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Modeling temporal dynamics of genetic diversity in

stage-structured plant populations with reference to

demographic genetic structure

Yoichi Tsuzukia, Takenori Takadaa, Masashi Oharaa

aGraduate School of Environmental Science, Hokkaido University, N10W5, Sapporo
City, 060-0810, Hokkaido Prefecture, Japan

Abstract

Predicting temporal dynamics of genetic diversity is important for assessing

long-term population persistence. In stage-structured populations, especially

in perennial plant species, genetic diversity is often compared among life his-

tory stages, such as seedlings, juveniles, and flowerings, using neutral genetic

markers. The comparison among stages is sometimes referred to as demo-

graphic genetic structure, which has been regarded as a proxy of potential

genetic changes because individuals in mature stages will die and be replaced

by those in more immature stages over the course of time. However, due to

the lack of theoretical examination, the basic property of the stage-wise ge-

netic diversity remained unclear. We developed a matrix model which was

made up of difference equations of the probability of non-identical-by-descent

of each life history stage at a neutral locus to describe the dynamics and the

inter-stage differences of genetic diversity in stage-structured plant popula-

tions. Based on the model, we formulated demographic genetic structure as

well as the annual change rate of the probability of non-identical-by-descent

(denoted as η). We checked if theoretical expectations on demographic ge-
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netic structure and η obtained from our model agreed with computational

results of stochastic simulation using randomly generated 3,000 life histo-

ries. We then examined the relationships of demographic genetic structure

with effective population size Ne, which is the determinants of diversity loss

per generation time. Theoretical expectations on η and demographic genetic

structure fitted well to the results of stochastic simulation, supporting the

validity of our model. Demographic genetic structure varied independently

of Ne and η, while having a strong correlation with stable stage distribution:

genetic diversity was lower in stages with fewer individuals. Our results

indicate that demographic genetic structure strongly reflects stable stage

distribution, rather than temporal genetic dynamics, and that inferring fu-

ture genetic diversity solely from demographic genetic structure would be

misleading. Instead of demographic genetic structure, we propose η as an

useful tool to predict genetic diversity at the same time scale as population

dynamics (i.e., per year), facilitating evaluation on population viability from

a genetic point of view.

Keywords: effective population size, expected heterozygosity, life history,

matrix model, non-identical-by-descent

1. Introduction1

Genetic diversity, or standing genetic variation, is a source of adaptive2

evolution (Barrett and Schluter, 2008). Populations with high genetic di-3

versity are more likely to adapt to environmental changes and to persist for4

a long period (Agashe et al., 2011; Ramsayer et al., 2013). Therefore, it is5

necessary to examine the temporal dynamics of genetic diversity for assessing6
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long-term population viability (Mimura et al., 2017).7

The rate of change in genetic diversity per generation time is primarily8

determined by the effective population size (Ne): the larger Ne, the weaker9

genetic drift, and the more likely genetic diversity is maintained (Crow and10

Kimura, 1970). Although Ne was first theoretically proposed for populations11

without generation overlap, many wild populations including perennial plants12

have overlapping generations and are made up of individuals differing in13

age or life history stage. Previous theoretical studies extended the concept14

of effective population size to populations structured by age (Felsenstein,15

1971; Hill, 1972, 1979; Johnson, 1977) or by stage (Orive, 1993; Yonezawa16

et al., 2000) by formulating Ne with demographic rates (age- or stage-specific17

survival rates and fecundities). These formulations enable us to calculate Ne18

and to assess the temporal genetic dynamics in species with complex life19

histories (Waples et al., 2011, 2013).20

Meanwhile, some empirical genetic studies do not examine Ne to predict21

future genetic diversity of stage-structured populations. Instead, genetic di-22

versity is comparatively estimated for each stage class at a single time point23

with neutral genetic markers (Aldrich et al., 1998; Ally and Ritland, 2006;24

Kettle et al., 2007; Linhart et al., 1981; Murren, 2003; Schmidt et al., 2018;25

Vranckx et al., 2014). The resultant stage-wise genetic diversity is sometimes26

referred to as demographic genetic structure (Aldrich et al., 1998) and is con-27

sidered to reflect potential genetic changes that accompany the turnover of28

constituent individuals. For example, if juvenile stage is less diverse than29

more mature stages, genetic diversity would decrease with the replacement30

of mature individuals to juveniles. Because species with stage structure are31
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mostly long-lived and long-term genetic monitoring is impractical, demo-32

graphic genetic structure has been considered as a rough but a convenient33

empirical approach to infer the temporal genetic dynamics (Mimura et al.,34

2017; Schmidt et al., 2018).35

Despite its empirical usage, mathematical and theoretical basis of demo-36

graphic genetic structure has been in its infancy. Unlike Ne, demographic37

genetic structure has not been formulated mathematically using demographic38

rates. Relationships with Ne have also remained unexplored, which raises a39

question on whether Ne and demographic genetic structure are largely redun-40

dant or highlight different aspects of temporal genetic dynamics. Moreover,41

lack of theoretical background draws concerns about the current interpre-42

tation on demographic genetic structure. While analysis on demographic43

genetic structure implicitly assumes that individuals sequentially grow and44

die from juvenile to mature stage classes, this assumption is potentially in-45

valid in perennial plants. In most perennial plant species, whose life histories46

are structured by stage, not by age (Silvertown, 1987), aging (or passing of47

time) does not necessarily promote growth and maturation. Some individ-48

uals might keep proceeding to more mature stages, while others remain in49

the same stage for a long period (stasis) or even reverse to more juvenile50

stages (retrogression), and the probabilities of growth, stasis, and retrogres-51

sion depend on stage, rather than on age. For example, long-lived woodland52

perennial herbs of the genus Trillium show stasis for more than ten years in53

juvenile stages as well as go back from a mature reproductive stage to a pre-54

reproductive one in response to resource exhaustion (Knight, 2004; Ohara55

et al., 2001; Tomimatsu and Ohara, 2010). The static and bidirectional flows56

4



in the life cycle complicate the order of individual turnover in a population.57

It has not been theoretically confirmed if demographic genetic structure still58

serves as a proxy for temporal changes despite these challenges. Mathemat-59

ical formulation that encompasses demographic genetic structure, as well as60

the temporal change in genetic diversity, will provide integrative understand-61

ings on all the problems mentioned above in stage-structured populations,62

but has never been achieved so far.63

In this study, we develop a matrix model to describe the temporal dy-64

namics of genetic diversity for a neutral locus of a stage-structured perennial65

plant species. The model is constructed by deriving difference equations of66

the probability that two genes randomly sampled from a given life history67

stage are non-identical-by-descent. Based on the model, we formulate de-68

mographic genetic structure and Ne. Thus, our model allows integrative69

analysis on demographic genetic structure, temporal dynamics of genetic di-70

versity, and their relationships. In the following sections, we describe the71

derivation procedures of our model (section 2.1), the validation of our model72

(section 2.2), and the assessment on whether demographic genetic structure73

serves as a good proxy for the temporal changes in genetic diversity (section74

2.3).75

2. Materials and Methods76

2.1. Model development77

2.1.1. Overview78

Felsenstein (1971) derived inbreeding effective population size for age-79

structured populations by formulating recurrence equations of the probability80
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of non-identical-by-descent, which is also described in Charlesworth (1994).81

We partly follow mathematical formulation procedures in Felsenstein (1971)82

while adding necessary modifications to extend it to stage-structured popu-83

lations. We develop difference equations of the probability of non-identical-84

by-descent at a neutral locus for a closed, stage-structured population, sup-85

posing a diploid perennial plant species. We do not consider sex differences86

because most plants are hermaphrodite (Torices et al., 2011). We assume87

that mutations do not newly occur. Besides, as in Felsenstein (1971), we88

assume demographic equilibrium, where the census population size and its89

allocation to each stage (stage distribution) are constant over time. Cen-90

sus population size is set to N , which is divided into n life history stages91

(N1, N2, · · · , Nn).92

N =
n∑

i=1

Ni (1)

The probability of transition (either growth, stasis, or retrogression) from93

stage j to stage i is tij per year. In each year, individuals randomly mate94

and fij newborns join stage i from a parent in stage j. aij, which denotes95

the sum of tij and fij, describes the total flow of individuals from stage j to96

i between successive years.97

aij = tij + fij. (2)

In age-structured life histories, flows of individuals among age classes are98

sparse: survival paths connect only adjacent ages in the direction from i to99

i + 1 (i.e., tij = 0 when i ̸= j + 1), and reproduction paths join only age100

class 1 (i.e., fij = 0 when i ̸= 1). In plants, however, multiple survival paths101

come in and out from each stage by the combination of growth, stasis, and102
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retrogression. Moreover, newborns do not always join the first stage, because103

newborn seeds either become dormant to join seed bank stage, or immediately104

germinate to join juvenile stages, resulting in multiple destinations (e.g., a105

perennial plant Carduus nutans, whose life cycle is shown in figure 1 of Shea106

and Kelly (1998)). Therefore, stage is not merely a pooling of successive age107

classes and stage-structured life histories are essentially different from age-108

structured ones. We need to consider all possible transition and reproduction109

paths among stages, which is quite a distinct point compared to the age-110

structured model in Felsenstein (1971).111

Population dynamics can be modeled by the following matrix population112

model.113 

N1,t

...

Ni,t

...

Nn,t


=



a11 · · · a1j · · · a1n
...

...
...

ai1 · · · aij · · · ain
...

...
...

an1 · · · anj · · · ann





N1,t−1

...

Ni,t−1

...

Nn,t−1


. (3)

Ni,t denotes the number of individuals in stage i in year t, which is always114

equal to Ni for any t because we assume demographic equilibrium. Stable115

stage distribution, which is the relative number of individuals among stages116

in the equilibrium state, is proportional to the leading right eigenvector of117

the transition matrix (Caswell, 2001).118

We define Hij,t as the probability that two genes randomly sampled from119

stage i and j with replacement in year t are not identical-by-descent. Each120

gene has its own ancestry, and two-gene pairs that are (non-)identical-by-121

descent at t = 0 will remain the same for any t. Similarly, because we assume122
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no mutations, two-gene pairs that are (non-)identical-by-state at t = 0 will123

also remain the same over time. This means that Hij,t behaves in the same124

manner as expected heterozygosity, which is the probability of non-identical-125

by-state and is commonly used as a proxy of genetic diversity. Our goal126

is to formulate Hij,t for all possible i and j, which enables us to obtain127

theoretical counterpart of demographic genetic structure, that is, stage-wise128

genetic diversity at a particular time point.129

Here, we provide key derivation procedures, highlighting the differences130

with the preceding age-structured models in Felsenstein (1971). The com-131

plete derivation procedures are given in Supporting Information 1.132

2.1.2. Difference equations of Hij,t133

We begin with modeling the changes in Hij,t between two successive time134

points for all i and j, which are the stage-structured version of equations 2135

to 5 in Felsenstein (1971). We separately consider two mutually exclusive136

situations: i ̸= j (case 1) and i = j (case 2). Both cases can be further137

split into six situations. Firstly, two genes randomly sampled in year t were138

either in the same stage (say, stage m, case A) or in different stages (say,139

stage k and l, case B) in year t − 1. Furthermore, genes can move among140

stages either by survival (grow, stasis, and retrogression) or by reproduction.141

Survival and reproduction are essentially different because reproduction al-142

lows one gene to be replicated and to move to multiple stages simultaneously143

and independently, while survival does not. There are three possibilities in144

how the two genes sampled were transferred from the previous year: both145

genes were transferred by survival (case α), one by survival and the other146

by reproduction (case β), and both by reproduction (case γ). Considering147
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the combinations of where (case A and B) and how (case α, β, and γ) the148

two genes sampled came from, there are 6 mutually exclusive situations to149

be considered in both case 1 and 2 (Figure 1).150

This classification scheme is original to our stage-structured model, and is151

not adopted in Felsenstein (1971). Compared to age-structured life histories,152

classes are more densely interconnected by survival and reproduction in stage-153

structured ones. It is necessary to consider as many as 12 situations to handle154

the complexity in plant life histories.155

In case 1 (i.e., i ̸= j), Hij,t can be decomposed as follows.156

Hij,t =Hij,t|1∩A∩α +Hij,t|1∩A∩β +Hij,t|1∩A∩γ

+Hij,t|1∩B∩α +Hij,t|1∩B∩β +Hij,t|1∩B∩γ, (4)

where the cap symbol ∩ stands for the co-occurrence of multiple cases:157

Hij,t|1∩Y ∩Z stands for Hij,t that simultaneously satisfies case 1, Y, and Z158

(Y = A,B; Z = α, β, γ). All six Hij,t|1∩Y ∩Z on the right side of equation 4159

are formulated as follows (see Supporting Information 1.1 for details).160

Hij,t|1∩A∩α =
n∑

m=1

{
timtjmN

2
m

NiNj

× 1

1− 1/(2Nm)
Hmm,t−1

}
Hij,t|1∩A∩β =

n∑
m=1

{
(timfjm + fimtjm)N

2
m

NiNj

×Hmm,t−1

}
Hij,t|1∩A∩γ =

n∑
m=1

(
fimfjmN

2
m

NiNj

×Hmm,t−1

)
Hij,t|1∩B∩α =

n∑
k=1

n∑
l=1
l ̸=k

{
(tiktjl + tiltjk)NkNl

NiNj

×Hkl,t−1

}

Hij,t|1∩B∩β =
n∑

k=1

n∑
l=1
l ̸=k

{
(tikfjl + fiktjl + tilfjk + filtjk)NkNl

NiNj

×Hkl,t−1

}
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Hij,t|1∩B∩γ =
n∑

k=1

n∑
l=1
l ̸=k

{
(fikfjl + filfjk)NkNl

NiNj

×Hkl,t−1

}
. (5)

Each Hij,t|1∩Y ∩Z is shown as a summation of a multiplications of two terms.161

The first term is a conditional probability of case 1∩Y ∩Z given case 1. For162

example, the first term of Hij,t|1∩A∩α can be rewritten as (2timNm)/(2Ni)×163

(2tjmNm)/(2Nj), which is the number of two-gene pairs that fall into case 1,164

A, and α simultaneously under a specific m (i.e., 2timNm × 2tjmNm) divided165

by the total number of pairs that satisfy case 1 (i.e., 2Ni × 2Nj). Here,166

the number of genes are twice the number of individuals because we assume167

diploid species. Similarly, the first term in the other five equations stand for168

the corresponding proportion of two-genes pairs. The second term stands169

for the probability of non-identical-by-descent. Considering which stages the170

two genes sampled belonged to in year t− 1, we replace the probability with171

either Hmm,t−1 or Hkl,t−1, except Hij,t|1∩A∩α. In the case of 1 ∩ A ∩ α, genes172

sampled from stage i must be mutually exclusive against those from stage173

j, because one gene in stage m in year t − 1 could not move to both stage174

i and j simultaneously without being duplicated through reproduction. In175

other words, a gene that were in stage m in the previous year cannot be176

sampled twice, which violates the assumption of Hmm,t−1, that is, “sampling177

with replacement.” Therefore, Hij,t|1∩A∩α inherits the probability that two178

genes randomly sampled from stage m “without” replacement in year t − 1179

were not identical-by-descent, which can be obtained by dividing Hmm,t−1 by180

the chance of not sampling the same gene twice (= 1− 1/(2Nm)).181
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Substituting equations 5 to equation 4, Hij,t is formulated as follows.182

Hij,t =
n∑

m=1

N2
m

NiNj

{
timtjm

1− 1/(2Nm)
+ fimtjm + timfjm + fimfjm

}
Hmm,t−1

+
n∑

k=1

n∑
l=1
l ̸=k

NkNl

NiNj

(aikajl + ailajk)Hkl,t−1. (6)

As for case 2 (i.e., i = j), we decompose Hii,t into six conditional proba-183

bilities.184

Hii,t =Hii,t|2∩A∩α +Hii,t|2∩A∩β +Hii,t|2∩A∩γ

+Hii,t|2∩B∩α +Hii,t|2∩B∩β +Hii,t|2∩B∩γ. (7)

The probabilities of non-identical-by-descent on the right side of equation 7185

can be formulated with Hmm,t−1 and Hkl,t−1, as previously done for Hij,t in186

case 1 (see Supporting Information 1.2 for details).187

Hii,t|2∩A∩α =
n∑

m=1

{(
timNm

Ni

)2

× 1− 1/(2timNm)

1− 1/(2Nm)
Hmm,t−1

}

Hii,t|2∩A∩β =
n∑

m=1

(
2timfimN

2
m

N2
i

×Hmm,t−1

)

Hii,t|2∩A∩γ =
n∑

m=1

{(
fimNm

Ni

)2

×
(
1− 1

2fimNm

)
Hmm,t−1

}

Hii,t|2∩B∩α =
n∑

k=1

n∑
l=1
l ̸=k

(
2tiktilNkNl

N2
i

×Hkl,t−1

)

Hii,t|2∩B∩β =
n∑

k=1

n∑
l=1
l ̸=k

{
2(tikfil + fiktil)NkNl

N2
i

×Hkl,t−1

}

Hii,t|2∩B∩γ =
n∑

k=1

n∑
l=1
l ̸=k

(
2fikfilNkNl

N2
i

×Hkl,t−1

)
. (8)
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Here, as withHij,t|1∩A∩α in case 1, the second term ofHii,t|2∩A∩α andHii,t|2∩A∩γ188

are not exactly the same as Hmm,t−1. This is because the sources from which189

two genes are sampled cannot be replaced with stage m of the previous year.190

Case 2∩A∩α and 2∩A∩γ are the same situations as the case of ”i = j > 1”191

and ”i = j = 1” of the age-structured model in Felsenstein (1971), respec-192

tively. Therefore, we followed Felsenstein (1971) to adjust Hmm,t−1 by multi-193

plying (1−1/(2timNm))/(1−1/(2Nm)) and 1−1/(2fimNm) in case 2∩A∩α194

and 2 ∩ A ∩ γ. Improving the explanation of Felsenstein (1971) to fit to our195

stage-structured model, We give detailed procedures on the adjustment of196

Hmm,t−1 in Supporting Information 1.2.197

Substituting equations 8 to equation 7, Hii,t is formulated as follows.198

Hii,t =
n∑

m=1

{(
timNm

Ni

)2
1− 1/(2timNm)

1− 1/(2Nm)
+

2timfimN
2
m

N2
i

+

(
fimNm

Ni

)2(
1− 1

2fimNm

)}
Hmm,t−1

+
n∑

k=1

n∑
l=1
l ̸=k

2aikailNkNl

N2
i

Hkl,t−1. (9)

Combining case 1 (equation 6) and 2 (equation 9), we construct a matrix199

equation.200

ht = Mht−1. (10)

ht and ht−1 are vectors, each of which consists of Hij,t and Hij,t−1 for all201

possible pairs of i and j (1 ≤ i ≤ n, 1 ≤ j ≤ n). As the number of two-stage202

pairs is n(n + 1)/2, both ht and ht−1 have n(n + 1)/2 elements. M is a203

square matrix whose dimension is n(n + 1)/2 and whose elements are equal204

to the corresponding coefficients of Hmm,t−1 and Hkl,t−1 in equations 6 and 9205
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(see Supporting Information 2 for the detailed elements of M ). The order of206

elements in ht is arbitrary as long as it matches with that in ht−1 and M .207

In general, multiplying matrix M is asymptotically the same as multi-208

plying the dominant eigenvalue of M , while ht converges to a scalar multi-209

plication of the leading right eigenvector, for sufficiently large t.210

ht = ηht−1, (11)

ht ∝ w, (12)

where η and w are the leading eigenvalue and its corresponding right eigen-211

vector of matrix M , respectively. We denote wij as the element of w that212

corresponds to Hij,t of ht.213

Hij,t ∝ wij. (13)

Equation 11 means that Hij,t changes with a constant rate η over the214

course of time for all i and j. Here, we denote Ht as the probability of non-215

identical-by-descent of the whole population in time t. Ht can be formulated216

as the sum of Hij,t weighted by the number of individuals in stage i and j.217

Ht =
n∑

i=1

n∑
j=1

NiNj

N2
Hij,t ∝

n∑
i=1

n∑
j=1

NiNj

N2
wij. (14)

Because we assume that population size (N) and the number of individuals218

in a given stage i (Ni) are constant, Ht changes with the same rate as Hij,t,219

that is, η.220

Ht = ηHt−1. (15)

Felsenstein (1971) also reached an analogous conclusion in his age-structured221

model that Hij,t and the probability of non-identical-by-descent of the over-222

all population changed at the same rate, which was the largest eigenvalue.223
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However, the proportionality between the array of Hij,t and the leading right224

eigenvector w, which is shown in equations 12 and 13, was not mentioned in225

Felsenstein (1971).226

2.1.3. Demographic genetic structure227

We use the logarithm of the ratio of Hii,t between different stages as228

a proxy of demographic genetic structure, that is, comparison of genetic229

diversity among stages. With regard to the comparison between stage i and230

j, the logarithmic ratio is formulated as follows, based on equation 13.231

log

(
Hii,t

Hjj,t

)
= log

(
wii

wjj

)
, (16)

When log(Hii,t/Hjj,t) is positive, Hii,t is larger than Hjj,t (genetic diversity is232

higher in stage i than in stage j), and when negative vice versa. It should be233

noted that log(Hii,t/Hjj,t) is time-invariant, although Hii,t and Hjj,t them-234

selves change with time.235

We formulate inter-stage genetic differentiation as an extra extension of236

our model. While genetic differentiation has not been examined as much as237

to the difference in genetic diversity has, it is another aspect of stage-wise238

genetic structure. By denoting H ii,t and wii as the arithmetic mean of Hii,t239

for all i and as that of corresponding elements in w, respectively, we define240

inter-stage Fst as follows.241

Fst =
Ht −H ii,t

Ht

= 1− wiiN
2∑

i

∑
j wijNiNj

. (17)

We use equations 13 and 14 to derive the rightmost-side of equation 17. It242

should be noted that Fst is also time-invariant, as with log(Hii,t/Hjj,t).243
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2.1.4. Effective population size244

As in Felsenstein (1971), we formulate effective population size Ne using245

the dominant eigenvalue η. The probability of non-identical-by-descent of246

the overall population decreases with the rate of 1/(2Ne) per generation247

time (Crow and Kimura, 1970).248

Ht+T =

(
1− 1

2Ne

)
Ht, (18)

where T is generation time and is defined as the mean age of net fecundity249

in the cohort (Carey & Roach, 2020, see Supporting Information 1.3 for250

details). Considering that Ht changes with the rate of η per year (equation251

15), 1− 1/(2Ne) should be equivalent to ηT . Therefore, We formulate Ne as252

follows.253

Ne =
1

2(1− ηT )
(19)

To sum up, demographic genetic structure and effective population size254

are derived from the leading right eigenvector and from the dominant eigen-255

value of matrix M , respectively. Therefore, our matrix model integrates256

the two proxies of the temporal genetic dynamics, facilitating comprehensive257

understandings on demographic genetic structure.258

2.2. Validation of the model259

To ensure that our model was formulated adequately, we compared the-260

oretically obtained η and demographic genetic structure with observed ones261

computed by stochastic simulation. We arranged a set of life histories to262

be used for the comparison between theory and simulation. We considered263

perennial plants with two (n = 2: juvenile and adult) and three stages (n = 3:264
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seed, juvenile, and adult; Figure 2). Equation 10 can be rewritten as follows.265 
H11,t

H22,t

H12,t

 = M2


H11,t−1

H22,t−1

H12,t−1

 , (20)

and266 

H11,t

H22,t

H33,t

H12,t

H23,t

H13,t


= M3



H11,t−1

H22,t−1

H33,t−1

H12,t−1

H23,t−1

H13,t−1


. (21)

Equation 20 and 21 correspond to the case of n = 2 and n = 3, respectively.267

The elements of M2 and M3 are functions of demographic rates (tij, fij) and268

the number of individuals in each stage (Ni, see Supporting Information 2 for269

details). For each of the two- and the three-stage model, we randomly gen-270

erated five hundreds life histories which differed in tij, fij, and Nj, covering271

a wide range of life history strategies (Figure S1). We indirectly determined272

parameter values of tij, fij, and Nj. Firstly, the total population size N was273

set to 100, and then N was randomly divided into all possible survival and274

reproduction paths (i.e., tijNj and fijNj). In the case of the two-stage model,275

for example, 100 individuals were randomly split into five paths: stasis at276

juvenile, growth from juvenile to adult, retrogression from adult to juvenile,277

stasis at adult, and reproduction (Figure 2a). Next, Ni was calculated by278 ∑n
i=1(tijNj + fijNj), and finally tij and fij were calculated by tijNj/Nj and279

fijNj/Nj respectively (see Supporting Information 3 for details). By deter-280
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mining tijNj and fijNj first, we could easily search the parameter space while281

keeping the number of individuals (i.e., Ni, tijNj, and fijNj for all i and j)282

to be always integer. To consider the situation of N = 500 and N = 1, 000,283

we multiplied N1 and N2 (when n = 3, N3 as well) by 5 and 10 while keeping284

demographic rates unchanged. In total, we considered 1,500 sets of parame-285

ter values (500 sets of demographic rates × 3 sets of N) for each of the two-286

and the three-stage model.287

For each parameter set, we simulated 200 years of temporal dynamics288

of expected heterozygosity at a neutral biallelic locus 100 times. We calcu-289

lated the mean expected heterozygosity over the 100 replicates for the overall290

population and for all the two-stage pairs at every t, which were denoted as291

Ĥt and Ĥij,t, respectively. All simulations were initiated with maximum ex-292

pected heterozygosity, in which two alleles share the gene pool half-and-half293

in all stages (i.e., H0 = Hij,0 = 0.5 for all i and j). It should be noted that the294

initial state of equal gene frequencies among classes corresponds to a genetic295

equilibrium under no evolutionary forces (i.e., drift, selection, mutation and296

gene flow) (Charlesworth, 1994). Therefore, it could be said that our simu-297

lation results reflected how genetic drift solely decreased genetic diversity in298

stage-structured populations.299

We calculated the annual change rate of Ĥt by300

rt =
Ĥt

Ĥt−1

, (22)

where 1 ≤ t ≤ 200. We took logarithm of rt and calculated its mean and301

standard error, which were subsequently compared to η. η is the theoretical302

counterpart rt and was obtained as the dominant eigenvalue of matrix M2303

or M3.304
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Using simulation results, we also calculated the mean of demographic305

genetic structure over the 200 years. As for the two-stage model, we cal-306

culated log(Ĥ11,t/Ĥ22,t). We calculated log(Ĥ11,t/Ĥ22,t), log(Ĥ22,t/Ĥ33,t) and307

log(Ĥ11,t/Ĥ33,t) in the case of the three-stage model. These four proxies308

of observed demographic genetic structures were compared to theoretical309

counterparts, that is, log(H11,t/H22,t) for the two-stage model, as well as310

log(H11,t/H22,t), log(H22,t/H33,t) and log(H11,t/H33,t) for the three-stage model.311

These four logarithmic ratios were obtained by solving the leading right eigen-312

vector of M2 and M3 and substituting their elements to equation 16.313

2.3. Analysis on demographic genetic structure314

For the same 3,000 parameter sets as “Validation of the model” section,315

we analytically obtained η andNe, which reflect the change rate of allHij,t per316

year and per generation, respectively. η was obtained by solving the dominant317

eigenvalue of M2 and M3. Then, using η, we obtained Ne based on equation318

19. We examined if η and Ne, both of which genuinely represent temporal319

dynamics of genetic diversity, were correlated with the four logarithmic ratios320

that stood for demographic genetic structure (i.e., log(H11,t/H22,t) for the321

two-stage model, and log(H11,t/H22,t), log(H22,t/H33,t) and log(H11,t/H33,t)322

for the three-stage model) to judge if demographic genetic structure could323

serve as a proxy for temporal dynamics of genetic diversity across a wide324

range of life history strategies.325

Moreover, to explore basic behaviors of demographic genetic structure, we326

analyzed the dependence of demographic genetic structure on total popula-327

tion size N and stable stage distribution. Stable stage distribution was quan-328

tified by the logarithm of the ratio among N1, N2, and N3 (i.e., log(N1/N2),329
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log(N2/N3), and log(N1/N3)).330

3. Results331

3.1. Validation of the model332

The rate of change in expected heterozygosity of the overall populations333

(rt), which was computed by simulation, took almost exactly the same value334

as the theoretical counterpart η for all 1,500 sets of parameter values in both335

the two- and the three-stage models (Figure 3, S2).336

Comparison of demographic genetic structure between simulation and337

analytical results revealed that our theoretical model yielded almost equiv-338

alent logarithmic ratio of expected heterozygosity among stages to that of339

simulation (Figure 4, S3, S4).340

To further confirm the validity of our model, we checked the temporal341

dynamics of Ĥij,t and compared it with theoretical expectation, that is, the342

repeated multiplication of matrixM2 orM3 to ht. We found that theoretical343

prediction fitted well to simulation results (Figure S5).344

Thus, our model seems to describe the dynamics and the inter-stage ratio345

of expected heterozygosity validly across a wide range of parameter space.346

3.2. Analysis on demographic genetic structure347

All the four proxies of demographic genetic structure, which are theoret-348

ically obtained based on equation 16, have an apparent correlation neither349

with Ne nor with η regardless of N (Figure 5, S6-10). On the other hand,350

demographic genetic structure is clearly associated with total population351

size N . As N increases, all the four logarithmic ratios gradually converge352
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to zero, which means that expected heterozygosity becomes equal among353

stages (Figure 6). Moreover, there is a strong positive correlation with sta-354

ble stage distribution: expected heterozygosity is higher in stages with more355

individuals (Figure 7). The correlation becomes weaker with increasing N ,356

as logarithmic ratios converge to zero.357

4. Discussion358

4.1. Comparison with the age-structured model359

In this study, we develop the matrix model that describes the dynamics360

of genetic diversity and demographic genetic structure in stage-structured361

populations. Although the procedures of model development are similar to362

the age-structured model in Felsenstein (1971), our model has a much wider363

applicability. First of all, because age-structured models, in which the proba-364

bilities of stasis and retrogression are zero, is a special case of stage-structured365

models, our model is more comprehensive. Besides, many plant species do not366

show demographic senescence (Jones et al., 2014), showing no age-dependent367

changes in demographic rates. Using stage-dependent demographic parame-368

ters would be more appropriate and predictive in plant populations. These369

points support the novelty of our stage-structured model, especially in terms370

of expanding the applicability to many plant species.371

4.2. Interpreting demographic genetic structure372

A common interpretation on demographic genetic structure is that if ju-373

venile stages are less diverse than mature stages, genetic diversity would374

decrease with time over the course of generation turnover (Aldrich et al.,375
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1998; Ally and Ritland, 2006; Kettle et al., 2007; Linhart et al., 1981; Mur-376

ren, 2003; Schmidt et al., 2018; Vranckx et al., 2014). However, our model377

shows that relative ratio of expected heterozygosity between stage classes378

does not correlate with either Ne or η: even though Ne and η are small,379

expected heterozygosity does not necessarily decline from mature to juve-380

nile stages. Therefore, inferring temporal trends in genetic diversity solely381

from demographic genetic structure is potentially misleading. This study, to382

our knowledge, for the first time draws caution on the conventional use of383

demographic genetic structure.384

Many previous empirical studies that analyzed demographic genetic struc-385

ture found that genetic diversity did not decrease from the most mature to386

the most immature stages and took comparable values among stages (Aldrich387

et al., 1998; Ally and Ritland, 2006; Kettle et al., 2007; Linhart et al., 1981;388

Murren, 2003; Schmidt et al., 2018; Vranckx et al., 2014). Our model shows389

that the logarithmic ratio of expected heterozygosity is distributed around390

zero, especially under large N , indicating that expected heterozygosity is ba-391

sically almost equivalent to one another. Therefore, our model might be in392

line with previous empirical results.393

While demographic genetic structure is irrelevant to temporal dynamics,394

it is tightly linked to stable stage distribution: expected heterozygosity is395

relatively high in stage with more individuals, and low in stage with less396

individuals (Figure 6). In general, small number of individuals intensifies397

stochastic genetic drift due to increased sampling bias in gene frequencies,398

leading to the loss of genetic diversity (Crow and Kimura, 1970). When stage399

distribution is skewed, the degree of stochasticity will vary among stages.400
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Stage with smaller number of individuals is made up of genes that were401

sampled fewer times from the gene pool of the previous year, thus suffering402

random perturbation in gene frequencies to a greater extent. The alleviated403

stochasticity must have resulted in the lower genetic diversity in stages with404

fewer individuals.405

As the total population size N increases, inter-stage difference in genetic406

diversity disappears even under the skewed stage distribution (Figure 7).407

This result indicates that the number of individuals of each stage is large408

enough to reduce stochasticity under large N , leading to comparable level of409

genetic diversity among stages. Large population size also contributes to the410

maintenance of genetic diversity, because Ne increases and η approaches to411

1 with increasing N (Figure S11).412

To sum up, it can be said that genetic diversity becomes uneven among413

life history stages under small population size and that the unevenness among414

stages reflects stable stage distribution rather than the temporal dynamics415

of genetic diversity.416

4.3. Future application of our model417

Our model not only provides theoretical background of demographic ge-418

netic structure, but also has some potential for application. One possible ap-419

plication is to compare raw demographic genetic structure, which is obtained420

by any neutral genetic markers, with the theoretical expectation calculated421

based on the equations we derived. The deviations of observed structure422

from expectation reflect factors unexplored in our model, such as fluctuating423

population size, non-random mating, selection, and immigration. Thus, our424

model can work as a null model of demographic genetic structure. To make425
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the most use of our equations, it is necessary to monitor individuals from year426

to year to estimate demographic rates of each stage class. If long-term demo-427

graphic monitoring is unavailable or impractical for some reasons, recording428

relative number of individuals among stage classes at a single time point429

would be at least desirable to consider stage distribution, which turned out430

to be a major determinant of demographic genetic structure in our model.431

Instead of demographic genetic structure, we want to pay attention to432

the efficacy of η, which is the annual change rate of the probability of non-433

identical-by-descent and represents the dynamics of expected heterozygosity434

well. η can be potentially useful for population viability assessment. Whether435

population size can be maintained over time (i.e., population growth rate436

remains high) is considered as a criterion of long-term population persistence437

(Hens et al., 2017; Knight et al., 2009). Demographic rates have been used to438

calculate population growth rate per year (usually denoted as λ) by solving439

the eigenvalue problem of matrix population models (equation 3) (Caswell,440

2001; Crone et al., 2011). While it is acknowledged that not only population441

size but also genetic diversity should be maintained for long-term population442

persistence, there has been no counterpart of population growth rate that443

can evaluate the change rate of genetic diversity per year (not per generation444

time). Being a change rate per year, η is directly linked to temporal change445

in genetic diversity compared to demographic genetic structure and effective446

population size, and enables us to assess genetic diversity at the same time447

scale as population dynamics. Therefore, η can serve as the counterpart of448

λ and can be an useful proxy to evaluate population viability from genetic449

point of view. It should be noted that we evaluated expected heterozygosity450
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using the probability of non-identical-by-descent in our model. Because this451

replacement is based on the assumption of no mutation, our results should452

be applied to a prediction on a time scale, in which de novo mutations do not453

spread throughout the overall population. Evaluating η for a variety types454

of structured populations will be a future step to make the best use of our455

model.456
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R.I., Araki, H., Javadi, F., Núñez-Farfán, J., Mori, A.S., Zhou, S.,526

Hollingsworth, P.M., Neaves, L.E., Fukano, Y., Smith, G.F., Sato, Y.I.,527

Tachida, H., Hendry, A.P., 2017. Understanding and monitoring the con-528

sequences of human impacts on intraspecific variation. Evolutionary Ap-529

plications 10, 121–139. doi:10.1111/eva.12436.530

Murren, C.J., 2003. Spatial and demographic population genetic structure531

in Catasetum viridiflavum across a human-disturbed habitat. Journal of532

Evolutionary Biology 16, 333–342. doi:10.1046/j.1420-9101.2003.00517.x.533

Ohara, M., Takada, T., Kawano, S., 2001. Demography and reproductive534

strategies of a polycarpic perennial, Trillium apetalon (Trilliaceae). Plant535

Species Biology 16, 209–217. doi:10.1046/j.1442-1984.2001.00062.x.536

27



Orive, M., 1993. Effective population size in organisms with com-537

plex life-histories. Theoretical Population Biology 44, 316–340.538

doi:10.1006/tpbi.1993.1031.539

Ramsayer, J., Kaltz, O., Hochberg, M.E., 2013. Evolutionary rescue in pop-540

ulations of pseudomonas fluorescens across an antibiotic gradient. Evolu-541

tionary Applications 6, 608–616. doi:10.1111/eva.12046.542

Schmidt, D.J., Fallon, S., Roberts, D.T., Espinoza, T., McDougall, A.,543

Brooks, S.G., Kind, P.K., Bond, N.R., Kennard, M.J., Hughes, J.M., 2018.544

Monitoring age-related trends in genomic diversity of Australian lungfish.545

Molecular Ecology 27, 3231–3241. doi:10.1111/mec.14791.546

Shea, K., Kelly, D., 1998. Estimating biocontrol agent impact with matrix547

models: Carduus nutans in New Zealand. Ecological Applications 8, 824–548

832. doi:10.1890/1051-0761(1998)008[0824:EBAIWM]2.0.CO;2.549

Silvertown, J., 1987. Introduction to Plant Population Ecology. 2 ed., Long-550

man Scientific & Technical.551

Tomimatsu, H., Ohara, M., 2010. Demographic response of plant popu-552

lations to habitat fragmentation and temporal environmental variability.553

Oecologia 162, 903–911. doi:10.1007/s00442-009-1505-8.554
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Figure 1: Temporal trajectories from time t− 1 to t with regard to the two genes sampled

in time t. Rounded rectangles stand for life history stages. Arrows stand for the temporal

movements of genes either by survival (single line) or reproduction (double line). There

are 12 mutually exclusive situations based on three criteria: (1) whether the destinations

are different (case 1, shown on gray background) or not (case 2, shown on white); (2)

whether the origins are the same (case A) or not (case B); (3) how the two genes were

transferred (case α: survival; case β: survival and reproduction; case γ: reproduction)
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Figure 2: The two model used in analysis: (a) two-stage model and (b) three stage

model. Arrows represent flow of individuals, or genes, either by survival (single line)

or reproduction (double line)
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Figure 3: Comparison between the theoretical expectation of the annual change rate of the

probability of non-identical-by-descent (η) and the simulation results of that of expected

heterozygosity (rt) for (a) the two-stage and (b) the three-stage model when N = 100.

Each gray semi-transparent point corresponds to one of the 500 parameter sets. As for rt,

geometric mean over 1 ≤ t ≤ 200 is shown with standard error (vertical bar). Red lines

represent η = rt
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Theoretical expectation (log(Hii,t ∕ Hjj,t))

Si
m

ul
at

io
n 

re
su

lts
 (l

og
(Ĥ

ii,
t
∕ Ĥ

jj,
t))

Figure 4: Comparison of demographic genetic structure between the theoretical expecta-

tions (log(Hii,t/Hjj,t)) and the simulation results (log(Ĥii,t/Ĥjj,t)) when N = 100. Each

gray semi-transparent point corresponds to one of the 500 parameter sets. As for the sim-

ulation results, mean and standard error (vertical bar) over 1 ≤ t ≤ 200 are shown. There

is one proxy for the two-stage model (a: i = 1 and j = 2), while there are three proxies

for the three-stage model (b: i = 1 and j = 2; c: i = 2 and j = 3; d: i = 1 and j = 3).

The theoretical expectations exactly match with the simulation results when plotted on

the red lines
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Figure 5: Comparison of demographic genetic structure (log(Hii,t/Hjj,t)) with effective

population size (Ne) when N = 100. (a) i = 1 and j = 2 of the two-stage model, (b) i = 1

and j = 2, (c) i = 2 and j = 3, (d) i = 1 and j = 3 of the three-stage model
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Figure 6: Histogram of demographic genetic structure (log(Hii,t/Hjj,t)) with varying N .

(a) log(H11,t/H22,t) of the two-stage model, (b) log(H11,t/H22,t), (c) log(H22,t/H33,t), (d)

log(H11,t/H33,t) of the three-stage model
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Stable stage distribution (log(Ni ∕ Nj))

D
em

og
ra

ph
ic

 g
en

et
ic

 s
tru

ct
ur

e 
(lo

g(
H
ii,
t
∕ H

jj,
t)) N = 100

N = 500
N = 1000

Figure 7: Relationships between stable stage distribution (log(Ni/Nj)) and demographic

genetic structure (log(Hii,t/Hjj,t)) with varying N .
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Corrigendum 
 
Corrigendum to ‘Modeling temporal dynamics of genetic diversity in 
stage-structured plant populations with reference to demographic 
genetic structure’ 
[Theoretical Population Biology 148 (2022) 76-85] 
 
Yoichi Tsuzukia, Takenori Takadaa, Masashi Oharaa 

aGraduate School of Environmental Science, Hokkaido University, 
N10W5, Sapporo City, 060-0810, Hokkaido Prefecture, Japan  

 
 

 
The authors regret that there are typographical errors in the summation operators in Eqs. (5), (6), (8), 
and (9). In analogous to the age-structured model of Felsenstein (1971), Hij,t (or Hkl,t) could be also 
written as Hji,t (or Hlk,t). Although we consistently used Hij,t (i ≤ j) when deriving the matrix equation to 
avoid the redundant notation, as in Eqs. (20) and (21), we mistakenly wrote the range of i and j of the 
two successive summation operators in the fourth to sixth lines of Eq. (5), the second line of Eq. (6), 
the fourth to sixth lines of Eq. (8), and the third line of Eq. (9). We corrected these lines to avoid 
duplicate summations for the same two stages as follows.  
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The same correction applies to the two successive summation operators in Eqs. S15-S18, S23-S25, 
and S31-32 in the Supporting Information. The analytical results in the original paper are not impacted 
by the error because the results were obtained based on the correct equations shown in this 
corrigendum. 

The authors would like to apologise for any inconvenience caused. 
 
 
____________________________ 
DOI of original article: 10.1016/j.tpb.2022.11.001  
Corresponding author 
Yoichi Tsuzuki 
Graduate School of Environmental Science, Hokkaido University, N10W5, Sapporo City, 060-0810, Hokkaido 
Prefecture, Japan 
yoichi.tsuzuki.95@gmail.com 
 


	manuscript_clean_copy
	Corrigendum_Tsuzuki_et_al_2022_TPB
	Corrigendum to ‘Modeling temporal dynamics of genetic diversity in stage-structured plant populations with reference to demographic genetic structure’


