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1 Model development

1.1 Formulation of 𝐻𝑖 𝑗 ,𝑡

As explained in the main text, 𝐻𝑖 𝑗 ,𝑡 is split into six subsets:

𝐻𝑖 𝑗 ,𝑡 =𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛼 + 𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛽 + 𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛾

+ 𝐻𝑖 𝑗 ,𝑡 |1∩𝐵∩𝛼 + 𝐻𝑖 𝑗 ,𝑡 |1∩𝐵∩𝛽 + 𝐻𝑖 𝑗 ,𝑡 |1∩𝐵∩𝛾, (S1)

where 𝐻𝑖 𝑗 ,𝑡 |𝑋∩𝑌∩𝑍 stands for 𝐻𝑖 𝑗 ,𝑡 under the concurrence of case X, Y, and Z (𝑋 = 1, 2;𝑌 = 𝐴, 𝐵;

𝑍 = 𝛼, 𝛽, 𝛾).

We define sub-stage 𝑖𝑚𝑠 and 𝑖𝑚𝑟 , which consist of individuals transferred from stage 𝑚 to 𝑖 by

survival and by reproduction, respectively. Each 𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝑍 can be formulated using 𝐻𝑖𝑚𝑠 𝑗𝑚𝑠 ,𝑡

(case 1 ∩ 𝐴 ∩ 𝛼), 𝐻𝑖𝑚𝑠 𝑗𝑚𝑟 ,𝑡 , 𝐻𝑖𝑚𝑟 𝑗𝑚𝑠 ,𝑡 (case 1 ∩ 𝐴 ∩ 𝛽), and 𝐻𝑖𝑚𝑟 𝑗𝑚𝑟 ,𝑡 (case 1 ∩ 𝐴 ∩ 𝛾) weighted

by the corresponding number of two-gene pairs.

𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛼 =
𝑛∑

𝑚=1

𝑁𝑖𝑚𝑠𝑁 𝑗𝑚𝑠

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑚𝑠 𝑗𝑚𝑠 ,𝑡 (S2)

𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛽 =
𝑛∑

𝑚=1

(
𝑁𝑖𝑚𝑠𝑁 𝑗𝑚𝑟

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑚𝑠 𝑗𝑚𝑟 ,𝑡 +

𝑁𝑖𝑚𝑟𝑁 𝑗𝑚𝑠

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑚𝑟 𝑗𝑚𝑠 ,𝑡

)
(S3)

𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛾 =
𝑛∑

𝑚=1

𝑁𝑖𝑚𝑟𝑁 𝑗𝑚𝑟

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑚𝑟 𝑗𝑚𝑟 ,𝑡 . (S4)

Here, 𝑁𝑖𝑚𝑠 and 𝑁 𝑗𝑚𝑠 denote the number of individuals in sub-stage 𝑖𝑚𝑠 and 𝑗𝑚𝑠, respectively. As

for case 1 ∩ 𝐴 ∩ 𝛼, two genes, each sampled from stage 𝑖 and 𝑗 , belong to sub-stage 𝑖𝑚𝑠 and 𝑗𝑚𝑠

with the chance of 2𝑁𝑖𝑚𝑠

2𝑁𝑖
× 2𝑁 𝑗𝑚𝑠

2𝑁 𝑗
. The number of genes is twice as many as that of individuals

because we assume diploid species. Thus, 𝐻𝑖𝑚𝑠 𝑗𝑚𝑠 ,𝑡 is weighted by 𝑁𝑖𝑚𝑠𝑁 𝑗𝑚𝑠

𝑁𝑖𝑁 𝑗
, as shown in equation

S2 . Case 1 ∩ 𝐴 ∩ 𝛽 (equation S3 ) and 1 ∩ 𝐴 ∩ 𝛾 ( equation S4 ) are similarly formulated.

In the concurrence of case 1, A, and 𝛼, two genes, each sampled from sub-stage 𝑖𝑚𝑠 and 𝑗𝑚𝑠,

cannot be the same gene because one gene in stage 𝑚 in year 𝑡 −1 could not move to both stage 𝑖

and 𝑗 simultaneously by survival. Therefore, 𝐻𝑖𝑚𝑠 𝑗𝑚𝑠 ,𝑡 is equal to the probability that two genes

randomly sampled from stage 𝑚 “without” replacement in time 𝑡−1 are not identical-by-descent.

Here, we define 𝐻′
𝑖 𝑗 ,𝑡 as the probability that two genes sampled from stage 𝑖 and 𝑗 ”without”

replacement in time 𝑡 are non-identical-by-descent. Because 𝐻𝑖𝑚𝑠 𝑗𝑚𝑠 ,𝑡 is equal to 𝐻′
𝑚𝑚,𝑡−1 in case

1 ∩ 𝐴 ∩ 𝛼, we formulate 𝐻′
𝑚𝑚,𝑡−1. When sampling two genes from stage 𝑚 with replacement in
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year 𝑡 − 1, the same gene can be sampled twice with the probability of 1
2𝑁𝑚

× 1
2𝑁𝑚

× 2𝑁𝑚 = 1
2𝑁𝑚

,

which makes no contribution to 𝐻𝑚𝑚,𝑡−1. Therefore, 𝐻𝑚𝑚,𝑡−1 can be formulated as follows.

𝐻𝑚𝑚,𝑡−1 =
1

2𝑁𝑚
× 0 +

(
1 − 1

2𝑁𝑚

)
× 𝐻′

𝑚𝑚,𝑡−1 (S5)

As a result, 𝐻′
𝑚𝑚,𝑡−1 is obtained.

𝐻𝑖𝑚𝑠 𝑗𝑚𝑠 ,𝑡 = 𝐻′
𝑚𝑚,𝑡−1 =

1
1 − 1/(2𝑁𝑚)

𝐻𝑚𝑚,𝑡−1 (S6)

Unlike transfer by survival, transfer by reproduction allows the same gene to move multiple

pathways simultaneously, because genes are replicated. In the case of 1 ∩ 𝐴 ∩ 𝛽 and 1 ∩ 𝐴 ∩ 𝛾,

sampling in year 𝑡 does not preclude the chance of sampling the same gene twice, because at

least one of the two genes are transferred by reproduction. Therefore,

𝐻𝑖𝑚𝑠 𝑗𝑚𝑟 ,𝑡 = 𝐻𝑖𝑚𝑟 𝑗𝑚𝑠 ,𝑡 = 𝐻𝑖𝑚𝑟 𝑗𝑚𝑟 ,𝑡 = 𝐻𝑚𝑚,𝑡−1 (S7)

The number of genes in each sub-stage is given by

𝑁𝑖𝑚𝑠 = 𝑡𝑖𝑚𝑁𝑚 (S8)

𝑁 𝑗𝑚𝑠 = 𝑡 𝑗𝑚𝑁𝑚 (S9)

𝑁𝑖𝑚𝑟 = 𝑓𝑖𝑚𝑁𝑚 (S10)

𝑁 𝑗𝑚𝑟 = 𝑓 𝑗𝑚𝑁𝑚 . (S11)

Substituting equations S6 -S11 to equations S2 -S4 ,

𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛼 =
𝑛∑

𝑚=1

{
𝑡𝑖𝑚𝑡 𝑗𝑚𝑁

2
𝑚

𝑁𝑖𝑁 𝑗
× 1

1 − 1/(2𝑁𝑚)
𝐻𝑚𝑚,𝑡−1

}
(S12)

𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛽 =
𝑛∑

𝑚=1

{
(𝑡𝑖𝑚 𝑓 𝑗𝑚 + 𝑓𝑖𝑚𝑡 𝑗𝑚)𝑁2

𝑚

𝑁𝑖𝑁 𝑗
× 𝐻𝑚𝑚,𝑡−1

}
(S13)

𝐻𝑖 𝑗 ,𝑡 |1∩𝐴∩𝛾 =
𝑛∑

𝑚=1

(
𝑓𝑖𝑚 𝑓 𝑗𝑚𝑁

2
𝑚

𝑁𝑖𝑁 𝑗
× 𝐻𝑚𝑚,𝑡−1

)
. (S14)

As for 𝐻𝑖 𝑗 ,𝑡 |1∩𝐵∩𝑍 (𝑍 = 𝛼, 𝛽, 𝛾), two genes, each sampled from stage 𝑖 and 𝑗 in time 𝑡, were

in stage 𝑘 and 𝑙, or in stage 𝑙 and 𝑘 , in year 𝑡 − 1 respectively. In either situation, the probability

of non-identical-by-descent remains the same as that in year 𝑡 − 1, which is 𝐻𝑘𝑙,𝑡−1, regardless
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of whether they were transferred only by survival (case 1 ∩ 𝐵 ∩ 𝛼), both by survival and by

reproduction (case 1 ∩ 𝐵 ∩ 𝛽), or only by reproduction (case 1 ∩ 𝐵 ∩ 𝛾).

𝐻𝑖 𝑗 ,𝑡 |1∩𝐵∩𝛼 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑁𝑖𝑘𝑠𝑁 𝑗𝑙𝑠

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑘𝑠 𝑗𝑙𝑠 ,𝑡 +

𝑁𝑖𝑙𝑠𝑁 𝑗𝑘𝑠

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑙𝑠 𝑗𝑘𝑠 ,𝑡

)
=

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑡𝑖𝑘 𝑡 𝑗 𝑙𝑁𝑘𝑁 𝑗

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1 +

𝑡𝑖𝑙𝑡 𝑗 𝑘𝑁𝑘𝑁 𝑗

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1

)
=

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

{ (𝑡𝑖𝑘 𝑡 𝑗 𝑙 + 𝑡𝑖𝑙𝑡 𝑗 𝑘 )𝑁𝑘𝑁 𝑗

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1

}
(S15)

𝐻𝑖 𝑗 ,𝑡 |1∩𝐵∩𝛽 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑁𝑖𝑘𝑠𝑁 𝑗𝑙𝑟

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑘𝑠 𝑗𝑙𝑟 ,𝑡 +

𝑁𝑖𝑘𝑟𝑁 𝑗𝑙𝑠

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑘𝑟 𝑗𝑙𝑠 ,𝑡

+
𝑁𝑖𝑙𝑠𝑁 𝑗𝑘𝑟

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑙𝑠 𝑗𝑘𝑟 ,𝑡 +

𝑁𝑖𝑙𝑟𝑁 𝑗𝑘𝑠

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑙𝑟 𝑗𝑘𝑠 ,𝑡

)
=

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑡𝑖𝑘 𝑓 𝑗 𝑙𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1 +

𝑓𝑖𝑘 𝑡 𝑗 𝑙𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1

+
𝑡𝑖𝑙 𝑓 𝑗 𝑘𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1 +

𝑓𝑖𝑙𝑡 𝑗 𝑘𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1

)
=

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

{ (𝑡𝑖𝑘 𝑓 𝑗 𝑙 + 𝑓𝑖𝑘 𝑡 𝑗 𝑙 + 𝑡𝑖𝑙 𝑓 𝑗 𝑘 + 𝑓𝑖𝑙𝑡 𝑗 𝑘 )𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1

}
(S16)

𝐻𝑖 𝑗 ,𝑡 |1∩𝐵∩𝛾 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑁𝑖𝑘𝑟𝑁 𝑗𝑙𝑟

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑘𝑟 𝑗𝑙𝑟 ,𝑡 +

𝑁𝑖𝑙𝑟𝑁 𝑗𝑘𝑟

𝑁𝑖𝑁 𝑗
𝐻𝑖𝑙𝑟 𝑗𝑘𝑟 ,𝑡

)
=

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑓𝑖𝑘 𝑓 𝑗 𝑙𝑁𝑘𝑁 𝑗

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1 +

𝑓𝑖𝑙 𝑓 𝑗 𝑘𝑁𝑘𝑁 𝑗

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1

)
=

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

{ ( 𝑓𝑖𝑘 𝑓 𝑗 𝑙 + 𝑓𝑖𝑙 𝑓 𝑗 𝑘 )𝑁𝑘𝑁 𝑗

𝑁𝑖𝑁 𝑗
𝐻𝑘𝑙,𝑡−1

}
(S17)

Substituting equations S12 -S17 to equation S1 , we can formulate 𝐻𝑖 𝑗 ,𝑡 as follows.

𝐻𝑖 𝑗 ,𝑡 =
𝑛∑

𝑚=1

{
𝑡𝑖𝑚𝑡 𝑗𝑚𝑁

2
𝑚

𝑁𝑖𝑁 𝑗
× 1

1 − 1/(2𝑁𝑚)
+
(𝑡𝑖𝑚 𝑓 𝑗𝑚 + 𝑓𝑖𝑚𝑡 𝑗𝑚)𝑁2

𝑚

𝑁𝑖𝑁 𝑗

𝑓𝑖𝑚 𝑓 𝑗𝑚𝑁
2
𝑚

𝑁𝑖𝑁 𝑗

}
𝐻𝑚𝑚,𝑡−1
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+
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

{ (𝑡𝑖𝑘 𝑡 𝑗 𝑙 + 𝑡𝑖𝑙𝑡 𝑗 𝑘 )𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗
+
(𝑡𝑖𝑘 𝑓 𝑗 𝑙 + 𝑓𝑖𝑘 𝑡 𝑗 𝑙 + 𝑡𝑖𝑙 𝑓 𝑗 𝑘 + 𝑓𝑖𝑙𝑡 𝑗 𝑘 )𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗

+
( 𝑓𝑖𝑘 𝑓 𝑗 𝑙 + 𝑓𝑖𝑙 𝑓 𝑗 𝑘 )𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗

}
𝐻𝑘𝑙,𝑡−1

=
𝑛∑

𝑚=1

𝑁2
𝑚

𝑁𝑖𝑁 𝑗

{
𝑡𝑖𝑚𝑡 𝑗𝑚

1 − 1/(2𝑁𝑚)
+ 𝑓𝑖𝑚𝑡 𝑗𝑚 + 𝑡𝑖𝑚 𝑓 𝑗𝑚 + 𝑓𝑖𝑚 𝑓 𝑗𝑚

}
𝐻𝑚𝑚,𝑡−1

+
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗

(
(𝑡𝑖𝑘 + 𝑓𝑖𝑘 )(𝑡 𝑗 𝑙 + 𝑓 𝑗 𝑙) + (𝑡𝑖𝑙 + 𝑓𝑖𝑙) (𝑡 𝑗 𝑘 + 𝑓 𝑗 𝑘 )

)
𝐻𝑘𝑙,𝑡−1.

=
𝑛∑

𝑚=1

𝑁2
𝑚

𝑁𝑖𝑁 𝑗

{
𝑡𝑖𝑚𝑡 𝑗𝑚

1 − 1/(2𝑁𝑚)
+ 𝑓𝑖𝑚𝑡 𝑗𝑚 + 𝑡𝑖𝑚 𝑓 𝑗𝑚 + 𝑓𝑖𝑚 𝑓 𝑗𝑚

}
𝐻𝑚𝑚,𝑡−1

+
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

𝑁𝑘𝑁𝑙

𝑁𝑖𝑁 𝑗
(𝑎𝑖𝑘𝑎 𝑗 𝑙 + 𝑎𝑖𝑙𝑎 𝑗 𝑘 )𝐻𝑘𝑙,𝑡−1. (S18)

1.2 Formulation of 𝐻𝑖𝑖,𝑡

𝐻𝑖𝑖,𝑡 is split into mutually exclusive six subsets:

𝐻𝑖𝑖,𝑡 =𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛼 + 𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛽 + 𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛾

+ 𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛼 + 𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛽 + 𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛾, (S19)

Considering which sub-stages two genes are sampled from, we can formulate the six 𝐻𝑖𝑖,𝑡 on the

right side of equation S19 .

𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛼 =
𝑛∑

𝑚=1

{(
𝑁𝑖𝑚𝑠

𝑁𝑖

)2
𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡

}
=

𝑛∑
𝑚=1

{(
𝑡𝑖𝑚𝑁𝑚

𝑁𝑖

)2
𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡

}
(S20)

𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛽 =
𝑛∑

𝑚=1

(
𝑁𝑖𝑚𝑠𝑁𝑖𝑚𝑟

𝑁2
𝑖

𝐻𝑖𝑚𝑠𝑖𝑚𝑟 ,𝑡 +
𝑁𝑖𝑚𝑟𝑁𝑖𝑚𝑠

𝑁2
𝑖

𝐻𝑖𝑚𝑟 𝑖𝑚𝑠 ,𝑡

)
=

𝑛∑
𝑚=1

(
2𝑁𝑖𝑚𝑠𝑁𝑖𝑚𝑟

𝑁2
𝑖

𝐻𝑖𝑚𝑠𝑖𝑚𝑟 ,𝑡

)
=

𝑛∑
𝑚=1

(
2𝑡𝑖𝑚 𝑓𝑖𝑚𝑁

2
𝑚

𝑁2
𝑖

𝐻𝑖𝑚𝑠𝑖𝑚𝑟 ,𝑡

)
(S21)

𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛾 =
𝑛∑

𝑚=1

{(
𝑁𝑖𝑚𝑟

𝑁𝑖

)2
𝐻𝑖𝑚𝑟 𝑖𝑚𝑟 ,𝑡

}
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=
𝑛∑

𝑚=1

{(
𝑓𝑖𝑚𝑁𝑚

𝑁𝑖

)2
𝐻𝑖𝑚𝑟 𝑖𝑚𝑟 ,𝑡

}
(S22)

𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛼 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑁𝑖𝑘𝑠𝑁𝑖𝑙𝑠

𝑁2
𝑖

𝐻𝑖𝑘𝑠 𝑗𝑙𝑠 ,𝑡 +
𝑁𝑖𝑙𝑠𝑁𝑖𝑘𝑠

𝑁2
𝑖

𝐻𝑖𝑙𝑠 𝑗𝑘𝑠 ,𝑡

)

=
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2𝑁𝑖𝑙𝑠𝑁𝑖𝑘𝑠

𝑁2
𝑖

𝐻𝑖𝑙𝑠 𝑗𝑘𝑠 ,𝑡

)

=
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2𝑡𝑖𝑘 𝑡𝑖𝑙𝑁𝑘𝑁𝑙

𝑁2
𝑖

𝐻𝑖𝑙𝑠 𝑗𝑘𝑠 ,𝑡

)
(S23)

𝐻𝑖 𝑗 ,𝑡 |2∩𝐵∩𝛽 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑁𝑖𝑙𝑠𝑁𝑖𝑘𝑟

𝑁2
𝑖

𝐻𝑖𝑘𝑟 𝑖𝑙𝑠 ,𝑡 +
𝑁𝑖𝑘𝑟𝑁𝑖𝑙𝑠

𝑁2
𝑖

𝐻𝑖𝑘𝑟 𝑖𝑙𝑠 ,𝑡

+
𝑁𝑖𝑘𝑠𝑁𝑖𝑙𝑟

𝑁2
𝑖

𝐻𝑖𝑘𝑠𝑖𝑙𝑟 ,𝑡 +
𝑁𝑖𝑙𝑟𝑁𝑖𝑘𝑠

𝑁2
𝑖

𝐻𝑖𝑘𝑠𝑖𝑙𝑟 ,𝑡

)
=

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2𝑁𝑖𝑘𝑟𝑁𝑖𝑙𝑠

𝑁2
𝑖

𝐻𝑖𝑘𝑟 𝑖𝑙𝑠 ,𝑡 +
2𝑁𝑖𝑘𝑠𝑁𝑖𝑙𝑟

𝑁2
𝑖

𝐻𝑖𝑘𝑟 𝑖𝑙𝑠 ,𝑡

)

=
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2 𝑓𝑖𝑘 𝑡𝑖𝑙𝑁𝑘𝑁𝑙

𝑁2
𝑖

𝐻𝑖𝑘𝑟 𝑖𝑙𝑠 ,𝑡 +
2𝑡𝑖𝑘 𝑓𝑖𝑙𝑁𝑘𝑁𝑙

𝑁2
𝑖

𝐻𝑖𝑘𝑠𝑖𝑙𝑟 ,𝑡

)
(S24)

𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛾 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
𝑁𝑖𝑘𝑟𝑁𝑖𝑙𝑟

𝑁2
𝑖

𝐻𝑖𝑘𝑟 𝑗𝑙𝑟 ,𝑡 +
𝑁𝑖𝑙𝑟𝑁𝑖𝑘𝑟

𝑁2
𝑖

𝐻𝑖𝑙𝑟 𝑗𝑘𝑟 ,𝑡

)

=
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2𝑁𝑖𝑙𝑟𝑁𝑖𝑘𝑟

𝑁2
𝑖

𝐻𝑖𝑙𝑟 𝑗𝑘𝑟 ,𝑡

)

=
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2 𝑓𝑖𝑘 𝑓𝑖𝑙𝑁𝑘𝑁𝑙

𝑁2
𝑖

𝐻𝑖𝑙𝑟 𝑗𝑘𝑟 ,𝑡

)
(S25)

As in the case of 𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡 , two genes are sampled from sub-stage 𝑖𝑚𝑠 with replacement.

Because all genes in sub-stage 𝑖𝑚𝑠 were transferred by survival from stage 𝑚, sub-stage 𝑖𝑚𝑠

consist of genes that were randomly sampled 2𝑡𝑖𝑚𝑁𝑚 times ’without’ replacement from stage

𝑚. Therefore, the probability of sampling two genes that are non-identical-by-descent without

replacement should remain the same between stage 𝑚 in year 𝑡 − 1 and sub-stage 𝑖𝑚𝑠 in year 𝑡

(i.e., 𝐻′
𝑚𝑚,𝑡−1 = 𝐻′

𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡
). As with equation S5 , 𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡 is formulated as follows.

𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡 =
1

2𝑡𝑖𝑚𝑁𝑚
× 0 +

(
1 − 1

2𝑡𝑖𝑚𝑁𝑚

)
× 𝐻′

𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡
, (S26)
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From equations S5 and S26 ,

𝐻′
𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡

= 𝐻′
𝑚𝑚,𝑡−1

𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡 =
1 − 1/(2𝑡𝑖𝑚𝑁𝑚)

1 − 1/(2𝑁𝑚)
𝐻𝑚𝑚,𝑡−1. (S27)

It should be noted that 𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡 should not be equal to 𝐻𝑚𝑚, 𝑡 − 1. Two genes are always sam-

pled from a common subset of stage 𝑚 (i.e, sub-stage 𝑖𝑚𝑠), which means that two genes are not

sampled from separate and independent surrogates of stage 𝑚 of the previous year. Therefore,

sampling two genes from sub-stage 𝑖𝑚𝑠 with replacement is not equivalent to that from stage 𝑚

with replacement. Unlike 𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡 , 𝐻𝑖𝑚𝑠𝑖𝑚𝑟 ,𝑡 should be equal to 𝐻𝑚𝑚,𝑡−1, because sub-stage 𝑖𝑚𝑠

and 𝑖𝑚𝑟, from which two genes are sampled, are independently formed from stage 𝑚.

𝐻𝑖𝑚𝑠𝑖𝑚𝑟 ,𝑡 = 𝐻𝑚𝑚,𝑡−1 (S28)

In the case of 𝐻𝑖𝑚𝑟 𝑖𝑚𝑟 ,𝑡 , the sources of two genes sampled are the same (i.e., sub-stage 𝑖𝑚𝑟) and

thus are not independent surrogates of stage 𝑚 of the previous year, as with the case of 𝐻𝑖𝑚𝑠𝑖𝑚𝑠 ,𝑡 .

Sampling the same gene twice occurs with the probability of 1
2 𝑓𝑖𝑚𝑁𝑚

, which makes no contribu-

tion to 𝐻𝑖𝑚𝑟 𝑖𝑚𝑟 ,𝑡 . In the remaining conditions where the two genes are sampled without replace-

ment, the two genes are not identical-by-descent with a chance of 𝐻𝑚𝑚,𝑡−1 because sub-stage 𝑖𝑚𝑟
were formed by reproduction, or sampling with replacement. Therefore, 𝐻𝑚𝑚,𝑡−1 is discounted

by the fraction of 1
2 𝑓𝑖𝑚𝑁𝑚

.

𝐻𝑖𝑚𝑟 𝑖𝑚𝑟 =

(
1 − 1

2 𝑓𝑖𝑚𝑁𝑚

)
𝐻𝑚𝑚,𝑡−1 (S29)

In the case of 𝐻𝑖𝑘𝑠𝑖𝑙𝑠 ,𝑡 , 𝐻𝑖𝑘𝑠𝑖𝑙𝑟 ,𝑡 , 𝐻𝑖𝑘𝑟 𝑖𝑙𝑠 ,𝑡 , and 𝐻𝑖𝑘𝑟 𝑖𝑙𝑟 ,𝑡 , two genes are sampled from independent

subset or copy of stage 𝑘 and 𝑙 of the previous year. Therefore,

𝐻𝑖𝑘𝑠𝑖𝑙𝑠 ,𝑡 = 𝐻𝑖𝑘𝑠𝑖𝑙𝑟 ,𝑡 = 𝐻𝑖𝑘𝑟 𝑖𝑙𝑠 ,𝑡 = 𝐻𝑖𝑘𝑟 𝑖𝑙𝑟 ,𝑡 = 𝐻𝑘𝑙,𝑡−1 (S30)

Substituting equations S27 -S30 to equations S20 -S25 ,

𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛼 =
𝑛∑

𝑚=1

{(
𝑡𝑖𝑚𝑁𝑚

𝑁𝑖

)2
× 1 − 1/(2𝑡𝑖𝑚𝑁𝑚)

1 − 1/(2𝑁𝑚)
𝐻𝑚𝑚,𝑡−1

}
𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛽 =

𝑛∑
𝑚=1

(
2𝑡𝑖𝑚 𝑓𝑖𝑚𝑁

2
𝑚

𝑁2
𝑖

× 𝐻𝑚𝑚,𝑡−1

)
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𝐻𝑖𝑖,𝑡 |2∩𝐴∩𝛾 =
𝑛∑

𝑚=1

{(
𝑓𝑖𝑚𝑁𝑚

𝑁𝑖

)2
×

(
1 − 1

2 𝑓𝑖𝑚𝑁𝑚

)
𝐻𝑚𝑚,𝑡−1

}
𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛼 =

𝑛∑
𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2𝑡𝑖𝑘 𝑡𝑖𝑙𝑁𝑘𝑁𝑙

𝑁2
𝑖

× 𝐻𝑘𝑙,𝑡−1

)

𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛽 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

{
2(𝑡𝑖𝑘 𝑓𝑖𝑙 + 𝑓𝑖𝑘 𝑡𝑖𝑙)𝑁𝑘𝑁𝑙

𝑁2
𝑖

× 𝐻𝑘𝑙,𝑡−1

}

𝐻𝑖𝑖,𝑡 |2∩𝐵∩𝛾 =
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

(
2 𝑓𝑖𝑘 𝑓𝑖𝑙𝑁𝑘𝑁𝑙

𝑁2
𝑖

× 𝐻𝑘𝑙,𝑡−1

)
. (S31)

Substituting equations S31 to S19 , we can formulate 𝐻𝑖𝑖,𝑡 .

𝐻𝑖𝑖,𝑡 =
𝑛∑

𝑚=1

{(
𝑡𝑖𝑚𝑁𝑚

𝑁𝑖

)2 1 − 1/(2𝑡𝑖𝑚𝑁𝑚)
1 − 1/(2𝑁𝑚)

+ 2𝑡𝑖𝑚 𝑓𝑖𝑚𝑁
2
𝑚

𝑁2
𝑖

+
(
𝑓𝑖𝑚𝑁𝑚

𝑁𝑖

)2 (
1 − 1

2 𝑓𝑖𝑚𝑁𝑚

)}
𝐻𝑚𝑚,𝑡−1

+
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

2(𝑡𝑖𝑘 𝑡𝑖𝑙 + 𝑡𝑖𝑘 𝑓𝑖𝑙 + 𝑓𝑖𝑘 𝑡𝑖𝑙 + 𝑓𝑖𝑘 𝑓𝑖𝑙)𝑁𝑘𝑁𝑙

𝑁2
𝑖

𝐻𝑘𝑙,𝑡−1

=
𝑛∑

𝑚=1

{(
𝑡𝑖𝑚𝑁𝑚

𝑁𝑖

)2 1 − 1/(2𝑡𝑖𝑚𝑁𝑚)
1 − 1/(2𝑁𝑚)

+ 2𝑡𝑖𝑚 𝑓𝑖𝑚𝑁
2
𝑚

𝑁2
𝑖

+
(
𝑓𝑖𝑚𝑁𝑚

𝑁𝑖

)2 (
1 − 1

2 𝑓𝑖𝑚𝑁𝑚

)}
𝐻𝑚𝑚,𝑡−1

+
𝑛∑

𝑘=1

𝑛∑
𝑙=1
𝑙≠𝑘

2𝑎𝑖𝑘𝑎𝑖𝑙𝑁𝑘𝑁𝑙

𝑁2
𝑖

𝐻𝑘𝑙,𝑡−1. (S32)

1.3 Definition of generation time 𝑇

We use generation time 𝑇 to formulate effective population size 𝑁𝑒. Here, we explain the defi-

nition of generation time.

Firstly, we decompose the population projection matrix into two: 𝑼 matrix, which is made

up of 𝑡𝑖 𝑗 and describes the survival process, and 𝑭 matrix, which is made up of stage-specific

fecundity 𝑓𝑖 𝑗 . In the case of the two-stage model,

©«
𝑡11 𝑡12 + 𝑓12

𝑡21 𝑡22

ª®¬ = ©«
𝑡11 𝑡12

𝑡21 𝑡22

ª®¬ + ©«
0 𝑓12

0 0
ª®¬ = 𝑼 + 𝑭. (S33)
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In the case of the three-stage model,

©«
𝑡11 0 𝑓13

𝑡21 𝑡22 𝑡23

0 𝑡32 𝑡33

ª®®®®¬
=

©«
𝑡11 0 0

𝑡21 𝑡22 𝑡23

0 𝑡32 𝑡33

ª®®®®¬
+

©«
0 0 𝑓13

0 0 0

0 0 0

ª®®®®¬
= 𝑼 + 𝑭. (S34)

By multiplying 𝑼 matrix 𝑥 times, we can obtain transition probabilities per 𝑥 years. In the

case of the two-stage model,

𝑼𝑥 = ©«
𝑡11 𝑡12

𝑡21 𝑡22

ª®¬
𝑥

= ©«
�̃�11 �̃�12

�̃�21 �̃�22

ª®¬ . (S35)

Here, �̃�11 and �̃�21 are the probabilities that an individual in stage 1 remain in stage 1, or move to

stage 2, after 𝑥 years, respectively. Now, we can formulate age-specific survival rate 𝑙𝑥 , which

denotes the probability of a newborn individual to survive until age 𝑥, and age-specific fecundity

𝑚𝑥 , which is a expected number of newborns that an individual of age 𝑥 can make.

𝑙𝑥 = �̃�11 + �̃�21 (S36)

𝑚𝑥 = 0 × �̃�11
�̃�11 + �̃�21

+ 𝑓12 ×
�̃�21

�̃�11 + �̃�21
. (S37)

In the case of the three-stage,

𝑼𝑥 =

©«
𝑡11 0 0

𝑡21 𝑡22 𝑡23

0 𝑡32 𝑡33

ª®®®®¬
𝑥

=

©«
�̃�11 �̃�12 �̃�13

�̃�21 �̃�22 �̃�23

�̃�31 �̃�32 �̃�33

ª®®®®¬
(S38)

𝑙𝑥 = �̃�11 + �̃�21 + �̃�31 (S39)

𝑚𝑥 = 𝑓13 ×
�̃�31

�̃�11 + �̃�21 + �̃�31
. (S40)

Then, we formulate generation time (𝑇) as the expected age of a parent of a cohort.

𝑇 =

∑𝑥𝑚𝑎𝑥

𝑥=1 𝑥𝑙𝑥𝑚𝑥∑𝑥𝑚𝑎𝑥

𝑥=1 𝑙𝑥𝑚𝑥
, (S41)

where 𝑥𝑚𝑎𝑥 is the maximum age defined as the age at which either of the two criteria (quoted

from Waples et al., (2013)) is satisfied.
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1. oldest age for which 𝑙𝑥 was ≥ 1 % of the value at age at maturity (𝐿𝛼)

2. oldest age for which the product 𝑙𝑥𝑣𝑥 was ≥ 1 % of the maximum 𝑙𝑥𝑣𝑥 for any age, where

𝑣𝑥 is the reproductive value of an individual of age 𝑥

Equation S41 is exactly the mean age of net fecundity in the cohort (Carey & Roach, 2020).
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2 Elements of matrix 𝑴2 and 𝑴3

Here, we show the elements of matrix 𝑴2 and 𝑴3. These two matrices correspond to the matrix

𝑴 in equation 10 of the main text for the two- and three-stage model (Figure 2 of the main text),

respectively.

2.1 𝑴2

𝒉𝒕 =

©«
𝐻11,𝑡

𝐻22,𝑡

𝐻12,𝑡

ª®®®®¬
= 𝑴2

©«
𝐻11,𝑡−1

𝐻22,𝑡−1

𝐻12,𝑡−1

ª®®®®¬

=

©«
𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

𝑚31 𝑚32 𝑚33

ª®®®®¬
©«
𝐻11,𝑡−1

𝐻22,𝑡−1

𝐻12,𝑡−1

ª®®®®¬
(S42)

where

𝑚11 = 𝑡211
1 − 1/(2𝑡11𝑁1)
1 − 1/(2𝑁1)

(S43)

𝑚21 =

(
𝑡21𝑁1
𝑁2

)2 1 − 1/(2𝑡21𝑁1)
1 − 1/(2𝑁1)

(S44)

𝑚31 =
𝑁1
𝑁2

(
𝑡11𝑡21

1 − 1/(2𝑁1)

)
(S45)

𝑚12 =

(
𝑡12𝑁2
𝑁1

)2 1 − 1/(2𝑡12𝑁2)
1 − 1/(2𝑁2)

+
2𝑡12 𝑓12𝑁

2
2

𝑁2
1

+
(
𝑓12𝑁2
𝑁1

)2 (
1 − 1

2 𝑓12𝑁2

)
(S46)

𝑚22 = 𝑡222
1 − 1/(2𝑡22𝑁2)
1 − 1/(2𝑁2)

(S47)

𝑚32 =
𝑁2
𝑁1

(
𝑡12𝑡22

1 − 1/(2𝑁2)
+ 𝑓12𝑡22

)
(S48)
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𝑚13 =
2𝑡11𝑎12𝑁2

𝑁1
(S49)

𝑚23 =
2𝑡21𝑡22𝑁1

𝑁2
(S50)

𝑚33 = 𝑡11𝑡22 + 𝑎12𝑡21 (S51)

2.2 𝑴3

𝒉𝒕 =

©«

𝐻11,𝑡

𝐻22,𝑡

𝐻33,𝑡

𝐻12,𝑡

𝐻23,𝑡

𝐻13,𝑡

ª®®®®®®®®®®®®®¬
= 𝑴3

©«

𝐻11,𝑡−1

𝐻22,𝑡−1

𝐻33,𝑡−1

𝐻12,𝑡−1

𝐻23,𝑡−1

𝐻13,𝑡−1

ª®®®®®®®®®®®®®¬

=

©«

𝑚11 𝑚12 𝑚13 𝑚14 𝑚15 𝑚16

𝑚21 𝑚22 𝑚23 𝑚24 𝑚25 𝑚26

𝑚31 𝑚32 𝑚33 𝑚34 𝑚35 𝑚36

𝑚41 𝑚32 𝑚43 𝑚44 𝑚45 𝑚46

𝑚51 𝑚42 𝑚53 𝑚54 𝑚55 𝑚56

𝑚61 𝑚52 𝑚63 𝑚64 𝑚65 𝑚66

ª®®®®®®®®®®®®®¬

©«

𝐻11,𝑡−1

𝐻22,𝑡−1

𝐻33,𝑡−1

𝐻12,𝑡−1

𝐻23,𝑡−1

𝐻13,𝑡−1

ª®®®®®®®®®®®®®¬
(S52)

where

𝑚11 = 𝑡211
1 − 1/(2𝑡11𝑁1)
1 − 1/(2𝑁1)

(S53)

𝑚21 =

(
𝑡21𝑁1
𝑁2

)2 1 − 1/(2𝑡21𝑁1)
1 − 1/(2𝑁1)

(S54)

𝑚31 = 0 (S55)
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𝑚41 =
𝑁1
𝑁2

𝑡11𝑡21
1 − 1/(2𝑁1)

(S56)

𝑚51 = 0 (S57)

𝑚61 = 0 (S58)

𝑚12 = 0 (S59)

𝑚22 = 𝑡222
1 − 1/(2𝑡22𝑁2)
1 − 1/(2𝑁2)

(S60)

𝑚32 =

(
𝑡32𝑁2
𝑁3

)2 1 − 1/(2𝑡32𝑁2)
1 − 1/(2𝑁2)

(S61)

𝑚42 = 0 (S62)

𝑚52 =
𝑁2
𝑁3

𝑡22𝑡32
1 − 1/(2𝑁2)

(S63)

𝑚62 = 0 (S64)

𝑚13 =

(
𝑓13𝑁3
𝑁1

)2 (
1 − 1

2 𝑓13𝑁3

)
(S65)

𝑚23 =

(
𝑡23𝑁3
𝑁2

)2 1 − 1/(2𝑡23𝑁3)
1 − 1/(2𝑁3)

(S66)

𝑚33 = 𝑡233
1 − 1/(2𝑡33𝑁3)
1 − 1/(2𝑁3)

(S67)
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𝑚43 =
𝑓13𝑡23𝑁

2
3

𝑁1𝑁2
(S68)

𝑚53 =
𝑁3
𝑁2

𝑡23𝑡33
1 − 1/(2𝑁3)

(S69)

𝑚63 =
𝑓13𝑡33𝑁3

𝑁1
(S70)

𝑚14 = 0 (S71)

𝑚24 =
2𝑡21𝑡22𝑁1

𝑁2
(S72)

𝑚34 = 0 (S73)

𝑚44 = 𝑡11𝑡22 (S74)

𝑚54 =
𝑡21𝑡32𝑁1

𝑁3
(S75)

𝑚64 =
𝑡11𝑡32𝑁2

𝑁3
(S76)

𝑚15 = 0 (S77)

𝑚25 =
2𝑡22𝑡23𝑁3

𝑁2
(S78)

𝑚35 =
𝑡32𝑡33𝑁2

𝑁3
(S79)

𝑚45 =
𝑓13𝑡22𝑁3

𝑁1
(S80)
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𝑚55 = 𝑡22𝑡33 (S81)

𝑚65 =
𝑡32 𝑓13𝑁2

𝑁1
(S82)

𝑚16 =
2𝑡11 𝑓13𝑁3

𝑁1
(S83)

𝑚26 =
2𝑡21𝑡23𝑁1𝑁3

𝑁2
2

(S84)

𝑚36 = 0 (S85)

𝑚46 =
𝑓13𝑡21𝑁3

𝑁2
(S86)

𝑚56 =
𝑡21𝑡33𝑁1

𝑁2
(S87)

𝑚66 = 𝑡11𝑡33 (S88)
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3 How to determine parameter values

We randomly produced 500 parameter sets for each of the two- and the three-stage model for sim-

ulation and model analysis. Here, we explain how we determined the values of each parameter

(demographic rates and the number of individuals in each stage).

Step 1 We draw four random numbers from the uniform distribution 𝑈 (0, 1) for the two-stage

model. In the case of the three-stage model, six random numbers are drawn from the same

uniform distribution.

Step 2 We rearrange the random numbers in an increasing order.

Step 3 We multiply the random numbers by 100, and round them off to be integers. Moreover,

we add 0 and 100 to the sequences.

Step 4 We take the difference between the neighboring numbers: we subtract each number from

its next smaller one. As a result, five and seven numbers are generated for the two-stage

and the three-stage models, respectively.

Step 5 Each number is assigned to one of the demographic processes (i.e., growth, stasis, ret-

rogression, and reproduction) of each stage. As for the two-stage model, the first to fifth

numbers are assigned to (1) stasis at juvenile, (2) growth from juvenile to adult, (3) retro-

gression from adult to juvenile, (4) stasis at adult, and (5) reproduction, respectively. In

the case of the three-stage model, seven numbers are sequentially assigned to (1) stasis at

seed, (2) growth from seed to juvenile, (3) stasis at juvenile, (4) growth from juvenile to

adult, (5) retrogression from adult to juvenile, (6) stasis at adult, and (7) reproduction.

Step 6 We calculate the number of individuals of each stage as the sum of flows coming into

each stage.

Step 7 We calculate demographic rates by dividing the number of individuals of corresponding

flows by that of the stages from which the flows come out.

Step 8 We assess if the parameter values calculated in step 7 completely satisfy the following

three criteria. If they do, the values are added to the parameter sets. If not, the values are

discarded and we restart the procedures from Step 1.
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1. Growth probability and fecundity should be greater than 0, otherwise the life cycle

would be broken off.

2. Survival probability of each stage (i.e., sum of growth, stasis, and retrogression prob-

abilities of each stage) is within the range of [0, 1] to be a probability.

3. At least one stasis probability is not zero, otherwise genes in different stages do not

mix with one another and are segregated eternally.

Step 9 We repeated Step 1 to 8 until the number of parameter sets reached 500.

The resultant parameter sets range the parameter space widely both for the two-stage and

for the three-stage models, indicating that our model is examined for a variety of demographic

strategies (Figure S1).
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t11

t21

t12

t22

f12

t11

t21

t22

t32

t23

t33

f13

(a) Two-stage model

(b) Three-stage model

Figure S 1: 500 parameter sets used in simulation and model analysis. One dot corresponds to
one parameter set. (a) Two-stage model, (b) three-stage model. There are some parameter pairs
where the dots occupy only the lower-left triangle (e.g., 𝑡11 and 𝑡21 in (a); 𝑡22 and 𝑡32 in (b)). This
is because of the second criterion in step 8, that is, the sum should not exceed 1
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4 Additional results

4.1 Validation of our model

(a) Two-stage model, N = 500 (b) Three-stage model, N = 500
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r t
)

(c) Two-stage model, N = 1000 (d) Three-stage model, N = 1000

Theoretical expectation (η)

Figure S 2: Comparison between the theoretical expectation of the annual change rate of the
probability of non-identical-by-descent (𝜂) and the simulation results of that of expected het-
erozygosity (𝑟𝑡) when 𝑁 =500 and 1000 for both the two- and the three-stage model. (a) Two-
stage model, 𝑁 = 500, (b) three-stage model, 𝑁 = 500, (c) two-stage model, 𝑁 = 1000, (d)
three-stage model, 𝑁 = 1000. Vertical bars represent standard error of 𝑟𝑡 . Red lines indicate
𝑟𝑡 = 𝜂
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(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Theoretical expectation (log(Hii,t ∕ Hjj,t))
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Figure S 3: Comparison of demographic genetic structure between theoretical expectation
(log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)) and simulation results (log(�̂�𝑖𝑖,𝑡/�̂� 𝑗 𝑗 ,𝑡)) when 𝑁 =500 for both the two- and
the three-stage model. (a) 𝑖 = 1, 𝑗 = 2, two-stage model, (b)𝑖 = 1, 𝑗 = 2, three-stage model,
(c) 𝑖 = 2, 𝑗 = 3, three-stage model, (d) 𝑖 = 1, 𝑗 = 3, three-stage model. Vertical bars represent
standard error of 𝑟𝑡 . Red lines indicate log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)=log(�̂�𝑖𝑖,𝑡/�̂� 𝑗 𝑗 ,𝑡)

(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Theoretical expectation (log(Hii,t ∕ Hjj,t))
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Figure S 4: Comparison of demographic genetic structure between theoretical expectation
(log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)) and simulation results (log(�̂�𝑖𝑖,𝑡/�̂� 𝑗 𝑗 ,𝑡)) when 𝑁 =1000 for both the two- and
the three-stage model. (a) 𝑖 = 1, 𝑗 = 2, two-stage model, (b)𝑖 = 1, 𝑗 = 2, three-stage model,
(c) 𝑖 = 2, 𝑗 = 3, three-stage model, (d) 𝑖 = 1, 𝑗 = 3, three-stage model. Vertical bars represent
standard error of 𝑟𝑡 . Red lines indicate log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)=log(�̂�𝑖𝑖,𝑡/�̂� 𝑗 𝑗 ,𝑡)

20



E
x
p

e
c
te

d
h

e
te

ro
z
y
g
o

s
it
y
 (

H
ij,

t
o

r 
Ĥ

ij,
t)

Time (year)

(a) Theory, two-stage (b) Simulation, two-stage

(c) Theory, three-stage (d) Simulation, three-stage

H11,t

H22,t

H12,t

H11,t

H22,t

H33,t

H12,t

H23,t

H13,t

Ĥ11,t

Ĥ22,t

Ĥ12,t

Ĥ11,t

Ĥ22,t

Ĥ33,t

Ĥ12,t

Ĥ23,t

Ĥ13,t

Figure S 5: Graphical comparison of tempotal dynamics of expected heterozygosity between the-
oretical expectation (i.e., dynamics of 𝐻𝑖 𝑗 ,𝑡) and simulation results (i.e., dynamics of �̂�𝑖 𝑗 ,𝑡) under
a partocular parameter set in the two- and the three-stage model. Colors stand for combinations of
𝑖 and 𝑗 . (a) Theoretical expectations and (b) simulation results of the two-stage model, (c) theo-
retical expectations and (d) simulation results of the three-stage model. Parameter set of the two-
stage model is 𝑡11 = 0.115, 𝑡21 = 0.750, 𝑡12 = 0.333, 𝑡22 = 0.188, 𝑓12 = 0.625, 𝑁1 = 52, 𝑁2 = 48,
while that of the three-stage model is 𝑡11 = 0.476, 𝑡21 = 0.405, 𝑡22 = 0.568, 𝑡32 = 0.273, 𝑡23 =
0.143, 𝑡33 = 0.143, 𝑓13 = 1.57, 𝑁1 = 42, 𝑁2 = 44, 𝑁3 = 14. Each parameter set was randomly
picked from the 500 parameter sets under 𝑁 = 100 as an example case
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4.2 Comparison of demographic genetic structure with 𝑁𝑒 and 𝜂
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Figure S 6: Comparison of demographic genetic structure (log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)) with effective pop-
ulation size (𝑁𝑒) when 𝑁 = 500. (a) 𝑖 = 1 and 𝑗 = 2 of the two-stage model, (b) 𝑖 = 1 and 𝑗 = 2,
(c) 𝑖 = 2 and 𝑗 = 3, (d) 𝑖 = 1 and 𝑗 = 3 of the three-stage model
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Figure S 7: Comparison of demographic genetic structure (log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)) with effective pop-
ulation size (𝑁𝑒) when 𝑁 = 1000. (a) 𝑖 = 1 and 𝑗 = 2 of the two-stage model, (b) 𝑖 = 1 and
𝑗 = 2, (c) 𝑖 = 2 and 𝑗 = 3, (d) 𝑖 = 1 and 𝑗 = 3 of the three-stage model
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Figure S 8: Comparison of demographic genetic structure (log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)) with the annual
change rate of expected heterozygosity (𝜂) when 𝑁 = 100. (a) 𝑖 = 1 and 𝑗 = 2 of the two-stage
model, (b) 𝑖 = 1 and 𝑗 = 2, (c) 𝑖 = 2 and 𝑗 = 3, (d) 𝑖 = 1 and 𝑗 = 3 of the three-stage model
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Figure S 9: Comparison of demographic genetic structure (log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)) with the annual
change rate of expected heterozygosity (𝜂) when 𝑁 = 500. (a) 𝑖 = 1 and 𝑗 = 2 of the two-stage
model, (b) 𝑖 = 1 and 𝑗 = 2, (c) 𝑖 = 2 and 𝑗 = 3, (d) 𝑖 = 1 and 𝑗 = 3 of the three-stage model
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Demographic genetic structure (log(Hii,t ∕ Hjj,t))

(a) i = 1, j = 2, two-stage model (b) i = 1, j = 2, three-stage model

(c) i = 2, j = 3, three-stage model (d) i = 1, j = 3, three-stage model

Figure S 10: Comparison of demographic genetic structure (log(𝐻𝑖𝑖,𝑡/𝐻 𝑗 𝑗 ,𝑡)) with the annual
change rate of expected heterozygosity (𝜂) when 𝑁 = 1000. (a) 𝑖 = 1 and 𝑗 = 2 of the two-stage
model, (b) 𝑖 = 1 and 𝑗 = 2, (c) 𝑖 = 2 and 𝑗 = 3, (d) 𝑖 = 1 and 𝑗 = 3 of the three-stage model

4.3 Dependence of 𝑁𝑒 and 𝜂 to 𝑁

N
e

Total population size (N)

(a) Ne of the two-stage model (b) Ne of the three-stage model

(c) η of the two-stage model (d) η of the three-stage model

η

Figure S 11: Effective population size (𝑁𝑒) and the annual change rate of expected heterozygosity
(𝜂) of the 500 parameter sets for each of 𝑁 = 100, 500, and 1000. (a) 𝑁𝑒 of the two-stage model,
(b) 𝑁𝑒 of the three-stage model, (c) 𝜂 of the two-stage model, (d) 𝜂 of the three-stage model
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