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1 Introduction.

Reaction-diffusion equations are used as model equations for various pattern
formation phenomena in physics, chemistry, and biology. The existence and
stability of solutions corresponding to characteristic patterns, such as stationary
patterns and traveling waves in actual phenomena are important to understand
the phenomena from the mathematical viewpoint. Recently, mass-conserved
reaction-diffusion systems have been used as mathematical models for various
phenomena such as cell polarity, and phase separation between solid and liquid
phases [5], [21], [26], [13], [10], [27], [16]. This study’s main objective is the
mathematical analysis of mass-conserved reaction-diffusion system for the cell
polarity model.

Cell polarity refers to the spatial localization of some chemical substances
within a cell. For example, in a phenomenon called asymmetric cell division,
it is known that a mother cell localizes a specific protein during cell division
to produce a daughter cell that differs from the mother cell. Cell polarity is
also known to be observed in chemotaxis, in which cells migrate in response
to a concentration gradient of a chemical substance. For these reasons, cell
polarity is considered to be important for cell differentiation and for cells to
acquire anisotropic functions. Various model equations have been introduced to
understand cell polarity from a mathematical point of view [10], [21].

Since cell polarity is an intracellular phenomenon, it is difficult to model and
rigorously analyze all the elements involved in the phenomenon. For example,
cells have a complex shape. In addition, many proteins interact with each other
in a complex manner in the cell polarity, and it is difficult to analyze all of them.
Many previous studies have modeled the cell shape in simple forms, such as a
circle, or examined the models with a reduction for the number of components
under various assumptions [21], [10], [26].

Although we can’t expect that such a conceptual model and the original phe-
nomenon will be in perfect quantitative agreement, the introduction and analysis
of a simple model that reproduces the qualitative properties of cell polarity can
be expected to identify essential elements of the cell polarity phenomenon or to
provide some insight into the phenomenon. For example, previous study [21]
introduced a 6-component reaction-diffusion system under one-dimensional pe-
riodic boundary conditions and a 2-component reaction-diffusion system that
simplifies the 6-component system. These model equations reproduce various
features of cell polarity by numerical simulation. In the view of analysis, the 2-
component equations provide various suggestions for the stability of steady-state
solutions and the dynamics of solutions.

The 2-component model is expressed as

(∗)


∂u

∂t
= Du

∂2u

∂x2
− f(u, v)

∂v

∂t
= Dv

∂2v

∂x2
+ f(u, v)

x ∈ (0,K),

where u and v are the concentrations of proteins U and V in the plasma mem-
brane and cytoplasm, respectively. Although a cell is a three-dimensional object,
the cell membrane and cytoplasm are modeled as intervals (0,K), where peri-
odic boundary conditions are imposed. The parameter K is a positive constant
corresponding to the cell size. Du and Dv are diffusion coefficients of U and
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V . The reaction term f represents the interconversion between U and V . That
is, f > 0 represents the conversion from U to V , and f < 0 represents the
conversion from V to U . In particular, it can be seen that only the sign of the
reaction term differs in the U and V equations. This means that in the above
model, only the conversion between proteins U and V is considered, ignoring
the effects of synthesis and degradation of proteins. Such an assumption is rea-
sonable because cell polarity phenomena occur on a time scale faster than the
time required for protein synthesis and degradation [5]. From the nature of this
reaction term and the periodic boundary conditions, the total mass of U and
V ,
∫
(u+v)dx is shown to be conserved in the system (∗). Due to this property,

equation (∗) is called a mass-conserved reaction-diffusion system.
While the model equation above is 2-component reaction-diffusion system

with periodic boundary condition, various other models have been introduced
as equations with conserved quantities. For example, a cell polarity model with
homogeneous Neumann boundary conditions has been introduced, in which the
mass conservation law holds also. In particular, the dynamics of a front-like
pattern called wave-pinning has been analyzed [13], [14]. A cell polarity model
defined on regions resembling the actual cell shape is called a bulk-surface model.
In the bulk-surface model, the cytoplasm is a region in 2D or 3D space, such as
a unit sphere, and the cell membrane is its boundary. The bulk-surface model
has been the subject of many previous studies, including mathematical analyses
such as the stability of the stationary solutions [23], [24], [3], [17], [18].

We can extend the 2-component model to more multi-component cases. Let
N ≥ 3 be an integer and consider the following N -component equation.

∂ui
∂t

= Di
∂2ui
∂x2

+ fi(u1, . . . , uN ) (i = 1, . . . , N)

N∑
i=1

fi = 0

where ui and Di are the concentrations of i-th chemical substance and diffusion
coefficients of these, respectively. fi represents the interaction between the sub-
stances. For the above equations, for example, if periodic boundary conditions
are imposed, the total amount of substance

∫
(u1 + · · · + uN )dx is a conserved

quantity. This model equation is derived as a cell polarity model that incor-
porates more chemicals into the model than the 2-component model [21], [10],
[19], [26].

As mentioned above, many kinds of equations have been introduced as math-
ematical models of cell polarity. But in general, the more complex the model
equations are, the more complex the mathematical analysis becomes. On the
other hand, the knowledge obtained from the analysis of simple model equations
may be helpful for the analysis of more complex model equations. Based on these
motivations, we limit the study in this thesis to 2-component mass-conserved
reaction-diffusion equations defined on a 1-dimensional interval. Although the
equation is simpler than other model equations, it is known that the model
qualitatively reproduces cell polarity phenomena [5], [21], [13], [10]. Various
mathematical and numerical analyses have been performed on the equations,
including bifurcation analysis, stationary problems, stability of stationary solu-
tions, and dynamics of solutions [16], [14], [15], [6], [7], [25], [12], [2], [8], [9],
[4].
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One of the crucial issues in mass-conserved reaction-diffusion systems is the
shape of the stable steady-state solutions. Mathematically, the non-constant
stationary solution in (∗) corresponds to the polarity pattern. In particular,
many cell polarity phenomena require that a chemical substance is localized at
only one location in the cell. This situation mathematically corresponds to a
stationary solution with a shape that has only one peak. Therefore, the question
of what shape of the steady-state solution is stable is not only mathematically
but also biologically important [21].

This thesis considers the following equation: a mathematical generalization
of the model equation (∗).

(∗∗)

{
∂tu = d1∂

2
xu+ k1g(x, u, v)

∂tv = d2∂
2
xv − k2g(x, u, v)

x ∈ (0,K),

where u = u(t, x) and v = v(t, x) are unknown functions. The function g
is a real-valued function continuous on Ī for x and of class C2 for u and v.
d1, d2, k1, k2 are positive constants. The reaction term depends on the spatial
variable. Such a reaction term can be used, for example, in a model where
chemicals U and V are affected by some other chemical substances in the cell, or
extracellular signals [26], [21], [8]. In particular, if k1 = k2 = 1 and g(x, u, v) =
−f(u, v), equation (∗∗) is consistent with (∗). For equation (∗∗),

∫
I
(k2u+k1v)dx

is conserved when periodic or homogeneous Neumann boundary conditions are
imposed. In the cell polarity model, u and v represent the concentrations of
chemicals, and

∫
I
(u + v)dx is conserved if k1 = k2. This corresponds to the

conservation of mass in the cell. Therefore, when k1 ̸= k2, model equation
(∗∗) does not correspond to the cell polarity model. On the other hand, the
model equation (∗∗) becomes equivalent to the Fix-Cagnalp model describing
solid-liquid phase separation and each other by choosing the reaction term g
appropriately and applying linear transforming to the unknown functions [16].
In this context, k1, k2 become constants determined from the parameters of the
original Fix-Cagnalp model, and the analysis for the case k1 ̸= k2 also makes
sense.

Against this background, we consider the cell polarity model (∗) as one of
the generalized equations (∗∗) and perform mathematical analysis on (∗∗). This
problem setting helps to understand mass-conserved reaction-diffusion systems
in a model-independent systematic manner, and provide a perspective for ap-
plying the results obtained in this study to other models than the cell polarity
model.

By transforming the variables in equation (∗∗) as t → k1t, x →
√
k2/d2x,

equation (∗∗) is expressed as
∂tu = d∂2xu+ g(x, u, v) (t > 0, x ∈ I),

τ∂tv = ∂2xv − g(x, u, v) (t > 0, x ∈ I),

u(0, x) = u0(x), v(0, x) = v0(x) (x ∈ I),

(1)

where τ := k1/k2, d := (d1k2)/(d2k1), and g(x/
√
kv/dv, u, v) and K/

√
kv/dv

are replaced by g(x, u, v) and K, respectively. u0, v0 are real-valued smooth
functions.

This study considers the following homogeneous Neumann or periodic bound-
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ary conditions for (1).

(N.B.C) ∂xu = ∂xv = 0 (t > 0, x = 0,K).

(P.B.C)

{
u(t, 0) = u(t,K), ∂xu(t, 0) = ∂xu(t,K) (t > 0),

v(t, 0) = v(t,K), ∂xv(t, 0) = ∂xv(t,K) (t > 0).

Here, the following conserved quantity exists for a classical solution (u, v) in (1)
with (N.B.C) or (P.B.C).

s :=
1

K

∫
I

(u(t, x) + τv(t, x))dx ≡ 1

K

∫
I

(u0(x) + τv0(x))dx.

In fact, due to the boundary conditions and exchanging integrals and derivatives,
it follows

d

dt

∫
I

(u(t, x) + τv(t, x))dx =

∫
I

(∂tu(t, x) + τ∂tv(t, x))dx =

∫
I

(d∂2xu(t, x) + ∂2xv(t, x))dx

= [d∂xu(t, x) + ∂xv(t, x)]
x=K
x=0 = 0

Therefore, s is constant in the range of t for which (u, v) exists. In this study,
we call equation (1) with (N.B.C) or (P.B.C) mass-conserved reaction-diffusion
system.

We consider the shape of the stable steady-state for a mass-conserved reaction-
diffusion system. This study treats the following two cases for g.

g(x, u, v) = −p(x)u+ q(x)v, (2)

g(x, u, v) = f(u, v), (3)

where p, q ∈ C(Ī) and f ∈ C2(R2). The first case is that the reaction terms
are linear for u and v. Note that the coefficients of p(x) and q(x) are taken as
above only for the convenience of later calculations, and it is not essential in
mathematical analysis. We call a mass-conserved reaction-diffusion system with
reaction term (2) mass-conserved linear reaction-diffusion system.

The authors of the previous study [26] treated a mass-conserved linear
reaction-diffusion system for mathematical analysis of cell polarity models. The
author of this thesis analyzed the existence, uniqueness and shape of the stable
stationary solutions for a mass-conserved linear reaction-diffusion system under
several conditions on the coefficient functions p and q. The conditions on p and
q are derived from the model’s background and are explained in detail in the
first part of this thesis. The stable stationary solutions qualitatively reproduce
the polarity patterns.

The reaction term (3) corresponds to the case where the reaction term does
not depend on spatial variables. In the second part of this thesis, the shape of
the stable stationary solution, in this case, is discussed.

There are many previous studies on stable steady-state solutions of (1) with
(3). Significantly, the reaction term f(u, v) = −f0(u+ γv) + v(γ ≥ 0) has been
used in models of cell polarity and phase separation [21], [5], [27], and it is known
that, when we choose the parameters appropriately, the stable stationary solu-
tion is spatially monotone [15], [6], [9]. In these previous studies, the results of
stability are proved by comparing eigenvalues of a linearized eigenvalue problem
in (1) and the ones in a scalar non-local equation which is related to (1).
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Mathematical techniques in the previous studies are not applicable to gen-
eral reaction terms. Also, previous studies have obtained results for eigenvalues
of linearized eigenvalue problems but not for eigenfunctions. In mass-conserved
reaction-diffusion systems, numerical calculations show dynamics in which mul-
tiple stripe patterns converge to spatially monotonic patterns [5]. To understand
these dynamics, analysis of linearized eigenvalue problems around spatially non-
monotonic stationary solutions is essential, and especially, eigenfunctions are im-
portant for understanding the dynamics of solutions near stationary solutions.
Therefore, this study aims to analyze not only eigenvalues but also eigenfunc-
tions.

In the second part of this thesis, the reaction-diffusion compartment model
is introduced to understand the stability of nonmonotonic stationary solutions
in mass-conserved reaction-diffusion systems and the dynamics of solutions in
the vicinity of the stationary solutions. The reaction-diffusion compartment
model is a system in which the domain of the original reaction-diffusion system
is divided into multiple regions, and diffusion coupling is imposed between the
regions. Analysis of the linearized eigenvalue problem in the reaction-diffusion
compartment model may provide helpful information about the stability of non-
monotonic stationary solutions in the original equations. These details will be
discussed again in Part II.
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Part I

Shape of stable steady-state
solutions in mass-conserved
linear reaction-diffusion systems

2 Introduction.

In this part, we consider the shape of stable steady-state solutions in mass-
conserved linear reaction-diffusion systems. First, we explain the background of
the problem.

Let us consider the following 4-component reaction-diffusion system.

∂tu = d1∂
2
xu+ f(u, v) (t > 0, x ∈ I),

∂tv = d2∂
2
xv − f(u, v) (t > 0, x ∈ I),

∂tws = ds∂
2
xws − p̃(u)ws + q̃(u)wf (t > 0, x ∈ I),

∂twf = df∂
2
xwf + p̃(u)ws − q̃(u)wf (t > 0, x ∈ I),

(P.B.C).

(4)

(4) was introduced in [26] as a mathematical model of cell polarity. u, v, ws

and wf are the concentrations of proteins U, V,Ws and Wf . U, V are up-
stream proteins and Ws,Wf are downstream proteins in intracellular signal-
ing. d1, d2, ds, df are the diffusion coefficients for each substance and supposed
0 < d1 < d2, 0 < ds ≤ df . Also, (P.B.C) here means that periodic bound-
ary conditions are imposed on all unknown functions. Hereafter, we will use
(P.B.C), or (N.B.C) in the same sense when there is no risk of misunderstand-
ing.

In the above equations, p̃(u), q̃(u) represent the effect of the upstream protein
U on the downstream proteins Ws,Wf . For example, if p̃ is strictly increasing,
the higher the concentration of U is, the stronger the conversion from Ws toWf

becomes. On the contrary, if p̃ is strictly decreasing, the higher the concentration
of U is, the weaker the conversion from Ws to Wf becomes.

Let us consider the situation that U, V form polarity patterns. This situation
corresponds mathematically to that u(t, x), v(t, x) converge to a nonconstant
stationary solution u∗(x), v∗(x). In this case, the time evolution of ws and wf

can be expressed by the following 2-component system.
∂tws = ds∂

2
xws − p∗(x)ws + q∗(x)wf (t > 0, x ∈ I),

∂twf = df∂
2
xwf + p∗(x)ws − q∗(x)wf (t > 0, x ∈ I),

(P.B.C).

(5)

p∗(x) := p̃(u∗(x)), q∗(x) := q̃(u∗(x)).

The total mass
∫
I
(ws + wf )dx is conserved in the above equation.

The questions addressed in [26] are when U and V localize, do Ws , Wf

also localize and in which direction do Ws and Wf localize with respect to the
direction in which U localizes. Here, the direction of localization means the
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point of highest concentration. Mathematically, the questions can be rephrased
as follows: if (u, v) is the nonconstant stationary solution, does (ws, wf ) also
converge to a nonconstant stationary solution and at which point does the sta-
tionary solution reach its maximum with respect to the maximum point of u?

From the above background, we treat a mass-conserved linear reaction-
diffusion system.

∂tw = d∂2xw − p(x)w + q(x)z (t > 0, x ∈ I),

τ∂tz = ∂2xz + p(x)w − q(x)z (t > 0, x ∈ I),

(P.B.C),

(6)

where p, q ∈ C(Ī), and d, τ are positive constants. We note that unknown
functions and coefficient functions in (5) are replaced as w, z, p, q in (6). In (6),∫
I
(w+τz)dx is conserved quantity, which can be regarded as a generalization of

the conserved quantity in (5). The case τ = 1 corresponds to mass conservation.
In this thesis, we consider the existence, uniqueness, and shapes of stationary

solutions to (6). We suppose that p(x) > 0, q(x) > 0 (x ∈ Ī). This condition
is derived from the fact that p̃(u)ws, q̃(u)wf represent the reaction between U
and Ws,Wf in the original model equation (4).

For such linear partial differential equations, the strong comparison principle
holds [22], and (6) is one of the equations called an order-preserving system. In
particular, in the case of equation (6), the existence of stationary solutions,
which is uniquely determined with respect to the conserved quantities and their
stability have been shown by using the theory of order-conserving dynamical
systems [20]. Therefore, the unique existence of a stable stationary solution
to (6) is not a new result in this study. However, the shape of the stationary
solution has yet to be analyzed in previous studies. Therefore, in this thesis,
we show the existence and uniqueness of the stationary solutions and, as a new
result, the shape of the stationary solutions, using a different method than in
the previous study [20], although the results overlap with those of the previous
research. The main methods of proof are the theory of boundary value problems
for second-order linear differential equations and Sherman-Morrison formula for
linear integro-differential equations.

The contents of this part are described below. Section 3 provides the math-
ematical tools used in this study. In this study, we use results on boundary
value problems for second-order linear differential equations. Section 4 presents
mathematical assumptions and problem settings in this study. In section 5, we
introduce the main result of this study, namely, the unique existence of station-
ary solutions and their shape, and give its proof. In particular, the shape of
the stationary solution corresponds to the polarity pattern observed in actual
cell polarity phenomena. In section 6, we show a numerical simulation that
corresponds to the main result.

3 Preliminaries.

The following section describes the mathematical tools used in this study. The
primary tool is the theory of boundary value problems in second-order linear
ordinary differential equations.
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This study often deals with the following equations

u′′(x) + b(x)u(x) = c(x) (x ∈ J := (0, l)), (7)

where l is positive constant, ′ := d
dx and b, c ∈ C(J̄). Let us consider the

following boundary conditions.

cosαu(0)− sinαu′(0) = 0 (0 ≤ α < π),

cosβ u(l)− sinβ u′(l) = 0 (0 < β ≤ π).
(8)

The equation (7) with (8) is called a non-homogeneous boundary value problem.
For example, the case α = 0, β = π corresponds to the homogeneous Dirichlet

boundary condition, and the case α = β =
π

2
corresponds to the homogenious

Neumann boundary condition.
The solution to the non-homogeneous boundary value problem can be con-

structed as follows. Initially, let us consider the following equation.

u′′(x) + b(x)u(x) = 0 (x ∈ J), (9)

Let u1, u2 be the solutions of (9) satisfying (u1(0), u
′
1(0)) = (sinα, cosα), (u2(l), u

′
2(l)) =

(sinβ, cosβ). If u1, u2 are linearly independent, there exists unique solution u(x)
in (7) represented by

u(x) =

∫ l

0

G(x, y)c(y)dy,

G is the green function represented as follows.

G(x, y) :=


1

k
u1(x)u2(y) (0 ≤ x ≤ y),

1

k
u1(y)u2(x) (y ≤ x ≤ l),

(10)

where k := u1(x)u
′
2(x) − u′1(x)u2(x) ≡ u1(0)u

′
2(0) − u′1(0)u2(0). Note that if

u1, u2 are linearly independent, k ̸= 0.
When u1, u2 are not linearly independent, a solution for a non-homogeneous

boundary problem may not exist. The fact that they are not linearly indepen-
dent means that there exists a solution to (9) that simultaneously satisfies the
boundary conditions (8). Except in the case of all coefficient functions being
constants or certain coefficient functions, a method has yet to be found to solve
the problem explicitly. It is generally difficult to verify linear independence.
However, if b(x) > 0 (x ∈ J), it is satisfied.

Proption 3.1. Suppose that b(x) > 0 (x ∈ J), and α = β = π/2. Then u1, u2
are linearly independent.

Proof. Suppose u1, u2 are linearly dependent. This means there exist a constant
r such that u1(x) = ru2(x), hence u

′
1(0) = u′1(l) = 0. Since u1 is solution of

(9),
u′′1(x)− b(x)u1(x) = 0 (x ∈ J).

Multiplying both sides by u1 and integrating on I,∫
I

(u′′1 − bu1)u1dx =

∫
I

u′′1u1dx−
∫
I

bu21dx

= −
∫
I

1

2
(u′1)

2dx−
∫
I

bu21dx

= 0.

9



Therefore, u1 ≡ 0, because b(x) > 0. This contradicts to u1(0) = 1. □
From the above proposition, we obtain the next corollary.

Corollary 3.1. Suppose b(x) > 0 (x ∈ J), then there exists a unique solution
in the following problem.{

u′′(x) + b(x)u(x) = c(x) (x ∈ I),

u′(0) = u′(l) = 0.

4 Problem setting.

In this section, we prepare the problem settings for this study. The main interest
of this study is the shape of the stationary solution in (4). The coefficient
functions p, q represent the influence from the upstream protein U in the original
model equations. Hence, an important question is how the shape of the steady-
state solution is affected by p and q.

The equation for the stationary solution of (4) is represented as follows.
dw′′ − p(x)w + q(x)z = 0 (x ∈ I),

v′′ + p(x)w − q(x)z = 0 (x ∈ I),

⟨w⟩+ τ⟨z⟩ = s,

(P.B.C).

(11)

where ⟨ϕ⟩ := (1/K)
∫
I
ϕ(x)dx. We regard s as a parameter of stationary solu-

tions (w(x; s), z(x; s)). Since all term in (11) is linear about w, z, solutions are
represented by (w(x; s), z(x; s)) = s(w(x; 1), z(x; 1)). Therefore, we consider the
case s = 1 hereafter.

We assume the following for (4).

Assumption 1. p, q ∈ C(Ī), and p, q satisfy the following conditions.

(i) p, q are periodic functions with period K, and p(x) > 0, q(x) > 0 (x ∈ Ī).

(ii) p(x) = p(K − x), q(x) = q(K − x) (x ∈ I).

The second condition in the above assumption implies that the graphs of p
and q are symmetric about the axis x = K/2. This assumption implies that the
upstream protein U forms a polarity in the direction x = K/2. Specifically, u∗

takes its maximum value at x = K/2 and is symmetric about the axis x = K/2.
Note that to suppose K/2 is the maximum point of u∗ is not essential, since
(P.B.C) is imposed on (11).

Furthermore, let us define function ρ̃(x) :=
p(x)

d−1p(x) + q(x)
, and assume the

following.

Assumption 2. ρ̃ is strictly increasing on (0,K/2).

This assumption is a mathematical generalization of the problem settings in
[26]. Previous study [26] treats, for example, the case p, q are strictly increasing
and decreasing functions on (0,K/2), respectively. Assumption 2 is satisfied
in this case. In addition, Assumption 2 holds if p is strictly increasing and q
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is a positive constant function. The main result presented in this thesis is a
generalization of the result of [26] in this sense.

The stationary problem (11) is equivalent to a linear integro-differential
equation. Taking the sum of two equations in (11),

dw′′ + z′′ = 0 (x ∈ I).

From the periodic boundary conditions, it follows that there exists a constant c
such that

dw(x; 1) + z(x; 1) = c (x ∈ I). (12)

Taking a spatial average of both sides of (12), it follows

c = d⟨w⟩+ ⟨z⟩
= d(1− τ⟨z⟩) + ⟨z⟩
= d+ (1− dτ)⟨z⟩.

We used the relation ⟨w⟩ + τ⟨z⟩ = 1 above. Substituting c to (12), we obtain
the following.

w(x; 1) = 1 +
1− dτ

d
⟨z⟩ − 1

d
z(x; 1).

Finally, substituting w(x; 1) to (11), it follows that
z′′ − ρ(x)z +

1− dτ

d
⟨z⟩p(x) = −p(x) (x ∈ I),

w(x; 1) = 1 +
1− dτ

d
⟨z⟩ − 1

d
z(x; 1) (x ∈ I),

(P.B.C),

(13)

where ρ(x) := d−1p(x)+q(x). z satisfies the linear integral differential equation.
If we find the solution z, we obtain w also. Conversely, if (w, z) is a solution of
(13), then it is a solution of (11). In the proof of the main result presented in
the next section, we treat the stationary problem (13).

5 Main results.

In this study, we obtain the following main result about the shape of the solution
for (11).

Theorem 5.1. Suppose that Assumption 1 and Assumption 2 hold. Then there
exists unique solution (w∗(x), z∗(x)) to (11). Moreover, it satisfies

(i) w∗(x) > 0, z∗(x) > 0 (x ∈ I).

(ii) w∗(x) = w∗(K − x), z∗(x) = z∗(K − x) (x ∈ I).

(iii) w∗, z∗ are strictly decreasing and increasing function on (0,K/2) respec-
tively.

Moreover, when we let ρ̃ in Assumption 2 be strictly decreasing function on
(0,K/2), then w∗, z∗ are strictly increasing and decreasing function on (0,K/2)
respectively.
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Remark 5.1. When s > 0, Theorem 5.1 holds for solutions (w(x; s), z(x; s)) in
(11).

The stationary solution presented by Theorem 5.1 corresponds to the po-
larity pattern of Ws , Wf in the original model equation (4). (i) is a natural
consequence that comes from the fact that the unknown functions in (4) repre-
sent the concentrations of chemical substances. (ii) and (iii) correspond to the
shape of the polarity pattern, which means that Ws forms the polarity in the
direction of x = 0, i.e., opposite to U , and Wf forms the polarity in the same
x = K/2 direction as U . On the other hand, when we reverse the monotonicity
of ρ̃ in Assumption 2, the directions of polarities ofWs andWf are also reversed.
We show the proof only in the case ρ̃ is strictly increasing on (0,K/2) since the
method of proof is almost the same in both cases.

Let us show the outline of the proof of Theorem 5.1. Using a linear operator,
we reformulate the first equation of (13).

(H+ P)z = −p(x),

Hϕ :=
d2ϕ

dx2
− ρ(x)ϕ, Pϕ :=

1− dτ

d
⟨ϕ⟩p(x).

If inverse operator (H + P)−1 exists, we can express the solution as z(x) =
(H + P)−1(−p(x)). From Sherman-Morrison fomula, (H + P)−1 exists, if H−1

exists and constant c∗ := 1 +
1− dτ

d
⟨H−1p⟩ ̸= 0, and the solution z∗ of (13) is

represented as following.

z∗(x) = (H+ P)−1(−p(x)) =
(
H−1 − 1

c∗
H−1PH−1

)
(−p(x)).

We can check the properties of z∗ from the expression above. We can obtain
the results for w∗ from the second equation in (13).

Let us consider the next auxiliary problem.{
k′′ − ρ(x)k = −p(x) (x ∈ I),

(P.B.C).
(14)

We can regard this boundary value problem as (11) without the term of the
spatial average. The following lemma holds.

Lemma 5.1. A unique solution to (14) exists, and the solution is evenly sym-
metric to K/2.

Proof. (Uniqueness and symmetry) Suppose that k1 and k2 are solutions of
(14). Substituting each of k1 and k2 to (14), and taking the difference between
each equation, we obtain

k̃′′ − ρ(x)k̃ = 0,

where k̃ := k1−k2. Multiplying both side of above equation by k̃, and integrating
it for the interval I, we obtain∫

I

(
k̃′′ − ρ(x)k̃

)
k̃ dx =

[
k̃′k̃
]x=K

x=0
−
∫
I

{(
k̃′
)2

+ ρ(x)k̃2
}
dx

= −
∫
I

{(
k̃′
)2

+ ρ(x)k̃2
}
dx = 0,

12



accordingly, k̃ ≡ 0, then k1 = k2. This means the uniqueness of solutions.
Moreover, if k is a solution to (14), k(K−x) is also a solution to (14) since p and ρ
are evenly symmetric for K/2. By the uniqueness of solutions, k(x) = k(K−x).
Therefore, k(x) is evenly symmetric for K/2.

(Existence of solution) If the solution k exists, k is evenly symmetric with
respect to K/2 and periodic function with period K. Hence k′(0) = k′(K/2) =
k′(K) = 0. Therefore, we only have to prove the existence of the solution of an
equation as follows. {

k′′ − ρ(x)k = −p(x) x ∈ (0,K/2),

k′(0) = k′(K/2) = 0.
(15)

From Corollary2.1, there exists unique solution kN to (15). Let function kP as
following

kP(x) :=

{
kN(x) (0 ≤ x ≤ K/2)

kN(K − x) (K/2 < x ≤ K)

kP satisfies (14). This means the existence of the solution. □
Lemma 5.2. Let k∗ be the solution to (14). k∗ satisfies

(i) k∗ is strictly increasing on (0,K/2).

(ii) 0 < k∗(x) < d (x ∈ I).

Proof. (Proof of (i)) First, we prove
dk∗

dx
(x) ≥ 0 (x ∈ (0,K/2)). Suppose k∗

doesn’t satisfy this condition, and we will show a contradiction. From Lemma
5.1, the derivative of k∗ takes 0 at x = 0,K/2. Hence, there exist x1 ∈ (0 < K/2)
and positive constant δ1 = δ1(x1), such that

dk∗

dx
(x1) < 0,

d2k∗

dx2
(x1) = 0, (16)

dk∗

dx
(x) < 0,

d2k∗

dx2
(x) > 0, (x ∈ Iδ1 ⊂ (0,K/2)),

where Iδ := (x1, x1 + δ) for δ > 0. In the view of (15),

d2k∗

dx2
(x) > 0 ⇔ ρ(x)k∗(x)− p(x) > 0,

⇔ k∗(x) >
p(x)

ρ(x)
= ρ̃(x), (17)

therefore, k∗(x) > ρ̃(x) (x ∈ Iδ1). Due to Assumption 2, ρ̃ is strictly increasing
function in (0,K/2), then k∗(x) > ρ̃(x1) (x ∈ Iδ1). However, due to (16), there
exists a constant δ2 = δ2(x1) > 0, such that

k∗(x1) = ρ̃(x1) k∗(x) < ρ̃(x1) (x ∈ Iδ2 ⊂ (0,K/2)).

Let δ3 := min{δ1, δ2}, then k∗(x) < ρ̃(x1) and k∗(x) > ρ̃(x1) (x ∈ Iδ3). This

is contradiction, then
dk∗

dx
(x) ≥ 0 (x ∈ (0,K/2)). This means k∗ is increasing

function in (0,K/2).
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Next, we prove k∗ is strictly increasing on I1. Suppose k∗ doesn’t satisfy

it, then there exists open interval (a, b) ⊂ (0,K/2), such that
dk∗

dx
(x) = 0 for

x ∈ (a, b). Therefore k∗ is constant in (a, b), then
d2k∗

dx2
(x) = 0. In view of (17),

k∗(x) = ρ̃(x) (x ∈ (a, b)), then ρ̃(x) is constant in (a, b). This is a contradiction.
(Proof of (ii)) Due to Lemma 5.1, k∗ is simmetric with respect to x = K/2
and strictly increasing in (0,K/2). Hence we only have to prove that k∗(0) >

0, k∗(K/2) < d. Because k∗ takes minimum at x = 0,
d2k∗

dx2
(0) ≥ 0 and k∗(0) ≥

ρ̃(0) > 0, due to (17). It is proved that k∗(K/2) < d by same manners. □
Proof of Theorem 5.1 By Lemma 5.1 and Lemma 5.2, k∗ = H−1(−p∗), 0 <
⟨k∗⟩ < d. From this inequality, we can estimate the constant c∗ as follows.

c∗ = 1− 1− dτ

d
⟨k∗⟩ = d− ⟨k∗⟩+ dτ⟨k∗⟩

d
> 0.

Then, c∗ ̸= 0. It concludes that we can apply the Sherman-Morrison formula.
The solution is represented as follows.

z∗(x) =

(
1 +

1− dτ

c∗d
⟨k∗⟩

)
k∗(x) =

d k∗(x)

d− (1− dτ)⟨k∗⟩

w∗(x) = 1 +
1− dτ

d
⟨z∗⟩ − 1

d
z∗(x) =

d− k∗(x)

d− (1− dτ)⟨k∗⟩
.

From Lemma 5.2, k∗ is positive and strictly increasing function on (0,K/2).
Moreover, by the inequality 0 < ⟨k∗⟩ < d, we can calculate d − (1 − dτ)⟨k∗⟩ =
d− ⟨k∗⟩+ dτ⟨k∗⟩ > 0. Hence, w∗ and z∗ satisfy (i)～(iii). □
Remark 5.2. In the previous study [26], we obtained results similar to Theorem
5.1 in the case τ = 1. This study generalizes the results to the case τ > 0.

6 Numerical simulation.

In this section, we show the numerical simulation corresponding to Theorem 5.1.
We refer to the previous study [26] for the setting of the numerical simulation
as follows.

∂tu = d1∂
2
xu−

(
α+

β2
1 + β1u2

)
u+ γv (t > 0, x ∈ I),

∂tv = d2∂
2
xv +

(
α+

β2
1 + β1u2

)
u− γv (t > 0, x ∈ I),

∂tws = ds∂
2
xws − µ1uws + µ2

δ2
1 + δ1u2

wf (t > 0, x ∈ I),

∂twf = df∂
2
xwf + µ1uws − µ2

δ2
1 + δ1u2

wf (t > 0, x ∈ I),

(P.B.C),

(18)
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where α, β1, β2, γ, δ1, δ2, µ1 and µ2 are positive constants. The equation (18) is
the same as the model equation (4) with the following terms.

f(u, v) = −
(
α+

β2
1 + β1u2

)
u+ γv,

p̃(u) = µ1u, q̃(u) = µ2
δ2

1 + δ1u2
.

We note that p̃ and q̃ are strictly increasing and decreasing functions, respec-
tively.

First, we perform a numerical simulation for the first and second equations
in (18) with the following parameters

d1 = 2.40×10−5, d2 = 1.44×10−3, α = 0.06, β1 = 4.50, β2 = 4.00, γ = 0.20,K = 1.00,

and the initial condition

u(0, x) =

{
u0(∆x)

−1 (x = K/2),

0.0 (x ̸= K/2).

v(0, x) = v0 (0 ≤ x ≤ K),

where ∆x is the spatial step width, where we choose ∆x = 0.02. u0 is a positive
constant and we choose u0 = 0.26 in the following simulation. v0 corresponds
to the spatially homogeneous equilibrium for u0, namely

v0 = γ−1

(
α+

β2
1 + β1u20

)
u0.

As a result of the simulation, we obtain a stationary unimodal pattern with a
peak at x = 0.5 (Fig. 1). Let us denote the pattern as (u∗(x), v∗(x)). This
unimodal pattern corresponds to the cell polarity pattern in the direction of the
axis x = 0.5. For u∗(x), we perform the numerical simulation on the following
equation.

∂tws = ds∂
2
xws − µ1u

∗(x)ws + µ2
δ2

1 + δ1(u∗(x))2
wf (t > 0, x ∈ I),

∂twf = df∂
2
xwf + µ1u

∗(x)ws − µ2
δ2

1 + δ1(u∗(x))2
wf (t > 0, x ∈ I),

(P.B.C),

(19)

where we choose the following parameters and initial condition.

ds = 1.28× 10−4, df = 3.20× 10−3, δ1 = 0.5, δ2 = 10.0, µ1 = 1.0, µ2 = 0.2,K = 1.0.

ws(0, x) = wf (0, x) = 1.00 (0 ≤ x ≤ K).

We obtain the stationary pattern w∗
s(x), w

∗
f (x) by the numerical simulation for

(19). w∗
s and w∗

f have the peaks on x = 0 and x = K/2, respectively (Fig. 2).

7 Summary and Discussion.

Against the background of the mathematical analysis for the cell polarity model
(4), we analyzed the shape of the stationary solution for (6). The coefficient
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Figure 1: The numerical simulation for (18). The horizontal axis corresponds
to x and the red line corresponds to u∗(x). The above figure shows only u
component.
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Figure 2: The numerical simulation for (19). The horizontal axis corresponds
to x. The orange and blue lines correspond to w∗

s(x) and w
∗
f (x), respectively.

functions p, q are positive-valued, evenly symmetric with respect to the axis
x = K/2 and satisfy ρ̃ = p(x)/{(1/d)p(x) + q(x)} become strictly monotone on
(0,K/2) in connection with the cell polarity model. The results show that if
ρ̃ strictly increasing on (0,K/2), for stationary solution (w∗, z∗), w∗ is strictly
decreasing on (0,K/2), and z∗ is strictly increasing on (0,K/2). This means
that in the original model equation (4), Ws forms a polarity in the direction
x = 0, and Wf forms a polarity in the direction x = K/2. In addition, if the
monotonicity of ρ̃ is reversed, the direction of polarity is also reversed. These
results mathematically show that the stationary pattern appearing in model
equation (4) qualitatively reproduces the polarity pattern observed in the cell
polarity phenomenon.

Compared to the previous study [26], this thesis also makes two mathe-
matical generalizations. First, the monotonicity assumption for the coefficient
functions p and q is generalized to the assumption for the monotonicity of ρ̃.
This makes the results of this study applicable to more general model equations.
Second, for the constant τ , we extend our results to the arbitrary positive num-
ber τ , not only to the case τ = 1 as in the previous study [26]. In the case,
τ ̸= 1, the conserved quantity differs from the mass conservation law in the cell
polarity model. On the other hand, a mass-conserved reaction-diffusion system
is equivalent to a model equation for phase separation [16], in which conserved
quantity appears for τ ̸= 1. This result is important for applying our method
and results to mathematical analysis for other model equations.
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Part II

Stability of 2-mode stationary
solutions in mass-conserved
reaction-diffusion compartment
model

8 Introduction.

In this part, we consider the equation (1) with the reaction term (3).{
∂tu = d∂2xu+ f(u, v) (t > 0, x ∈ I),

τ∂tv = ∂2xv − f(u, v) (t > 0, x ∈ I).
(20)

As introduced in section 1, this equation was introduced as a conceptual model of
cell polarity and is known as a model that qualitatively reproduces cell polarity
phenomena [5], [21].

In the previous study [5], (P.B.C) is imposed on (20) with τ = 1, f(u, v) =
−au/(u2 + b) (a, b > 0). For this case, certain constant stationary solutions,
which are stable in the absence of diffusion terms, become unstable with diffu-
sion terms. This property is similar to Turing instability [28]. The numerical
simulation with the initial condition, the constant stationary solution with a
small perturbation, shows that a stripe pattern appears and converges to a uni-
modal pattern over time. In this simulation, the height of some peaks in the
stripe pattern decreases while one of the other peaks increase over time. These
dynamics continue until there is finally only one peak (fig. 3).

To understand the transient dynamics, we consider a linearized eigenvalue
problem. Let (u, v) be a stationary solution of (20) with (N.B.C) or (P.B.C),
then there exists a constant c such that

du+ v ≡ c (x ∈ I). (21)

Hence, u satisfies the following scalar equation.

du′′ + f(u, c− du) = 0.

Therefore, u is constant, or N -symmetric solution. In the case of (N.B.C), u
is N -symmetric, if u is strictly increasing or decreasing on (0,K/N). In other
words, we can construct the graph of u on I by extending the one on (0,K/N)
repeatedly. Additionally, if u is N -symmetric, v is also N -symmetric due to
(35). Therefore, stationary solutions for (20) can be classified by using N -mode
stationary solution defined blow.

Definition 1. Let N be a natural number. If (u, v) is stationary solution of
(20) with (N.B.C) and u has exactly (N −1) critical points on I, (u, v) is called
N -mode stationary solution. If (u, v) is stationary solution of (20) with (P.B.C)
and u has exactly (2N − 1) critical points on I and satisfies u′(0) = u′(K) = 0,
(u, v) is called N -mode stationary solution.
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Figure 3: The numerical simulation for (20). f(u, v) = −au/(u2 + b) + v, a =
1.0, b = 0.1, d = 0.02, τ = 1.0,K = 50.0, s = 2.0. The initial condition for the
above simulation is the constant stationary solution with a small perturbation
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Note that when (u, v) is 1-mode stationary solution under (N.B.C), u and
v are strictly monotone functions on I. If (u, v) is 1-mode stationary solution
under (P.B.C), u and v are even symmetric functions for the axis x = K/2, and
the shapes of the functions are unimodal.

The previous study [5] considers the linearized eigenvalue problem for N -
mode stationary solutions for N ≥ 2 and derive the following instability condi-
tion for N -mode stationary solution by performing formal asymptotic analysis
on the eigenvalue problem. Let (u∗, v∗) be N -mode stationary solution of (20)
under (P.B.C). We regard conserved quantity s = (1/K)

∫
I
(u∗ + τv∗)dx as

the parameter of the stationary solution P (x; s) = (u∗(x; s), v∗(x; s)). We also
assume that c in (35) is function of s defined on an appropriate interval. Accord-
ing to [5], it is indicated that N -mode stationary solution P (x; s) is unstable, if
dc
ds (s) < 0.

This study aims to understand the transient dynamics by introducing reaction-
diffusion compartment model. The reaction-diffusion compartment model is the
following coupled reaction-diffusion system.{

∂tuj = d∂2xuj + f(uj , vj),

τ∂tvj = ∂2xvj − f(uj , vj),
t > 0, x ∈ Ij , (22)

where j ∈ {1, 2}, I1 := (0,K/2) and I2 := (K/2,K). (uj , vj) are unknown
functions defined on Ij . In this study, we call (22) the reaction-diffusion com-
partment model, or simply compartment model. The system (22) corresponds
to the situation that the original system (20) is divided into multiple regions,
which we call compartments, and a reaction-diffusion system is considered in
each compartment. For the case of (22), a new boundary x = K/2 appears. We
impose the following boundary conditions on (22).

∂xu1 = ∂xv1 = 0 (t > 0, x = 0),

d∂xu1 = εα(u2 − u1) = d∂xu2 (t > 0, x = K/2).

∂xv1 = ε(v2 − v1) = ∂xv2 (t > 0, x = K/2),

∂su2 = ∂xv2 = 0 (x = K),

(23)

where α > 0, ε ≥ 0. In the perspective of physics, the above boundary condi-
tion corresponds to the situation where a semipermeable membrane separates
the original interval I at x = K/2, and the substances diffuse through the
semipermeable membrane [1]. ε and α represent the strength and ratio of the
diffusive coupling, respectively.

We introduce the relationship between the compartment model and mass-
conserved reaction-diffusion systems. Let ε = 0 on the boundary condition (23),
then (22) turn to the following.

∂tu1 = d∂2xu+ f(u1, v1) (t > 0, x ∈ I1),

τ∂tv1 = ∂2xv − f(u1, v1) (t > 0, x ∈ I1),

∂xu1 = ∂xv1 = 0 (t > 0, x = 0,K/2).

(24)


∂tu2 = d∂2xu2 + f(u2, v2) (t > 0, x ∈ I2),

τ∂tv2 = ∂2xv2 − f(u2, v2) (t > 0, x ∈ I2),

∂xu2 = ∂xv2 = 0 (t > 0, x = K/2,K).

(25)
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There is no diffusive coupling between I1 and I2. Each of (24) and (25) is a
mass-conserved reaction-diffusion system with the interval length K/2.

On the other hand, let us consider the case ε→ ∞. Suppose that derivatives
of uj , vj at x = K/2 are bounded regardless of ε, then

u1(t, 0)− u2(t, 0), v1(t, 0)− v2(t, 0) → 0 (ε→ ∞).

Hence the differences of the values and derivatives of (u1, v1) and (u2, v2) at
x = K/2 converge to 0 when ε tends to infty. Formally, we can regard (22)
with (23) turn to be single mass-conserved reaction-diffusion system defined on
I with (N.B.C) when ε→ ∞.

From the above discussion, (22) is equal to (24) when ε = 0, and is formally
the original mass-conserved reaction-diffusion system when ε → +∞. There-
fore, we can expect that the analysis of the dynamics of the solution in the
compartment model(22) will lead to the understanding of the dynamics of the
solution in the mass-conserved reaction-diffusion system (20). In particular,
we analyze the linearized eigenvalue problem in the compartmental model to
understand the dynamics of the stripe pattern in (20).

The compartment model with the boundary condition (23) imposed has
properties similar to a mass-conserved reaction-diffusion system. The following
conservation law holds in (20) with (23).∫

I1

{u1(t, x) + τv1(t, x)} dx+

∫
I2

{u2(t, x) + τv2(t, x)} dx ≡ Const.

Note that in (22), the conservation laws do not hold in each compartment. We
introduce the following symbols.

sj(t) :=
2

K

∫
Ij

(uj + τvj)dx =: ⟨uj⟩j + τ⟨vj⟩j (j = 1, 2).

where ⟨·⟩j denotes the spatial average on the interval Ij and ⟨u⟩j :=
2

K

∫
Ij
u(x)dx.

The conserved quantity for the system eqrefeq:2-2 is defined as follows.

s :=
1

K

[∫
I1

(u1(t, x) + τv1(t, x))dx+

∫
I2

(u2(t, x) + τv2(t, x))dx

]
=

1

2
(s1(t)+s2(t))

where s is the constant determined by the initial value of the system (22). Note
that (s1 + s2) becomes constant independent of time, but each sj itself is not
necessarily constant.

Similar to (20), we can consider 2-mode stationary solutions in the compart-
mental model (22). Let P (x; s) = (u∗(x; s), v∗(x; s)) be a 1-mode stationary
solution satisfying ⟨u∗⟩1 + τ⟨v∗⟩1 = s in (24). The 2-mode stationary solution
in the compartment model refers to the function P 2 such that

P 2(x; s) :=

{
P (x; s) (x ∈ I1),

P (K − x; s) (x ∈ I2).

For any α, ε, P 2 is a stationary solution of (22). Since the stationary solution
under the Neumann boundary condition is evenly extended, it is clear that P 2
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satisfies the Neumann boundary conditions for x = 0,K, and we can confirm
that P 2 enjoys the boundary condition at x = K/2.

Let us consider the stability of P 2. When ε = 0, the stability of P 2 in (22) is
essentially the same as the stability of P in the reaction-diffusion system (24).
In particular, if P is a stable (unstable) stationary solution in(24), then P 2 is a
stable (unstable) stationary solution in (22). Next, when ε > 0, if P is unstable,
then P 2 is also unstable. On the other hand, it needs to be clarified whether
P 2 is also stable if P is stable.

In this study, we assume that there exists a stable stationary solution P of
(24), and consider a linearized eigenvalue problem for the stationary solution
P 2 in the case ε > 0.

9 Problem setting.

9.1 Basic assumptions

First, we assume the existence of 1-mode stationary solutions in (24). The
stationary problem in (24) is represented as follows.

d∂2xu+ f(u, v) = 0 (x ∈ I1),

∂2xv − f(u, v) = 0 (x ∈ I1),

∂xu = ∂xv = 0 (x = 0,K/2),

⟨u⟩1 + τ⟨v⟩1 = s.

(26)

The last equation of (26) corresponds to the conserved quantity.

Assumption 3. There exist constant s̄ ∈ R and positive number η such that
(26) has a family of solutions P (·; s) = (u∗(·; s), v∗(·; s)) ∈ {C2(Ī1)}2 (s ∈
(s̄− η, s̄+ η)), and the following holds.

(i) P (·; s̄) is 1-mode stationary solution.

(ii) u∗, v∗ are continuously differentiable about s on (s̄− η, s̄+ η).

From (ii) above, we can define a function c(s) := du∗(·; s) + v∗(·; s) (s ∈
(s̄− η, s̄+ η)) and c(s) is continuously differentiable.

Next, we assume that P (·; s̄) is spectrally stable. In the following, let L1

be the linearized operator at P (·; s̄), and let D(L1), σ(L1) be the domain and
spectrum of L1.

L1 : X1 → X1, X1 := (L2(I1))
2,

L1Φ = L1

(
ϕ
ψ

)
=

(
d∂2xϕ+ f∗u(x)ϕ+ f∗v (x)ψ

τ−1{∂2xψ − f∗u(x)ϕ− f∗v (x)ψ}

)
(x ∈ I1),

D(L1) =
{
Φ ∈ (H2(I1))

2 | ∂xΦ = 0 (x = 0,K/2)
}
,

where f∗u(x) := fu(u
∗(x; s̄), v∗(x; s̄)), f∗v (x) := fv(u

∗(x; s̄), v∗(x; s̄)). We de-
fine the inner product ⟨u,v⟩X1

:= ⟨u1, v1⟩L2(I1) + ⟨u2, v2⟩L2(I1) for any u =
(u1, u2),v = (v1, v2) ∈ X1. Note that X1 is Hilbert space induced by ⟨·, ·⟩X1

.
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Assumption 4. There exists positive real number γ1, such that σ(L1) =
{0} ∪ Σ1,Σ1 ⊂ {λ ∈ C; Reλ < −γ1}. Moreover, 0 is simple eigenvalue with
corresponding eigenfunction ∂sP (·; s̄).

Let L∗
1 be the conjugate operator of L1.

L∗
1Φ =

(
d∂2xϕ+ f∗u(x)ϕ− τ−1f∗u(x)ψ

τ−1∂2xψ + f∗v (x)ϕ− τ−1f∗v (x)ψ

)
(x ∈ I1).

Since L1 has a simple eigenvalue 0, L∗
1 also has a simple eigenvalue 0, and the

constant function a :=
2

K

(
1
τ

)
is an eigenfunction corresponding to 0. In this

case ⟨∂sP (·; s̄),a⟩X1
= 1. In fact, since ⟨P (·; s),a⟩X1

= s from the definition of
conserved quantities, we can obtain the above relation by differentiating both
sides of this relation by s.

There is an example satisfying the above Assumption 3, 4 with the reaction
term f(u, v) = u(1 − u2) + τv. In this case, we can construct a stationary
solution concretely by using Jacobi’s elliptic functions and we can analyze the
spectrum of the corresponding linearized operator in detail. We explain this
example in Appendix A.1.

9.2 Linearized eigenvalue problem for 2-mode stationary
solution

The linearized eigenvalue problem for 2-mode stationary solution P 2 is expressed
as follows. 

λΦj = LΦj (x ∈ Ij),

∂xΦ1 = 0 (x = 0),

∂xΦ1 = εA(Φ2 − Φ1) = ∂xΦ2 (x = K/2),

∂xΦ2 = 0 (x = K),

(27)

where Φj(x) := (ϕj(x), ψj(x)) ∈ (H2(Ij))
2, A := diag

{
α
d , 1
}
, and

LΦj =

(
d∂2xϕj + fu(P

2(x; s̄))ϕj + fv(P
2(x; s̄))ψj

τ−1
{
∂2xψj − fu(P

2(x; s̄))ϕj − fv(P
2(x; s̄))ψj

}) (x ∈ Ij)

Next, we introduce the following functions.

Φ(x) :=

{
Φ1(x) (x ∈ I1),

Φ2(x) (x ∈ I2).

Φe :=
Φ(x) + Φ(K − x)

2
, Φo :=

Φ(x)− Φ(K − x)

2
(x ∈ I1 ∪ I2).

Φe and Φo are even and odd symmetric functions with respect to x = K/2,
respectively. In other words, the following holds.

Φe(x) = Φe(K − x), Φo(x) = −Φo(K − x) (x ∈ I1 ∪ I1).

Hence, eigenfunctions of (27) can be decomposed as Φ(x) = Φe(x) + Φo(x). In
this sense, we denote Φe and Φo as even and odd parts of Φ, respectively. By
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decomposing both sides of the eigenvalue problem (27) into even and odd parts,
we can derive the following two equations for Φe,Φo.{

λΦe = LΦe (x ∈ I1),

∂xΦe = 0 (x = 0,K/2).
(28)


λΦo = LΦo (x ∈ I1),

∂xΦo = 0 (x = 0),

∂xΦo = −2εAΦo (x = K/2).

(29)

(28) is eigenvalue problem with (N.B.C) imposed on I1, and (29) is eigenvalue
problem with Neumann boundary condition at x = 0 and Robin boundary
condition at x = K/2. Note that (28) and (29) are independent of each other.

Suppose that Φe,Φo satisfy (28), (29) for certain λ ∈ C. Also, suppose that
Φe ̸≡ 0 or Φo ̸≡ 0 holds. In this case, Φ = Φe+Φo is eigenfunction corresponding
to eigenvalue λ in (27). Conversely, when we find an eigenpair {λ,Φ} in (27), the
even and odd parts of Φ are eigenfunctions in (28) and (29) for λ, respectively.
Therefore, the two eigenproblems (28) and (29) are equivalent to the eigenvalue
problem (27).

(28) is the same as the linearized eigenvalue problem of P in (24). Thus,
for some Φe ̸≡ 0, if {λ,Φe,Φo} satisfies (28) and (29), λ ∈ σ(L1) holds. From
Assumption 4, this eigenvalue does not affect the stability of P 2. Therefore, in
the following, we consider the case Φe ≡ 0 and treat (29) only.

In the eigenvalue problem (29), if ε = 0, this is also equivalent to the lin-
earized eigenvalue problem for P in (24). In particular, from Assumption 4,
when ε = 0, {0, ∂sP} satisfies (29). Let us regard ε as a parameter of the eigen-
pair {λ,Φo}, and consider the variation of eigenpair in a neiborhood of {0, ∂sP}
with respect to ε.

10 Main results.

In this section, we show the main results of this study. The following result gives
sufficient conditions for the 2-mode stationary solution P 2 to become unstable.

Theorem 10.1. Suppose Assumption 3 and Assumption 4 hold. Then there
exists a positive constant η, function λ(·) ∈ C1((−η, η);R), and map Φ(·) ∈
C1((−η, η); (H2(I1))

2) such that
λ(ε)Φ(ε) = LΦ(ε) (x ∈ I1),

∂xΦ(ε) = 0 (x = 0),

∂xΦ(ε) = −2εAΦ(ε) (x = K/2),

for ε ∈ (−η, η). λ(ε),Φ(ε) satisfy that λ(0) = 0,Φ(0)(x) = Φ(x; 0) = ∂sP (x; s̄).
Moreover,

λ(ε) = ελ1 +O(ε2) (ε→ 0), λ1 = − 4

K
{α∂su∗(K/2; s̄) + ∂sv

∗(K/2; s̄)}

Φ(ε) = ∂sP (·; s̄) +O(ε) (ε→ 0).
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The relation λ(ε) = ελ1+O(ε2) in the above theorem represents the asymp-
totic expansion for ε in the neighborhood of simple eigenvalue 0. The λ1 is
the coefficient of the principal term of this asymptotic expansion. If λ1 is
positive, there exists a positive real eigenvalue when 0 < ε ≪ 1. That is,
{α∂su∗(K/2; s̄) + ∂sv

∗(K/2; s̄)} < 0 is a sufficient condition for P 2 to be unsta-
ble.

In particular, when α = d, λ1 is representeed more simply.

λ1 = − 4

K

d

ds
c(s̄).

In this case, the sufficient condition for the instability is expressed as d
dsc(s̄) < 0.

Theorem 10.1 also shows the dynamics of solutions in a neighborhood of P 2.
The Φ(ε) in Theorem 10.1 represents odd part of eigenfunction in (27). Let
us denote Φ(x; ε) as the eigenfunction corresponding to λ(ε) in the eigenvalue
problem(27).

Φ(x; ε) =

{
∂sP (x; s̄) +O(ε) (x ∈ I1)

−∂sP (K − x; s̄) +O(ε) (x ∈ I2)

In other words, the eigenfunction is approximated by odd symmetric extension
of ∂sP with respect to x = K/2. ∂sP represents the variation of the stationary
solution as the conserved quantity s increases, and in particular, ∂sP is consid-
ered to represent the direction in which the stationary pattern grows [5]. From
this, the above eigenfunctions correspond to the dynamics where one pattern
decays and the other grows, as observed by numerical calculations.

Remark 10.1. The sufficient condition d
dsc(s̄) < 0 for instability at α = d is

the same as the condition for instability of the stripe stationary solution, which
was predicted in the previous study [5].

The basic idea of the proof for Theorem 10.1 is to apply the implicit function
theorem to the eigenvalue problem (29). As we have already seen, when ε = 0,
(29) is an eigenvalue problem with (N.B.C). Due to Assumption 4, the eigenpair
{0, ∂sP (·, s̄)} satisfies (29). When ε > 0, ∂sP (·; s̄) is not an eigenfunction since it
does not satisfy the Robin boundary conditions. However, when ε is sufficiently
small, (29) can be considered as a problem under almost (N.B.C), and we can
expect that there exist eigenpairs close to {0, ∂sP (·; s̄)}. In this case, we regard
{0, ∂sP (·; s̄)} as the zero point of a map on an appropriate Banach space and
apply the implicit function theorem to construct eigenvalues and eigenfunctions
that depend on the parameter ε.

However, since the boundary condition of (29) changes if the parameter ε
changes, we can’t apply the implicit function theorem directly to (29). This is
because the implicit function theorem requires that the domain of the map does
not change depending on the parameter.

We transform the above equation to apply the implicit function theorem
to (29). Let the function g satisfies g ∈ C2(Ī1), g

′(0) = 0, and g′(K/2) = 2.
We note that a typical example of g is g(x) = 2

Kx
2. Using this g, we define

Φ̃(x) := eεg(x)AΦ(x). Φ̃ satisfies the following equation.{
λΦ̃ = L1Φ̃ +B(ε)Φ̃ x ∈ I1,

∂xΦ̃ = 0 x = 0,K/2,
(30)
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where, B(·) is operator-valued function.

B : R → B((H2(I1))
2, X1),

B(ε) =M(ε) + εB1 + ε2B2,

M(ε)Φ :=

(
0 f∗v (x)(e

ε(γ−1)g(x) − 1)
−τ−1f∗u(x)(e

ε(1−γ)g(x) − 1) 0

)(
ϕ
ψ

)
,

B1Φ :=

(
−dγ(g′′(x) + 2g′(x)∂x) 0

0 −τ−1(g′′(x) + 2g′(x)∂x)

)(
ϕ
ψ

)
,

B2Φ :=

(
d(γg′(x))2 0

0 τ−1(g′(x))2

)(
ϕ
ψ

)
,

where γ := α/d. Note thatB is C1 map on R and satisfies B(0) = 0, ∥B(ε)∥B((H2(I1)2),X1) =
O(ε) (ε → 0). Since the boundary conditions of equation (30) do not depend
on ε, the implicit function theorem is applicable to this equation.

Let us define the map T as follows.

T : R× R×D(L1) → R×X1

T (ε, λ,Φ) :=

(
⟨Φ,a⟩X1

− 1
λΦ− L1Φ−B(ε)Φ

)
To reduce the degree of freedom for eigenfunctions, we define the first component
of the value of T as above. T is C1 map and satisfies T (0, 0, ∂sP (·; s̄)) = 0 from
Assumption 3.

Due to the definition of T , the partial derivatives of T at (0, 0, ∂sP ) are
represented as follows.

∂εT (0, 0, ∂sP )[ε] =

(
0

−εB′(0)∂sP

)
,

∂(λ,Φ)T (0, 0, ∂sP )[λ,Φ] =

(
⟨Φ,a⟩

λ∂sP − LΦ

)
,

where ∂εT and ∂(λ,Φ)T represent partial derivatives with respect to ε ∈ R
and (λ,Φ) ∈ R × D(L1), respectively. Let us define A := ∂(λ,Φ)T (0, 0, ∂sP ) ∈
B(R×D(L1),R×X1). We obtain the following lemma.

Lemma 10.1. There exists the inverse A−1 ∈ B(R×X1,R×D(L1)) such that

A−1[µ,Ψ] =

(
⟨Ψ,a⟩X1

(µ− ⟨Φ1,a⟩X1
)∂sP +Φ1

)
(µ ∈ R,Ψ ∈ X1), (31)

where Φ1 is a particular solution for the equation L1Φ = ⟨Ψ,a⟩X1
∂sP −Ψ (Φ ∈

D(L1)).

Proof. Since A is closed operator, it is enough to show that A is bijection due
to the closed graph theorem. Suppose A[λ,Φ] = 0.(

⟨Φ,a⟩
λ∂sP − L1Φ

)
=

(
0
0

)
.

(32)

L1 has simple eigenvalue 0, then it satisfies that ⟨λ∂sP,a⟩X1
= 0 due to Fled-

holm alternative. Hence, λ = 0. This means Φ is an eigenfunction corresponding
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to simple eigenvalue 0. Therefore, Φ = r∂sP for certain constant r. Substituting
Φ to the first equation of (32), it follows that

⟨r∂sP,a⟩X1
= r⟨∂sP,a⟩X1

= r = 0.

Then, A is injection.
Next, take any (µ,Ψ) ∈ R×X1 and show that there exists (λ,Φ) such that

A[λ,Φ] = (µ,Ψ). Let us consider the following equation.{
⟨Φ,a⟩X1

= µ,

λ∂sP − L1Φ = Ψ.
(33)

The relation ⟨Ψ− λ∂sP,a⟩X1
= 0 is a necessary and sufficient condition for the

existence of a solution to the second equation above. Therefore, if λ = ⟨Ψ,a⟩X1
,

the general solution of the second equation of (33) is expressed as Φ = r∂sP+Φ1,
where r is an arbitrary constant and Φ1 is a particular solution of the equation
L1Φ = ⟨Ψ,a⟩X1∂sP − Ψ. Substituting Φ into the left-hand side of the first
equation of (33), we obtain

⟨Φ,a⟩X1
= ⟨r∂sP +Φ1,a⟩X1

= r⟨∂sP,a⟩X1
+ ⟨Φ1,a⟩X1

= r + ⟨Φ1,a⟩X1

Therefore, if r = µ−⟨Φ1,a⟩X1
, Φ satisfies the first equation. Thus, the solution

of (33) is represented as follows.

(λ,Φ) = (⟨Ψ,a⟩X1
, (µ− ⟨Φ1,a⟩X1

)∂sP +Φ1)

This concludes that A is surjective. Therefore A−1 exists and be represented
by (31). □

The implicit function theorem is applicable since Lemma 10.1 holds, and T
is C1 map.
Proof of Theorem 10.1

Applying the implicit function theorem to T (0, 0, ∂sP ) = 0, there exists some
positive number ε0 and a C1 function λ(ε) and C1 map Φ(ε) taking values in
(H2(I1))

2 defined on (−ε0, ε0) such that T (ε, λ(ε),Φ(ε)) = 0 (−ε0 < ε <
ε0), λ(0) = 0,Φ(0) = ∂sP , and these satisfy(

λ′(0)
Φ′(0)

)
= −A−1∂εT (0, 0, ∂sP ) =

(
⟨B′(0)∂sP,a⟩X1

−⟨Φ1,a⟩∂sP +Φ1

)
1

where Φ1 is a particular solution of the equation L1Φ = B′(0)∂sP+⟨B′(0)∂sP,a⟩X1∂sP .
Since B′(0) =M ′(0) +B1,

λ′(0) = ⟨B′(0)∂sP,a⟩X1
= ⟨M ′(0)∂sP,a⟩X1

+ ⟨B1∂sP,a⟩X1

⟨M ′(0)∂sP,a⟩X1 =

⟨(
0 (γ − 1)gf∗v

γ − 1

τ
gf∗u 0

)(
∂su

∗

∂sv
∗

)
,
2

K

(
1
τ

)⟩
X1

=
2

K

⟨(
(γ − 1)gf∗v ∂sv

∗

γ − 1

τ
gf∗u∂su

∗

)
,

(
1
τ

)⟩
X1

=
2(γ − 1)

K

∫
I1

g(x) {f∗u(x)∂su∗(x; s̄) + f∗v (x)∂sv
∗(x; s̄)} dx
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∂sP (x; s̄) is the eigenfunction corresponding to 0 in L1, then it holds that

f∗u(x)∂su
∗(x; s̄) + f∗v (x)∂sv

∗(x; s̄) = −d∂2xu∗s(x; s̄) = ∂2xv
∗
s (x; s̄).

From above, it follows that

⟨M ′(0)∂sP,a⟩X1 = − 2

K

∫
I1

g(x){γd∂2xu∗(x; s̄) + ∂2xv
∗
s (x; s̄)}dx

= − 2

K

∫
I1

g(x)∂2x{αu∗(x; s̄) + v∗s (x; s̄)}dx

= − 2

K
[g(x)∂x{α∂su∗(x; s̄) + ∂sv

∗(x; s̄)]
x=K/2
x=0 (34)

+
2

K

∫
I1

g′(x)∂x{α∂su∗(x; s̄) + ∂sv
∗(x; s̄)}dx

=
2

K

∫
I1

g′(x)∂x{α∂su∗(x; s̄) + ∂sv
∗(x; s̄)}dx. (35)

On the other hand,

⟨B1∂sP,a⟩X1 =

⟨(
−dγ(g′′∂su∗) + 2g′∂x∂su

∗)
−τ−1(g′′∂sv

∗ + 2g′∂x∂sv
∗)

)
,
2

K

(
1
τ

)⟩
X1

= − 2

K

∫
I1

{dγ(g′′(x)∂su∗(x; s̄) + 2g′(x)∂x∂su
∗(x; s̄))

+g′′(x)∂sv
∗(x; s̄) + 2g′(x)∂x∂sv

∗(x; s̄)} dx

= − 2

K

∫
I1

{dγ(g′′(x)∂su∗(x; s̄) + 2g′(x)∂x∂su
∗(x; s̄))

+g′′(x)∂sv
∗(x; s̄) + 2g′(x)∂x∂sv

∗(x; s̄)} dx

= − 2

K

∫
I1

{g′′(x)(α∂su∗(x; s̄) + ∂sv
∗(x; s̄) + 2g′(x)∂x(∂su

∗(x; s̄)) + ∂sv
∗(x; s̄)} dx

= − 2

K

∫
I1

{g′′(x)(α∂su∗(x; s̄) + ∂sv
∗(x; s̄))} dx

− 4

K

∫
I1

{g′(x)∂x(∂su∗(x; s̄)) + ∂sv
∗(x; s̄)} dx

= − 2

K
[g′(x)(α∂su

∗ + ∂sv
∗)]

x=K/2
x=0 +

2

K

∫
I1

{g′(x)∂x(α∂su∗(x; s̄) + ∂sv
∗(x; s̄))} dx

− 4

K

∫
I1

{g′(x)∂x(∂su∗(x; s̄)) + ∂sv
∗(x; s̄)} dx

= − 2

K
g′ (K/2) (α∂su

∗ + ∂sv
∗)|x=K/2 −

2

K

∫
I1

{g′(x)∂x(∂su∗(x; s̄)) + ∂sv
∗(x; s̄)} dx

= −4ε

K
(α∂su

∗ + ∂sv
∗)|x=K/2 − ⟨M ′(0)∂sP,a⟩X1

. (36)

(35) and (36) lead to the desired assertion. □

11 Summary and discussion.

We have considered the stability of the 2-mode stationary solution P 2(x; s̄)
in the mass-conserved reaction-diffusion compartment model. The reaction-
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diffusion compartment model becomes formally original mass-conserved reaction-
diffusion system (20) when the parameter ε in the boundary condition (23) tends
to infinity. Therefore, we expect the stability of the stationary solution in the
compartmental model leads to the one of (20).

In this study, we analyze the linearized eigenvalue problem (27) around 2-
mode stationary solution P 2 under Assumption 3 and 4. We construct P 2 by
even expansion of the stable 1-mode stationary solution P in the mass-conserved
reaction-diffusion system (24).

The linearized eigenvalue problem (27) can be decomposed into even and
odd parts of eigenfunctions. The even and odd parts are eigenfunctions for the
eigenvalue problem with (N.B.C) on I1 and for the eigenvalue problem with
Neumann and Robin boundary conditions, respectively. From Assumption 4,
the eigenvalues in (28) do not affect the stability of the stationary solution, so
we only need to consider (29). The boundary condition of (29) includes the
parameter ε, which corresponds to the strength of the diffusive coupling. From
Assumption 4, when ε = 0, {0, ∂sP} is eigenpair in (29). By using the implicit
function theorem, we construct eigenvalues and eigenfunctions {λ(ε),Φ(ε)} in
the neighborhood of {0, ∂sP} when ε is small enough, and obtain the Theorem
10.1. From this result, we obtain the sufficient condition of instability of P 2 in
the case 0 < ε ≪ 1. We also proved rigorously that Φ(ε) is approximated by
∂sP if ε is sufficiently small. These eigenfunctions correspond to the pattern
dynamics observed in mass-conserved reaction-diffusion systems.

The present framework can be generalized to N -mode stationary solutions
corresponding to more complex patterns. Dividing the original interval I =
(0,K) into N compartments, where every compartment has equal length, the
following expression is given.

∂tuj = d∂2xuj + f(uj , vj) (t > 0, x ∈ Ij),

τ∂tvj = ∂2xvj − f(uj , vj) (t > 0, x ∈ Ij),

∂xu1 = ∂xv1 = 0 (t > 0, x = 0),

d∂xuj = εα(u2 − u1) = d∂xu2 (t > 0, x = jK/N, j = 1, . . . , N − 1).

∂xvj = ε(v2 − v1) = ∂xv2, (t > 0, x = jK/N, j = 1, . . . , N − 1),

∂suN = ∂xvN = 0 (t > 0, x = K),

(37)

where Ij := ((j − 1)K/N, jK/N). Let (uj , vj) be defined on Ij . For the above
equations, like the case of 2-mode stationary solutions, we can construct N -
mode stationary solutions by expanding the 1-mode stationary solutions on
I1. However, when N is 3 or more, the decomposition of even and odd parts,
as in the linearized eigenvalue problem for 2-mode stationary solutions, is not
applicable. The generalization to N -mode stationary solutions is left to future
work.

In this study, we consider the linearized eigenvalue problem in the compart-
mental model, aiming at the stability analysis of the 2-mode stationary solution
in (20). Therefore, it is the essential question whether the analysis of the eigen-
value problem (27) leads to the stability of the stationary solution in the original
equation (20). To study this question, let us consider the odd part equation (29)
again. In the view of the boundary conditions of (29), we can expect that if
ε → ∞, the Robin boundary condition turns to Dirichlet boundary condition,
namely Φ(K/2) = 0. Therefore, if eigenvalues and eigenfunctions {λ(ε),Φ(ε)}
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constructed in the present study converges to certain eigenpair {λ∞,Φ∞} when
ε→ ∞, these satisfy the following.

λ∞Φ∞ = LΦ∞ (x ∈ I1),

∂xΦ
∞ = 0 (x = 0),

Φ∞ = 0 (x = K/2).

(38)

The odd extension of Φ∞ is an eigenfunction corresponds to λ∞ for linearized
eigenvalue problem about the 2-mode stationary solution of the original mass-
conserved reaction-diffusion system (20). If the real part of λ∞ is positive, the
2-mode stationary solution is unstable. Thus, the stability analysis in the com-
partment model is expected to lead to the stability analysis in the original model
equation. However, the above discussion is still a formal one. Mathematically
rigorous analysis for the existence of {λ∞,Φ∞} and the sign of λ∞ are left to
the future work.
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A Appendix

A.1 An example of Assumption 3, 4.

This Appendix introduces an example satisfying Assumption 3, 4. We consider
the following equations.

∂tu = d∂2xu+ u(1− u2) + v (x ∈ (−l/2, l/2)) ,
∂tv = ∂2xv − u(1− u2)− v (x ∈ (−l/2, l/2)) ,
(N.B.C),

(39)

where 0 < d < 1. This equation is a mass-conserved reaction-diffusion system
with the reaction term f(u, v) = u(1−u2)+v and τ = 1. l is a positive constant,
and the interval is rewritten as (−l/2, l/2) for convenience. We rewrite the
interval as I = (−l/2, l/2).

The stationary problem in (39) is expressed as follows.

d∂2xu+ u(1− u2) + v = 0 (x ∈ I),

∂2xv − u(1− u2)− v = 0 (x ∈ I),

1

l

∫
I

(u+ v)dx = s,

(N.B.C).

(40)

Let (u, v) be a solution of (40). There exists a certain constant c such that
du+ v ≡ c. This c can be computed from the conservation law.

c = s− 1− d

l

∫
I

u(x)dx.

Therefore, the above stationary problem can be expressed as follows.d∂
2
xu+ u(1− d− u2) +

(
s− 1− d

l

∫
I

u(x)dx

)
= 0 (x ∈ I),

(N.B.C).

(41)

Transforming the variables in (41) as x → 2
l x, u → u√

1−d
, equation (41) is

expressed as follows.d̃∂
2
xu+ u(1− u2) +

s

(1− d)
3
2

− ⟨u⟩ = 0 (x ∈ (−1, 1)),

(N.B.C),

(42)

where d̃ := d
1−d

4
l2 , and ⟨u⟩ = 1

2

∫ 1

−1
u(x)dx in the following.

Considering the case s = ⟨u⟩ = 0 in the above stationary problem,{
d̃∂2xu+ u(1− u2) = 0 (x ∈ (−1, 1)),

(N.B.C).
(43)

This problem is the same as the stationary problem for the Allen-Cahn equation.

31



When 0 < d̃ < 4
π2 , there exists a nonconstant solution to (43). In particular,

it is known that Jacobi’s elliptic function can specifically express the solution.

Therefore, in the following, suppose d < l2

l2+π2 .
Let sn(x, k) be a Jacobi elliptic function with −1 < k < 1, where k is the

parameter of the elliptic function. sn(x, k) is the inverse function of the following
elliptic integral.

sn−1(y, k) :=

∫ y

0

dt√
1− t2

√
1− k2t2

(−1 < y < 1).

Let us denote K(k) and E(k) as the complete elliptic integrals of the first and
second kinds.

K(k) =

∫ 1

0

dt√
1− t2

√
1− k2t2

, E(k) =

∫ 1

0

√
1− k2t2√
1− t2

dt

We consider the case 0 < k < 1 in the following part. Let us define α ∈ (0, 1)

as unique solution of the relation k =
√

α2

2−α2 . The exact solution of (43) can

be expressed as follows.

u∗(x; d̃(k)) =

√
2k

1 + k2
sn(K(k)x, k) (x ∈ (−1, 1)), d̃(k) :=

1

(1 + k2){K(k)}2

We note that it follows that 0 < d̃(k) < 4
π2 in the case 0 < k < 1, u∗ is odd

function on (−1, 1), and u∗(x; d̃(−k)) = −u∗(x; d̃(k)) (k ∈ (0, 1)).
Let us ommit to show the paramerter and write u∗(x) in place of u∗(x; d̃(k)).

Let us put v∗(x) := −d̃u∗(x), then S(x) :=
√
1− d(u∗((l/2)x), v∗((l/2)x) is the

stationary solution of the equation (40).

A.2 Proof.

In the following, we show that S satisfies Assumption 3, 4. First, prepare the
following symbols.

C2
N [−1, 1] := {u ∈ C2[−1, 1]|u′ = 0 (x = ±1)},

H2
N (−1, 1) := {u ∈ H2(−1, 1)|∂xu = 0 (x = ±1)},

G : H2
N (−1, 1)× R → L2(−1,−1)

G(u, s) := d̃∂2xu+ u(1− u2) +
s

(1− d)
3
2

− ⟨u⟩

Note that G is a C1 map and satisfies G(u∗, 0) = 0.
We consider the following linearized eigenvalue problem for u∗(x) to (42).

L : L2(−1, 1) → L2(−1, 1)

Lϕ := d̃∂2xϕ+ {1− 3(u∗)2}ϕ− ⟨ϕ⟩ = µϕ

D(L) := H2
N (−1, 1),

where, µ is eigenvalue of L, L0ϕ := d̃∂2xϕ+ {1− 3(u∗)2}ϕ, and Aϕ := −⟨ϕ⟩.
Note that all eigenvalue of L is a real number since L is a self-adjoint oper-

ator. The following lemma holds.
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Lemma A.1 Suppose all eigenvalues of L are negative, then S satisfies As-
sumption 3, 4.

Proof. Since 0 is not eigenvalue of L, L−1 exists. From the implicit function
theorem, there exists a C1-curve φ(·; s) ∈ D(L) for s in a neighborhood of s = 0,
and φ(·; s) satisfy

d̃∂2xφ+ φ(1− φ2) +
s

(1− d)
3
2

− ⟨φ⟩ = 0.

By applying the Sobolev embedding theorem, we can choose φ(·; s) as C1-curve
in C2

N . Therefore, Assumption 3 holds. For the proof about Assumption 4, we
note that the eigenvalues for the linearized eigenvalue problem for u∗(x) to (42)
are the same as the ones for

√
1− du∗((2/l)x) to (41). From this fact, Theorem

1.3 of [16] is applicable, which lead to show Assumption 4 folds for S □
We prove all eigenvalue of L is negative in the following part. Let {κn}∞n=0

be eigenvalues of L0 satisfying κ0 > κ1 > κ2 > . . . . We note that κ0, κ1 and κ2
are represented as following [29].

κ0 = −1+
√
1 + 3(1− α2)2 > 0, κ1 = −3

2
α2 < 0, κ2 = −1−

√
1 + 3(1− α2)2 < 0

Especially, L0 has only one positive eigenvalue.
By Sherman-Morrison formula, when λ ̸∈ σ(L0), necessary and sufficient

condition of λ ∈ σ(L) is ⟨(L0 − λ)−1[1]⟩ = 1. Let us define H(k, λ) := ⟨(L0 −
λ)−1[1]⟩, then

H(k, λ) =

6(1 + k2)

(
1− E(k)

K(k)

)
− (λ+ 3)(1 + k2)2

(k2 + 1)2(λ2 + 2λ)− 3(k2 − 1)2
(44)

This fomula is derived by calculating (L0 −λ)(c1(u
∗)2 + c2) = 1 and comparing

the coefficients c1, c2 on both sides [11] with using the following fomula.

⟨(u∗)2⟩ = 2

1 + k2

(
1− E(k)

K(k)

)
In the following, we will show how λ ̸∈ σ(L) when λ ≥ 0.

(Case.1 0 ≤ λ < κ0): First, we consider the case λ = 0.

H(k, 0) =
1 + k2

(1− k2)2

{
1 + k2 − 2

(
1− E(k)

K(k)

)}
.

Due to the fact E(k) > K(k)(1− k2) (0 < k < 1),

H(k, 0) >
1 + k2

1− k2
> 1 (0 < k < 1). (45)

Thus, for 0 < k < 1, λ = 0 is not eigenvalue of L. This means that L has a
bounded inverse.
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Next, we consider the case 0 < λ < κ0. From k =
√

α2

2−α2 , dividing the

denominator and numerator of (44) by (k2 + 1)2,

H(α, λ) =

3(2− α2)

(
1− E

K

)
− (λ+ 3)

(λ2 + 2λ)− 3(1− α2)2 .

Hence

Hλ =
3(1− α2)2 + (λ2 + 6λ+ 6)− 6(λ+ 1)(2− α2)(1− E/K)

{(λ2 + 2λ)− 3(1− α2)2}2

Since E(k) > K(k)(1 − k2) (0 < k < 1), it holds that 1 − E/K < k2 = α2

2−α2 .
Therefore,

Hλ >
3(1− α2)2 + (λ2 + 6λ+ 6)− 6(λ+ 1)α2

{(λ2 + 2λ)− 3(1− α2)2}2
=

3(1− α2)2 + λ2 + 6(λ+ 1)(1− α2)

{(λ2 + 2λ)− 3(1− α2)2}2
.

Thus Hλ > 0 when λ ≥ 0. This inequality and (45) conclude that H(k, λ) >
1 (0 < k < 1). Therefore, when 0 < λ < κ0, λ ̸∈ σ(L).
(Case.2 κ0 < λ): When 0 < k < 1, H(k, λ) < 0. Then, H(k, λ) ̸= 1. This
implies λ ̸∈ σ(L).
(Case. 3 λ = κ0): Suppose κ0 ∈ σ(L) and we will show a contradiction. Let
ψ(x) be the corresponding eigenfunction. Hence

(L− κ0)ψ = (L0 +A− κ0)ψ = 0

(L0 − κ0)ψ = −A.ψ

Let h(x) := −Aψ and consider the next problem.

(L0 − κ0)ϕ = h(x)

Since κ0 is the eigenvalue of L0, the necessary and sufficient condition for the
existence of a solution to the above equation is

⟨η0, h⟩ = 0,

where ⟨·, ·⟩ denotes inner product on L2(−1, 1). Hence

⟨η0, h⟩ = −⟨η0, Aψ⟩ = ⟨ψ⟩⟨η0, 1⟩ = 0

Note that κ0 is a simple eigenvalue, and η0 is not sign-changing on (−1, 1) from
Sturm-Liouville theory. Then ⟨η0, 1⟩ ̸= 0. It concludes ⟨ψ⟩ = 0.

From above, Aψ = 0. Therefore, ψ is an eigenfunction corresponding to the
eigenvalue κ0 of L0. From the simplicity of κ0, ψ = rη0 for certain constant
r. On the other hand, since ⟨ψ⟩ = 0, r = 0. This is inconsistent with the
assumption that ψ is an eigenfunction. Therefore κ0 ̸∈ σ(L).
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[24] Andreas Rätz and Matthias Röger. Symmetry breaking in a bulk–surface
reaction–diffusion model for signalling networks. Nonlinearity, 27(8):1805,
2014.

[25] Takashi Okuda Sakamoto. Hopf bifurcation in a reaction–diffusion system
with conservation of mass. Nonlinearity, 26(7):2027, 2013.

[26] Sungrim Seirin-Lee, Tsubasa Sukekawa, Tomohiro Nakahara, Hiroshi Ishii,
and Shin-Ichiro Ei. Transitions to slow or fast diffusions provide a general
property for in-phase or anti-phase polarity in a cell. Journal of Mathe-
matical Biology, 80(6):1885–1917, 2020.

[27] Takashi Suzuki and Souhei Tasaki. Stationary fix-caginalp equation with
non-local term. Nonlinear Analysis: Theory, Methods Applications, 71(3-
4):1329–1349, 2009.

[28] Alan Mathison Turing. The chemical basis of morphogenesis. Bulletin of
mathematical biology, 52(1-2):153–197, 1990.

[29] Tohru Wakasa. Exact eigenvalues and eigenfunctions associated with lin-
earization for chafee-infante problem. Funkcialaj Ekvacioj, 49(2):321–336,
2006.

36


