HOKKAIDO UNIVERSITY

Title	Topology of Complements of Real Space Line A rrangements and Linearly Embedded Graphs
Author（s）	小山，元希
Citation	北海道大学． 1 博士（理学）甲第15596号
Issue Date	202309－25
DOI	10．14943／doctoral．L15596
Doc URL	http：／hdll．handle．net／2115900732
Type	theses（doctoral）
File Information	Motoki＿Oyama．pdf

Instructions for use

Topology of Complements of
 Real Space Line Arrangements and Linearly Embedded Graphs

（実直線配置及びグラフ線形埋め込みの補空間に関するトポロジー）

Motoki Oyama

Department of Mathematics，Graduate School of Science，Hokkaido University

Doctoral Thesis

September， 2023

Contents

1. Introduction 2
2. Homology groups of complements of real space line arrangements in \mathbb{R}^{n} 6
2.1. Homology groups of complements of subspace arrangements in \mathbb{R}^{n} 6
2.2. Homology groups of complements of real space line arrangements in \mathbb{R}^{n} 7
3. Whitney stratification and stratified Morse theory 9
3.1. \mathcal{P}-decomposition and Whitney stratification 9
3.2. Morse function and Thom's first isotopy lemma with respect to Whitney stratification 9
3.3. Upper halflinks 11
3.4. Regular values 11
3.5. Controlled vector fields 11
4. Homotopy type of complements of real space line arrangements in \mathbb{R}^{n} 13
5. Diffeomorphic types of complement of real space line arrangements 15
5.1. Trivial handle attachments 15
5.2. Real affine space line arrangements 16
6. Diffeomorphism type of complements of linear embedding graphs with half-lines 22
Acknowledgement 38
References 39

1. Introduction

In this thesis, we consider complements of real space line arrangements and linearly embedded graphs with half-lines.

Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a subspace arrangement in \mathbb{R}^{n} and $M(\mathcal{A})=$ $\mathbb{R}^{n} \backslash \bigcup_{i=1}^{m} A_{i}$ be the complement of the subspace arrangement \mathcal{A}. The homology of $M(\mathcal{A})$ is well known and it is determined by the intersection poset of the arrangement $\mathcal{P}(\mathcal{A})$ (Goresky, MacPherson [6]). Furthermore, de Longueville and Schultz give the ring structure of the integral cohomology of $M(\mathcal{A})$ [3]. In general, the homotopy type of $M(\mathcal{A})$ is not determined by the intersection poset of arrangements (Ziegler [20]).

Therefore, we focus on real space line arrangements and we find the homotopy (diffeomorphism) type of a complement of a real space line arrangement is determined by the intersection poset. More precisely, it is determined by the cardinality m and the number of multiple points $\left(p_{2}, \ldots, p_{m}\right)$ of the real space line arrangement. We obtain the following theorem:

Theorem 1.1. (Theorem 5.4, Ishikawa, Oyama [8]) Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement in \mathbb{R}^{n} of cardinality m. Let p_{k} denote the number of k-multiple points of \mathcal{B}. If $n \geq 3$, then $M(\mathcal{B})$ is diffeomorphic to the interior of the space obtained by attaching trivially $m+\sum_{k=2}^{m}(k-1) p_{k}$ pieces of n-dimensional $(n-2)$-handles to the n-dimensional closed ball.

Let X be a topological space. X is called minimal if it is homotopy equivalent to a cell complex with as many i-cells as its i-th Betti number, for each $i \geq 0$. It is known that complements of complex hyperplane arrangements are minimal by Dimca, Papadima [4], Randell [18]. However, according to the Björner [2], it is known that there exists a subspace arrangement such that complements are not minimal. On the other hand, minimality of the complements of subspace arrangements in special cases has been studied by Mori, Salvetti [13] and Adiprasito [1]. Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a hyperplane arrangement in \mathbb{R}^{n} and d be a positive integer. The new subspace arrangement $\mathcal{A}^{(d)}$ in $\left(\mathbb{R}^{n}\right)^{d}$ consists of the subspace $H_{i}^{(d)}=\left\{\left(x^{(1)}, \ldots, x^{(d)}\right) \in\left(\mathbb{R}^{n}\right)^{d} \mid a_{i} \cdot x^{(1)}=0, \ldots, a_{i} \cdot x^{(d)}=0\right\}$ in $\mathcal{A}^{(d)}$ for any $H_{i}=\left\{x \in \mathbb{R}^{n} \mid a_{i} \cdot x=0\right\} \in \mathcal{A}$, where \cdot is the Euclidean inner product in \mathbb{R}^{n}. Mori and Salvetti showed the complement of $\mathcal{A}^{(d)}$ is minimal [13]. Let $c \geq 1$. A c-arrangement is a finite collection of distinct affine subspace of \mathbb{R}^{n}, all of codimension c, with the property that the codimension of the non-empty intersection of any subset of it is a multiple of
c. Adiprasito showed complements of essential c-arrangements are minimal [1]. Note that \mathcal{A} is called essential subspace arrangement in \mathbb{R}^{n} if there exist 0 -dimensional intersections.

By Theorem 1.1, we find complements of real space line arrangements are minimal (Corollary 4.4).

Graph embeddings are generalizations of knots and have been studied by many researchers. In particular, graph linear embedding has application to the polymer chemistry ([15]). Furthermore, we can regard the unions of real space line arrangements as linearly embedded graphs with half-lines.

In this thesis, we studied differomorphism types for complements to linear embeddings of graphs with half-lines. Let V be an arbitrary set and it is called the set of vertices. Assume that $P(V, 1):=\{\{u\} \mid u \in V\}$ and

$$
P(V, 2):=\{\{u, u\} \mid u \in V\} \sqcup\{\{u, v\} \mid u, v \in V, u \neq v\} .
$$

Let E be a multiset of $P(V, 2)$. It is called the set of edges. When $e \in E$ satisfies that there exists $\tilde{e} \in E \backslash\{e\}$ such that $e=\tilde{e}$, it is called a multiple edge. And when $e \in E$ satisfies that there exists $u \in V$ such that $e=$ $\{u, u\}$, it is called a loop. Let E^{\prime} be a multiset of $P(V, 1) . E^{\prime}$ is called the set of half-lines. We call $G=\left(V, E, E^{\prime}\right)$ a graph with half-lines. A graph with half-lines $G=\left(V, E, E^{\prime}\right)$ is called finite if cardinalities of sets V and E, E^{\prime} are finite respectively, and is called simple if (V, E) is a simple graph, and is called connected if a graph $\tilde{G}=(\tilde{V}, \tilde{E})$ is a connected graph, where $\tilde{V}=V \cup\left\{v_{\infty}\right\}$ and $\tilde{E}=E \cup\left\{\left\{v, v_{\infty}\right\} \mid\{v\} \in E^{\prime}\right\}$ and $v_{\infty} \notin V$. Besides, let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let

$$
\rho: V \rightarrow \mathbb{R}^{n}, \mu: E^{\prime} \rightarrow S^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}
$$

be maps. Then, we call $f:=(\rho, \mu)$ a linear map of a graph with half-lines G. It is denoted by $f: G \rightarrow \mathbb{R}^{n}$. And we define $f(G)$ as the union of $\rho(V)$ and $\bigcup_{\substack{e^{\prime} \in E^{\prime} \\ u \in e^{\prime}}} \mathrm{h} \ell\left(\rho(u), \mu\left(e^{\prime}\right)\right)$ and $\bigcup_{\{u, v\} \in E} \overline{\rho(u), \rho(v)}$, where $a, c \in \mathbb{R}^{n}, b \in$ $\mathbb{R}^{n} \backslash\{\mathbf{0}\}, \mathrm{h} \ell(a, b):=\left\{a+s b \in \mathbb{R}^{n} \mid s \geq 0\right\}, \overline{a, c}:=\{s a+(1-s) c \in$ $\left.\mathbb{R}^{n} \mid 0 \leq s \leq 1\right\}$. Let $f:=(\rho, \mu)$ be a linear map of a graph with half-lines G. It is called a linear embedding if ρ is an injection and any two distinct elements of

$$
\left\{\mathrm{h} \ell\left(\mu(u), \mu\left(e^{\prime}\right)\right) \in \mathbb{R}^{n} \mid e^{\prime} \in E^{\prime}, u \in e^{\prime}\right\} \cup\left\{\overline{\rho(u), \rho(v)} \in \mathbb{R}^{n} \mid\{u, v\} \in E\right\}
$$

intersect only at the common vertex. Let $G=\left(V, E, E^{\prime}\right)$ be a finite graph with half-lines. We define

$$
\chi(G):=\operatorname{card}(V)-\operatorname{card}(E)-\operatorname{card}\left(E^{\prime}\right)
$$

where $\operatorname{card}(A)$ is the cardinality of the finite set A. Note that if G does not have half-lines, $\chi(G)$ is equal to the Euler characteristic of the graph G. We obtain the following theorem:

Theorem 1.2. (Theorem 6.19) Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple connected graph with half-lines. Let $f: G \rightarrow \mathbb{R}^{n}$ be a linear embedding and $n \geq 4$. Then, $M(G, f)=\mathbb{R}^{n} \backslash f(G)$ is diffeomorphic to the interior of the space obtained by attaching trivially $-\chi(G)$ pieces of n-dimensional ($n-2$)-handles to the n-dimensional closed ball.

We obtain the following theorem (see Definition 6.12):
Theorem 1.3. (Theorem 6.20) Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple connected graph with half-lines. Let $f: G \rightarrow \mathbb{R}^{3}$ be a linear embedding. If there exists a linear embedding which has a complete ascending direction and is linear isotopic to f, then $\mathbb{R}^{3} \backslash f(G)$ is diffeomorphic to the interior of the handle body which has genus $-\chi(G)$.

Let $G=\left(V, E, E^{\prime}\right)$ be a finite graph with half-lines. Then, G is regarded as the topological space which consists the following way:
(1) First, any $u \in V$ is regarded as a 0 -cell and V is regarded as a discrete points of which the number is equal to cardinallty of V. This topological space is denoted by G_{0}.
(2) Second, elements of E are regarded as a 1-cells and any edges are attached to G_{0}. This 1-dimensional cell complex is denoted by G_{1}.
(3) Finally, elements of E^{\prime} are regareded as half-open intervals and any half-lines are attached to G_{1}. This space is regarded as a graph G, when we consider a graph embedding.
Note that when G does not have half-lines, G is regarded as a cell complex. Let M be a topological manifold. A continuous map $f: G \rightarrow M$ is called embedding if f is a topological embedding map.

Remark 1.4. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines and $f:=(\rho, \mu)$ be a linear embedding of a graph with half-lines G, where

$$
\rho: V \rightarrow \mathbb{R}^{n}, \mu: E^{\prime} \rightarrow S^{n-1}
$$

Then, it is obvious that there exists an embedding $g: G \rightarrow \mathbb{R}^{n}$ such that $g(G)=f(G)$.

Furthermore, we study the existense of a graph embedding such that the fundamental group of complement is free group. In embedding in the 3sphere S^{3}, there are previous works by Kobayashi [9], Endo, Otsuki [5]. Kobayashi [9], Endo, Otsuki [5] proved following properties with respect to locally unknotted graph embedding.

Definition 1.5. (Kobayashi [9]) Let G be a finite simple connected graph which does not have vertices with degree 1 and cut edges. Let $f: G \rightarrow S^{3}$ be an embedding. A spatial graph $f(G)$ is a locally unknotted if there are a base $\left\{x_{1}, \ldots, x_{\gamma}\right\}$ of $H_{1}(G: \mathbb{Z})$ and a map $\psi: \bigcup_{i=1}^{\gamma} D_{i}^{2} \rightarrow S^{3}$ such that
(1) $\psi\left(\partial D_{i}^{2}\right)=C_{i}$, where C_{i} is a representation curve of x_{i} in $f(G)$ for $i=1,2, \ldots, \gamma$.
(2) $\psi\left(\bigcup_{i=1}^{\gamma} D_{i}^{2}\right)=f(G)$.
(3) $\left.\psi\right|_{D_{i}^{2}}$ is an embedding for $i=1,2, \ldots, \gamma$.
(4) $\psi\left(\operatorname{int}\left(D_{i}^{2}\right)\right) \cap \psi\left(\operatorname{int}\left(D_{j}^{2}\right)\right)=\emptyset$ for $i \neq j$.
(5) $\psi\left(D_{i}^{2}\right) \cap f(G)=\psi\left(\partial D_{i}^{2}\right) \cap f(G)=C_{i}$ for $i=1,2, \ldots, \gamma$.

Theorem 1.6. (Kobayashi [9], [10]) Assume that the graph G is finite, connected, simple and does not have vertices with degree 1 and cut edges. Let $f: G \rightarrow S^{3}$ is a embedding. If a spatial graph $f(G)$ is locally unknotted then the fundamental group of $S^{3} \backslash f(G)$ is free group.
Theorem 1.7. (Endo, Otsuki [5], Kobayashi [10]) Assume that the graph G is finite, connected, simple and does not have vertices with degree 1 and cut edges. Then any graph G has a graph embedding $f: G \rightarrow S^{3}$ such that $f(G)$ satisfies a locally unknotted spatial graph.

By Theorem 1.6, 1.7, when we assume that the graph G is finite, connected, simple and does not have vertices with degree 1 and cut edges, it is obvious that an existense of a graph embedding such that the fundamental group of complement is free group. In embedding in \mathbb{R}^{3}, Huh, Lee proved the following theorem (see Remark 6.17):
Theorem 1.8. (Huh, Lee [7]) If a linear embedding of a simple graph in \mathbb{R}^{3} has a descending direction, then the fundamental group of the complement of this embedded graph is a free group.

In embedding in S^{3}, we assume only finite connected graphs and give an another proof without going through a locally unknotted graph embedding.
Theorem 1.9. (Theorem 6.23) If $G=(V, E)$ is a finite connected graph, then there exists graph embedding $f: G \rightarrow S^{3}$ suth that $S^{3} \backslash f(G)$ is diffeomorphic to the interior of the handle body which has genus $1-\chi(G)$, where $\chi(G)$ is the Euler characteristic of graphs.

By Theorem 1.9, we obtain the following corollary:
Corollary 1.10. (Corollary 6.24) If $G=(V, E)$ is a finite connected graph, then there exists a graph embedding $f: G \rightarrow S^{3}$ such that the fundamental group of $S^{3} \backslash f(G)$ is a free group.

In embedding in \mathbb{R}^{3}, we prove any finite connected simple graph has a linear embedding which has a descending direction.

Theorem 1.11. (Theorem 6.25) If $G=(V, E)$ is a finite connected simple graph, then there exists a linear embedding $f: G \rightarrow \mathbb{R}^{3}$ which has a descending direction.

By Theorem 1.8, 1.11, we obtain the following corollary:
Corollary 1.12. (Corollary 6.26) If $G=(V, E)$ is a finite connected (simple) graph, then there exists a (linear) embedding $f: G \rightarrow \mathbb{R}^{3}$ such that the fundamental group of $\mathbb{R}^{3} \backslash f(G)$ is a free group.

2. Homology groups of complements of real space line ARRANGEMENTS IN \mathbb{R}^{n}

2.1. Homology groups of complements of subspace arrangements in \mathbb{R}^{n}.

Definition 2.1. If $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ is a set of affine subspaces in the n-dimensional affine space \mathbb{R}^{n} then it is called a subspace arrangement in \mathbb{R}^{n}.

Suppose that A_{1}, \ldots, A_{m} are distinct. The complement of the union of these subspaces is denoted by $M(\mathcal{A})=\mathbb{R}^{n} \backslash \bigcup_{i=1}^{m} A_{i}$. Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a subspace arrengement in \mathbb{R}^{n}. Associated to this collection \mathcal{A} of subspaces there is a partially ordered set $\mathcal{P}(\mathcal{A})$ whose element v corresponds to an affine subspace $v=A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{r}} \neq \emptyset$ partially ordered by inclusion, with one maximal element T corresponding to the ambient space \mathbb{R}^{n}. We shall use the notation $v<w$ if v and w are distinct elements of $\mathcal{P}(\mathcal{A})$ such that v is contained in w. We define the ranking function d, whose value on the v is the dimension $d(v)=\operatorname{dim}_{\mathbb{R}}(v)$.

For any partially ordered set \mathcal{P}, we may consider the order complex $K(\mathcal{P})$. This is a simplicial complex with one vertex for each element $v \in \mathcal{P}$ and one k-simplex for each chain $v_{0}<v_{1}<\cdots<v_{k-1}<v_{k}$ of elements of \mathcal{P}. We define the following subsets

$$
\mathcal{P}_{(v, w)}=\{x \in \mathcal{P} \mid v<x<w\}, \quad \mathcal{P}_{>v}=\{x \in \mathcal{P} \mid v<x\}
$$

of \mathcal{P}. Let $C_{p}(K(\mathcal{P}))$ be the free abelian group generated by all the p simplices of $K(\mathcal{P})$. We also define the cochain group $C^{*}(K(\mathcal{P}))$ and the coboundary map δ of $K(\mathcal{P})$ as follows:

$$
C^{*}(K(\mathcal{P}))=\bigoplus_{p \in \mathbb{Z}} C^{p}(K(\mathcal{P}))
$$

where $C^{p}(K(\mathcal{P}))$ is $\operatorname{Hom}\left(C^{p}(K(\mathcal{P})), \mathbb{Z}\right)$. The coboundary map $\delta: C^{p}(K(\mathcal{P})) \rightarrow$ $C^{p+1}(K(\mathcal{P}))$ is defined by

$$
\delta\left(\left[v_{0}, \ldots v_{p}\right]^{*}\right):=\sum_{v_{0}<\cdots<v_{j-1}<w<v_{j}<\cdots<v_{p}}(-1)^{j}\left[v_{0}, \ldots, v_{j-1}, w, v_{j}, \ldots, v_{p}\right]^{*}
$$

where $\left[v_{0}, \ldots v_{p}\right]^{*}$ is the dual basis to the basis $\left\{\left[v_{0}, \ldots v_{p}\right]\right\} \subset C^{p}(K(\mathcal{P}))$ consisting of p-simplices of $K(\mathcal{P})$. The next theorem is introduced in [6].

Theorem 2.2. (Goresky, MacPherson [6]) The homology of the complement $M(\mathcal{A})$ is given by

$$
H_{i}(M(\mathcal{A}) ; \mathbb{Z}) \cong \bigoplus_{v \in \mathcal{P}(\mathcal{A})} H^{n-d(v)-i-1}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right)
$$

where we make the convention that $H^{-1}(\emptyset, \emptyset ; \mathbb{Z}) \cong \mathbb{Z}$ i.e. the top vertex $v=T$ contribute a copy of \mathbb{Z} to the homology group $H_{0}(M(\mathcal{A}) ; \mathbb{Z})$.

2.2. Homology groups of complements of real space line arrangements in \mathbb{R}^{n}.

Definition 2.3. We call a subspace arrangement $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ a real space line arrangement if $\operatorname{dim}_{\mathbb{R}} A_{i}=1(i=1, \ldots, m)$.

Definition 2.4. Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement in \mathbb{R}^{n}. Suppose l_{1}, \ldots, l_{m} are distinct. We call $x \in \bigcup_{1 \leq i \leq m} l_{i}$ a k-multiple point of \mathcal{B} if the cardinality of $\left\{l_{i} \in \mathcal{B} \mid x \in l_{i}\right\}$ is equal to k.

Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement of distinct m lines. Then we obtain the following theorem:

Theorem 2.5. Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement in \mathbb{R}^{n} having p_{k} number of k-multiple points. Assume that l_{1}, \ldots, l_{m} are distinct. If $n \geq 3$, then the homology of the complement $M(\mathcal{B})$ is given by

$$
\begin{aligned}
H_{0}(M(\mathcal{B}) ; \mathbb{Z}) & \cong \mathbb{Z} \\
H_{n-2}(M(\mathcal{B}) ; \mathbb{Z}) & \cong \mathbb{Z}^{m+\sum_{k=2}^{m}(k-1) p_{k}} \\
H_{i}(M(\mathcal{B}) ; \mathbb{Z}) & \cong 0, \quad(i \neq 0, n-2)
\end{aligned}
$$

If $n=2$, Then

$$
\begin{aligned}
H_{0}(M(\mathcal{B}) ; \mathbb{Z}) & \cong \mathbb{Z}^{m+1+\sum_{k=2}^{m}(k-1) p_{k}} \\
H_{i}(M(\mathcal{B}) ; \mathbb{Z}) & \cong 0 \quad(i \neq 0)
\end{aligned}
$$

Proof. Firstly, we consider the case $n \geq 3$. By the Theorem 2.2,

$$
\begin{aligned}
H_{0}(M(\mathcal{A}) ; \mathbb{Z}) & \cong \bigoplus_{v \in \mathcal{P}(\mathcal{A})} H^{n-d(v)-1}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right) \\
& \cong H^{-1}(\emptyset, \emptyset ; \mathbb{Z}) \\
& \cong \mathbb{Z}
\end{aligned}
$$

When $i=n-2$,

$$
H_{n-2}(M(\mathcal{A}) ; \mathbb{Z}) \cong \bigoplus_{v \in \mathcal{P}(\mathcal{A})} H^{1-d(v)}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right)
$$

If $d(v)=1$, then 0 -cocycle is $\mathbb{Z} \overline{[T]^{*}}$. If $d(v)=0$ and v is k-multiple point then 1-cocycle is $\bigoplus_{v \in l_{i_{j}}} \mathbb{Z} \overline{\left[l_{i_{j}}, T\right]^{*}}$ and 1-coboundary is

$$
\delta\left(\overline{[T]^{*}}\right)=\overline{\left[l_{i_{1}}, T\right]^{*}}+\cdots+\overline{\left[l_{i_{k}}, T\right]^{*}} \quad\left(v \in l_{i_{j}}, 1 \leq j \leq k\right) .
$$

Therefore, $H^{1}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right) \cong \mathbb{Z}^{k-1}$. From the above, $H_{n-2}(M(\mathcal{A}) ; \mathbb{Z}) \cong \mathbb{Z}^{m+\sum_{k=2}^{m}(k-1) p_{k}}$. When $i \neq 0, n-2$, we have to consider

$$
H_{i}(M(\mathcal{A}) ; \mathbb{Z}) \cong \bigoplus_{v \in \mathcal{P}(\mathcal{A})} H^{n-d(v)-i-1}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right)
$$

If $d(v)=0$, then $H^{n-i-1}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right) \cong 0$. Because there is no $(n-i-1)$-cocycle. If $d(v)=1$, then

$$
H^{n-i-2}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right) \cong 0
$$

Clearly, if $v=T$, then $H^{-i-1}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right) \cong 0$. From the above $H_{i}(M(\mathcal{B}) ; \mathbb{Z}) \cong 0(i \neq 0, n-2)$.

Finally, we consider the case $n=2$.

$$
\begin{aligned}
H_{0}(M(\mathcal{A}) ; \mathbb{Z}) & \cong \bigoplus_{v \in \mathcal{P}(\mathcal{A})} H^{1-d(v)}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right) \\
& \cong \mathbb{Z}^{m+1+\sum_{k=2}^{m}(k-1) p_{k}} .\left(\text { Since } H^{-1}(\emptyset, \emptyset ; \mathbb{Z}) \cong \mathbb{Z} .\right)
\end{aligned}
$$

If $i \neq 0$,

$$
H_{i}(M(\mathcal{A}) ; \mathbb{Z}) \cong \bigoplus_{v \in \mathcal{P}(\mathcal{A})} H^{1-d(v)-i}\left(K\left(\mathcal{P}(\mathcal{A})_{>v}\right), K\left(\mathcal{P}(\mathcal{A})_{(v, T)}\right) ; \mathbb{Z}\right) \cong 0
$$

Thus we have the theorem.

3. Whitney stratification and stratified Morse theory

We study the homotopy type of the complement of real space line arrangements in \mathbb{R}^{n}. We find that these have relation to the number of the multiple points and the dimension of real space. In order to prove our result, we use the Whitney stratification and stratified Morse theory.

3.1. \mathcal{P}-decomposition and Whitney stratification.

Definition 3.1. Let \mathcal{P} denote a partially ordered set with order relation denoted by $<$. A \mathcal{P}-decomposition of a topological space Z is a locally finite collection of disjoint locally closed subsets called pieces, $S_{i} \subset Z$ (one for each $i \in \mathcal{P}$) such that
(1) $Z=\cup_{i \in \mathcal{P}} S_{i}$
(2) $S_{i} \cap \overline{S_{j}} \neq \emptyset \Leftrightarrow S_{i} \subset \overline{S_{j}} \Leftrightarrow i=j$ or $i<j$ and we write $S_{i}<S_{j}$.

Definition 3.2. Let Z be a closed subset of a smooth manifold M, and suppose that $Z=\bigcup_{i \in \mathcal{P}} S_{i}$ is a \mathcal{P}-decomposition of Z, where \mathcal{P} is some partially ordered set. This decomposition and Z are respectively called a Whitney stratification of Z, a Whitney stratified space provided:
(1) Each pieces S_{i} is a locally closed smooth submanifold (which may or may not be connected) of M.
(2) Whenever $S_{\alpha}<S_{\beta}$, the pair $\left(S_{\alpha}, S_{\beta}\right)$ satisfies Whitney's conditions A and B: Suppose $x_{i} \in S_{\beta}$ is a sequence of points converging to some $y \in S_{\alpha}$. Suppose $y_{i} \in S_{\alpha}$ also converges to y, and suppose that (with respect to some local coordinate system on M) the secant lines $l_{i}=\overline{x_{i} y_{i}}$ converge to some limiting line l and $T_{x_{i}} S_{\beta} \rightarrow \tau$. Then
(Whitney's condition A): $T_{x_{i}} S_{\alpha} \subset \tau$ and (Whitney's condition B): $l \subset \tau$.

Remark 3.3. By Mather [12], it is proved that (Whitney's condition B) \Rightarrow (Whitney's condition A).

Let $Z_{1}=\bigcup_{i \in \mathcal{P}} S_{i}$ and $Z_{2}=\bigcup_{i \in \mathcal{P}} S_{i}^{\prime}$ be Whitney stratified spaces. If a homeomorphism $f: Z_{1} \rightarrow Z_{2}$ satisfies $\left.f\right|_{S_{i}}$ is diffeomorphism and $f\left(S_{i}\right)=$ S_{i}^{\prime} for any $i \in \mathcal{P}$, then it is called a stratum preserving homeomorphism.
3.2. Morse function and Thom's first isotopy lemma with respect to Whitney stratification. Suppose Z is a Whitney stratified space of a smooth manifold M. Let $\tilde{f}: M \rightarrow N$ be a smooth map such that
(1) $f=\left.\tilde{f}\right|_{Z}$ is proper.
(2) for each stratum A of Z, the restriction $\left.f\right|_{A}: A \rightarrow N$ is a submersion.

Such a map is called a proper stratified submersion. For each $t \in \mathbb{R}^{n}$, the set $Z \cap \tilde{f}^{-1}(t)$ is Whitney stratified by its intersection with the strata of Z.

Theorem 3.4. (Thom's first isotopy lemma [6], [11], [19]) Let $\tilde{f}: M \rightarrow \mathbb{R}^{n}$ be a proper stratified submersion with respect to a Whitney stratified space $Z \subset M$. Then there is a stratum preserving homeomorphism,

$$
h: Z \rightarrow \mathbb{R}^{n} \times\left(Z \cap \tilde{f}^{-1}(0)\right)
$$

which is smooth on each stratum and commutes with the projection to \mathbb{R}^{n}. In particular the fibers of $f=\left.\tilde{f}\right|_{Z}$ are homeomorpic by a stratum preserving homeomorphism.

Let Z be a Whitney stratified space of a smooth manifold M.
Definition 3.5. Suppose $p \in Z$. Let S be the stratum of Z which contains p. A generalized tangent space Q at the point p is any plane of the form

$$
Q=\lim _{p_{i} \rightarrow p} T_{p_{i}} R
$$

where $R \supset S$ is a stratum of Z and $p_{i} \in R$ is a sequence converging to p.
Definition 3.6. A Morse function $f: Z \rightarrow \mathbb{R}$ is the restriction of a smooth function $\tilde{f}: M \rightarrow \mathbb{R}$ such that
(1) $f=\left.\tilde{f}\right|_{Z}$ is proper and the critical values of f are distinct.
(2) For each stratum S of Z, the critical points of $\left.f\right|_{S}$ are nondegenerate (i.e., if $\operatorname{dim}(S) \geq 1$, the Hessian of $\left.f\right|_{S}$ is nonzero at each critical point of $\left.f\right|_{S}$).
(3) For every such critical point $p \in S$, and for each generalized tangent space Q at the point p, the following nondegeneracy condition holds: $d \tilde{f}(p)(Q) \neq 0$ except for $Q=T_{p} S$.
Suppose Z is a Whitney stratified space and $f: Z \rightarrow \mathbb{R}$ is a Morse function. Suppose $p \in Z$ is a critical point of $\left.f\right|_{S}$ and $p \in S$.

Definition 3.7. The Morse index of $f: Z \rightarrow \mathbb{R}$ at the critical point $p \in Z$ with respect to this particular Whitney stratification of Z is defined by the number of negative eigenvalues of the Hessian matrix of f at the critical point p with respect to the stratum S of Z, where S contains the critical point p.

Example 3.8. Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a subspace arrangement in \mathbb{R}^{n}. Let \mathcal{P} denote the partially ordered set of the intersections of the affine spaces in \mathbb{R}^{n} (see subsection 2.1). The arrangement \mathcal{A} gives rise to a Whitney stratification of \mathbb{R}^{n}, with one stratum

$$
S(v)=v \backslash \bigcup_{w<v} w
$$

for each $v \in \mathcal{P}$.
In order to introduce the Morse function on the above example, we consider the squared distance function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ from $q \in M(\mathcal{A})$ defined by $f(x)=\operatorname{distance}^{2}(q, x)$, where distance $(y, z)=\|y-z\|$.
Theorem 3.9. ([6], see also [16] for details) Let \mathcal{A} be a subspace arrangement in \mathbb{R}^{n}. There exists point $q \in M(\mathcal{A})$ such that $f(x)=\operatorname{distance}^{2}(q, x)$ is a Morse function on \mathbb{R}^{n} with respect to particular Whitney stratification of \mathbb{R}^{n}.
3.3. Upper halflinks. Let Z be a Whitney stratified space of a Riemannian manifold M, let f be a function with a nondegenerate critical point $p \in Z$ and critical value $\alpha=f(p)$ and let S be the stratum of Z which contains p. Let $D_{\delta}^{M}(p)$ denote the closed disk of radius δ in M, which is centered at p. Suppose $0<\varepsilon \ll \delta \ll 1$ are sufficiently small. Let N be a smooth submanifold of M containing p which is transverse to each stratum of Z and satisfies

$$
\operatorname{dim}(S)+\operatorname{dim}(N)=\operatorname{dim}(M)
$$

Definition 3.10. Suppose X is a union of strata of Z. The upper halfink of X at the point p (with respect to the function f) is the pair of spaces

$$
\left(l_{X}^{+}, \partial l_{X}^{+}\right)=\left(N \cap X \cap D_{\delta}^{M}(p) \cap f^{-1}(\varepsilon+\alpha), N \cap X \cap \partial D_{\delta}^{M}(p) \cap f^{-1}(\varepsilon+\alpha)\right) .
$$

Furthermore, suppose $f: Z \rightarrow \mathbb{R}$ is a proper Morse function, and $[a, b] \subset \mathbb{R}$ is an interval which contains no critical values except for a single isolated critical value $v \in(a, b)$ which corresponds to a critical point p which lies in some stratum S of Z. Let λ be the Morse index of $\left.f\right|_{S}$ at the point p.

Lemma 3.11. (Goresky, MacPherson [6]) If $p \notin X$ then the space

$$
X_{\leq b}=\{x \in X \mid f(x) \leq b\}
$$

has the homotopy type of a space obtained from $X_{\leq a}$ by attaching the pair

$$
\left(D^{\lambda} \times l_{X}^{+},\left(\partial D^{\lambda} \times l_{X}^{+}\right) \cup\left(D^{\lambda} \times \partial l_{X}^{+}\right)\right)
$$

3.4. Regular values. Let $f: Z \rightarrow \mathbb{R}$ is a proper Morse function. Suppose X is a union of strata of Z.

Lemma 3.12. (Goresky, MacPherson [6]) Suppose the interval $[a, b]$ contains no critical values of $\left.f\right|_{Z}$. Then $X_{\leq a}$ is homeomorphic to $X_{\leq b}$.
3.5. Controlled vector fields. Let M be a smooth manifold and E be a smooth vector bundle over M. Then E is called a smooth inner product bundle, if it has an inner product $\langle\cdot, \cdot\rangle_{u}$ on each fiber $E_{u} \subset E, u \in M$ and those inner products have the following property: if U is any open set in M and s_{1}, s_{2} are two smooth sections of E above U then the mapping
$u \mapsto\left\langle s_{1}(u), s_{2}(u)\right\rangle_{u}$ is smooth. If $\pi: E \rightarrow M$ is an smooth inner product bundle over a smooth manifold, and $\tilde{\varepsilon}$ is a positive function on M, then the open $\tilde{\varepsilon}$-ball bundle $B_{\tilde{\varepsilon}}$ of E will be defined as the set of $e \in E$ such that $\|e\|_{\pi(e)}<\tilde{\varepsilon}(\pi(e))$, where $\|e\|_{\pi(e)}$ is defined as $\langle e, e\rangle_{\pi(e)}^{\frac{1}{2}}$.
Definition 3.13. Let $A \subset M$ be a submanifold. A tubular neighborhood T_{A} of A in M is a triple $(E, \tilde{\varepsilon}, \tilde{\varphi})$, where $\pi: E \rightarrow A$ is a smooth inner product bundle, $\tilde{\varepsilon}$ is a positive smooth function on A, and $\tilde{\varphi}$ is a diffeomorphism of $B_{\tilde{\varepsilon}}$ onto an open subset of M which commutes with the zero section ζ of E :

We set $\left|T_{A}\right|:=\tilde{\varphi}\left(B_{\tilde{\varepsilon}}\right)$. The map $\pi_{A}:=\pi \circ \tilde{\varphi}^{-1}:\left|T_{A}\right| \rightarrow A$ is called the projecton associated to T_{A}. And we define the tubular function associated to T_{A} such that $\rho_{A}:=\rho \circ \tilde{\varphi}^{-1}:\left|T_{A}\right| \rightarrow \mathbb{R}$, where $\rho(e):=\|e\|^{2}$ for all $e \in B_{\tilde{\varepsilon}}$.

Let M be a smooth manifold. Let $Z \subset M$ be a Whitney stratified space. Suppose that for each stratum A of Z we are given a tubular neighborhood T_{A} of A in M. Let $\pi_{A}:\left|T_{A}\right| \rightarrow A$ denote the projection associated to T_{A} and $\rho_{A}:\left|T_{A}\right| \rightarrow \mathbb{R}$ be the tubular function associated to T_{A}.

Definition 3.14. The family $\left\{T_{A}\right\}$ of neighborhoods will be called control data for Z if the following commutation relations are satisfied: if A and B are strata and $A<B$, then

$$
\pi_{A} \pi_{B}(x)=\pi_{A}(x), \rho_{A} \pi_{B}(x)=\rho_{A}(x)
$$

for any $x \in\left\{x \in\left|T_{A}\right| \cap\left|T_{B}\right|\left|\pi_{B}(x) \in\right| T_{A} \mid\right\}$.
Assume that M, P are smooth manifolds and $f: M \rightarrow P$ is a map. Let $Z \subset M$ be a Whitney stratified set. The family $\left\{T_{A}\right\}$ of tubular neighborhoods is called compatible with f if for any stratum $A \subset Z$ and any $x \in\left|T_{A}\right|$, we have $f \pi_{A}(x)=f(x)$.

Lemma 3.15. (Mather [12]) If $f: M \rightarrow P$ is a smooth map and $\left.f\right|_{A}$ is a submersion into P for each stratum $A \subset Z$, then there exists a family $\left\{T_{A}\right\}$ of control data for Z which is compatible with f.

Assume that M are smooth manifold and $Z \subset M$ be a Whitney stratified set. Let T_{A}, π_{A}, ρ_{A} be a tubular neighborhood of A in Z and projection and tubular tunction associated to T_{A}, respectively, for any stratum $A \subset Z$. Let A, B be strata of Z. We define $T_{A, B}:=\left|T_{A}\right| \cap B, \pi_{A, B}:=\left.\pi_{A}\right|_{T_{A, B}}$, $\rho_{A, B}:=\left.\rho_{A}\right|_{T_{A, B}}$.

Definition 3.16. By a stratified vector field η on Z, we mean a collection $\left\{\eta_{A} \mid A\right.$ is a stratum of $\left.Z\right\}$, where for each stratum A, we have that η_{A} is a smooth vector field on A.

Definition 3.17. A stratified vector field η on Z will be said to be controlled vector field if the following control conditions are satisfied: for any stratum A there exists a neighborhood T_{A}^{\prime} of A in T_{A} such that for any second stratum $B>A$ and any $x \in\left|T_{A}^{\prime}\right| \cap B$, we have

$$
\begin{aligned}
\eta_{B} \rho_{A, B}(x) & =0 \\
\left(\pi_{A, B}\right)_{*} \eta_{B}(x) & =\eta_{A}\left(\pi_{A, B}(x)\right) .
\end{aligned}
$$

Definition 3.18. Let P be a smooth manifold. A continuous map $f: Z \rightarrow$ P is called a controlled submersion if it is satisfies the following conditions:
(1) $\left.f\right|_{A}: A \rightarrow P$ is a smooth submersion, for each stratum A of Z,
(2) For any stratum A, there is a neighborhood T_{A}^{\prime} of A in T_{A} such that $f(x)=f \pi_{A}(x)$ for any $x \in\left|T_{A}^{\prime}\right|$.

Lemma 3.19. If $f: Z \rightarrow P$ is a controlled submersion, then for any smooth vector field ξ on P, there is a controlled vector field η on Z such that $f_{*} \eta(x)=\xi(f(x))$ for any $x \in Z$.

4. Homotopy type of complements of real space line ARRANGEMENTS IN \mathbb{R}^{n}

Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement in \mathbb{R}^{n} of cardinality m. Let p_{k} denote the number of k-multiple points of \mathcal{B}. We determine the homotopy type of $M(\mathcal{B})$.

Theorem 4.1. If $n \geq 3$, then $M(\mathcal{B})$ is homotopy equivalent to the one point union of $m+\sum_{k=2}^{m}(k-1) p_{k}$ pieces of $(n-2)$-spheres,

$$
M(\mathcal{B}) \cong \bigvee^{m+\sum_{k=2}^{m}(k-1) p_{k}} S^{n-2}
$$

Proof. As Example 3.8, the real space line arrangement \mathcal{B} in \mathbb{R}^{n} gives rise to a Whitney stratification of \mathbb{R}^{n}, with one stratum

$$
S(v)=v \backslash \bigcup_{w<v} w
$$

for each $v \in \mathcal{P}(\mathcal{B})$. Let $X=M(\mathcal{B})$. By Theorem 3.9, we are able to take q in $M(\mathcal{B})$ such that $f(x)=$ distance $^{2}(q, x)$ is a proper Morse function on \mathbb{R}^{n}. We fix q in $M(\mathcal{B})$ and a single critical point p in some stratum $S(v) \subset v$ of the arrangement and set $\alpha=f(p)$. Let N be an affine subspace of \mathbb{R}^{n}
which meets v transversally at the point p and which is satisfies $\operatorname{dim}(v)+$ $\operatorname{dim}(N)=n$. Choose $0<\varepsilon \ll \delta \ll 1$ sufficiently small, i.e., first choose $\delta>0$ so that the closed ball of radius $\delta, D_{\delta}(p)$ intersects only those w for which $w \geq v$, and so that the boundary $\partial D_{\delta}(p)$ is transverse to $N \cap w$. Then choose $\varepsilon>0$ so small that $\left.f\right|_{\left(N \cap D_{\delta}(p)\right)}$ has no critical values in the interval $[\alpha-\varepsilon, \alpha+\varepsilon]$, except for the single critical value α. The upper halflink of $M(\mathcal{B})$ and its boundary are defined by :

$$
\left(l_{M(\mathcal{B})}^{+}, \partial l_{M(\mathcal{B})}^{+}\right)=\left(N \cap M(\mathcal{B}) \cap D_{\delta}(p) \cap f^{-1}(\varepsilon+\alpha), N \cap M(\mathcal{B}) \cap \partial D_{\delta}^{M}(p) \cap f^{-1}(\varepsilon+\alpha)\right)
$$

Since the Morse index λ of $f \mid S(v)$ is 0 , by Lemma 3.11, the space $M(\mathcal{B})_{\leq \alpha+\varepsilon}$ has the homotopy equivalent of a space obtained from $M(\mathcal{B})_{\leq \alpha-\varepsilon}$ by attaching the pair $\left(l_{M(\mathcal{B})}^{+}, \partial l_{M(\mathcal{B})}^{+}\right)$. We consider following cases.
(1) When p is not multiple point, then $M(\mathcal{B})_{\leq \alpha+\varepsilon}$ is homotopy equivalent to a space $M(\mathcal{B})_{\leq \alpha-\varepsilon} \vee S^{n-2}$.
(2) When p is a k-multiple point, then $M(\mathcal{B})_{\leq \alpha+\varepsilon}$ is homotopy equivalent to a space $M(\mathcal{B})_{\leq \alpha-\varepsilon} \vee\left(\bigvee^{k-1} S^{n-2}\right)$.
(3) When p is q in $S\left(\mathbb{R}^{n}\right)$, then $M(\mathcal{B})_{\leq \varepsilon}$ is homotopy equivalent to the one point space.

By (1), (2), (3), and Lemma 3.12, $M(\mathcal{B})$ is homotopy equivalent to an one point union of $m+\sum_{k=2}^{m}(k-1) p_{k}$ pieces of $(n-2)$-spheres.
Theorem 4.2. If $n=2$, then $M(\mathcal{B})$ is homotopy equivalent to $m+1+$ $\sum_{k=2}^{m}(k-1) p_{k}$ pieces of discrete points.

Proof. As with proof of Theorem 3.9, we take q in $M(\mathcal{B})$ such that

$$
f(x)=\operatorname{distance}^{2}(q, x)
$$

is a proper Morse function on \mathbb{R}^{2}. We fix q in $M(\mathcal{B})$ and a single critical point p in some stratum $S(v) \subset v$ of the arrangement and set $\alpha=f(p)$. Suppose $\varepsilon>0$ is sufficiently small.
(1) When p is not multiple point, then the number of regions of $M(\mathcal{B})_{\leq \alpha+\varepsilon}$, $R\left(M(\mathcal{B})_{\leq \alpha+\varepsilon}\right)$, is equal to $R\left(M(\mathcal{B})_{\leq \alpha-\varepsilon}\right)+1$. Thus, $M(\mathcal{B})_{\leq \alpha+\varepsilon}$ is homotopy equivalent to a space $M(\mathcal{B})_{\leq \alpha-\varepsilon} \sqcup\left\{p_{1}\right\}$, where p_{1} is a point.
(2) When p is a k-multiple point, then $R\left(M(\mathcal{B})_{\leq \alpha+\varepsilon}\right)$ is equal to $R\left(M(\mathcal{B})_{\leq \alpha-\varepsilon}\right)+$ $k-1$. Thus $M(\mathcal{B})_{\leq \alpha+\varepsilon}$ is homotopy equivalent to a space $M(\mathcal{B})_{\leq \alpha-\varepsilon} \sqcup$ $\left\{p_{1}, \ldots p_{k-1}\right\}$, where $\left\{p_{1}, \ldots p_{k-1}\right\}$ is a discrete set.
(3) When p is q in $S\left(\mathbb{R}^{n}\right)$, then $M(\mathcal{B})_{\leq \varepsilon}$ is homotopy equivalent to the one point space.

By (1), (2), (3), and Lemma 3.12, we have the theorem.

In particular on the fundamental group of the complement of real space line arrangement in \mathbb{R}^{n}, Theorem 4.1 gives the following corollary:

Corollary 4.3. Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement in \mathbb{R}^{3} of cardinality m having p_{k} number of k-multiple points. The fundamental group $M(\mathcal{B})$ which is denoted by $\pi_{1}(M(\mathcal{B}))$ is isomorphic to $F_{m+\sum_{k=2}^{m}(k-1) p_{k}}$ which is the free group on a set of $m+\sum_{k=2}^{m}(k-1) p_{k}$ generators.

Let X be a topological space. X is called minimal if it is homotopy equivalent to a cell complex with as many i-cells as its i-th Betti number, for each $i \geq 0$. Theorem 4.1 and Theorem 4.2 give the following corollary:

Corollary 4.4. Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement in \mathbb{R}^{n} and $n \geq 2$. Then $M(\mathcal{B})$ is minimal.

5. DIFFEOMORPHIC TYPES OF COMPLEMENT OF REAL SPACE LINE ARRANGEMENTS

5.1. Trivial handle attachments. First we introduce trivial handle attachments.

Let $j<n$. Let $S^{j} \subset \mathbb{R}^{n}$ be the sphere defined by $x_{1}^{2}+\cdots+x_{j}^{2}+x_{n}^{2}=$ $1, x_{j+1}=0, \ldots, x_{n-1}=0$, and $\partial\left(D^{j}\right)=S^{j-1}=S^{j} \cap\left\{x_{n}=0\right\}$. Let $e_{l} \in \mathbb{R}^{n}$ be the vector defined by $\left(e_{l}\right)_{i}=\delta_{l i}$. Then define an embedding $\tilde{\Phi}: D^{n-j} \times S^{j} \rightarrow \mathbb{R}^{n}$ by

$$
\tilde{\Phi}\left(t_{1}, \ldots, t_{n-j-1}, t_{n-j}, x\right):=x+t_{1} e_{n-1}+\cdots+t_{n-j-1} e_{j+1}+\frac{1}{2} t_{n-j} x
$$

which gives a tubular neighborhood of S^{j-1} in $\mathbb{R}^{n-1}=\left\{x_{n}=0\right\}$, where D^{n-j} is the $(n-j)$-dimensional closed disk of which radius is 1 . Set

$$
\varphi_{s t}:=\left.\tilde{\Phi}\right|_{D^{n-j} \times \partial\left(D^{j}\right)}: D^{n-j} \times S^{j-1} \rightarrow \mathbb{R}^{n-1} \subset \mathbb{R}^{n}
$$

which gives a tubular neighborhood of S^{j-1} in $\mathbb{R}^{n-1}=\left\{x_{n}=0\right\}$. We call $\varphi_{s t}$ the standard attaching map of the n-dimensional handle of index j. Note that the embedding $\varphi_{s t}$ extends to the standard handle $\Phi: D^{n-j} \times$ $D^{j} \rightarrow \mathbb{R}^{n}$, which is defined by

$$
\begin{aligned}
& \Phi\left(t_{1}, \ldots, t_{n-j-1}, t_{n-j}, x_{1}, \ldots, x_{j}\right) \\
& \quad:=\tilde{\Phi}\left(t_{1}, \ldots, t_{n-j-1}, t_{n-j}, x_{1}, \ldots, x_{j}, 0, \ldots, 0, \sqrt{1-\sum_{i=1}^{j} x_{i}^{2}}\right)
\end{aligned}
$$

attached to $\left\{x_{n} \leq 0\right\}$ along $\varphi_{s t}$.
Let M be a differentiable n-manifold with a connected boundary ∂M. Let $p \in \partial M$. A coordinate neighborhood $(U, \psi), \psi: U \rightarrow \psi(U) \subset \mathbb{R}^{n-1} \times$ \mathbb{R} around p in M is called adapted if $\psi: U \rightarrow \mathbb{R}^{n}$ is a homeomorphism of U and $\psi(U) \cap\left\{x_{n} \leq 0\right\}$ which maps $U \cap \partial M$ into $\mathbb{R}^{n-1}=\left\{x_{n}=0\right\}$.

Now we consider an attaching of several handles of index j to M along ∂M. We call a handle attaching map $\varphi: \bigsqcup_{k=1}^{\ell}\left(D_{k}^{n-j} \times \partial\left(D_{k}^{j}\right)\right) \rightarrow \partial M$ trivial if there exist disjoint adapted coordinate neighborhoods $\left(U_{1}, \psi_{1}\right), \ldots,\left(U_{\ell}, \psi_{\ell}\right)$ on M such that $\varphi\left(D_{k}^{n-j} \times \partial\left(D_{k}^{j}\right)\right) \subset U_{k}$ and $\psi_{k} \circ \varphi: D_{k}^{n-j} \times \partial\left(D_{k}^{j}\right) \rightarrow$ $\mathbb{R}^{n-1} \times \mathbb{R}$ is standard attachment for $k=1, \ldots, \ell$.

Lemma 5.1. Let M^{\prime} be a differentiable n-manifold with connected boundary ∂M^{\prime}. Suppose M^{\prime} is diffeomorphic to a space $M_{1}:=M \cup_{\varphi}\left(\sqcup_{k=1}^{\ell}\left(D_{k}^{n-j} \times D_{k}^{j}\right)\right)$ obtained, from a differentiable manifold M with connected boundary, by attaching ℓ number of trivial handles of index j. Then the space $M_{2}:=$ $M^{\prime} \cup_{\varphi^{\prime}}\left(\sqcup_{k=\ell+1}^{\ell+m}\left(D_{k}^{n-j} \times D_{k}^{j}\right)\right)$ obtained from M^{\prime} by attaching m number of trivial handles of index j is diffeomorphic to the space $M_{3}:=M \cup_{\varphi}^{\prime \prime}$ $\left(\sqcup_{k=1}^{\ell+m}\left(D_{k}^{n-j} \times D_{k}^{j}\right)\right)$ obtained from M by attaching $\ell+m$ number of trivial handles of index j.

Proof. Let $f: M_{1} \rightarrow M^{\prime}$ be a diffeomorphism. Then $f\left(\sqcup_{k=1}^{\ell}\left(D_{k}^{n-j} \times D_{k}^{j}\right)\right)$ is not contained in ∂M^{\prime}. Then we slide, up to isotopy, the attaching map $\varphi^{\prime}: \sqcup_{k=\ell+1}^{\ell+m}\left(D_{k}^{n-j} \times \partial D_{k}^{j}\right) \rightarrow \partial M^{\prime}$ to $\varphi^{\prime \prime \prime}: \sqcup_{k=\ell+1}^{\ell+m}\left(D_{k}^{n-j} \times \partial D_{k}^{j}\right) \rightarrow \partial M^{\prime}$ such that

$$
f\left(\varphi\left(\sqcup_{k=1}^{\ell}\left(D_{k}^{n-j} \times \partial D_{k}^{j}\right)\right)\right) \cap \varphi^{\prime \prime \prime}\left(\sqcup_{k=\ell+1}^{\ell+m}\left(D_{k}^{n-j} \times \partial D_{k}^{j}\right)\right)=\emptyset .
$$

Consider $\varphi^{\prime \prime}:=\varphi \sqcup f^{-1} \circ \varphi^{\prime \prime \prime}: \sqcup_{k=1}^{\ell+m}\left(D_{k}^{n-j} \times \partial D_{k}^{j}\right) \rightarrow \partial M$. Then M_{2} is diffeomorphic to M_{3}.
5.2. Real affine space line arrangements. Let $n \geq 2$. We consider real affine space line arrangements in \mathbb{R}^{n} or more generally consider a subset X in \mathbb{R}^{n} which is a union of finite number of closed line segments and half lines. Then X may be regarded as a finite graph (with compact and noncompact edges) embedded as a closed set in \mathbb{R}^{n}. Here we admit vertices of valency 1 .

Take a unit vector $v \in S^{n-1} \subset \mathbb{R}^{n}$ and define the height function h : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ by $h(x):=x \cdot v$ using the Euclidean inner product. Choose v so that
(1) v is neither perpendicular to any line segments nor half lines in X.
(2) For each $c \in \mathbb{R}$, the hyperplane $h(x)=c$ of level c contains at most one vertex of X.

Note that there exists a union Σ of finite number of great hyperspheres such that any unit vector in $S^{n-1} \backslash \Sigma$ satisfies the conditions (1) and (2).

After a rotation of \mathbb{R}^{n}, we may suppose $h(x)=x_{n}$. We write $x=$ $\left(x^{\prime}, x_{n}\right)$, where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right)$. Set $M=\mathbb{R}^{n} \backslash X$ and, for any $c \in \mathbb{R}$,

$$
M_{\leq c}:=\left\{x \in M \mid x_{n} \leq c\right\}, \quad M_{<c}:=\left\{x \in M \mid x_{n}<c\right\} .
$$

Let $V \subset X$ be the set of vertices of X. Set $V=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}, c_{i}=$ $h\left(u_{i}\right)$ and $C=h(V)=\left\{c_{1}, c_{2}, \ldots, c_{r}\right\}$ with $c_{1}<c_{2}<\cdots<c_{r}$.

Lemma 5.2. The homeomorphic type of $M_{\leq c}$ is constant on $c_{i}<c<c_{i+1}$ and the diffeomorphic type of $M_{<c}$ is constant on $c_{i}<c \leq c_{i+1}, i=$ $0,1, \ldots, r$, with $c_{0}=-\infty$. Here $M_{<\infty}$ means M itself.

Proof. First we treat the case $i<r$. Take a sufficiently large $R>0$ such that

$$
\left\{x=\left(x^{\prime}, x_{n}\right) \in X \mid c_{i}<x_{n}<c_{i+1},\left\|x^{\prime}\right\|>R / 2\right\}=\emptyset
$$

Consider the cylinder

$$
C:=\left\{x \in \mathbb{R}^{n} \mid c_{i}<x_{n}<c_{i+1},\left\|x^{\prime}\right\| \leq R\right\} .
$$

Then $\mathscr{C}:=\{\operatorname{int} C \backslash X, X \cap C, \partial C\}$ is a Whitney stratification of C. Since the function $h: C \rightarrow\left(c_{i}, c_{i+1}\right)$ is proper and the restriction of h to each stratum is a submersion, by Lemma 3.15, we can take a control data for C which is compatible with h. Now we follow the standard method (the proof of Thom's first isotopy lemma) to show differentiable triviality of mappings. Note that the flow used in the proof of isotopy lemma is differentiable in each stratum. Assume that $c, c^{\prime} \in\left(c_{i}, c_{i+1}\right]$ satisfy $c_{i}<c<c^{\prime} \leq c_{i+1}$. For any $\varepsilon>0$ which satisfies $c>c_{i}+\varepsilon$, take a smooth vector field η over $\left(c_{i}, c_{i+1}\right)$ such that $\eta=0$ on $\left(c_{i}, c_{i}+\varepsilon / 2\right)$ and $\eta=\frac{\partial}{\partial y}$ on $\left(c_{i}+\varepsilon, c_{i+1}\right)$, where y is the coordinate on \mathbb{R}. By Lemma 3.19, we take a controlled vector field ξ over C such that ξ tangents to each stratum and $h_{*} \xi(x)=\eta(h(x))$ for any $x \in C$. Suppose the retraction

$$
\begin{aligned}
& \pi:\left\{x \in \mathbb{R}^{n} \mid c_{i}<x_{n}<c_{i+1},\left\|x^{\prime}\right\| \geq R\right\} \quad \xrightarrow{\pi} \quad \partial C \\
& x=\left(x^{\prime}, x_{n}\right) \quad \longmapsto\left(\frac{1}{\left\|x^{\prime}\right\|} R x^{\prime}, x_{n}\right) .
\end{aligned}
$$

We take a vector field $\tilde{\xi}$ over $\left\{x \in \mathbb{R}^{n} \mid c_{i}+\varepsilon / 2<x_{n}<c_{i+1},\left\|x^{\prime}\right\| \geq R\right\}$ such that $\tilde{\xi}$ satisfies $\pi_{*} \tilde{\xi}(x)=\xi(\pi(x))$ for any $x \in\left\{x \in \mathbb{R}^{n} \mid c_{i}+\varepsilon / 2<\right.$ $\left.x_{n}<c_{i+1},\left\|x^{\prime}\right\| \geq R\right\}$. We extend $\tilde{\xi}$ to $\left\{x \in \mathbb{R}^{n} \mid x_{n}<c_{i+1}\right\}$ such that $\tilde{\xi}(x):=\xi(x)$ for any $x \in\left\{x \in \mathbb{R}^{n} \mid c_{i}+\varepsilon / 2<x_{n}<c_{i+1},\left\|x^{\prime}\right\| \leq R\right\}$ and $\tilde{\xi}(x):=0$ for any $x \in\left\{x \in \mathbb{R}^{n} \mid x_{n} \leq c_{i}+\varepsilon / 2\right\}$. By transforming $M_{\leq c}$ and $M_{<c}$ using the vector field $\tilde{\xi}$, we find $M_{<c}$ is diffeomorphic to $M_{<c^{\prime}}$ and if $c^{\prime} \neq c_{i+1}, M_{\leq c}$ is homeomorphic to $M_{\leq c^{\prime}}$.

Second we treat the case $i=r$. Consider the quadratic cone $\left\|x^{\prime}\right\|^{2}-$ $R x_{n}^{2}=0$ in \mathbb{R}^{n}. Supposing $c_{r}>0$ after a translation along x_{n}-axis in necessary, and taking R sufficiently large, we have that $X \cap\left\{x \in \mathbb{R}^{n} \mid c_{r}<\right.$ $\left.x_{n}\right\}$ lies inside of the cone $\left\|x^{\prime}\right\|^{2}-R x_{n}^{2}<0$. Now set

$$
D:=\left\{x \in \mathbb{R}^{n} \mid c_{r}<x_{n},\left\|x^{\prime}\right\|^{2}-R x_{n}^{2} \leq 0\right\}
$$

and consider the proper map $h: D \rightarrow\left(c_{r}, \infty\right)$ with the Whitney stratification

$$
\mathscr{D}:=\{\operatorname{int} D \backslash X, X \cap D, \partial D\} .
$$

Assume that $c, c^{\prime} \in\left(c_{r}, c_{r+1}\right]$ satisfy $c_{r}<c<c^{\prime} \leq c_{r+1}$. For any $\varepsilon>0$ which satisfies $c>c_{r}+\varepsilon$, take a smooth vector field η over $\left(c_{r}, \infty\right)$ such that $\eta=0$ on $\left(c_{r}, c_{r}+\varepsilon / 2\right)$ and $\eta=\left(1+y^{2}\right) \partial / \partial y$ on $\left(c_{r}+\varepsilon, \infty\right)$. By Lemma 3.15, 3.19, we lift η to a controlled vector field ξ over D. Suppose the retraction

\[

\]

We take a vector field $\tilde{\xi}$ over $\left\{x \in \mathbb{R}^{n} \mid c_{r}+\varepsilon / 2<x_{n},\left\|x^{\prime}\right\|^{2}-R x_{n}^{2} \geq 0\right\}$ such that $\tilde{\xi}$ satisfies $\pi_{*} \tilde{\xi}(x)=\xi(\pi(x))$ for any $x \in\left\{x_{\tilde{\xi}} \in \mathbb{R}^{n} \mid c_{r}+\varepsilon / 2<\right.$ $\left.x_{n},\left\|x^{\prime}\right\|^{2}-R x_{n}^{2} \geq 0\right\}$. We extend $\tilde{\xi}$ to \mathbb{R}^{n} such that $\tilde{\xi}(x):=\xi(x)$ for any $x \in\left\{x \in \mathbb{R}^{n} \mid c_{r}+\varepsilon / 2<x_{n},\left\|x^{\prime}\right\|^{2}-R x_{n}^{2} \leq 0\right\}$ and $\tilde{\xi}(x):=0$ for any $x \in\left\{x \in \mathbb{R}^{n} \mid x_{n} \leq c_{r}+\varepsilon / 2\right\}$. By transforming $M_{\leq c}$ and $M_{<c}$ using the vector field $\tilde{\xi}$, we find $M_{<c}$ is diffeomorphic to $M_{<c^{\prime}}$ and if $c^{\prime} \neq c_{r+1}, M_{\leq c}$ is homeomorphic to $M_{\leq c^{\prime}}$. In particular we have that $M_{<c}$ for $c_{r+1}<c \overline{\text { is }}$ diffeomorphic to M itself.

Lemma 5.3. Let u be a vertex of X and let $c=h(u)$. Suppose $s=s(u)$ is the number of edges of X which are adjacent to u from above with respect to h. Suppose $t=t(u)$ is the number of edges of X which are adjacent to u from below with respect to h. Then, for a sufficiently small $\varepsilon>0$, the open set $M_{<c+\varepsilon}$ is diffeomorphic to the interior of

$$
M_{\leq c-\varepsilon} \cup_{\varphi}\left(\bigsqcup_{i=1}^{s-1}\left(D_{i}^{2} \times D_{i}^{n-2}\right)\right)
$$

obtained by an attaching map

$$
\varphi: \bigsqcup_{i=1}^{s-1}\left(D_{i}^{2} \times \partial\left(D_{i}^{n-2}\right)\right) \rightarrow h^{-1}(c-\varepsilon) \backslash X=\partial\left(M_{\leq c-\varepsilon}\right) \subset M_{\leq c-\varepsilon}
$$

of $(s-1)$ number of trivial handles of index $n-2$, provided $s \geq 1$.
Proof. For sufficiently small $0<\varepsilon<\varepsilon^{\prime}, M_{<c-\varepsilon} \backslash M_{\leq c-\varepsilon^{\prime}}$ is a space

$$
\left\{x \in \mathbb{R}^{n} \mid c-\varepsilon^{\prime}<h(x)<c-\varepsilon\right\}
$$

deleted t-half-lines. We may suppose the intersection $X \cap h^{-1}(c-\varepsilon)$ lies on a line, up to a diffeomorphism of $M_{\leq c-\varepsilon}$. We delete t-small tubular
neighborhoods of the half-lines from the half space, then still we have a diffeomorphic space to $M_{<c-\varepsilon} \backslash M_{\leq c-\varepsilon^{\prime}}$. Then we connect the t-holes by boring a sequence of canals without changing the diffeomorphism type of complements. See Figures 7 and 2. The boring a canal means, in general dimension, to delete $D^{1} \times D^{n-1}$ along the line segment connecting the holes.

Figure 1. No topological changes of complements occur when $s=1$.

Figure 2. Boring a canal does not change the topology of ground.

First let $s=1$. Then the resulting space is diffeomorphic to $M_{<c+\varepsilon} \backslash$ $M_{\leq c-\varepsilon^{\prime}}$. The diffeomorphism is taken to be identity on $M_{\leq c-\varepsilon^{\prime}}$ and it extends to a diffeomorphism between $M_{<c-\varepsilon}$ and $M_{<c+\varepsilon}$. This shows Lemma 5.3 in the case $s=1$.

Next we treat the case $s=2, t=0$. The topological change from $M_{<c-\varepsilon}$ to $M_{<c+\varepsilon}$ is give by digging a tunnel, which is, equivalently, given by a handle attaching of index $n-2$. In fact, we examine the topological change of the complement to

$$
\begin{aligned}
\sqcup:=\left\{\left(0, x_{n-1}, x_{n}\right) \in \mathbb{R}^{n} \mid\right. & \left(-2 \leq x_{n-1} \leq 2, x_{n}=0\right) \\
& \text { or } \left.\left(x_{n-1}=-2, x_{n} \geq 0\right) \text { or }\left(x_{n-1}=2, x_{n} \geq 0\right)\right\},
\end{aligned}
$$

in \mathbb{R}^{n} when x_{n} goes across $x_{n}=c=0$. Take the closed tube T of radius 1 of \sqcup. Then for the complement $M:=\mathbb{R}^{n} \backslash T, M_{<\varepsilon}$ is diffeomorphic to the
interior of the half space $\left\{x_{n} \leq 0\right\}$ attached the handle
$H:=\left\{x \in \mathbb{R}^{n} \mid-1 \leq x_{n-1} \leq 1, \frac{1}{2} \leq x_{1}^{2}+\cdots+x_{n-2}^{2}+x_{n}^{2} \leq 2, x_{n} \geq 0\right\}$
along

$$
H \cap\left\{x_{n} \leq 0\right\}=\left\{x \in \mathbb{R}^{n} \mid-1 \leq x_{n-1} \leq 1, \frac{1}{2} \leq x_{1}^{2}+\cdots+x_{n-2}^{2} \leq 2\right\}
$$

The pair $\left(H, H \cap\left\{x_{n} \leq 0\right\}\right)$ is diffeomorphic to the pair $\left(D^{2} \times D^{n-2}, D^{2} \times\right.$ ∂D^{n-2}), where the core $\left(0 \times D^{n-2}, \partial D^{n-2}\right)$ correspond to

$$
\left\{x_{1}^{2}+\ldots x_{n-2}^{2}+x_{n}^{2}=1, x_{n-1}=0, x_{n} \geq 0\right\}
$$

and

$$
\left\{x_{1}^{2}+\ldots x_{n-2}^{2}=1, x_{n-1}=0, x_{n}=0\right\}
$$

Note that the latter bounds an $(n-1)$-dimensional disk

$$
\left\{x_{1}^{2}+\cdots+x_{n-2}^{2} \leq 1, x_{n-1}=0, x_{n}=0\right\}
$$

which does not touch the boundary $\partial M_{<\varepsilon}$. See Figures 3 and 4 .

Figure 3. Digging a tunnel is same as bridging for the topology of ground.

The same argument works for any t. See Figure 4 for the case $s=2, t=$ 2. Note that complements to " X " and " H " are diffeomorphic. See Figures 4, 5 and 6.

Figure 4. The case $s=2, t=2$.

Figure 5. Trivial handle attachment and topological bifurcation.

In general, for any $s \geq 2$, the topological change is obtained by attaching trivial $s-1$ handles of index $n-2$. See Figure 6.

Figure 6. The case $s=3, t=2$.

When $n=2$, the topological bifurcation occurs just as putting $s-1$ number of disjoint open disks. Thus we have Lemma 5.3.

Theorem 5.4. (Ishikawa, Oyama [8]) Let $\mathcal{B}=\left\{l_{1}, \ldots, l_{m}\right\}$ be a real space line arrangement in \mathbb{R}^{n} of cardinality m. Let p_{k} denote the number of k multiple points of \mathcal{B}. If $n \geq 3$, then $M(\mathcal{B})$ is diffeomorphic to the interior of the space obtained by attaching trivially $m+\sum_{k=2}^{m}(k-1) p_{k}$ pieces of n-dimensional ($n-2$)-handles to the n-dimensional closed ball.

Proof. For a $c \in \mathbb{R}$ with $c \ll 0$, the space $M_{\leq c}$ (resp. $M<c$) is diffeomorphic to the half space $\left\{x_{n} \leq c\right\}$ (resp. $\left\{x_{n}<c\right\}$) deleted m number of half lines. By passing a multiple point of multiplicity k, for a sufficiently large c, the space $M_{\leq c}$ is obtained by attaching $k-1$ number of trivial handles of index $n-2$, by Lemma 5.3. After passing all multiple points, the space $M_{\leq c}$ is diffeomorphic to the space obtained by attaching $\sum_{i=2}^{m}(k-1) p_{k}$ number of trivial handles of index $n-2$ to the half space deleted m number of half
lines. Then $M_{<c}$ is diffeomorphic to the interior of the space obtained by attaching trivially $m+\sum_{k=2}^{m}(k-1) p_{k}$ pieces of n-dimensional $(n-2)$-handles to the n-dimensional closed ball. By Lemma 5.2, for $c \in \mathbb{R}$ with $0 \ll c$, $M_{<c}$ is diffeomorphic to $M(\mathcal{B})$. Hence we have Theorem 5.4.

6. DIFFEOMORPHISM TYPE OF COMPLEMENTS OF LINEAR EMBEDDING GRAPHS WITH HALF-LINES

Let V be an arbitrary set. It is called a set of vertices. Assume that $P(V, 1):=\{\{u\} \mid u \in V\}$ and

$$
P(V, 2):=\{\{u, u\} \mid u \in V\} \sqcup\{\{u, v\} \mid u, v \in V, u \neq v\} .
$$

Let E be a multiset of $P(V, 2)$. It is called a set of edges. When $e \in E$ satisfies that there exists $\tilde{e} \in E \backslash\{e\}$ such that $e=\tilde{e}$, it is called a multiple edge. And when $e \in E$ satisfies that there exists $u \in V$ such that $e=$ $\{u, u\}$, it is called a loop. Let E^{\prime} be a multiset of $P(V, 1) . E^{\prime}$ is called a set of half-lines. We call $G=\left(V, E, E^{\prime}\right)$ a graph with half-lines. A graph with half-lines $G=\left(V, E, E^{\prime}\right)$ is called finite if cardinalities of sets V and E, E^{\prime} are finite respectively, and is called simple if (V, E) is a simple graph. A finite simple graph with half-lines $G=\left(V, E, E^{\prime}\right)$ is called connected if graph $\tilde{G}=(\tilde{V}, \tilde{E})$ is a connected graph, where $\tilde{V}=V \cup\left\{v_{\infty}\right\}$ and $\tilde{E}=E \cup\left\{\left\{v, v_{\infty}\right\} \mid\{v\} \in E^{\prime}\right\}$ and $v_{\infty} \notin V$. Besides, let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let

$$
\rho: V \rightarrow \mathbb{R}^{n}, \mu: E^{\prime} \rightarrow S^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}
$$

be maps. Then, we call $f:=(\rho, \mu)$ a linear map of a graph with half-lines G. It is denoted by $f: G \rightarrow \mathbb{R}^{n}$. And we define $f(G)$ as a union of $\rho(V)$ and $\bigcup_{\substack{e^{\prime} \in E^{\prime} \\ u \in e^{\prime}}} \mathrm{h} \ell\left(\rho(u), \mu\left(e^{\prime}\right)\right)$ and $\bigcup_{\{u, v\} \in E} \overline{\rho(u), \rho(v)}$, where $a, c \in \mathbb{R}^{n}, b \in$ $\mathbb{R}^{n} \backslash\{\mathbf{0}\}, \mathrm{h} \ell(a, b):=\left\{a+s b \in \mathbb{R}^{n} \mid s \geq 0\right\}, \overline{a, c}:=\{s a+(1-s) c \in$ $\left.\mathbb{R}^{n} \mid 0 \leq s \leq 1\right\}$. Let $f:=(\rho, \mu)$ be a linear map of a graph with half-lines G. It is called a linear embedding if ρ is an injection and Any two distinct elements of

$$
\left\{\mathrm{h} \ell\left(\mu(u), \mu\left(e^{\prime}\right)\right) \in \mathbb{R}^{n} \mid e^{\prime} \in E^{\prime}, u \in e^{\prime}\right\} \cup\left\{\overline{\rho(u), \rho(v)} \in \mathbb{R}^{n} \mid\{u, v\} \in E\right\}
$$

intersect only at the common vertex. Let $G=\left(V, E, E^{\prime}\right)$ be a finite graph with half-lines. We define

$$
\chi(G):=\operatorname{card}(V)-\operatorname{card}(E)-\operatorname{card}\left(E^{\prime}\right)
$$

where $\operatorname{card}(A)$ is the cardinality of set A. Note that if G does not have half-lines, $\chi(G)$ is equal to the Euler characteristic of the graph G.

Example 6.1. Let $n \geq 2$. Suppose \mathcal{A} is a real space line arrangement in \mathbb{R}^{n}. Then there exist a finite simple connected graph with half-lines G and linear embedding $f: G \rightarrow \mathbb{R}^{n}$ which satisfy $f(G)=\bigcup_{\ell \in \mathcal{A}} \ell$.
Example 6.2. Let $n \geq 2$. If $\ell: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a embedding map which satisfies $\lim _{x \rightarrow \pm \infty}\|\ell(x)\|=\infty$, then the image of ℓ is called a pseudo-line (similar to a long knot). A finite set of pseudo-lines \mathcal{A} is a pseudo-line arrangement if the number of intersection two lines is at most 1 for any distinct two lines. Suppose \mathcal{A} is pseudo-line arrangement in \mathbb{R}^{n} such that each pseudo-line is consisting of a union of a finite number of line segments and half-lines. Then there exists a finite simple connected graph with halflines G and linear embedding $f: G \rightarrow \mathbb{R}^{n}$ which satisfy $f(G)=\bigcup_{\ell \in \mathcal{A}} \ell$.
Example 6.3. Let $G=(V, E)$ be a finite simple connected graph. By removing an arbitrary vertex, We can decompose the finite simple connected graph with half-lines.

Note that linear map and linear embedding can be characterized by two maps $\rho: V \rightarrow \mathbb{R}^{n}, \mu: E^{\prime} \rightarrow S^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=1\right\}$. Therefore we denote a linear map of a graph $f=(\rho, \mu)$. Assume $d:=\operatorname{card}(V) \geq 1$ and $m:=\operatorname{card}\left(E^{\prime}\right) \geq 0$. Assume that $V=\left\{v_{1}, \ldots v_{d}\right\}, E^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{m}^{\prime}\right\}$. Let $\operatorname{LM}(G, n)$ be the set of linear map with graph G from \mathbb{R}^{n}. Then, the following map

$$
\begin{array}{rlc}
\operatorname{LM}(G, n) & \xrightarrow{f} & \left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
\Psi & & \\
f=(\rho, \mu) & \longmapsto & \left(\rho\left(v_{1}\right), \ldots, \rho\left(v_{d}\right), \mu\left(e_{1}^{\prime}\right), \ldots, \mu\left(e_{m}^{\prime}\right)\right)
\end{array}
$$

is bijection. Therefore we can regard $\operatorname{LM}(G, n)$ as $\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$.
Definition 6.4. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let f_{0}, f_{1} be linear embedding from G to \mathbb{R}^{n}. Assume that these maps f_{0}, f_{1} are denoted by $f_{0}=\left(\rho_{0}, \mu_{0}\right), f_{1}=\left(\rho_{1}, \mu_{1}\right)$. Linear embedding maps f_{0}, f_{1} are linear isotopic if those satisfy the the following property: There exists smooth maps

$$
\begin{gathered}
F: V \times \mathbb{R} \rightarrow \mathbb{R}^{n} \\
H: E^{\prime} \times \mathbb{R} \rightarrow S^{n-1}
\end{gathered}
$$

such that the linear map $\left(F_{t}=\left.F\right|_{V \times\{t\}}, H_{t}=\left.\right|_{E^{\prime} \times\{t\}}\right)$ is linear embedding for any $t \in \mathbb{R}$ and the linear embedding $\left(F_{t}, H_{t}\right)$ is equal to $\left(\rho_{t}, \mu_{t}\right)$, for any $t=0,1$.

This pair (F, H) is called a linear isotopy. Next, we prove that if two linear embedding maps are linear isotopic, then complements of these images are diffeomorphism by reference to Randell [17].

Lemma 6.5. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Suppose E^{\prime} is non-empty set. Let $f_{0}=\left(\rho_{0}, \mu_{0}\right)$, $f_{1}=\left(\rho_{1}, \mu_{1}\right)$ linear embedding maps from G to \mathbb{R}^{n}. If f_{0} and f_{1} are linear isotopic then the space $\mathbb{R}^{n} \backslash f_{0}(G)$ is diffeomorphic to $\mathbb{R}^{n} \backslash f_{1}(G)$.

Proof. We define a diffeomorphism $K:\left(\mathbb{R}^{n} \sqcup\{\infty\}\right) \times \mathbb{R} \rightarrow S^{n} \times \mathbb{R}$ such that

where $\kappa: \mathbb{R}^{n} \sqcup\{\infty\} \rightarrow S^{n}$ is a diffeomorphism. We consider the projection map from $S^{n} \times \mathbb{R}$ to \mathbb{R}. We denote this map $P_{\mathbb{R}}$. This map is proper since S^{n} is the compact. It is also a submersion. We will describe a Whitney stratification on the domain, constructed from the linear isotopy, so that the restriction of the projection is a submersion on each stratum. Then the results follow from Thom's first isotopy lemma. By the assumption, there exists a linear isotopy (F, H). We define maps $\tilde{F}_{t}=i_{t} \circ F_{t}$ and $\tilde{H}_{t}=i_{t} \circ H_{t}$, where F_{t}, F_{t} are restriction maps $F_{t}=\left.F\right|_{V \times\{t\}}, H_{t}=\left.\right|_{E^{\prime} \times\{t\}}$ and i_{t} is inclusion map $x \mapsto(x, t)$ from \mathbb{R}^{n} to $\mathbb{R}^{n} \times \mathbb{R}$.

Let $v_{\infty} \notin V$. We define the graph $\tilde{G}=(\tilde{V}, \tilde{E})$ suth as $\tilde{V}=V \sqcup\left\{v_{\infty}\right\}$ and $\tilde{E}=E \sqcup\left\{e^{\prime} \sqcup\left\{v_{\infty}\right\} \mid e^{\prime} \in E^{\prime}\right\}$. Let T be $T \notin \tilde{V} \cup \tilde{E}$. An order with respect to the set $\tilde{V} \cup \tilde{E} \cup\{T\}$ is defined by following method: If $v \in \tilde{V}$ and $e \in \tilde{E}$ satisfy $v \in e$, then we define an order $v<e$, where T is ordered by $u<T$ for any $u \in \tilde{V} \cup \tilde{E}$. This partially ordered set $(\tilde{V} \cup \tilde{E} \cup\{T\}, \leq)$ is denoted by $\mathcal{P}(\tilde{G})$.

Second, we construct $\mathcal{P}(\tilde{G})$-decomposition of $S^{n} \times \mathbb{R}$. For any $e \in E$, we define this space $S_{e}=\bigcup_{t \in \mathbb{R}} K\left(\left\{s\left(\tilde{F}_{t}(u)\right)+(1-s)\left(\tilde{F}_{t}(v)\right) \mid 0<s<1\right\}\right)$, where the edge e is equal to $\{u, v\}$. For any $e \in\left\{e^{\prime} \sqcup\left\{v_{\infty}\right\} \mid e^{\prime} \in E^{\prime}\right\}$, we define this space $S_{e}=\bigcup_{t \in \mathbb{R}} K\left(\left\{\left(\tilde{F}_{t}(u)\right)+s\left(\tilde{H}_{t}\left(e^{\prime}\right)\right) \mid s>0\right\}\right)$, where the edge e is equal to $e^{\prime} \sqcup\left\{v_{\infty}\right\}$ and a half-line e^{\prime} is equal to $\{u\}$. For any $v \in \tilde{V} \backslash\left\{v_{\infty}\right\}$, we define this space $S_{v}=\bigcup_{t \in \mathbb{R}} K\left(\left\{\tilde{F}_{t}(v)\right\}\right)$. Forthermore, we define spaces $S_{v_{\infty}}=K(\{\infty\} \times \mathbb{R})$ and $S_{T}=S^{n} \times \mathbb{R} \backslash \bigcup_{u \in \tilde{V} \cup \tilde{E}} S_{u}$. It is obvious that $S_{u} \subset S^{n} \times \mathbb{R}$ is a locally closed smooth submanifold for any $u \in \mathcal{P}(\tilde{G})$. Furthermore, the family $\left\{S_{u}\right\}_{u \in \mathcal{P}(\tilde{G})}$ satisfies following conditions:
(1) $S^{n} \times \mathbb{R}=\bigcup_{u \in \mathcal{P}(\tilde{G})} S_{u}$
(2) $S_{i} \cap \operatorname{cl}\left(S_{j}\right) \neq \emptyset \Leftrightarrow S_{i} \subset \operatorname{cl}\left(S_{j}\right) \Leftrightarrow i=j$ or $i<j$,
where $\operatorname{cl}\left(S_{j}\right)$ is the closure of $S_{j} \subset S^{n} \times \mathbb{R}$.
Third, we prove that $\left\{S_{u}\right\}_{u \in \mathcal{P}(\tilde{G})}$ satisfies the Whitney's condition B with the use of Randell's lemma.

Lemma 6.6. (Randell [17]) Let x_{i} and y_{i} be sequences in M converging to a point $x \in M$ in a smooth manifold $M \subset \mathbb{R}^{k}$ so that $x_{i} \neq y_{i}$ and $\overline{x_{i} y_{i}}$ converges to ℓ. Then $\ell \in T_{x} M$.

Since $\operatorname{cl}\left(S_{T}\right)=S^{n} \times \mathbb{R}$ is a smooth manifold, by the Lemma 6.6, if $u \in$ $\mathcal{P}(\tilde{G}) \backslash\{T\}$, then $\left(S_{u}, S_{T}\right)$ satisfy the Whitney's condition B. Furthermore, we consider the following case:

$$
v \in \tilde{V} \text { and } e \in \tilde{E} \text { satisfy } S_{v} \subset \operatorname{cl}\left(S_{e}\right)
$$

Then we define the the set \mathscr{S}_{e} for any $e \in \tilde{E}$ in the following method: If $e \in E$

$$
\mathscr{S}_{e}=\bigcup_{t \in \mathbb{R}} K\left(i_{t}\left(L\left(F_{t}(u), F_{t}(v)-F_{t}(u)\right)\right)\right),
$$

where $e=\{u, v\}$ and $L(x, y) \subset \mathbb{R}^{n}$ is a 1-dimensional affine subspace which has an element $x \in \mathbb{R}^{n}$ and has a direction vector $y \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$. If $e \in\left\{e^{\prime} \sqcup\left\{v_{\infty}\right\} \mid e^{\prime} \in E^{\prime}\right\}$

$$
\mathscr{S}_{e}=\bigcup_{t \in \mathbb{R}} K\left(i_{t}\left(L\left(F_{t}(u), H_{t}\left(e^{\prime}\right)\right)\right)\right),
$$

where $e=e^{\prime} \sqcup\left\{v_{\infty}\right\}$ and $e^{\prime}=\{u\}$. Since $\operatorname{cl}\left(\mathscr{S}_{e}\right) \subset S^{n} \times \mathbb{R}$ is a smooth submanifold and $S_{e} \subset \mathscr{S}_{e}$ for any $e \in \tilde{E}$ and, by the Lemma 6.6, If $v \in \tilde{V}$ and $e \in \tilde{E}$ satisfy $S_{v} \subset \operatorname{cl}\left(S_{e}\right)$, then $\left(S_{v}, S_{e}\right)$ satisfies the Whintey condition B. Therefore, we found this $\mathcal{P}(\tilde{G})$-decomposition $\left\{S_{u}\right\}_{u \in \mathcal{P}(G)}$ is a Whitney stratification of $S^{n} \times \mathbb{R}$.

It is obvious that the projection $P_{\mathbb{R}}$ is a submersion on each stratum. Since $\operatorname{card}\left(E^{\prime}\right) \geq 1, P_{\mathbb{R}}^{-1}(t) \cap S_{T}$ is diffeomorphic to $\mathbb{R}^{n} \backslash f_{t}(G)$ for $t \in \mathbb{R}$, where $\operatorname{card}\left(E^{\prime}\right)$ is a cardinality of a half-lines set E^{\prime} and f_{t} is a graph embedding with respect to $\left(F_{t}, H_{t}\right)$. Therefore, The theorem follows from Thom's first isotopy lemma (Theorem 3.4).

Next, in order to prove that if $n \geq 4$, then arbitrary two linear embedding maps are linear isotopic, we define the following definition. Let
$G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. A linear embedding $f=(\rho, \mu): G \rightarrow \mathbb{R}^{n}$ is called non-parallel linear embedding if $\mu: E^{\prime} \rightarrow S^{n-1}$ is an injection.
Definition 6.7. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let f_{0}, f_{1} be non-parallel linear embedding from G to \mathbb{R}^{n}. Assume that these maps f_{0}, f_{1} are denoted by $f_{0}=\left(\rho_{0}, \mu_{0}\right), f_{1}=\left(\rho_{1}, \mu_{1}\right)$. Linear embedding maps f_{0}, f_{1} are non-parallel linear isotopic if those satisfy the the following property: There exists smooth maps

$$
\begin{aligned}
F: V \times \mathbb{R} & \rightarrow \mathbb{R}^{n}, \\
H: E^{\prime} & \times \mathbb{R} \rightarrow S^{n-1}
\end{aligned}
$$

such that the linear map $\left(F_{t}=\left.F\right|_{V \times\{t\}}, H_{t}=\left.\right|_{E^{\prime} \times\{t\}}\right)$ is non-parallel linear embedding for any $t \in \mathbb{R}$ and the non-parallel linear embedding $\left(F_{t}, H_{t}\right)$ is equal to $\left(\rho_{t}, \mu_{t}\right)$, for any $t=0,1$.

Lemma 6.8. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let $n \geq 4$. If f_{0}, f_{1} be non-parallel linear embedding from G to \mathbb{R}^{n}, then f_{0}, f_{1} are non-parallel linear isotopic.
Proof. Let $V=\left\{v_{1}, \ldots v_{d}\right\}, E^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{m}^{\prime}\right\}$. We define the following subsets. When $i \neq j$, we define

$$
Y_{v_{i}, v_{j}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \mid x_{i}=x_{j}\right\} .
$$

When $\left\{v_{i}, v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\}=\emptyset$, we define

$$
\begin{aligned}
Y_{\left\{v_{i}, v_{j}\right\}\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right)\right. & \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
& \left.\mid x_{i} \neq x_{j}, x_{k} \neq x_{\ell}, \overline{x_{i}, x_{j}} \cap \overline{x_{k}, x_{\ell}} \neq \emptyset\right\},
\end{aligned}
$$

where $\overline{x, y}=\left\{s x+(1-s) y \in \mathbb{R}^{n} \mid 0 \leq s \leq 1\right\}$. When $\left\{v_{i}, v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\} \neq$ \emptyset, we define

$$
\begin{aligned}
& Y_{\left\{v_{i}, v_{j}\right\}\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
& \left.\quad \mid x_{i} \neq x_{j}, x_{k} \neq x_{\ell}, \text { int } \overline{x_{i}, x_{j}} \cap \operatorname{int} \overline{x_{k}, x_{\ell}} \neq \emptyset\right\} .
\end{aligned}
$$

When $\left\{v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\}=\emptyset$ and $e_{i}^{\prime}=\left\{v_{j}\right\}$, we define

$$
\begin{aligned}
& Y_{\left\{e_{i}^{\prime}, v_{j}\right\}\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
&\left.\mid x_{k} \neq x_{\ell}, \mathrm{h} \ell\left(x_{j}, y_{i}\right) \cap \overline{x_{k}, x_{\ell}} \neq \emptyset\right\},
\end{aligned}
$$

where $\mathrm{h} \ell(x, y):=\left\{x+s y \in \mathbb{R}^{n} \mid s \geq 0\right\}$. When $\left\{v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\} \neq \emptyset$ and $e_{i}^{\prime}=\left\{v_{j}\right\}$, we define

$$
\begin{aligned}
Y_{\left\{e_{i}^{\prime}, v_{j}\right\}\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right)\right. & \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
& \left.\mid x_{k} \neq x_{\ell}, \operatorname{inth} \ell\left(x_{j}, y_{i}\right) \cap \operatorname{int} \overline{x_{k}, x_{\ell}} \neq \emptyset\right\} .
\end{aligned}
$$

When $v_{j} \neq v_{\ell}$ and $e_{i}^{\prime}=\left\{v_{j}\right\}, e_{k}^{\prime}=\left\{v_{\ell}\right\}$, we define

$$
\begin{aligned}
& Y_{\left\{e_{i}^{\prime}, v_{j}\right\}\left\{e_{k}^{\prime}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
&\left.\mid \mathrm{h} \ell\left(x_{j}, y_{i}\right) \cap \mathrm{h} \ell\left(x_{\ell}, y_{k}\right) \neq \emptyset\right\} .
\end{aligned}
$$

When $v_{j}=v_{\ell}$ and $e_{i}^{\prime}=\left\{v_{j}\right\}, e_{k}^{\prime}=\left\{v_{\ell}\right\}$, we define

$$
\begin{aligned}
Y_{\left\{e_{i}^{\prime}, v_{j}\right\}\left\{e_{k}^{\prime}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right)\right. & \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
& \left.\mid \operatorname{inth} \ell\left(x_{j}, y_{i}\right) \cap \operatorname{inth} \ell\left(x_{\ell}, y_{k}\right) \neq \emptyset\right\} .
\end{aligned}
$$

When $i \neq j$, we define

$$
Y_{e_{i}^{\prime}, e_{j}^{\prime}}^{\prime}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \mid y_{i}=y_{j}\right\} .
$$

Furthermore, we define

$$
\begin{aligned}
Y:= & \left(\bigcup_{\substack{1 \leq i<j \leq d}} Y_{v_{i}, v_{j}}\right) \cup\left(\bigcup_{\substack{\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\} \in E,\left\{v_{i}, v_{j}\right\} \neq\left\{v_{k}, v_{\ell}\right\}}} Y_{\left\{v_{i}, v_{j}\right\}\left\{v_{k}, v_{\ell}\right\}}\right) \\
& \cup\left(\bigcup_{\substack{e_{i}^{\prime} \in E^{\prime}, e_{i}^{\prime}=\left\{v_{j}\right\} \\
\left\{v_{k}, v_{\ell}\right\} \in E}} Y_{\left\{e_{i}^{\prime}, v_{j}\right\}\left\{v_{k}, v_{\ell}\right\}}\right) \\
& \cup\left(\bigcup_{\substack{i \neq k \\
e_{i}^{\prime}, e_{k}^{\prime} \in E^{\prime} \\
e_{i}^{\prime}=\left\{v_{j}\right\}, e_{k}^{\prime}=\left\{v_{\ell}\right\}}} Y_{\left\{e_{i}^{\prime}, v_{j}\right\}\left\{e_{k}^{\prime}, v_{\ell}\right\}}\right) \cup\left(\bigcup_{1 \leq i<j \leq m} Y_{e_{i}^{\prime}, e_{j}^{\prime}}\right) .
\end{aligned}
$$

We denote the set of non-parallel linear embeddings from G to \mathbb{R}^{n} by $\operatorname{NPLE}(G, n)$. Then we can regard $\operatorname{NPLE}(G, n)$ as $\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \backslash Y$ for the following bijection

```
\(\underset{\sim}{\operatorname{NPLEE}(G, n)} \longrightarrow\left(\mathbb{R}^{n}\right)^{d} \times \underset{\psi}{\left(S^{n-1}\right)^{m} \backslash Y}\)
\(f=(\rho, \mu) \longmapsto\left(\rho\left(v_{1}\right), \ldots, \rho\left(v_{d}\right), \mu\left(e_{1}^{\prime}\right), \ldots, \mu\left(e_{m}^{\prime}\right)\right)\).
```

In order to prove this lemma, it is enough to prove $\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \backslash Y$ is a connected smooth submanifold.

First, since $\operatorname{NPLE}(n, G)$ is a set of non-parallel linear embedding, it is obvious that $\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \backslash Y \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is an open set.

Second, we prove $\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \backslash Y$ is connected. It is enough to proof $Y \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a finite disjoint union of submanifolds with boundary of which codimensions are 2 or more.
(1) When $i \neq j$, it is obvious that $Y_{v_{i}, v_{j}}, Y_{e_{i}^{\prime}, e_{j}^{\prime}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ are submanifolds of which codimension are n and $n-1$, respectively.
(2) When $\left\{v_{i}, v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\}=\emptyset$, it is obvious that $Y_{\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ is a disjoint union of the following two subsets

$$
\begin{array}{r}
Y_{0,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid x_{i} \neq x_{j}, x_{k} \neq x_{\ell}, \overline{x_{i}, x_{j}} \cap \overline{x_{k}, x_{\ell}} \neq \emptyset, \\
\left.L\left(x_{i}, x_{j}-x_{i}\right) \neq L\left(x_{k}, x_{\ell}-x_{k}\right)\right\}, \\
Y_{1,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid x_{i} \neq x_{j}, x_{k} \neq x_{\ell}, \overline{x_{i}, x_{j}} \cap \overline{x_{k}, x_{\ell}} \neq \emptyset, \\
\\
\left.L\left(x_{i}, x_{j}-x_{i}\right)=L\left(x_{k}, x_{\ell}-x_{k}\right)\right\},
\end{array}
$$

where $L(x, y):=\left\{x+s y \in \mathbb{R}^{n} \mid s \in \mathbb{R}\right\}$. The space $Y_{1,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}} \subset$ $\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a submanifold with boundary of which codimension is $2 n-2$. Because $Y_{1,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ is a disjoint union of the following two sets:

$$
\begin{aligned}
& \left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
& \\
& \mid x_{i} \in \mathbb{R}^{n}, x_{j} \in \mathbb{R}^{n} \backslash\left\{x_{i}\right\}, x_{k} \in \overline{x_{i}, x_{j}}, \\
& \\
& \left.\quad x_{\ell} \in L\left(x_{i}, x_{j}-x_{i}\right) \backslash\left\{x_{k}\right\}\right\}, \\
& \left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
& \\
& \mid x_{i} \in \mathbb{R}^{n}, x_{j} \in \mathbb{R}^{n} \backslash\left\{x_{i}\right\}, \\
& \\
& \left.\quad x_{k} \in L\left(x_{i}, x_{j}-x_{i}\right) \backslash \overline{x_{i}, x_{j}}, x_{\ell} \in \overline{x_{i}, x_{j}}\right\} .
\end{aligned}
$$

Furthermore, we find

$$
Y_{0,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}=Y_{0, n-2,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}} \sqcup Y_{0, n-1,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}},
$$

where $Y_{0, n-2,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ and $Y_{0, n-1,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ are defined by

$$
\begin{gathered}
Y_{0, n-2,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid x_{i} \in \mathbb{R}^{n}, x_{j} \in \mathbb{R}^{n} \backslash\left\{x_{i}\right\}, x_{k} \in \mathbb{R}^{n} \backslash L\left(x_{i}, x_{j}-x_{i}\right), \\
x_{\ell} \in x_{k}+\left\{u\left(x_{j}-x_{i}\right)+v\left(x_{i}-x_{k}\right) \in \mathbb{R}^{n}\right. \\
\mid 1 \leq v, 0 \leq u \leq v\}\}, \\
Y_{0, n-1,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid x_{i} \in \mathbb{R}^{n}, x_{j} \in \mathbb{R}^{n} \backslash\left\{x_{i}\right\}, x_{k} \in \overline{x_{i}, x_{j}}, \\
\left.x_{\ell} \in \mathbb{R}^{n} \backslash L\left(x_{i}, x_{j}-x_{i}\right)\right\} .
\end{gathered}
$$

Since $Y_{0, n-2,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}, Y_{0, n-1,\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ are submanifolds with boundary of which codimension are $n-2$ and $n-1$ respectively, the space $Y_{\left\{v_{i}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ is a disjoint union of submanifolds with boundary of which codimension $n-2$ and more.
(3) When $\left\{v_{i}, v_{j}\right\} \neq\left\{v_{k}, v_{\ell}\right\}$ and $\left\{v_{i}, v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\} \neq \emptyset$, We may assume without loss of generality that $i=k$. Then we find

$$
\begin{aligned}
& Y_{\left\{v_{i}, v_{j}\right\},\left\{v_{i}, v_{\ell}\right\}}=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
&\left.\mid x_{i} \in \mathbb{R}^{n}, x_{j} \in \mathbb{R}^{n} \backslash\left\{x_{i}\right\}, x_{\ell} \in \operatorname{inth} \ell\left(x_{i}, x_{j}-x_{i}\right)\right\}
\end{aligned}
$$

where $a \in \mathbb{R}^{n}, b \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, \mathrm{h} \ell(a, b):=\left\{a+s b \in \mathbb{R}^{n} \mid s \geq 0\right\}$. Therefore, we find $Y_{\left\{v_{i}, v_{j}\right\},\left\{v_{i}, v_{\ell}\right\}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a smooth submanifold of codimension $n-1$.
(4) When $\left\{v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\}=\emptyset$ and $e_{i}^{\prime}=\left\{v_{j}\right\}$, it is obvious that $Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ is a disjoint union of the following two subsets:

$$
\begin{aligned}
& Y_{0,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
& \left.\mid x_{k} \neq x_{\ell}, \mathrm{h} \ell\left(x_{j}, y_{i}\right) \cap \overline{x_{k}, x_{\ell}} \neq \emptyset, L\left(x_{j}, y_{i}\right) \neq L\left(x_{k}, x_{\ell}-x_{k}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
Y_{1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right)\right. & \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
\mid x_{k} \neq x_{\ell}, \mathrm{h} \ell\left(x_{j}, y_{i}\right) & \left.\cap \overline{x_{k}, x_{\ell}} \neq \emptyset, L\left(x_{j}, y_{i}\right)=L\left(x_{k}, x_{\ell}-x_{k}\right)\right\} .
\end{aligned}
$$

We find $Y_{1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a submanifold with boundary of which codimension is $2 n-2$. Because $Y_{1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ is a disjoint union of the following two sets:

$$
\begin{gathered}
\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, x_{k} \in \mathrm{~h} \ell\left(x_{j}, y_{i}\right), \\
\\
\left.x_{\ell} \in L\left(x_{j}, y_{i}\right) \backslash\left\{x_{k}\right\}\right\}, \\
\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, \\
\\
\left.x_{k} \in L\left(x_{j}, y_{i}\right) \backslash \mathrm{h} \ell\left(x_{j}, y_{i}\right), x_{\ell} \in \mathrm{h} \ell\left(x_{j}, y_{i}\right)\right\} .
\end{gathered}
$$

Furthermore, we find $Y_{0,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ is a disjoint union of the following subsets:

$$
\begin{aligned}
& Y_{0, n-2,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
& \mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, x_{k} \in \mathbb{R}^{n} \backslash L\left(x_{j}, y_{i}\right), \\
&\left.x_{\ell} \in x_{k}+\left\{u\left(x_{j}-x_{k}\right)+v y_{i} \in \mathbb{R}^{n} \mid u \geq 1, v \geq 0\right\}\right\}, \\
& Y_{0, n-1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
&\left.\mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, x_{k} \in \mathrm{~h} \ell\left(x_{j}, y_{i}\right), x_{\ell} \in \mathbb{R}^{n} \backslash L\left(x_{j}, y_{i}\right)\right\} .
\end{aligned}
$$

Since $Y_{0, n-2,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{e}\right\}}, Y_{0, n-1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ are submanifolds with boundary of which codimension are $n-2$ and $n-1$ respectively, the space $Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{k}, v_{\ell}\right\}}$ is a finite disjoint union of submanifolds with boundary of which codimensions are $n-2$ and more.
(5) When $\left\{v_{j}\right\} \cap\left\{v_{k}, v_{\ell}\right\} \neq \emptyset$ and $e_{i}^{\prime}=\left\{v_{j}\right\}$, we may assume without loss of generality that $j=k$. Then we found

$$
\begin{aligned}
Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{j}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right)\right. & \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
& \left.\mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, x_{\ell} \in \operatorname{inth} \ell\left(x_{j}, y_{i}\right)\right\} .
\end{aligned}
$$

Therefore, the space $Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{v_{i}, v_{e}\right\}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a submanifold of codimension $n-1$.
(6) When $j \neq \ell$ and $e_{i}^{\prime}=\left\{v_{j}\right\}, e_{k}^{\prime}=\left\{v_{\ell}\right\}$, it is obvious that $Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}}$ is a disjoint union of the following subsets:

$$
\left.\left.\begin{array}{rl}
Y_{0,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right)\right. & \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
& \mid \mathrm{h} \ell\left(x_{j}, y_{i}\right)
\end{array}\right) \mathrm{h} \ell\left(x_{\ell}, y_{k}\right) \neq \emptyset, L\left(x_{j}, y_{i}\right) \neq L\left(x_{\ell}, y_{k}\right)\right\}, ~ \$
$$

and

$$
\begin{aligned}
Y_{1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}}:=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right)\right. & \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \\
& \left.\mid \mathrm{h} \ell\left(x_{j}, y_{i}\right) \cap \mathrm{h} \ell\left(x_{\ell}, y_{k}\right) \neq \emptyset, L\left(x_{j}, y_{i}\right)=L\left(x_{\ell}, y_{k}\right)\right\} .
\end{aligned}
$$

We find $Y_{1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a submanifold with boundary of codimension $2 n-2$. Because $Y_{1,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}}$ is a disjoint union of the following two subsets:

$$
\begin{gathered}
\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, y_{k}= \pm y_{i}, \\
\left.x_{\ell} \in \mathrm{h} \ell\left(x_{j}, y_{i}\right)\right\}, \\
\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, \\
\left.y_{k}=y_{i}, x_{\ell} \in L\left(x_{j}, y_{i}\right) \backslash \mathrm{h} \ell\left(x_{j}, y_{i}\right)\right\} .
\end{gathered}
$$

Furthermore, we find $Y_{0,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}} \subset\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a submanifold with boundary of which codimension is $n-2$. Because $Y_{0,\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}}$ is equal to the following set:

$$
\begin{aligned}
& \left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
& \quad \mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, y_{k} \in S^{n-1} \backslash\left\{ \pm y_{i}\right\} \\
& \left.\quad x_{\ell} \in x_{j}+\left\{u y_{i}-v y_{k} \in \mathbb{R}^{n} \mid u \geq 0, v \geq 0\right\}\right\} .
\end{aligned}
$$

Therefore, the space $Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{\ell}\right\}}$ is a finite disjoint union of submanifolds with boundary of which codimensions are $n-2$ and more.
(7) When $i \neq k$ and $e_{i}^{\prime}=\left\{v_{j}\right\}, e_{k}^{\prime}=\left\{v_{j}\right\}$, it is obvious that

$$
\begin{array}{r}
Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{j}\right\}}=\left\{\left(x_{1}, \ldots, x_{d}, y_{1}, \ldots y_{m}\right) \in\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}\right. \\
\left.\mid y_{i} \in S^{n-1}, x_{j} \in \mathbb{R}^{n}, y_{k}=y_{i}\right\} .
\end{array}
$$

Therefore, $Y_{\left\{e_{i}^{\prime}, v_{j}\right\},\left\{e_{k}^{\prime}, v_{j}\right\}}\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m}$ is a submanifold of codimension $n-1$.

From the above results, when $n \geq 4,\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \backslash Y$ is a connected smooth submanifold. Therefore, we obtain this lemma.

Remark 6.9. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. We define a topology of the set of linear map from a graph with half-lines G to $\mathbb{R}^{n}, \mathrm{LM}(G, n)$ as the induced topology from the following bijective map

Besides, the set of linear embedding from a graph with half-lines G to \mathbb{R}^{n}, $\operatorname{LE}(G, n)$ may be regarded as $\left(\mathbb{R}^{n}\right)^{d} \times\left(S^{n-1}\right)^{m} \backslash Y^{\prime}$, where

$$
Y^{\prime}:=Y \backslash\left(\bigcup_{1 \leq i<j \leq m} Y_{e_{i}^{\prime}, e_{j}^{\prime}}\right)
$$

By using the same method as in the proof of Lemma 6.8, it is obvious that Y^{\prime} is composed of a disjoint union of subsets of submanifolds with codimensions $n-2$ or more. As a result, If $n \geq 3$, then $\operatorname{LM}(G, n) \backslash$ $\mathrm{LE}(G, n) \subset \operatorname{LM}(G, n)$ is a nowhere dense set.

Lemma 6.10. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let $n \geq 3$. Let $f=(\rho, \mu)$ be a linear embedding from G to \mathbb{R}^{n}. Then there exists some non-palallel linear embedding which satisfies linear isotopic to f.

Proof. Suppose that $V=\left\{v_{1}, \ldots v_{d}\right\}, E^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{m}^{\prime}\right\}$. It is obvious that this theorem holds when f is a non-palallel linear embedding. So we shall assume that f is not a non-palallel linear embedding. Assume $e_{i}^{\prime} \in E^{\prime}$ satisfies $\mu\left(e_{i}^{\prime}\right) \in \mu\left(E^{\prime} \backslash\left\{e_{i}^{\prime}\right\}\right)$ and $e_{i}^{\prime}=\left\{v_{j}\right\}$. We define $E_{i}:=\left\{e \in E \mid e_{i}^{\prime} \subset\right.$ $e\}$ and $\tilde{G}_{i}:=\left(V \backslash e_{i}^{\prime}, E \backslash E_{i}, \emptyset\right)$ and $\tilde{g}_{i}:=\left(e_{i}^{\prime}, \emptyset,\left\{e_{i}^{\prime}\right\}\right)$. It is satisfied with $f\left(\tilde{G}_{i}\right) \cap f\left(\tilde{g}_{i}\right)=\emptyset$. Suppose $0 \ll R$ is sufficiently large such that $f\left(\tilde{G}_{i}\right) \subset D_{R}^{\mathbb{R}^{n}}\left(\rho\left(v_{j}\right)\right)$. Since $D_{R}^{\mathbb{R}^{n}}\left(\rho\left(v_{j}\right)\right)$ is the normal space, there exists two open sets $U_{1}, U_{2} \subset D_{R}^{\mathbb{R}^{n}}\left(\rho\left(v_{j}\right)\right)$ such that $f\left(\tilde{G}_{i}\right) \subset U_{1}$ and $f\left(\tilde{g}_{i}\right) \cap$ $D_{R}^{\mathbb{R}^{n}}\left(\rho\left(v_{j}\right)\right) \subset U_{2}$ and $U_{1} \cap U_{2}=\emptyset$. Moreover, since $f\left(\tilde{g}_{i}\right) \cap D_{R}^{\mathbb{R}^{n}}\left(\rho\left(v_{j}\right)\right)$
is compact, there exists an open neighborhood $\mu\left(e_{i}^{\prime}\right) \in U_{\tilde{G}_{i}} \subset S^{n-1}$ which satisfies $\mathrm{h} \ell\left(\rho\left(v_{j}\right), y\right) \cap f\left(\tilde{G}_{i}\right)=\emptyset$ for any $y \in U_{\tilde{G}_{i}}$. We define $E_{i}^{\prime}:=\left\{e^{\prime} \in\right.$ $E^{\prime} \mid e^{\prime}=e_{i}^{\prime}$ as sets $\}$. Assume $e_{k}^{\prime} \in E^{\prime} \backslash E_{i}^{\prime}$ satisfies $e_{k}^{\prime}=\left\{v_{\ell}\right\}$. Then, $\mathrm{h} \ell\left(\rho\left(v_{\ell}\right), \mu\left(e_{k}^{\prime}\right)\right) \cap \mathrm{h} \ell\left(\rho\left(v_{j}\right), y\right) \neq \emptyset$ if and only if $y \in\left\{\frac{s \mu\left(e_{k}^{\prime}\right)+\rho\left(v_{\ell}\right)-\rho\left(v_{j}\right)}{\left\|s \mu\left(e_{k}^{\prime}\right)+\rho\left(v_{\ell}\right)-\rho\left(v_{j}\right)\right\|} \in\right.$ $\left.S^{n-1} \mid s \geq 0\right\} \subset S^{n-1}$. This subset

$$
\left\{\left.\frac{s \mu\left(e_{k}^{\prime}\right)+\rho\left(v_{\ell}\right)-\rho\left(v_{j}\right)}{\left\|s \mu\left(e_{k}^{\prime}\right)+\rho\left(v_{\ell}\right)-\rho\left(v_{j}\right)\right\|} \in S^{n-1} \right\rvert\, s \geq 0\right\}
$$

is denoted by P_{k}. When $\rho\left(v_{j}\right) \in L\left(\rho\left(v_{\ell}\right), \mu\left(e_{k}^{\prime}\right)\right) \backslash \mathrm{h} \ell\left(\rho\left(v_{\ell}\right), \mu\left(e_{k}^{\prime}\right)\right)$, it is obvious that $P_{k}=\left\{\mu\left(e_{k}^{\prime}\right)\right\}$. When $\rho\left(v_{j}\right) \in \mathbb{R}^{n} \backslash L\left(\rho\left(v_{\ell}\right), \mu\left(e_{k}^{\prime}\right)\right)$, it is obvious that P_{k} is an 1-dimensional connected submanifold with boundary and the closure of P_{k} is equal to $P_{k} \sqcup\left\{\mu\left(e_{k}^{\prime}\right)\right\} \subset S^{n-1}$. Moreover, since S^{n-1} is the regular space, when $\mu\left(e_{i}^{\prime}\right) \neq \mu\left(e_{k}^{\prime}\right)$, then there exists an open neighborhood $\mu\left(e_{i}^{\prime}\right) \in U_{k} \subset S^{n-1}$ which satisfies $\mathrm{h} \ell\left(\rho\left(v_{\ell}\right), \mu\left(e_{k}^{\prime}\right)\right) \cap \mathrm{h} \ell\left(\rho\left(v_{j}\right), y\right)=\emptyset$ for any $y \in U_{k}$. We define

$$
Q_{i}:=\left\{\left.\frac{\rho(v)-\rho\left(v_{j}\right)}{\left\|\rho(v)-\rho\left(v_{j}\right)\right\|} \in S^{n-1} \right\rvert\, e_{i}^{\prime} \sqcup\{v\} \in E_{i}\right\} \cup\left(\mu\left(E_{i}^{\prime}\right) \backslash\left\{\mu\left(e_{i}^{\prime}\right)\right\}\right) .
$$

Since any

$$
P \in\left\{P_{k} \subset S^{n} \mid e_{k}^{\prime} \in\left\{e^{\prime} \in E^{\prime} \backslash E_{i}^{\prime} \mid \mu\left(e^{\prime}\right)=\mu\left(e_{i}^{\prime}\right)\right\}\right\}
$$

is an 1-dimensional connected submanifold with boundary and the closure of P is equal to $P \sqcup\left\{\mu\left(e_{i}^{\prime}\right)\right\}$ and any elements

$$
P, P^{\prime} \in\left\{P_{k} \subset S^{n} \mid e_{k}^{\prime} \in\left\{e^{\prime} \in E^{\prime} \backslash E_{i}^{\prime} \mid \mu\left(e^{\prime}\right)=\mu\left(e_{i}^{\prime}\right)\right\}\right\}
$$

satisfy only the following condition:

$$
P \cap P^{\prime}=\emptyset \text { or } P \subset P^{\prime} \text { or } P^{\prime} \subset P
$$

it is obvious that

is connected and has the element $\mu\left(e_{i}^{\prime}\right)$. Since $U_{i} \backslash\left\{\mu\left(e_{i}^{\prime}\right)\right\}$ is a submanifold of S^{n-1}, any point $y \in U_{i}$ has a smooth path from $\mu\left(e_{i}^{\prime}\right)$ to y which is included by U_{i}. As the result, we found linear embeddings $\tilde{f}=(\tilde{\rho}, \tilde{\mu}), f=$ (ρ, μ) are linear isotopic, where $\tilde{f}=(\tilde{\rho}, \tilde{\mu})$ satisfies $\tilde{\rho}=\rho, \tilde{\mu}\left(e^{\prime}\right)=\mu\left(e^{\prime}\right)$ for any $e^{\prime} \in E^{\prime} \backslash\left\{e_{i}^{\prime}\right\}$ and $\tilde{\mu}\left(e_{i}^{\prime}\right)=y$, where $y \in U_{i} \backslash\left\{\mu\left(e_{i}^{\prime}\right)\right\}$. Therefore, this lemma is proved by repeating the same method.

By using Lemma 6.8, 6.10, the following lemma is proved.

Corollary 6.11. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let $n \geq 4$. If f_{0}, f_{1} be linear embedding from G to \mathbb{R}^{n}, then f_{0}, f_{1} are linear isotopic.
Definition 6.12. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let $n \geq 2$. Let f be a linear embedding from G to \mathbb{R}^{n}. A direction vector $u \in S^{n-1}$ is called a complete ascending direction of the linear embesdding $f: G \rightarrow \mathbb{R}^{n}$, if $u \in S^{n-1}$ satisfies the followig properties:
(i) u is neither perpendicular to any line segments nor half lines in $f(G)$.
(ii) For each $c \in \mathbb{R}$, the hyperplane $x \cdot u=c$ of level c contains at most one vertex of $f(G)$, where \cdot is the Euclidean inner product.
(iii) For each $v \in V$, there exists $e \in E$ or $\{v\} \in E^{\prime}$ which satisfy $(\rho(w)-\rho(v)) \cdot u>0, \mu(\{v\}) \cdot u>0$, where $e=\{v, w\}$.

Figure 7. Linearly embedded graph with half-lines having a complete ascending direction u.

Example 6.13. Let $n \geq 2$ and \mathcal{A} be a real space line arrangement in \mathbb{R}^{n}. Assume a finite simple connected graph with half-lines G and a linear embedding $f: G \rightarrow \mathbb{R}^{n}$ satisfy $f(G)=\bigcup_{\ell \in \mathcal{A}} \ell$. Then this map has a complete ascending direction.

Example 6.14. Let $s \geq 1$ and $K_{s}=(V, E)$ be a complete graph with s vertices. By removing a vertex $v \in V$, we obtain the finite simple connected graph with half-lines $\tilde{K}_{s}=\left(\tilde{V}, \tilde{E}, \tilde{E}^{\prime}\right)$, where $\tilde{V}:=V \backslash\{v\}$ and $\tilde{E}:=\{e \in$ $E \mid v \notin e\}, \tilde{E}^{\prime}:=\{e \backslash\{v\} \mid e \in E, v \in e\}$. It is called a complete graph with half-lines. Let $s \geq 2$ and $n \geq 2$. Assume \tilde{K}_{s} is a complete graph with half-lines and we give E^{\prime} s exements index such that $E^{\prime}=\left\{e_{1}^{\prime}, \ldots, e_{s-1}^{\prime}\right\}$. Suppose a linear embedding $f=(\rho, \mu): \tilde{K}_{s} \rightarrow \mathbb{R}^{n}$ satisfies the following
condition: if $1 \leq i<j \leq s-1$, then $\mu\left(e_{i}^{\prime}\right) \cdot \mu\left(e_{j}^{\prime}\right)>0$. Then this map has a complete ascending direction.

Lemma 6.15. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple graph with half-lines. Let $n \geq 2$. If $G=\left(V, E, E^{\prime}\right)$ is not a conneced graph with half-lines, then there does not exist a linear embedding which has a complete ascending direction.

Proof. There uniquely exists a connected subgraph $G_{1}=\left(V_{1}, E_{1}, E_{1}^{\prime}\right)$ which satisfies the following property: If $\bar{G}=\left(\bar{V}, \bar{E}, \bar{E}^{\prime}\right)$ is subgraph of G and $\operatorname{card} \bar{V}+\operatorname{card} \bar{E}+\operatorname{card} \bar{E}^{\prime}>\operatorname{card} V_{1}+\operatorname{card} E_{1}+\operatorname{card} E_{1}^{\prime}$, then \bar{G} is not connected. We define $G_{2}:=\left(V \backslash V_{1}, E \backslash E_{1}, E^{\prime} \backslash E_{1}^{\prime}\right)$. By the assumption, $V \backslash V_{1} \neq \emptyset$ and $E^{\prime} \backslash E_{1}^{\prime}=\emptyset$, and $\{v\} \notin E^{\prime}$ for any $v \in V \backslash V_{1}$. Second, we assume $f: G \rightarrow \mathbb{R}^{n}$ is a linear embedding which has a complete ascending direction $u \in S^{n-1}$. Since $f\left(G_{2}\right)$ is a compact set, there exists a maximum values of $\left.h\right|_{f\left(G_{2}\right)}$, where h is a continuous function which is defined by $h(x):=x \cdot u$. By conditions (i), (ii), a maximum point is determined by $f(v) \in f\left(V \backslash V_{1}\right)$, uniquely. Thus this contradicts the assumption.

Lemma 6.16. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple connected graph with half-lines. Let $n \geq 3$. Then, there exists a linear embedding which has a complete ascending direction.

Proof. Assume $v_{\infty} \notin V$ and $\tilde{G}=\left(V \sqcup\left\{v_{\infty}\right\}, E \sqcup\left\{\left\{v_{\infty}\right\} \sqcup e^{\prime} \mid e^{\prime} \in E^{\prime}\right\}\right.$. Suppose $V_{k} \subset V$ is the set of vertices of which distanse from v_{∞} with respect to \tilde{G} is $k \geq 1$. Then we give V_{k} an index $\left\{v_{k_{1}}, v_{k_{2}}, \ldots, v_{k_{i_{k}-1}}, v_{k_{i_{k}}}\right\}$. Suppose $d \geq 1$ is maximum value of distanse from v_{∞}. We take $\infty>$ $c_{1_{1}}>c_{1_{2}}>\cdots>c_{1_{i_{1}-1}}>c_{1_{i_{1}}}>c_{2_{1}}>\cdots>c_{d_{i_{d}-1}}>c_{d_{i_{d}}}>-\infty$, and $u \in S^{n-1}$. Assume that $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a height function which is defined by $h(x):=x \cdot u$. We construct a linear map $f=(\rho, \mu)$ with respect to a graph G, by the following method: the map $\rho: V \rightarrow \mathbb{R}^{n}$ satisfies $\rho\left(v_{j}\right) \in h^{-1}\left(c_{j}\right)$, for any $j \in\left\{1_{1}, \ldots, d_{i_{d}}\right\}$ and $\mu: E^{\prime} \rightarrow \mathbb{R}^{n}$ satisfies $h\left(\mu\left(\left\{v_{j}\right\}\right)\right)>0$ for any $j \in\left\{1_{1}, \ldots, 1_{i_{1}}\right\}$. By the Remark 6.9, $L M(G, n) \backslash L E(G, n) \subset L M(G, n)$ is a nowhere dense set. Therefore, we obtain a linear embedding which has a complete ascending direction $u \in S^{n-1}$ by perturbing this linear map of the graph G.

Remark 6.17. The complete ascending direction is similar concept to a descending direction defined in [7]. Let G be a finite simple connected graph. Let $f: G \rightarrow \mathbb{R}^{n}$ be a linear embedding. A unit vector $u \in S^{n-1}$ is called descending direction, if $u \in S^{n-1}$ satisfies the following properties:
(i) u is neither perpendicular to any line segments nor half lines in $f(G)$.
(ii) For each $v \in V$, except for only one, there exists $e \in E$ or $\{v\} \in E^{\prime}$ which satisfy $(\rho(w)-\rho(v)) \cdot u>0, \mu(\{v\}) \cdot u>0$, where $e=$ $\{v, w\}$.
Huh, Lee proved the following theorem:
Theorem 6.18. (Huh, Lee [7]) If a linear embedding of a simple graph into \mathbb{R}^{3} has a descending direction, then the fundamental group of the complement of this embedded graph is a free group.

By using Lemma 5.2, 5.3, 6.5, 6.16, Corollary 6.11, we obtain the following main theorem.

Theorem 6.19. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple connected graph with half-lines. Let $n \geq 4$. If $f: G \rightarrow \mathbb{R}^{n}$ is a linear embedding, then $\mathbb{R}^{n} \backslash f(G)$ is diffeomorphic to the interior of the space obtained by attaching trivially $-\chi(G)$ pieces of n-dimensional $(n-2)$-handles to the n-dimensional closed ball, where $\chi(G)=\operatorname{card}(V)-\operatorname{card}(E)-\operatorname{card}\left(E^{\prime}\right)$ and $\operatorname{card}(A)$ means cardinality of set A.

Proof. First, by using Corollary 6.11 and Lemma 6.16, there exists a linear embedding which has a ascending direction and is isotopic to f. Second, by using Lemma 5.2, 5.3, 6.5, we found $\mathbb{R}^{n} \backslash f(G)$ is diffeomorphic to the interior of the space trivially attached some n-dimensional $n-2$-handles on the n-dimensional closed ball. Finally, we consider how many this space has $n-2$-handles. By using Alexander duality theorem, we found the reduced homology of $\mathbb{R}^{n} \backslash f(G)$ is

$$
\left\{\begin{array}{l}
\tilde{H}_{i}\left(\mathbb{R}^{n} \backslash f(G) ; \mathbb{Z}\right) \simeq \mathbb{Z}^{-\chi(G)}(i=n-2) \\
\tilde{H}_{i}\left(\mathbb{R}^{n} \backslash f(G) ; \mathbb{Z}\right) \simeq \mathbf{0} .
\end{array}\right.
$$

Therefore, we prove this main theorem.
Theorem 6.18 is a theorem with respect to a sufficient condition for fundamental group of a complement of an embedded graph to be free group. We prove the following theorem which is similar to this theorem.

Theorem 6.20. Let $G=\left(V, E, E^{\prime}\right)$ be a finite simple connected graph with half-lines. Let $f: G \rightarrow \mathbb{R}^{3}$ be a linear embedding. If there exists a linear embedding which has a complete ascending direction and is linear isotopic to f, then $\mathbb{R}^{3} \backslash f(G)$ is diffeomorphic to the interior of the handle body which has genus $-\chi(G)$.
Proof. By using Lemma 5.2, 5.3, 6.5, we obtain this theorem.
Besides, Theorem 6.18 is a generalization of Nicholson's theorem.
Theorem 6.21. (Nicholson [14]) Let K_{s} be the complete graph. Then fundamental group of complement of linear embedded of K_{s} is free group.

In fact, it is clear that a linear embedding of a complete graph has a descending direction. However, in general, a linear embedding of a complete graph with half-lines may not have a linear isotopic map which has a complete ascending direction (see figure 8).

Figure 8. Linearly embedded complete graph with halflines \tilde{K}_{5}.

By 1.6, 1.7, it is clear that we obtain the following corollary.
Corollary 6.22. Assume that the graph G is finite, connected, simple and does not have vertices with degree 1 and cut edges. Then there exists a graph embedding $f: G \rightarrow S^{3}$ satisfies the following condition: the fundamental group of $S^{3} \backslash f(G)$ is free group.

We obtain a theorem that generalizes 6.22 . Let G be a finite connected simple graph. Besides, we prove there exists a linear embedding of G which has a descending direction.

Theorem 6.23. If $G=(V, E)$ is a finite connected graph, then there exists graph embedding $f: G \rightarrow S^{3}$ such that $S^{3} \backslash f(G)$ is diffeomorphic to the interior of the handle body which has genus $1-\chi(G)$, where $\chi(G)$ is the Euler characteristic of graphs.

Proof. First, we construct a finite connected simple graph with half-lines from G. We do the following operations. When $e \in E$ is a multiple edge, we add to a one vertex and divide e into two edges. And when $e \in E$ is a loop, we add to two vertices and divide e into three edges. By performing this operation for all loops and multiple edges of G, we can construct the finite connected simple graph. This graph is denoted by $\tilde{G}=(\tilde{V}, \tilde{E})$. Let $v \in \tilde{V}$. We define $\bar{V}:=\tilde{V} \backslash\{v\}$ and $\bar{E}:=\{e \in \tilde{E} \mid v \notin e\}, \bar{E}^{\prime}:=$ $\{e \backslash\{v\} \mid e \in \tilde{E}, v \in e\}$. It is clear that this graph $\bar{G}=(\bar{V}, \bar{E}, \bar{E})$ is a finete connected simple graph with half-lines. By Lemma 6.16, Theorem 6.20, we find there exists linear embedding $f=(\rho, \mu): \bar{G} \rightarrow \mathbb{R}^{3}$ which satisfies the following condition: $\mathbb{R}^{3} \backslash f(\bar{G})$ is diffeomorphic to the interior of the handle body which has genus $-\chi(\bar{G})$, where $\chi(\bar{G})=\operatorname{card} \bar{V}-\operatorname{card} \bar{E}-\operatorname{card} \bar{E}^{\prime}$.

Let $f: \bar{G} \rightarrow \mathbb{R}^{3}$ be a linear embedding. As Remark 1.4, there exists a embedding $g: \bar{G} \rightarrow \mathbb{R}^{3}$ such that $g(\bar{G})=f(\bar{G})$. Since we can regard \bar{G} as $\tilde{G} \backslash\{v\}$, we define the map $\tilde{g}: \tilde{G} \rightarrow \mathbb{R}^{3} \sqcup\{\infty\}$ such that $\left.\tilde{g}\right|_{\tilde{G} \backslash\{v\}}:=g$ and $\tilde{g}(v):=\infty$. Since there exist homeomorphisms $K: \mathbb{R}^{3} \sqcup\{\infty\} \rightarrow S^{3}$ and $L: G \rightarrow \tilde{G}$, the map $K \circ \tilde{g} \circ L: G \rightarrow S^{3}$ is a embedding which satisfies $S^{3} \backslash K \circ \tilde{g} \circ L(G)$ is homeomorphic to $R^{3} \backslash f(\bar{G})$. Furthermore, since $\chi(\bar{G})=\chi(G)-1$, we obtain this theorem.
Corollary 6.24. If $G=(V, E)$ is a finite connected graph, then there exists a graph embedding $f: G \rightarrow S^{3}$ such that the fundamental group of $S^{3} \backslash$ $f(G)$ is a free group.

Furthermore, by the same proof method as Lemma 6.16, we can obtain the following theorem with respect to existence of linear embedding which has descending direction.
Theorem 6.25. If $G=(V, E)$ is a finite connected simple graph, then there exists a linear embedding $f: G \rightarrow \mathbb{R}^{3}$ which has a descending direction.

Proof. We take an arbitrary vertex $v \in V$ and fix this vertex. Suppose $V_{k} \subset V$ is the set of vertices of which distanse from v with respect to \tilde{G} is $k \geq 0$. Then we give V_{k} an index $\left\{v_{k_{1}}, v_{k_{2}}, \ldots, v_{k_{i_{k}-1}}, v_{k_{i_{k}}}\right\}$. Suppose $d \geq 0$ is maximum value of distanse from v. We take $-\infty<c_{0_{1}}<c_{1_{1}}<$ $c_{1_{2}}<\cdots<c_{1_{i_{1}-1}}<c_{1_{i_{1}}}<c_{2_{1}}<\cdots<c_{d_{i_{d^{-1}}}}<c_{d_{i_{d}}}<\infty$. and $u \in S^{2}$. Assume that $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a height function which is defined by $h(x):=x \cdot u$. We construct a linear map $f=(\rho, \mu)$ with respect to a graph G, by the following method: the map $\rho: V \rightarrow \mathbb{R}^{n}$ satisfies $\rho\left(v_{j}\right) \in h^{-1}\left(c_{j}\right)$, for any $j \in\left\{0_{1}, 1_{1}, \ldots, d_{i_{d}}\right\}$ and $\mu: \emptyset \rightarrow \mathbb{R}^{n}$. By the Remark 6.9, $\operatorname{LM}(G, 3) \backslash \operatorname{LE}(G, 3) \subset \operatorname{LM}(G, 3)$ is a nowhere dense set. Therefore, we obtain a linear embedding which has a descending direction $u \in S^{2}$ by perturbing this linear map of the graph G.

By Theorem 6.18, 6.25, we obtain the following corollary.
Corollary 6.26. If $G=(V, E)$ is a finite connected (simple) graph, then there exists a (linear) embedding $f: G \rightarrow \mathbb{R}^{3}$ such that the fundamental group of $\mathbb{R}^{3} \backslash f(G)$ is a free group.
Proof. First, we construct a finite connected simple graph with half-lines from G. We do the following operations. When $e \in E$ is a multiple edge, we add to a one vertex and divide e into two edges. And when $e \in E$ is a loop, we add to two vertices and divide e into three edges. By performing this operation for all loops and multiple edges of G, we can construct the finite connected simple graph. This graph is denoted by $\tilde{G}=(\tilde{V}, \tilde{E})$. By Theorem 6.25 , there exists a linear embedding $f=(\rho, \mu): \tilde{G} \rightarrow \mathbb{R}^{3}$ which
has a descending direction. Since when $G=(V, E)$ is a finite connected simple graph, \tilde{G} is equal to G, we obtain this theorem by using Theorem 6.18. Second, we consider the following case: $G=(V, E)$ is a finite connected graph. As Remark 1.4, there exists an embedding $g: \tilde{G} \rightarrow \mathbb{R}^{3}$ such that $g(\tilde{G})=f(\tilde{G})$. Since there exists a homeomorphism $L: G \rightarrow \tilde{G}$, $g \circ L: G \rightarrow \mathbb{R}^{3}$ is an embedding which satisfies $g \circ L(G)=f(\tilde{G})$. Therefore, we obtain this theorem by using Theorem 6.18.

Acknowledgement

First of all, I would like to express my sincere gratitude to Professor Toshiyuki Akita for guiding me as my supervisor. I am grateful for him to for accepting the role of my supervissor despite his busy schedule.

I would like to express my sincere gratitude to Professor Goo Ishikawa. I am grateful to him for supporting and many useful discussion as my supervisor during master's course and a one year in doctoral course. I was delighted when our co-authored paper was first published in the journal. Also, I apologize for not being able to complete my doctoral thesis before his retirement.

I would like to express my sincerest gratitude to Professor Masahiko Yoshinaga. I am grateful to him for many useful discussions and persistent support for four and a half years, including three years as my doctoral supervissor. Especially, I would like to express my deepest appreciation to him for many advises during my master's course, and for his persistent guidance of my research and the doctoral thesis even after he moved to Osaka University. Without his guidance and help, this doctoral thesis would not have been possible.

I am deeply grateful for the tuition exemption system and student dormitory (Keiteki-Ryo) at Hokkaido University, the Hokkaido University DX Doctoral Fellowship, the research assistant position at the Education and Research Center for Mathematical and Data Science, and the support provided by the Department of Mathematics at Hokkaido University. Thanks to these, I was able to pursue my research with fewer financial concerns. Without these, I would not have been able to continue my research in master's and doctoral courses. Also, I would like to express my gratitude to Professor Yuki Wakuda for the kind guidance and support as adviser of the research assistant. I would like to express my gratitude for the guidance I received from him, which enabled me to collaborate on a research paper with him and Dr. Keisuke Yoshida, despite being a beginner in data analysis at the time.

I would like to express my gratitude to my friends and all the seniors， peers，and juniors who have been involved with me．Especially，I was pleas－ antly surprised to discover that there were many people from Fukuoka Pre－ fecture，my hometown than I imagined．

I would like to express my gratitude to Professor Takuya Yoshihara and everyone at the Center for Advanced Human Resource Education and De－ velopment for their various support regarding my job hunting．As I have not yet finalized my job placement，I kindly request his continued guidance and support．

Finally，I would like to express my sincere gratitude to my family，who have persistently supported and encouraged me．

REFERENCES

［1］K．Adiprasito，Combinatorial stratifications and minimality of 2－arrangements，J． Topol． 7 （2014），no．4，1200－1220．
［2］A．Björner，Subspace arrangements，First European congress of mathematics． Birkhäuser Basel， 1994.
［3］M．de Longueville，C．Schultz，The cohomology rings of complements of subspace arrangements，Math．Ann． 319 （2001），625－646．
［4］A．Dimca，S．Papadima，Hypersurface complements，Milnor fibers and higher homo－ topy groups of arrangements，Ann．of Math．（2） 158 （2003），473－507．
［5］T．Endo，T．Otsuki，Notes on spatial representations of graphs，Hokkaido Math．J． 23 （1994），383－398．
［6］R．Goresky，R．MacPherson，Stratified Morse Theory，Springer－Verlag，（1988）．
［7］Y．Huh，J．H．Lee，Linearly free graphs，Journal of Graph Theory Volume 100，Issue 4 （2022），613－629．
［8］G．Ishikawa，M．Oyama，Topology of complements to real affine space line arrange－ ments，Journal of Singularities Volume 22 （2020），373－384．
［9］K．Kobayashi，Standard spatial graph，Hokkaido Math．J． 21 （1992），117－140．
［10］小林一章，空間グラフの理論，培風館， 1995.
［11］J．N．Mather，Stratifications and mappings，Dynamical systems．Academic Press， （1973），195－232．
［12］J．N．Mather，Notes on topological stability，Bulletin of the American Mathematical Society，（2012），49（4），475－506．
［13］F．Mori，M．Salvetti，（Discrete）Morse theoty on configuration spaces，Math．Res． Lett． 18 （2011），no．1，39－57．
［14］V．Nicholson，Types of spatial embeddings of graphs：a survey，250th Anniversary Conference on Graph Theory（Fort Wayne，IN，1986），Congr．Numer． 64 （1988）， 179－186．
［15］新國亮，空間グラフのトポロジー Conway－Gordon の定理をめぐって，サイエンス社， 2022.
［16］M．Oyama，Topology of complements of real line arrangements，北海道大学大学院理学院修士論文， 2019.
［17］R．Randell，Lattice－isotopic arrangements are topologically isomorphic，Proceedings of the American Mathematical Society（1989），555－559．
[18] R. Randell, Morse theory, Milnor fibers and minimality of hyperplane arrangements, Proc. Amer. Math. Soc. 130 (2002), 2737-2743.
[19] R. Thom, Ensembles et morphismes stratifiés, Bulletin of the American Mathematical Society, 75(2), (1969), 240-284.
[20] G. M. Ziegler, On the difference between real and complex arrangements, Math. Zeitschrijt 212 (1993), no.1, 1-11.

