decomposition and Whitney stratification.

Definition 3.1. Let P denote a partially ordered set with order relation de-
noted by <. A P-decomposition of a topological space Z is a locally finite
collection of disjoint locally closed subsets called pieces, Si ⊂ Z (one for
each i ∈ P) such that

(1) Z = ∪i∈PSi

(2) Si ∩ Sj 6= ∅ ⇔ Si ⊂ Sj ⇔ i = j or i < j and we write Si < Sj .

Definition 3.2. Let Z be a closed subset of a smooth manifold M , and
suppose that Z =

∪
i∈P Si is a P-decomposition of Z, where P is some

partially ordered set. This decomposition and Z are respectively called a
Whitney stratification of Z, a Whitney stratified space provided:

(1) Each pieces Si is a locally closed smooth submanifold (which may
or may not be connected) of M .

(2) Whenever Sα < Sβ , the pair (Sα, Sβ) satisfies Whitney’s conditions
A and B: Suppose xi ∈ Sβ is a sequence of points converging to
some y ∈ Sα. Suppose yi ∈ Sα also converges to y, and suppose
that (with respect to some local coordinate system on M) the secant
lines li = xiyi converge to some limiting line l and Txi

Sβ → τ .
Then

(Whitney’s condition A): Txi
Sα ⊂ τ and

(Whitney’s condition B): l ⊂ τ .

Remark 3.3. By Mather [12], it is proved that (Whitney’s condition B)⇒(Whitney’s
condition A).

Let Z1 =
∪

i∈P Si and Z2 =
∪

i∈P S
′
i be Whitney stratified spaces. If a

homeomorphism f : Z1 → Z2 satisfies f |Si
is diffeomorphism and f(Si) =

S
′
i for any i ∈ P , then it is called a stratum preserving homeomorphism.

3.2. Morse function and Thom’s first isotopy lemma with respect to
Whitney stratification. SupposeZ is a Whitney stratified space of a smooth
manifold M . Let f̃ :M → N be a smooth map such that

(1) f = f̃ |Z is proper.
(2) for each stratum A of Z, the restriction f |A : A → N is a submer-

sion.
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Such a map is called a proper stratified submersion. For each t ∈ Rn, the
set Z ∩ f̃−1(t) is Whitney stratified by its intersection with the strata of Z.

Theorem 3.4. (Thom’s first isotopy lemma [6], [11], [19]) Let f̃ :M → Rn

be a proper stratified submersion with respect to a Whitney stratified space
Z ⊂M . Then there is a stratum preserving homeomorphism,

h : Z → Rn × (Z ∩ f̃−1(0))

which is smooth on each stratum and commutes with the projection to Rn. In
particular the fibers of f = f̃ |Z are homeomorpic by a stratum preserving
homeomorphism.

Let Z be a Whitney stratified space of a smooth manifold M .

Definition 3.5. Suppose p ∈ Z. Let S be the stratum of Z which contains
p. A generalized tangent space Q at the point p is any plane of the form

Q = lim
pi→p

TpiR

where R ⊃ S is a stratum of Z and pi ∈ R is a sequence converging to p.

Definition 3.6. A Morse function f : Z → R is the restriction of a smooth
function f̃ :M → R such that

(1) f = f̃ |Z is proper and the critical values of f are distinct.
(2) For each stratum S of Z, the critical points of f |S are nondegenerate

(i.e., if dim(S) ≥ 1, the Hessian of f |S is nonzero at each critical
point of f |S).

(3) For every such critical point p ∈ S, and for each generalized tan-
gent space Q at the point p, the following nondegeneracy condition
holds: df̃(p)(Q) 6= 0 except for Q = TpS.

Suppose Z is a Whitney stratified space and f : Z → R is a Morse
function. Suppose p ∈ Z is a critical point of f |S and p ∈ S.

Definition 3.7. The Morse index of f : Z → R at the critical point p ∈ Z
with respect to this particular Whitney stratification of Z is defined by the
number of negative eigenvalues of the Hessian matrix of f at the critical
point p with respect to the stratum S of Z, where S contains the critical
point p.

Example 3.8. Let A = {A1, . . . , Am} be a subspace arrangement in Rn.
Let P denote the partially ordered set of the intersections of the affine spaces
in Rn (see subsection 2.1). The arrangement A gives rise to a Whitney
stratification of Rn, with one stratum

S(v) = v \
∪
w<v

w
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for each v ∈ P .

In order to introduce the Morse function on the above example, we con-
sider the squared distance function f : Rn → R from q ∈ M(A) defined
by f(x) = distance2(q, x), where distance(y, z) = ||y − z||.

Theorem 3.9. ([6], see also [16] for details) Let A be a subspace arrange-
ment in Rn. There exists point q ∈M(A) such that f(x) = distance2(q, x)
is a Morse function on Rn with respect to particular Whitney stratification
of Rn.

3.3. Upper halflinks. Let Z be a Whitney stratified space of a Riemannian
manifold M , let f be a function with a nondegenerate critical point p ∈ Z
and critical value α = f(p) and let S be the stratum of Z which contains
p. Let DM

δ (p) denote the closed disk of radius δ in M , which is centered
at p. Suppose 0 < ε � δ � 1 are sufficiently small. Let N be a smooth
submanifold of M containing p which is transverse to each stratum of Z
and satisfies

dim(S) + dim(N) = dim(M).

Definition 3.10. Suppose X is a union of strata of Z. The upper halflink of
X at the point p (with respect to the function f ) is the pair of spaces

(l+X , ∂l
+
X) = (N∩X∩DM

δ (p)∩f−1(ε+α), N∩X∩∂DM
δ (p)∩f−1(ε+α)).

Furthermore, suppose f : Z → R is a proper Morse function, and [a, b] ⊂ R
is an interval which contains no critical values except for a single isolated
critical value v ∈ (a, b) which corresponds to a critical point p which lies in
some stratum S of Z. Let λ be the Morse index of f |S at the point p.

Lemma 3.11. (Goresky, MacPherson [6]) If p /∈ X then the space

X≤b = {x ∈ X|f(x) ≤ b}
has the homotopy type of a space obtained from X≤a by attaching the pair

(Dλ × l+X , (∂D
λ × l+X) ∪ (Dλ × ∂l+X)).

3.4. Regular values. Let f : Z → R is a proper Morse function. Suppose
X is a union of strata of Z.

Lemma 3.12. (Goresky, MacPherson [6]) Suppose the interval [a, b] con-
tains no critical values of f |Z . Then X≤a is homeomorphic to X≤b.

3.5. Controlled vector fields. Let M be a smooth manifold and E be a
smooth vector bundle over M . Then E is called a smooth inner product
bundle, if it has an inner product 〈·, ·〉u on each fiber Eu ⊂ E, u ∈ M
and those inner products have the following property: if U is any open set
in M and s1, s2 are two smooth sections of E above U then the mapping
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u 7→ 〈s1(u), s2(u)〉u is smooth. If π : E → M is an smooth inner product
bundle over a smooth manifold, and ε̃ is a positive function on M , then the
open ε̃-ball bundle Bε̃ of E will be defined as the set of e ∈ E such that
‖e‖π(e) < ε̃(π(e)), where ‖e‖π(e) is defined as 〈e, e〉

1
2

π(e).

Definition 3.13. LetA ⊂M be a submanifold. A tubular neighborhood TA
of A in M is a triple (E, ε̃, φ̃), where π : E → A is a smooth inner product
bundle, ε̃ is a positive smooth function on A, and φ̃ is a diffeomorphism of
Bε̃ onto an open subset of M which commutes with the zero section ζ of E:

Bε̃

φ̃

!!C
CC

CC
CC

A

ζ

OO

inclusion
// M.

We set |TA| := φ̃(Bε̃). The map πA := π ◦ φ̃−1 : |TA| → A is called the
projecton associated to TA. And we define the tubular function associated
to TA such that ρA := ρ ◦ φ̃−1 : |TA| → R, where ρ(e) := ‖e‖2 for all
e ∈ Bε̃.

Let M be a smooth manifold. Let Z ⊂ M be a Whitney stratified space.
Suppose that for each stratum A of Z we are given a tubular neighborhood
TA of A in M . Let πA : |TA| → A denote the projection associated to TA
and ρA : |TA| → R be the tubular function associated to TA.

Definition 3.14. The family {TA} of neighborhoods will be called control
data for Z if the following commutation relations are satisfied: if A and B
are strata and A < B, then

πAπB(x) = πA(x), ρAπB(x) = ρA(x)

for any x ∈ {x ∈ |TA| ∩ |TB| | πB(x) ∈ |TA|}.

Assume that M,P are smooth manifolds and f : M → P is a map. Let
Z ⊂ M be a Whitney stratified set. The family {TA} of tubular neigh-
borhoods is called compatible with f if for any stratum A ⊂ Z and any
x ∈ |TA|, we have fπA(x) = f(x).

Lemma 3.15. (Mather [12]) If f : M → P is a smooth map and f |A is a
submersion into P for each stratum A ⊂ Z, then there exists a family {TA}
of control data for Z which is compatible with f .

Assume that M are smooth manifold and Z ⊂M be a Whitney stratified
set. Let TA, πA, ρA be a tubular neighborhood of A in Z and projection
and tubular tunction associated to TA, respectively, for any stratum A ⊂ Z.
Let A,B be strata of Z. We define TA,B := |TA| ∩ B, πA,B := πA|TA,B

,
ρA,B := ρA|TA,B

.
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Definition 3.16. By a stratified vector field η on Z, we mean a collection
{ηA | A is a stratum of Z}, where for each stratum A, we have that ηA is a
smooth vector field on A.

Definition 3.17. A stratified vector field η on Z will be said to be controlled
vector field if the following control conditions are satisfied: for any stratum
A there exists a neighborhood T ′

A of A in TA such that for any second stra-
tum B > A and any x ∈ |T ′

A| ∩ B, we have

ηBρA,B(x) = 0,

(πA,B)∗ηB(x) = ηA(πA,B(x)).

Definition 3.18. Let P be a smooth manifold. A continuous map f : Z →
P is called a controlled submersion if it is satisfies the following conditions:

(1) f |A : A→ P is a smooth submersion, for each stratum A of Z,
(2) For any stratum A, there is a neighborhood T ′

A of A in TA such that
f(x) = fπA(x) for any x ∈ |T ′

A|.

Lemma 3.19. If f : Z → P is a controlled submersion, then for any
smooth vector field ξ on P , there is a controlled vector field η on Z such
that f∗η(x) = ξ(f(x)) for any x ∈ Z.

4. HOMOTOPY TYPE OF COMPLEMENTS OF REAL SPACE LINE
ARRANGEMENTS IN Rn

Let B = {l1, ..., lm} be a real space line arrangement in Rn of cardinality
m. Let pk denote the number of k-multiple points of B. We determine the
homotopy type of M(B).

Theorem 4.1. If n ≥ 3, then M(B) is homotopy equivalent to the one point

union of m+
m∑
k=2

(k − 1)pk pieces of (n− 2)-spheres,

M(B) ∼=
m+

∑m
k=2(k−1)pk∨

Sn−2.

Proof. As Example 3.8, the real space line arrangement B in Rn gives rise
to a Whitney stratification of Rn, with one stratum

S(v) = v \
∪
w<v

w

for each v ∈ P(B). Let X = M(B). By Theorem 3.9, we are able to take
q in M(B) such that f(x) = distance2(q, x) is a proper Morse function on
Rn. We fix q inM(B) and a single critical point p in some stratum S(v) ⊂ v
of the arrangement and set α = f(p). Let N be an affine subspace of Rn
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which meets v transversally at the point p and which is satisfies dim(v) +
dim(N) = n. Choose 0 < ε � δ � 1 sufficiently small, i.e., first choose
δ > 0 so that the closed ball of radius δ, Dδ(p) intersects only those w for
which w ≥ v, and so that the boundary ∂Dδ(p) is transverse toN∩w. Then
choose ε > 0 so small that f |(N∩Dδ(p)) has no critical values in the interval
[α − ε, α + ε], except for the single critical value α. The upper halflink of
M(B) and its boundary are defined by :

(l+M(B), ∂l
+
M(B)) = (N∩M(B)∩Dδ(p)∩f−1(ε+α), N∩M(B)∩∂DM

δ (p)∩f−1(ε+α)).

Since the Morse index λ of f |S(v) is 0, by Lemma 3.11, the spaceM(B)≤α+ε

has the homotopy equivalent of a space obtained fromM(B)≤α−ε by attach-
ing the pair (l+M(B), ∂l

+
M(B)). We consider following cases.

(1) When p is not multiple point, thenM(B)≤α+ε is homotopy equivalent
to a space M(B)≤α−ε ∨ Sn−2.

(2) When p is a k-multiple point, thenM(B)≤α+ε is homotopy equivalent

to a space M(B)≤α−ε ∨ (
k−1∨

Sn−2).
(3) When p is q in S(Rn), then M(B)≤ε is homotopy equivalent to the

one point space.
By (1), (2), (3), and Lemma 3.12, M(B) is homotopy equivalent to an

one point union of m+
m∑
k=2

(k − 1)pk pieces of (n− 2)-spheres. □

Theorem 4.2. If n = 2, then M(B) is homotopy equivalent to m + 1 +
m∑
k=2

(k − 1)pk pieces of discrete points.

Proof. As with proof of Theorem 3.9, we take q in M(B) such that

f(x) = distance2(q, x)

is a proper Morse function on R2. We fix q in M(B) and a single critical
point p in some stratum S(v) ⊂ v of the arrangement and set α = f(p).
Suppose ε > 0 is sufficiently small.

(1) When p is not multiple point, then the number of regions ofM(B)≤α+ε,
R(M(B)≤α+ε), is equal to R(M(B)≤α−ε) + 1. Thus, M(B)≤α+ε is homo-
topy equivalent to a space M(B)≤α−ε t {p1}, where p1 is a point.

(2) When p is a k-multiple point, thenR(M(B)≤α+ε) is equal toR(M(B)≤α−ε)+
k − 1. Thus M(B)≤α+ε is homotopy equivalent to a space M(B)≤α−ε t
{p1, . . . pk−1}, where {p1, . . . pk−1} is a discrete set.

(3) When p is q in S(Rn), then M(B)≤ε is homotopy equivalent to the
one point space.

By (1), (2), (3), and Lemma 3.12, we have the theorem. □
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In particular on the fundamental group of the complement of real space
line arrangement in Rn, Theorem 4.1 gives the following corollary:

Corollary 4.3. Let B = {l1, ..., lm} be a real space line arrangement in R3

of cardinality m having pk number of k-multiple points. The fundamental
groupM(B) which is denoted by π1(M(B)) is isomorphic to Fm+

∑m
k=2(k−1)pk

which is the free group on a set of m+
∑m

k=2(k − 1)pk generators.

Let X be a topological space. X is called minimal if it is homotopy
equivalent to a cell complex with as many i-cells as its i-th Betti number,
for each i ≥ 0. Theorem 4.1 and Theorem 4.2 give the following corollary:

Corollary 4.4. Let B = {l1, ..., lm} be a real space line arrangement in Rn

and n ≥ 2. Then M(B) is minimal.

5. DIFFEOMORPHIC TYPES OF COMPLEMENT OF REAL SPACE LINE
ARRANGEMENTS

5.1. Trivial handle attachments. First we introduce trivial handle attach-
ments.

Let j < n. Let Sj ⊂ Rn be the sphere defined by x21 + · · · + x2j + x2n =

1, xj+1 = 0, . . . , xn−1 = 0, and ∂(Dj) = Sj−1 = Sj ∩ {xn = 0}. Let
el ∈ Rn be the vector defined by (el)i = δli. Then define an embedding
Φ̃ : Dn−j × Sj → Rn by

Φ̃(t1, . . . , tn−j−1, tn−j, x) := x+ t1en−1 + · · ·+ tn−j−1ej+1 +
1

2
tn−jx,

which gives a tubular neighborhood of Sj−1 in Rn−1 = {xn = 0}, where
Dn−j is the (n− j)-dimensional closed disk of which radius is 1. Set

φst := Φ̃|Dn−j×∂(Dj) : D
n−j × Sj−1 → Rn−1 ⊂ Rn,

which gives a tubular neighborhood of Sj−1 in Rn−1 = {xn = 0}. We
call φst the standard attaching map of the n-dimensional handle of index
j. Note that the embedding φst extends to the standard handle Φ : Dn−j ×
Dj → Rn, which is defined by

Φ(t1, . . . , tn−j−1, tn−j, x1, . . . , xj)

:= Φ̃(t1, . . . , tn−j−1, tn−j, x1, . . . , xj, 0, . . . , 0,

√
1−

∑j

i=1
x2i )

attached to {xn ≤ 0} along φst.
Let M be a differentiable n-manifold with a connected boundary ∂M .

Let p ∈ ∂M . A coordinate neighborhood (U, ψ), ψ : U → ψ(U) ⊂ Rn−1×
R around p in M is called adapted if ψ : U → Rn is a homeomorphism of
U and ψ(U) ∩ {xn ≤ 0} which maps U ∩ ∂M into Rn−1 = {xn = 0}.
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Now we consider an attaching of several handles of index j to M along
∂M . We call a handle attaching map φ :

⊔ℓ
k=1

(
Dn−j

k × ∂(Dj
k)
)
→ ∂M

trivial if there exist disjoint adapted coordinate neighborhoods (U1, ψ1), . . . , (Uℓ, ψℓ)
on M such that φ

(
Dn−j

k × ∂(Dj
k)
)
⊂ Uk and ψk ◦ φ : Dn−j

k × ∂(Dj
k) →

Rn−1 × R is standard attachment for k = 1, . . . , ℓ.

Lemma 5.1. Let M
′

be a differentiable n-manifold with connected bound-
ary ∂M

′
. SupposeM

′
is diffeomorphic to a spaceM1 :=M∪φ

(
tℓ

k=1(D
n−j
k ×Dj

k)
)

obtained, from a differentiable manifold M with connected boundary, by
attaching ℓ number of trivial handles of index j. Then the space M2 :=
M

′ ∪φ′
(
tℓ+m

k=ℓ+1(D
n−j
k ×Dj

k)
)

obtained from M
′

by attaching m number
of trivial handles of index j is diffeomorphic to the space M3 := M ∪φ′′(
tℓ+m

k=1 (D
n−j
k ×Dj

k)
)

obtained from M by attaching ℓ +m number of triv-
ial handles of index j.

Proof. Let f :M1 →M
′ be a diffeomorphism. Then f(tℓ

k=1

(
Dn−j

k ×Dj
k)
)

is not contained in ∂M ′ . Then we slide, up to isotopy, the attaching map
φ

′
: tℓ+m

k=ℓ+1(D
n−j
k × ∂Dj

k) → ∂M
′ to φ′′′

: tℓ+m
k=ℓ+1(D

n−j
k × ∂Dj

k) → ∂M
′

such that

f
(
φ
(
tℓ

k=1(D
n−j
k × ∂Dj

k)
))

∩ φ′′′ (tℓ+m
k=ℓ+1(D

n−j
k × ∂Dj

k)
)
= ∅.

Consider φ′′
:= φ t f−1 ◦ φ′′′

: tℓ+m
k=1 (D

n−j
k × ∂Dj

k) → ∂M . Then M2 is
diffeomorphic to M3. □

5.2. Real affine space line arrangements. Let n ≥ 2. We consider real
affine space line arrangements in Rn or more generally consider a subset X
in Rn which is a union of finite number of closed line segments and half
lines. Then X may be regarded as a finite graph (with compact and non-
compact edges) embedded as a closed set in Rn. Here we admit vertices of
valency 1.

Take a unit vector v ∈ Sn−1 ⊂ Rn and define the height function h :
Rn → R by h(x) := x · v using the Euclidean inner product. Choose v so
that

(1) v is neither perpendicular to any line segments nor half lines in X .
(2) For each c ∈ R, the hyperplane h(x) = c of level c contains at most

one vertex of X .
Note that there exists a union Σ of finite number of great hyperspheres

such that any unit vector in Sn−1 \ Σ satisfies the conditions (1) and (2).
After a rotation of Rn, we may suppose h(x) = xn. We write x =

(x
′
, xn), where x′

= (x1, . . . , xn−1). Set M = Rn \X and, for any c ∈ R,

M≤c := {x ∈M |xn ≤ c}, M<c := {x ∈M |xn < c}.
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Let V ⊂ X be the set of vertices of X . Set V = {u1, u2, . . . , ur}, ci =
h(ui) and C = h(V ) = {c1, c2, . . . , cr} with c1 < c2 < · · · < cr.

Lemma 5.2. The homeomorphic type of M≤c is constant on ci < c < ci+1

and the diffeomorphic type of M<c is constant on ci < c ≤ ci+1, i =
0, 1, . . . , r, with c0 = −∞. Here M<∞ means M itself.

Proof. First we treat the case i < r. Take a sufficiently large R > 0 such
that

{x = (x
′
, xn) ∈ X|ci < xn < ci+1, ‖x

′‖ > R/2} = ∅
Consider the cylinder

C := {x ∈ Rn|ci < xn < ci+1, ‖x
′‖ ≤ R}.

Then C := {intC \X,X ∩ C, ∂C} is a Whitney stratification of C. Since
the function h : C → (ci, ci+1) is proper and the restriction of h to each
stratum is a submersion, by Lemma 3.15, we can take a control data for C
which is compatible with h. Now we follow the standard method (the proof
of Thom’s first isotopy lemma) to show differentiable triviality of mappings.
Note that the flow used in the proof of isotopy lemma is differentiable in
each stratum. Assume that c, c′ ∈ (ci, ci+1] satisfy ci < c < c

′ ≤ ci+1.
For any ε > 0 which satisfies c > ci + ε, take a smooth vector field η over
(ci, ci+1) such that η = 0 on (ci, ci+ε/2) and η = ∂

∂y
on (ci+ε, ci+1), where

y is the coordinate on R. By Lemma 3.19, we take a controlled vector field
ξ over C such that ξ tangents to each stratum and h∗ξ(x) = η(h(x)) for any
x ∈ C. Suppose the retraction

π : {x ∈ Rn|ci < xn < ci+1, ‖x
′‖ ≥ R} π−→ ∂C

∈ ∈

x = (x
′
, xn) 7−→ ( 1

∥x′∥Rx
′
, xn).

We take a vector field ξ̃ over {x ∈ Rn|ci + ε/2 < xn < ci+1, ‖x
′‖ ≥ R}

such that ξ̃ satisfies π∗ξ̃(x) = ξ(π(x)) for any x ∈ {x ∈ Rn|ci + ε/2 <

xn < ci+1, ‖x
′‖ ≥ R}. We extend ξ̃ to {x ∈ Rn|xn < ci+1} such that

ξ̃(x) := ξ(x) for any x ∈ {x ∈ Rn|ci + ε/2 < xn < ci+1, ‖x
′‖ ≤ R} and

ξ̃(x) := 0 for any x ∈ {x ∈ Rn|xn ≤ ci + ε/2}. By transforming M≤c and
M<c using the vector field ξ̃, we find M<c is diffeomorphic to M<c′ and if
c
′ 6= ci+1, M≤c is homeomorphic to M≤c′ .

Second we treat the case i = r. Consider the quadratic cone ‖x′‖2 −
Rx2n = 0 in Rn. Supposing cr > 0 after a translation along xn-axis in
necessary, and taking R sufficiently large, we have that X ∩ {x ∈ Rn|cr <
xn} lies inside of the cone ‖x′‖2 −Rx2n < 0. Now set

D := {x ∈ Rn|cr < xn, ‖x
′‖2 −Rx2n ≤ 0},
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and consider the proper map h : D → (cr,∞) with the Whitney stratifica-
tion

D := {intD \X,X ∩D, ∂D}.
Assume that c, c′ ∈ (cr, cr+1] satisfy cr < c < c

′ ≤ cr+1. For any ε > 0
which satisfies c > cr + ε, take a smooth vector field η over (cr,∞) such
that η = 0 on (cr, cr + ε/2) and η = (1 + y2)∂/∂y on (cr + ε,∞). By
Lemma 3.15, 3.19, we lift η to a controlled vector field ξ over D. Suppose
the retraction

π : {x ∈ Rn|cr < xn, ‖x
′‖2 −Rx2n ≥ 0} π−→ ∂D

∈ ∈

x = (x
′
, xn) 7−→ (∥xn∥

√
R

∥x′∥ x
′
, xn).

We take a vector field ξ̃ over {x ∈ Rn | cr + ε/2 < xn, ‖x
′‖2 − Rx2n ≥ 0}

such that ξ̃ satisfies π∗ξ̃(x) = ξ(π(x)) for any x ∈ {x ∈ Rn | cr + ε/2 <

xn, ‖x
′‖2 − Rx2n ≥ 0}. We extend ξ̃ to Rn such that ξ̃(x) := ξ(x) for any

x ∈ {x ∈ Rn|cr + ε/2 < xn, ‖x
′‖2 − Rx2n ≤ 0} and ξ̃(x) := 0 for any

x ∈ {x ∈ Rn|xn ≤ cr + ε/2}. By transforming M≤c and M<c using the
vector field ξ̃, we find M<c is diffeomorphic to M<c′ and if c′ 6= cr+1, M≤c

is homeomorphic to M≤c′ . In particular we have that M<c for cr+1 < c is
diffeomorphic to M itself.

□
Lemma 5.3. Let u be a vertex of X and let c = h(u). Suppose s = s(u) is
the number of edges of X which are adjacent to u from above with respect
to h. Suppose t = t(u) is the number of edges of X which are adjacent to u
from below with respect to h. Then, for a sufficiently small ε > 0, the open
set M<c+ε is diffeomorphic to the interior of

M≤c−ε ∪φ

(
s−1⊔
i=1

(D2
i ×Dn−2

i )

)
,

obtained by an attaching map

φ :
s−1⊔
i=1

(
D2

i × ∂(Dn−2
i )

)
→ h−1(c− ε) \X = ∂(M≤c−ε) ⊂M≤c−ε,

of (s− 1) number of trivial handles of index n− 2, provided s ≥ 1.

Proof. For sufficiently small 0 < ε < ε
′ , M<c−ε \M≤c−ε′ is a space

{x ∈ Rn | c− ε
′
< h(x) < c− ε}

deleted t-half-lines. We may suppose the intersection X ∩ h−1(c − ε) lies
on a line, up to a diffeomorphism of M≤c−ε. We delete t-small tubular
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neighborhoods of the half-lines from the half space, then still we have a
diffeomorphic space to M<c−ε \M≤c−ε′ . Then we connect the t-holes by
boring a sequence of canals without changing the diffeomorphism type of
complements. See Figures 7 and 2. The boring a canal means, in general
dimension, to deleteD1×Dn−1 along the line segment connecting the holes.

≈ ≈ ≈

FIGURE 1. No topological changes of complements occur
when s = 1.

≈

FIGURE 2. Boring a canal does not change the topology of ground.

First let s = 1. Then the resulting space is diffeomorphic to M<c+ε \
M≤c−ε′ . The diffeomorphism is taken to be identity on M≤c−ε′ and it ex-
tends to a diffeomorphism between M<c−ε and M<c+ε. This shows Lemma
5.3 in the case s = 1.

Next we treat the case s = 2, t = 0. The topological change from M<c−ε

to M<c+ε is give by digging a tunnel, which is, equivalently, given by a
handle attaching of index n−2. In fact, we examine the topological change
of the complement to

t := {(0, xn−1, xn) ∈ Rn |(−2 ≤ xn−1 ≤ 2, xn = 0)

or (xn−1 = −2, xn ≥ 0) or (xn−1 = 2, xn ≥ 0)},

in Rn when xn goes across xn = c = 0. Take the closed tube T of radius 1
of t. Then for the complement M := Rn \ T , M<ε is diffeomorphic to the
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interior of the half space {xn ≤ 0} attached the handle

H := {x ∈ Rn | −1 ≤ xn−1 ≤ 1,
1

2
≤ x21 + · · ·+ x2n−2 + x2n ≤ 2, xn ≥ 0}

along

H ∩ {xn ≤ 0} = {x ∈ Rn | −1 ≤ xn−1 ≤ 1,
1

2
≤ x21 + · · ·+ x2n−2 ≤ 2}.

The pair (H,H ∩{xn ≤ 0}) is diffeomorphic to the pair (D2×Dn−2, D2×
∂Dn−2), where the core (0×Dn−2, ∂Dn−2) correspond to

{x21 + . . . x2n−2 + x2n = 1, xn−1 = 0, xn ≥ 0}
and

{x21 + . . . x2n−2 = 1, xn−1 = 0, xn = 0}.
Note that the latter bounds an (n− 1)-dimensional disk

{x21 + · · ·+ x2n−2 ≤ 1, xn−1 = 0, xn = 0},
which does not touch the boundary ∂M<ε. See Figures 3 and 4.

≈

FIGURE 3. Digging a tunnel is same as bridging for the
topology of ground.

The same argument works for any t. See Figure 4 for the case s = 2, t =
2. Note that complements to“X ”and“H ”are diffeomorphic. See
Figures 4, 5 and 6.

≈ ≈

FIGURE 4. The case s = 2, t = 2.



21

≈ ≈

FIGURE 5. Trivial handle attachment and topological bifurcation.

In general, for any s ≥ 2, the topological change is obtained by attaching
trivial s− 1 handles of index n− 2. See Figure 6.

≈ ≈

FIGURE 6. The case s = 3, t = 2.

When n = 2, the topological bifurcation occurs just as putting s − 1
number of disjoint open disks. Thus we have Lemma 5.3. □
Theorem 5.4. (Ishikawa, Oyama [8]) Let B = {l1, . . . , lm} be a real space
line arrangement in Rn of cardinality m. Let pk denote the number of k-
multiple points of B. If n ≥ 3, then M(B) is diffeomorphic to the interior

of the space obtained by attaching trivially m +
m∑
k=2

(k − 1)pk pieces of

n-dimensional (n− 2)-handles to the n-dimensional closed ball.

Proof. For a c ∈ R with c � 0, the space M≤c (resp. M< c) is diffeomor-
phic to the half space {xn ≤ c} (resp. {xn < c}) deleted m number of half
lines. By passing a multiple point of multiplicity k, for a sufficiently large
c, the space M≤c is obtained by attaching k− 1 number of trivial handles of
index n−2, by Lemma 5.3. After passing all multiple points, the spaceM≤c

is diffeomorphic to the space obtained by attaching
∑m

i=2(k− 1)pk number
of trivial handles of index n− 2 to the half space deleted m number of half
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lines. ThenM<c is diffeomorphic to the interior of the space obtained by at-

taching trivially m+
m∑
k=2

(k−1)pk pieces of n-dimensional (n−2)-handles

to the n-dimensional closed ball. By Lemma 5.2, for c ∈ R with 0 � c,
M<c is diffeomorphic to M(B). Hence we have Theorem 5.4. □

6. DIFFEOMORPHISM TYPE OF COMPLEMENTS OF LINEAR EMBEDDING
GRAPHS WITH HALF-LINES

Let V be an arbitrary set. It is called a set of vertices. Assume that
P (V, 1) := {{u} | u ∈ V } and

P (V, 2) := {{u, u} | u ∈ V } t {{u, v} | u, v ∈ V, u 6= v}.
Let E be a multiset of P (V, 2). It is called a set of edges. When e ∈ E
satisfies that there exists ẽ ∈ E \ {e} such that e = ẽ, it is called a multiple
edge. And when e ∈ E satisfies that there exists u ∈ V such that e =
{u, u}, it is called a loop. Let E ′ be a multiset of P (V, 1). E ′ is called a
set of half-lines. We call G = (V,E,E ′) a graph with half-lines. A graph
with half-lines G = (V,E,E ′) is called finite if cardinalities of sets V and
E,E ′ are finite respectively, and is called simple if (V,E) is a simple graph.
A finite simple graph with half-lines G = (V,E,E ′) is called connected
if graph G̃ = (Ṽ , Ẽ) is a connected graph, where Ṽ = V ∪ {v∞} and
Ẽ = E ∪{{v, v∞}|{v} ∈ E

′} and v∞ /∈ V . Besides, let G = (V,E,E ′) be
a finite simple graph with half-lines. Let

ρ : V → Rn, µ : E
′ → Sn−1 = {x ∈ Rn | ‖x‖ = 1}

be maps. Then, we call f := (ρ, µ) a linear map of a graph with half-lines
G. It is denoted by f : G → Rn. And we define f(G) as a union of
ρ(V ) and

∪
e
′∈E′

u∈e′

hℓ(ρ(u), µ(e
′
)) and

∪
{u,v}∈E

ρ(u), ρ(v), where a, c ∈ Rn, b ∈

Rn \ {0}, hℓ(a, b) := {a + sb ∈ Rn | s ≥ 0}, a, c := {sa + (1 − s)c ∈
Rn | 0 ≤ s ≤ 1}. Let f := (ρ, µ) be a linear map of a graph with half-lines
G. It is called a linear embedding if ρ is an injection and Any two distinct
elements of

{hℓ(µ(u), µ(e′)) ∈ Rn | e′ ∈ E
′
, u ∈ e

′}∪{ρ(u), ρ(v) ∈ Rn | {u, v} ∈ E}
intersect only at the common vertex. Let G = (V,E,E ′) be a finite graph
with half-lines. We define

χ(G) := card(V )− card(E)− card(E ′),

where card(A) is the cardinality of set A. Note that if G does not have
half-lines, χ(G) is equal to the Euler characteristic of the graph G.
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Example 6.1. Let n ≥ 2. Suppose A is a real space line arrangement in
Rn. Then there exist a finite simple connected graph with half-lines G and
linear embedding f : G→ Rn which satisfy f(G) =

∪
ℓ∈A ℓ.

Example 6.2. Let n ≥ 2. If ℓ : R → Rn be a embedding map which
satisfies lim

x→±∞
‖ℓ(x)‖ = ∞, then the image of ℓ is called a pseudo-line

(similar to a long knot). A finite set of pseudo-lines A is a pseudo-line
arrangement if the number of intersection two lines is at most 1 for any
distinct two lines. Suppose A is pseudo-line arrangement in Rn such that
each pseudo-line is consisting of a union of a finite number of line segments
and half-lines. Then there exists a finite simple connected graph with half-
lines G and linear embedding f : G→ Rn which satisfy f(G) =

∪
ℓ∈A ℓ.

Example 6.3. Let G = (V,E) be a finite simple connected graph. By re-
moving an arbitrary vertex, We can decompose the finite simple connected
graph with half-lines.

Note that linear map and linear embedding can be characterized by two
maps ρ : V → Rn, µ : E

′ → Sn−1 = {x ∈ Rn|‖x‖ = 1}. Therefore we
denote a linear map of a graph f = (ρ, µ). Assume d := card(V ) ≥ 1 and
m := card(E ′) ≥ 0. Assume that V = {v1, . . . vd}, E ′

= {e′1, . . . , e
′
m}.

Let LM(G, n) be the set of linear map with graph G from Rn. Then, the
following map

LM(G, n)
f−→ (Rn)d × (Sn−1)m

∈ ∈

f = (ρ, µ) 7−→ (ρ(v1), . . . , ρ(vd), µ(e
′
1), . . . , µ(e

′
m))

is bijection. Therefore we can regard LM(G, n) as (Rn)d × (Sn−1)m.

Definition 6.4. Let G = (V,E,E
′
) be a finite simple graph with half-lines.

Let f0, f1 be linear embedding from G to Rn. Assume that these maps f0,
f1 are denoted by f0 = (ρ0, µ0), f1 = (ρ1, µ1). Linear embedding maps
f0, f1 are linear isotopic if those satisfy the the following property: There
exists smooth maps

F : V × R → Rn

H : E
′ × R → Sn−1

such that the linear map (Ft = F |V×{t}, Ht = |E′×{t}) is linear embedding
for any t ∈ R and the linear embedding (Ft, Ht) is equal to (ρt, µt), for any
t = 0, 1.

This pair (F,H) is called a linear isotopy. Next, we prove that if two lin-
ear embedding maps are linear isotopic, then complements of these images
are diffeomorphism by reference to Randell [17].
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Lemma 6.5. Let G = (V,E,E
′
) be a finite simple graph with half-lines.

Suppose E
′

is non-empty set. Let f0 = (ρ0, µ0), f1 = (ρ1, µ1) linear em-
bedding maps from G to Rn. If f0 and f1 are linear isotopic then the space
Rn \ f0(G) is diffeomorphic to Rn \ f1(G).

Proof. We define a diffeomorphism K : (Rn t {∞})× R → Sn × R such
that

K : (Rn t {∞})× R K−→ Sn × R

∈ ∈

(x, t) 7−→ (κ(x), t) ,

where κ : Rnt{∞} → Sn is a diffeomorphism. We consider the projection
map from Sn × R to R. We denote this map PR. This map is proper since
Sn is the compact. It is also a submersion. We will describe a Whitney
stratification on the domain, constructed from the linear isotopy, so that
the restriction of the projection is a submersion on each stratum. Then the
results follow from Thom’s first isotopy lemma. By the assumption, there
exists a linear isotopy (F,H). We define maps F̃t = it◦Ft and H̃t = it◦Ht,
where Ft, Ft are restriction maps Ft = F |V×{t}, Ht = |E′×{t} and it is
inclusion map x 7→ (x, t) from Rn to Rn × R.

Let v∞ /∈ V . We define the graph G̃ = (Ṽ , Ẽ) suth as Ṽ = V t {v∞}
and Ẽ = E t

{
e
′ t {v∞}|e′ ∈ E

′}. Let T be T /∈ Ṽ ∪ Ẽ. An order with
respect to the set Ṽ ∪ Ẽ ∪ {T} is defined by following method: If v ∈ Ṽ
and e ∈ Ẽ satisfy v ∈ e, then we define an order v < e, where T is ordered
by u < T for any u ∈ Ṽ ∪ Ẽ. This partially ordered set

(
Ṽ ∪ Ẽ ∪ {T},≤

)
is denoted by P(G̃).

Second, we construct P(G̃)-decomposition of Sn×R. For any e ∈ E, we
define this space Se =

∪
t∈R

K
({
s
(
F̃t(u)

)
+ (1− s)

(
F̃t(v)

)
|0 < s < 1

})
,

where the edge e is equal to {u, v}. For any e ∈ {e′t{v∞}|e′ ∈ E
′}, we de-

fine this space Se =
∪
t∈R

K({(F̃t(u)) + s(H̃t(e
′
))|s > 0}), where the edge e

is equal to e′t{v∞} and a half-line e′ is equal to {u}. For any v ∈ Ṽ \{v∞},
we define this space Sv =

∪
t∈R

K({F̃t(v)}). Forthermore, we define spaces

Sv∞ = K({∞} × R) and ST = Sn × R \
∪

u∈Ṽ ∪Ẽ

Su. It is obvious that

Su ⊂ Sn × R is a locally closed smooth submanifold for any u ∈ P(G̃).
Furthermore, the family {Su}u∈P(G̃) satisfies following conditions:
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(1) Sn × R =
∪

u∈P(G̃)

Su

(2) Si ∩ cl(Sj) 6= ∅ ⇔ Si ⊂ cl(Sj) ⇔ i = j or i < j,

where cl(Sj) is the closure of Sj ⊂ Sn × R.
Third, we prove that {Su}u∈P(G̃) satisfies the Whitney’s condition B with

the use of Randell’s lemma.

Lemma 6.6. (Randell [17]) Let xi and yi be sequences in M converging to
a point x ∈ M in a smooth manifold M ⊂ Rk so that xi 6= yi and xiyi
converges to ℓ. Then ℓ ∈ TxM .

Since cl(ST ) = Sn × R is a smooth manifold, by the Lemma 6.6, if u ∈
P(G̃) \ {T}, then (Su, ST ) satisfy the Whitney’s condition B. Furthermore,
we consider the following case:

v ∈ Ṽ and e ∈ Ẽ satisfy Sv ⊂ cl(Se).

Then we define the the set Se for any e ∈ Ẽ in the following method: If
e ∈ E

Se =
∪
t∈R

K(it(L(Ft(u), Ft(v)− Ft(u)))),

where e = {u, v} and L(x, y) ⊂ Rn is a 1-dimensional affine subspace
which has an element x ∈ Rn and has a direction vector y ∈ Rn \ {0}. If
e ∈ {e′ t {v∞}|e′ ∈ E

′}

Se =
∪
t∈R

K(it(L(Ft(u), Ht(e
′
)))),

where e = e
′ t {v∞} and e′ = {u}. Since cl(Se) ⊂ Sn × R is a smooth

submanifold and Se ⊂ Se for any e ∈ Ẽ and , by the Lemma 6.6, If v ∈ Ṽ
and e ∈ Ẽ satisfy Sv ⊂ cl(Se), then (Sv, Se) satisfies the Whintey condition
B. Therefore, we found this P(G̃)-decomposition {Su}u∈P(G) is a Whitney
stratification of Sn × R.

It is obvious that the projection PR is a submersion on each stratum. Since
card(E

′
) ≥ 1, P−1

R (t)∩ST is diffeomorphic to Rn \ft(G) for t ∈ R, where
card(E

′
) is a cardinality of a half-lines set E ′ and ft is a graph embedding

with respect to (Ft, Ht). Therefore, The theorem follows from Thom’s first
isotopy lemma (Theorem 3.4).

□

Next, in order to prove that if n ≥ 4, then arbitrary two linear em-
bedding maps are linear isotopic, we define the following definition. Let
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G = (V,E,E ′) be a finite simple graph with half-lines. A linear embed-
ding f = (ρ, µ) : G → Rn is called non-parallel linear embedding if
µ : E

′ → Sn−1 is an injection.

Definition 6.7. Let G = (V,E,E
′
) be a finite simple graph with half-lines.

Let f0, f1 be non-parallel linear embedding from G to Rn. Assume that
these maps f0, f1 are denoted by f0 = (ρ0, µ0), f1 = (ρ1, µ1). Linear
embedding maps f0, f1 are non-parallel linear isotopic if those satisfy the
the following property: There exists smooth maps

F : V × R → Rn,

H : E
′ × R → Sn−1

such that the linear map (Ft = F |V×{t}, Ht = |E′×{t}) is non-parallel linear
embedding for any t ∈ R and the non-parallel linear embedding (Ft, Ht) is
equal to (ρt, µt), for any t = 0, 1.

Lemma 6.8. Let G = (V,E,E
′
) be a finite simple graph with half-lines.

Let n ≥ 4. If f0, f1 be non-parallel linear embedding from G to Rn, then
f0, f1 are non-parallel linear isotopic.

Proof. Let V = {v1, . . . vd}, E ′
= {e′1, . . . , e

′
m}. We define the following

subsets. When i 6= j, we define

Yvi,vj := {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m|xi = xj}.

When {vi, vj} ∩ {vk, vℓ} = ∅, we define

Y{vi,vj}{vk,vℓ} := {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xi 6= xj, xk 6= xℓ, xi, xj ∩ xk, xℓ 6= ∅},

where x, y = {sx+(1− s)y ∈ Rn|0 ≤ s ≤ 1}. When {vi, vj}∩{vk, vℓ} 6=
∅, we define

Y{vi,vj}{vk,vℓ} := {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xi 6= xj, xk 6= xℓ, int xi, xj ∩ int xk, xℓ 6= ∅}.

When {vj} ∩ {vk, vℓ} = ∅ and e′i = {vj}, we define

Y{e′i,vj}{vk,vℓ}
:= {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xk 6= xℓ, hℓ(xj, yi) ∩ xk, xℓ 6= ∅},

where hℓ(x, y) := {x + sy ∈ Rn|s ≥ 0}. When {vj} ∩ {vk, vℓ} 6= ∅ and
e
′
i = {vj}, we define

Y{e′i,vj}{vk,vℓ}
:= {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xk 6= xℓ, int hℓ(xj, yi) ∩ int xk, xℓ 6= ∅}.
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When vj 6= vℓ and e′i = {vj}, e′k = {vℓ}, we define

Y{e′i,vj}{e
′
k,vℓ}

:= {(x1, . . . , xd, y1, . . .ym) ∈ (Rn)d × (Sn−1)m

| hℓ(xj, yi) ∩ hℓ(xℓ, yk) 6= ∅}.

When vj = vℓ and e′i = {vj}, e′k = {vℓ}, we define

Y{e′i,vj}{e
′
k,vℓ}

:= {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

| int hℓ(xj, yi) ∩ int hℓ(xℓ, yk) 6= ∅}.

When i 6= j, we define

Ye′i,e
′
j
:= {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m | yi = yj}.

Furthermore, we define

Y :=(
∪

1≤i<j≤d

Yvi,vj) ∪ (
∪

{vi,vj},{vk,vℓ}∈E,
{vi,vj}̸={vk,vℓ}

Y{vi,vj}{vk,vℓ})

∪ (
∪

e
′
i∈E

′
,e

′
i={vj}

{vk,vℓ}∈E

Y{e′i,vj}{vk,vℓ}
)

∪ (
∪
i≠k

e
′
i,e

′
k∈E

′
,

e
′
i={vj},e

′
k={vℓ}

Y{e′i,vj}{e
′
k,vℓ}

) ∪ (
∪

1≤i<j≤m

Ye′i,e
′
j
).

We denote the set of non-parallel linear embeddings from G to Rn by
NPLE(G, n). Then we can regard NPLE(G, n) as (Rn)d × (Sn−1)m \ Y
for the following bijection

NPLE(G, n) −→ (Rn)d × (Sn−1)m \ Y

∈ ∈

f = (ρ, µ) 7−→ (ρ(v1), . . . , ρ(vd), µ(e
′
1), . . . , µ(e

′
m)).

In order to prove this lemma, it is enough to prove (Rn)d × (Sn−1)m \ Y is
a connected smooth submanifold.

First, since NPLE(n,G) is a set of non-parallel linear embedding, it is
obvious that (Rn)d × (Sn−1)m \ Y ⊂ (Rn)d × (Sn−1)m is an open set.

Second, we prove (Rn)d × (Sn−1)m \ Y is connected. It is enough to
proof Y ⊂ (Rn)d × (Sn−1)m is a finite disjoint union of submanifolds with
boundary of which codimensions are 2 or more.

(1) When i 6= j, it is obvious that Yvi,vj , Ye′i,e′j ⊂ (Rn)d × (Sn−1)m are
submanifolds of which codimension are n and n− 1, respectively.



28

(2) When {vi, vj} ∩ {vk, vℓ} = ∅, it is obvious that Y{vi,vj},{vk,vℓ} is a
disjoint union of the following two subsets

Y0,{vi,vj},{vk,vℓ} := {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xi 6= xj, xk 6= xℓ, xi, xj ∩ xk, xℓ 6= ∅,
L(xi, xj − xi) 6= L(xk, xℓ − xk)},

Y1,{vi,vj},{vk,vℓ} := {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xi 6= xj, xk 6= xℓ, xi, xj ∩ xk, xℓ 6= ∅,
L(xi, xj − xi) = L(xk, xℓ − xk)},

where L(x, y) := {x + sy ∈ Rn|s ∈ R}. The space Y1,{vi,vj},{vk,vℓ} ⊂
(Rn)d × (Sn−1)m is a submanifold with boundary of which codimension is
2n−2. Because Y1,{vi,vj},{vk,vℓ} is a disjoint union of the following two sets:

{(x1, . . . , xd, y1, . . . ym) ∈(Rn)d × (Sn−1)m

|xi ∈ Rn, xj ∈ Rn \ {xi}, xk ∈ xi, xj,

xℓ ∈ L(xi, xj − xi) \ {xk}},

{(x1, . . . , xd, y1, . . . ym) ∈(Rn)d × (Sn−1)m

|xi ∈ Rn, xj ∈ Rn \ {xi},
xk ∈ L(xi, xj − xi) \ xi, xj, xℓ ∈ xi, xj}.

Furthermore, we find

Y0,{vi,vj},{vk,vℓ} = Y0,n−2,{vi,vj},{vk,vℓ} t Y0,n−1,{vi,vj},{vk,vℓ},

where Y0,n−2,{vi,vj},{vk,vℓ} and Y0,n−1,{vi,vj},{vk,vℓ} are defined by

Y0,n−2,{vi,vj},{vk,vℓ} := {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xi ∈ Rn, xj ∈ Rn \ {xi}, xk ∈ Rn \ L(xi, xj − xi),

xℓ ∈ xk + {u(xj − xi)+v(xi − xk) ∈ Rn

|1 ≤ v, 0 ≤ u ≤ v}},

Y0,n−1,{vi,vj},{vk,vℓ} := {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xi ∈ Rn, xj ∈ Rn \ {xi}, xk ∈ xi, xj,

xℓ ∈ Rn \ L(xi, xj − xi)}.
Since Y0,n−2,{vi,vj},{vk,vℓ}, Y0,n−1,{vi,vj},{vk,vℓ} ⊂ (Rn)d × (Sn−1)m are sub-
manifolds with boundary of which codimension are n − 2 and n − 1 re-
spectively, the space Y{vi,vj},{vk,vℓ} is a disjoint union of submanifolds with
boundary of which codimension n− 2 and more.
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(3) When {vi, vj} 6= {vk, vℓ} and {vi, vj}∩{vk, vℓ} 6= ∅, We may assume
without loss of generality that i = k. Then we find

Y{vi,vj},{vi,vℓ} = {(x1, . . ., xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xi ∈ Rn, xj ∈ Rn \ {xi}, xℓ ∈ int hℓ(xi, xj − xi)},

where a ∈ Rn, b ∈ Rn \ {0}, hℓ(a, b) := {a + sb ∈ Rn|s ≥ 0}. There-
fore, we find Y{vi,vj},{vi,vℓ} ⊂ (Rn)d × (Sn−1)m is a smooth submanifold of
codimension n− 1.

(4) When {vj}∩{vk, vℓ} = ∅ and e′i = {vj}, it is obvious that Y{e′i,vj},{vk,vℓ}
is a disjoint union of the following two subsets:

Y0,{e′i,vj},{vk,vℓ}
:= {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xk 6= xℓ, hℓ(xj, yi) ∩ xk, xℓ 6= ∅, L(xj, yi) 6= L(xk, xℓ − xk)}

and

Y1,{e′i,vj},{vk,vℓ}
:= {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|xk 6= xℓ, hℓ(xj, yi) ∩ xk, xℓ 6= ∅, L(xj, yi) = L(xk, xℓ − xk)}.

We find Y1,{e′i,vj},{vk,vℓ} ⊂ (Rn)d×(Sn−1)m is a submanifold with boundary
of which codimension is 2n− 2. Because Y1,{e′i,vj},{vk,vℓ} is a disjoint union
of the following two sets:

{(x1, . . . , xd, y1, . . . ym) ∈(Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn, xk ∈ hℓ(xj, yi),

xℓ ∈ L(xj, yi) \ {xk}},

{(x1, . . . , xd, y1, . . . ym) ∈(Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn,

xk ∈ L(xj, yi) \ hℓ(xj, yi), xℓ ∈ hℓ(xj, yi)}.

Furthermore, we find Y0,{e′i,vj},{vk,vℓ}
is a disjoint union of the following

subsets:

Y0,n−2,{e′i,vj},{vk,vℓ}
:= {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn, xk ∈ Rn \ L(xj, yi),
xℓ ∈ xk + {u(xj − xk) + vyi ∈ Rn|u ≥ 1, v ≥ 0}},

Y0,n−1,{e′i,vj},{vk,vℓ}
:= {(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn, xk ∈ hℓ(xj, yi), xℓ ∈ Rn \ L(xj, yi)}.
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Since Y0,n−2,{e′i,vj},{vk,vℓ}
, Y0,n−1,{e′i,vj},{vk,vℓ}

⊂ (Rn)d × (Sn−1)m are sub-
manifolds with boundary of which codimension are n−2 and n−1 respec-
tively, the space Y{e′i,vj},{vk,vℓ} is a finite disjoint union of submanifolds with
boundary of which codimensions are n− 2 and more.

(5) When {vj} ∩ {vk, vℓ} 6= ∅ and e′i = {vj}, we may assume without
loss of generality that j = k. Then we found

Y{e′i,vj},{vj ,vℓ}
:= {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn, xℓ ∈ int hℓ(xj, yi)}.

Therefore, the space Y{e′i,vj},{vi,vℓ} ⊂ (Rn)d × (Sn−1)m is a submanifold of
codimension n− 1.

(6) When j 6= ℓ and e′i = {vj}, e′k = {vℓ}, it is obvious that Y{e′i,vj},{e′k,vℓ}
is a disjoint union of the following subsets:

Y0,{e′i,vj},{e
′
k,vℓ}

:= {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

| hℓ(xj, yi) ∩ hℓ(xℓ, yk) 6= ∅, L(xj, yi) 6= L(xℓ, yk)},
and

Y1,{e′i,vj},{e
′
k,vℓ}

:= {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

| hℓ(xj, yi) ∩ hℓ(xℓ, yk) 6= ∅, L(xj, yi) = L(xℓ, yk)}.

We find Y1,{e′i,vj},{e′k,vℓ} ⊂ (Rn)d×(Sn−1)m is a submanifold with boundary
of codimension 2n − 2. Because Y1,{e′i,vj},{e′k,vℓ} is a disjoint union of the
following two subsets:

{(x1, . . . , xd, y1, . . . ym) ∈(Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn, yk = ±yi,
xℓ ∈ hℓ(xj, yi)},

{(x1, . . . , xd, y1, . . . ym) ∈(Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn,

yk = yi, xℓ ∈ L(xj, yi) \ hℓ(xj, yi)}.

Furthermore, we find Y0,{e′i,vj},{e′k,vℓ} ⊂ (Rn)d × (Sn−1)m is a submanifold
with boundary of which codimension is n − 2. Because Y0,{e′i,vj},{e′k,vℓ} is
equal to the following set:

{(x1, . . . , xd, y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn, yk ∈ Sn−1 \ {±yi},
xℓ ∈ xj + {uyi − vyk ∈ Rn|u ≥ 0, v ≥ 0}}.
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Therefore, the space Y{e′i,vj},{e′k,vℓ} is a finite disjoint union of submanifolds
with boundary of which codimensions are n− 2 and more.

(7) When i 6= k and e′i = {vj}, e′k = {vj}, it is obvious that

Y{e′i,vj},{e
′
k,vj}

= {(x1, . . . , xd,y1, . . . ym) ∈ (Rn)d × (Sn−1)m

|yi ∈ Sn−1, xj ∈ Rn, yk = yi}.

Therefore, Y{e′i,vj},{e′k,vj}(R
n)d × (Sn−1)m is a submanifold of codimension

n− 1.
From the above results, when n ≥ 4, (Rn)d× (Sn−1)m \Y is a connected

smooth submanifold. Therefore, we obtain this lemma. □
Remark 6.9. Let G = (V,E,E

′
) be a finite simple graph with half-lines.

We define a topology of the set of linear map from a graph with half-linesG
to Rn, LM(G, n) as the induced topology from the following bijective map

LM(G, n)
f−→ (Rn)d × (Sn−1)m

∈ ∈
f = (ρ, µ) 7−→ (ρ(v1), . . . , ρ(vd), µ(e

′
1), . . . , µ(e

′
m)).

Besides, the set of linear embedding from a graph with half-lines G to Rn,
LE(G, n) may be regarded as (Rn)d × (Sn−1)m \ Y ′ , where

Y
′
:= Y \ (

∪
1≤i<j≤m

Ye′i,e
′
j
).

By using the same method as in the proof of Lemma 6.8, it is obvious
that Y ′ is composed of a disjoint union of subsets of submanifolds with
codimensions n − 2 or more. As a result, If n ≥ 3, then LM(G, n) \
LE(G, n) ⊂ LM(G, n) is a nowhere dense set.

Lemma 6.10. Let G = (V,E,E
′
) be a finite simple graph with half-lines.

Let n ≥ 3. Let f = (ρ, µ) be a linear embedding from G to Rn. Then there
exists some non-palallel linear embedding which satisfies linear isotopic to
f .

Proof. Suppose that V = {v1, . . . vd}, E ′
= {e′1, . . . , e

′
m}. It is obvious

that this theorem holds when f is a non-palallel linear embedding. So we
shall assume that f is not a non-palallel linear embedding. Assume e′i ∈ E

′

satisfies µ(e′i) ∈ µ(E
′ \ {e′i}) and e′i = {vj}. We define Ei := {e ∈ E|e′i ⊂

e} and G̃i := (V \ e′i, E \ Ei, ∅) and g̃i := (e
′
i, ∅, {e

′
i}). It is satisfied

with f(G̃i) ∩ f(g̃i) = ∅. Suppose 0 � R is sufficiently large such that
f(G̃i) ⊂ DRn

R (ρ(vj)). Since DRn

R (ρ(vj)) is the normal space, there exists
two open sets U1, U2 ⊂ DRn

R (ρ(vj)) such that f(G̃i) ⊂ U1 and f(g̃i) ∩
DRn

R (ρ(vj)) ⊂ U2 and U1 ∩ U2 = ∅. Moreover, since f(g̃i) ∩ DRn

R (ρ(vj))
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is compact, there exists an open neighborhood µ(e′i) ∈ UG̃i
⊂ Sn−1 which

satisfies hℓ(ρ(vj), y) ∩ f(G̃i) = ∅ for any y ∈ UG̃i
. We define E ′

i := {e′ ∈
E

′ |e′ = e
′
i as sets}. Assume e′k ∈ E

′ \ E ′
i satisfies e′k = {vℓ}. Then,

hℓ(ρ(vℓ), µ(e
′

k))∩hℓ(ρ(vj), y) 6= ∅ if and only if y ∈ { sµ(e
′
k)+ρ(vℓ)−ρ(vj)

∥sµ(e′k)+ρ(vℓ)−ρ(vj)∥
∈

Sn−1|s ≥ 0} ⊂ Sn−1. This subset

{ sµ(e
′

k) + ρ(vℓ)− ρ(vj)

‖sµ(e′k) + ρ(vℓ)− ρ(vj)‖
∈ Sn−1|s ≥ 0}

is denoted by Pk. When ρ(vj) ∈ L(ρ(vℓ), µ(e
′

k))\hℓ(ρ(vℓ), µ(e
′

k)), it is ob-
vious that Pk = {µ(e′k)}. When ρ(vj) ∈ Rn \ L(ρ(vℓ), µ(e

′

k)), it is obvious
that Pk is an 1-dimensional connected submanifold with boundary and the
closure of Pk is equal to Pk t{µ(e′k)} ⊂ Sn−1. Moreover, since Sn−1 is the
regular space, when µ(e′i) 6= µ(e

′

k), then there exists an open neighborhood
µ(e

′
i) ∈ Uk ⊂ Sn−1 which satisfies hℓ(ρ(vℓ), µ(e

′

k)) ∩ hℓ(ρ(vj), y) = ∅ for
any y ∈ Uk. We define

Qi := { ρ(v)− ρ(vj)

||ρ(v)− ρ(vj)||
∈ Sn−1|e′i t {v} ∈ Ei} ∪ (µ(E

′

i) \ {µ(e
′

i)}).

Since any

P ∈ {Pk ⊂ Sn | e′k ∈ {e′ ∈ E
′ \ E ′

i |µ(e
′
) = µ(e

′

i)}}

is an 1-dimensional connected submanifold with boundary and the closure
of P is equal to P t {µ(e′i)} and any elements

P, P
′ ∈ {Pk ⊂ Sn | e′k ∈ {e′ ∈ E

′ \ E ′

i |µ(e
′
) = µ(e

′

i)}}

satisfy only the following condition:

P ∩ P ′
= ∅ or P ⊂ P

′
or P

′ ⊂ P,

it is obvious that

Ui := (UG̃j
∩(

∩
e
′
k∈{e

′∈E′\E′
i |µ(e

′ ) ̸=µ(e
′
i)}

Uk))\(Qi∪(
∪

e
′
k∈{e

′∈E′\E′
i |µ(e

′ )=µ(e
′
i)}

Pk))

is connected and has the element µ(e′i). Since Ui \{µ(e
′
i)} is a submanifold

of Sn−1, any point y ∈ Ui has a smooth path from µ(e
′
i) to y which is

included by Ui. As the result, we found linear embeddings f̃ = (ρ̃, µ̃), f =

(ρ, µ) are linear isotopic, where f̃ = (ρ̃, µ̃) satisfies ρ̃ = ρ, µ̃(e′) = µ(e
′
)

for any e′ ∈ E
′ \ {e′i} and µ̃(e′i) = y, where y ∈ Ui \ {µ(e

′
i)}. Therefore,

this lemma is proved by repeating the same method. □

By using Lemma 6.8, 6.10, the following lemma is proved.
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Corollary 6.11. LetG = (V,E,E
′
) be a finite simple graph with half-lines.

Let n ≥ 4. If f0, f1 be linear embedding fromG to Rn, then f0, f1 are linear
isotopic.

Definition 6.12. LetG = (V,E,E
′
) be a finite simple graph with half-lines.

Let n ≥ 2. Let f be a linear embedding from G to Rn. A direction vector
u ∈ Sn−1 is called a complete ascending direction of the linear embesdding
f : G→ Rn, if u ∈ Sn−1 satisfies the followig properties:

(i) u is neither perpendicular to any line segments nor half lines in
f(G).

(ii) For each c ∈ R, the hyperplane x · u = c of level c contains at most
one vertex of f(G), where · is the Euclidean inner product.

(iii) For each v ∈ V , there exists e ∈ E or {v} ∈ E
′ which satisfy

(ρ(w)− ρ(v)) · u > 0, µ({v}) · u > 0, where e = {v, w}.

FIGURE 7. Linearly embedded graph with half-lines having
a complete ascending direction u.

Example 6.13. Let n ≥ 2 and A be a real space line arrangement in Rn.
Assume a finite simple connected graph with half-lines G and a linear em-
bedding f : G→ Rn satisfy f(G) =

∪
ℓ∈A ℓ. Then this map has a complete

ascending direction.

Example 6.14. Let s ≥ 1 and Ks = (V,E) be a complete graph with s
vertices. By removing a vertex v ∈ V , we obtain the finite simple connected
graph with half-lines K̃s = (Ṽ , Ẽ, Ẽ

′
), where Ṽ := V \{v} and Ẽ := {e ∈

E|v /∈ e}, Ẽ ′
:= {e \ {v}|e ∈ E, v ∈ e}. It is called a complete graph

with half-lines. Let s ≥ 2 and n ≥ 2. Assume K̃s is a complete graph with
half-lines and we give E ′s exements index such that E ′

= {e′1, . . . , e
′
s−1}.

Suppose a linear embedding f = (ρ, µ) : K̃s → Rn satisfies the following
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condition: if 1 ≤ i < j ≤ s− 1, then µ(e′i) · µ(e
′
j) > 0. Then this map has

a complete ascending direction.

Lemma 6.15. Let G = (V,E,E
′
) be a finite simple graph with half-lines.

Let n ≥ 2. If G = (V,E,E
′
) is not a conneced graph with half-lines, then

there does not exist a linear embedding which has a complete ascending
direction.

Proof. There uniquely exists a connected subgraphG1 = (V1, E1, E
′
1) which

satisfies the following property: If G = (V ,E,E
′

) is subgraph of G and
cardV + cardE + cardE

′

> cardV1 + cardE1 + cardE
′
1, then G is not

connected. We define G2 := (V \ V1, E \E1, E
′ \E ′

1). By the assumption,
V \ V1 6= ∅ and E ′ \E ′

1 = ∅, and {v} /∈ E
′ for any v ∈ V \ V1. Second, we

assume f : G→ Rn is a linear embedding which has a complete ascending
direction u ∈ Sn−1. Since f(G2) is a compact set, there exists a maxi-
mum values of h|f(G2), where h is a continuous function which is defined
by h(x) := x · u. By conditions (i), (ii), a maximum point is determined by
f(v) ∈ f(V \ V1), uniquely. Thus this contradicts the assumption. □

Lemma 6.16. Let G = (V,E,E
′
) be a finite simple connected graph with

half-lines. Let n ≥ 3. Then, there exists a linear embedding which has a
complete ascending direction.

Proof. Assume v∞ /∈ V and G̃ = (V t {v∞}, E t {{v∞} t e
′ |e′ ∈ E

′}.
Suppose Vk ⊂ V is the set of vertices of which distanse from v∞ with
respect to G̃ is k ≥ 1. Then we give Vk an index {vk1 , vk2 , . . . , vkik−1

, vkik}.
Suppose d ≥ 1 is maximum value of distanse from v∞. We take ∞ >
c11 > c12 > · · · > c1i1−1

> c1i1 > c21 > · · · > cdid−1
> cdid > −∞, and

u ∈ Sn−1. Assume that h : Rn → R is a height function which is defined by
h(x) := x · u. We construct a linear map f = (ρ, µ) with respect to a graph
G, by the following method: the map ρ : V → Rn satisfies ρ(vj) ∈ h−1(cj),
for any j ∈ {11, . . . , did} and µ : E

′ → Rn satisfies h(µ({vj})) > 0 for any
j ∈ {11, . . . , 1i1}. By the Remark 6.9, LM(G, n)\LE(G, n) ⊂ LM(G, n)
is a nowhere dense set. Therefore, we obtain a linear embedding which has
a complete ascending direction u ∈ Sn−1 by perturbing this linear map of
the graph G. □
Remark 6.17. The complete ascending direction is similar concept to a de-
scending direction defined in [7]. Let G be a finite simple connected graph.
Let f : G → Rn be a linear embedding. A unit vector u ∈ Sn−1 is called
descending direction, if u ∈ Sn−1 satisfies the following properties:

(i) u is neither perpendicular to any line segments nor half lines in
f(G).
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(ii) For each v ∈ V , except for only one, there exists e ∈ E or {v} ∈ E
′

which satisfy (ρ(w) − ρ(v)) · u > 0, µ({v}) · u > 0, where e =
{v, w}.

Huh, Lee proved the following theorem:

Theorem 6.18. (Huh, Lee [7]) If a linear embedding of a simple graph into
R3 has a descending direction, then the fundamental group of the comple-
ment of this embedded graph is a free group.

By using Lemma 5.2, 5.3, 6.5, 6.16, Corollary 6.11, we obtain the fol-
lowing main theorem.

Theorem 6.19. Let G = (V,E,E ′) be a finite simple connected graph with
half-lines. Let n ≥ 4. If f : G→ Rn is a linear embedding, then Rn \ f(G)
is diffeomorphic to the interior of the space obtained by attaching trivially
−χ(G) pieces of n-dimensional (n−2)-handles to the n-dimensional closed
ball, where χ(G) = card(V ) − card(E) − card(E ′) and card(A) means
cardinality of set A.

Proof. First, by using Corollary 6.11 and Lemma 6.16, there exists a linear
embedding which has a ascending direction and is isotopic to f . Second,
by using Lemma 5.2, 5.3, 6.5, we found Rn \ f(G) is diffeomorphic to the
interior of the space trivially attached some n-dimensional n − 2-handles
on the n-dimensional closed ball. Finally, we consider how many this space
has n − 2-handles. By using Alexander duality theorem, we found the
reduced homology of Rn \ f(G) is{

H̃i(Rn \ f(G);Z) ' Z−χ(G) (i = n− 2)

H̃i(Rn \ f(G);Z) ' 0.

Therefore, we prove this main theorem. □
Theorem 6.18 is a theorem with respect to a sufficient condition for fun-

damental group of a complement of an embedded graph to be free group.
We prove the following theorem which is similar to this theorem.

Theorem 6.20. Let G = (V,E,E ′) be a finite simple connected graph with
half-lines. Let f : G → R3 be a linear embedding. If there exists a linear
embedding which has a complete ascending direction and is linear isotopic
to f , then R3 \ f(G) is diffeomorphic to the interior of the handle body
which has genus −χ(G).
Proof. By using Lemma 5.2, 5.3, 6.5, we obtain this theorem. □

Besides, Theorem 6.18 is a generalization of Nicholson’s theorem.

Theorem 6.21. (Nicholson [14]) Let Ks be the complete graph. Then fun-
damental group of complement of linear embedded of Ks is free group.
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In fact, it is clear that a linear embedding of a complete graph has a de-
scending direction. However, in general, a linear embedding of a complete
graph with half-lines may not have a linear isotopic map which has a com-
plete ascending direction (see figure 8).

FIGURE 8. Linearly embedded complete graph with half-
lines K̃5.

By 1.6, 1.7, it is clear that we obtain the following corollary.

Corollary 6.22. Assume that the graph G is finite, connected, simple and
does not have vertices with degree 1 and cut edges. Then there exists a
graph embedding f : G → S3 satisfies the following condition: the funda-
mental group of S3 \ f(G) is free group.

We obtain a theorem that generalizes 6.22. Let G be a finite connected
simple graph. Besides, we prove there exists a linear embedding ofGwhich
has a descending direction.

Theorem 6.23. If G = (V,E) is a finite connected graph, then there exists
graph embedding f : G → S3 such that S3 \ f(G) is diffeomorphic to the
interior of the handle body which has genus 1 − χ(G),where χ(G) is the
Euler characteristic of graphs.

Proof. First, we construct a finite connected simple graph with half-lines
from G. We do the following operations. When e ∈ E is a multiple edge,
we add to a one vertex and divide e into two edges. And when e ∈ E is a
loop, we add to two vertices and divide e into three edges. By performing
this operation for all loops and multiple edges of G, we can construct the
finite connected simple graph. This graph is denoted by G̃ = (Ṽ , Ẽ). Let
v ∈ Ṽ . We define V := Ṽ \ {v} and E := {e ∈ Ẽ|v /∈ e}, E

′

:=

{e \ {v}|e ∈ Ẽ, v ∈ e}. It is clear that this graph G = (V ,E,E
′

) is a finete
connected simple graph with half-lines. By Lemma 6.16, Theorem 6.20, we
find there exists linear embedding f = (ρ, µ) : G → R3 which satisfies the
following condition: R3\f(G) is diffeomorphic to the interior of the handle
body which has genus −χ(G), where χ(G) = card V − cardE − cardE

′

.
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Let f : G → R3 be a linear embedding. As Remark 1.4, there exists a
embedding g : G → R3 such that g(G) = f(G). Since we can regard G
as G̃ \ {v}, we define the map g̃ : G̃ → R3 t {∞} such that g̃|G̃\{v} := g

and g̃(v) := ∞. Since there exist homeomorphisms K : R3 t {∞} → S3

and L : G → G̃, the map K ◦ g̃ ◦ L : G → S3 is a embedding which
satisfies S3 \ K ◦ g̃ ◦ L(G) is homeomorphic to R3 \ f(G). Furthermore,
since χ(G) = χ(G)− 1, we obtain this theorem. □
Corollary 6.24. If G = (V,E) is a finite connected graph, then there exists
a graph embedding f : G → S3 such that the fundamental group of S3 \
f(G) is a free group.

Furthermore, by the same proof method as Lemma 6.16, we can obtain
the following theorem with respect to existence of linear embedding which
has descending direction.

Theorem 6.25. If G = (V,E) is a finite connected simple graph, then there
exists a linear embedding f : G→ R3 which has a descending direction.

Proof. We take an arbitrary vertex v ∈ V and fix this vertex. Suppose
Vk ⊂ V is the set of vertices of which distanse from v with respect to G̃
is k ≥ 0. Then we give Vk an index {vk1 , vk2 , . . . , vkik−1

, vkik}. Suppose
d ≥ 0 is maximum value of distanse from v. We take −∞ < c01 < c11 <
c12 < · · · < c1i1−1

< c1i1 < c21 < · · · < cdid−1
< cdid < ∞. and

u ∈ S2. Assume that h : Rn → R is a height function which is defined
by h(x) := x · u. We construct a linear map f = (ρ, µ) with respect
to a graph G, by the following method: the map ρ : V → Rn satisfies
ρ(vj) ∈ h−1(cj), for any j ∈ {01, 11, . . . , did} and µ : ∅ → Rn. By the
Remark 6.9, LM(G, 3) \ LE(G, 3) ⊂ LM(G, 3) is a nowhere dense set.
Therefore, we obtain a linear embedding which has a descending direction
u ∈ S2 by perturbing this linear map of the graph G. □

By Theorem 6.18, 6.25, we obtain the following corollary.

Corollary 6.26. If G = (V,E) is a finite connected (simple) graph, then
there exists a (linear) embedding f : G → R3 such that the fundamental
group of R3 \ f(G) is a free group.

Proof. First, we construct a finite connected simple graph with half-lines
from G. We do the following operations. When e ∈ E is a multiple edge,
we add to a one vertex and divide e into two edges. And when e ∈ E is a
loop, we add to two vertices and divide e into three edges. By performing
this operation for all loops and multiple edges of G, we can construct the
finite connected simple graph. This graph is denoted by G̃ = (Ṽ , Ẽ). By
Theorem 6.25, there exists a linear embedding f = (ρ, µ) : G̃→ R3 which
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has a descending direction. Since when G = (V,E) is a finite connected
simple graph, G̃ is equal to G, we obtain this theorem by using Theorem
6.18. Second, we consider the following case: G = (V,E) is a finite con-
nected graph. As Remark 1.4, there exists an embedding g : G̃ → R3 such
that g(G̃) = f(G̃). Since there exists a homeomorphism L : G → G̃,
g ◦ L : G → R3 is an embedding which satisfies g ◦ L(G) = f(G̃). There-
fore, we obtain this theorem by using Theorem 6.18. □
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