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1 Model development

1.1 Formulation of H;; ;

As explained in the main text, H;; , is split into six subsets:

H;j: =H;jl1nAne + Hijil1nang + Hijil1nany

+ Hijil1nBne + Hijtl1nBng + Hijil1nBny- (S1)

where H;; ;| xnynz stands for H;; , under the concurrence of case X, Y,andZ (X = 1,2;Y = A, B;

Z=a,p,7y).

We define sub-stage i,,; and i,,,,, which consist of individuals transferred from stage m to i by

survival and by reproduction, respectively. Each H;;.

H:

Imr Jms

imsjms ’t

(case INANa), H; ¢t (case 1N AN}), and H; ; (case 1 N A N y) weighted

ms Jmrl? mrJmrs

by the corresponding number of two-gene pairs.

N; N;

Hl] tllﬂAﬂa = Z %Himvjms,[ (Sz)
m=1
mr anrN ms
( L N Hin i (S3)
iV

N; N;
Hijlinany = Z #Him,jmr,t- (S4)

iV

m=1

Here, N; . and N; _denote the number of individuals in sub-stage i,,s and j,, respectively. As

for case 1 N A N a, two genes, each sampled from stage i and j, belong to sub-stage i,,,s and j,,,

2N;

=ms The number of genes is twice as many as that of individuals

with the chance of ”” X oWy

because we assume diploid species. Thus, H;, ;. ,1s weighted by —5—#* "”‘N’”” , as shown in equation
S2 . Case 1 N AN B (equation S3 ) and 1 N A Ny (equation S4 ) are similarly formulated.

In the concurrence of case 1, A, and «, two genes, each sampled from sub-stage i,,; and j,,,
cannot be the same gene because one gene in stage m in year ¢ — 1 could not move to both stage i

and j simultaneously by survival. Therefore, H; ¢ 1s equal to the probability that two genes

mSija
randomly sampled from stage m “without” replacement in time 7 —1 are not identical-by-descent.
Here, we define H 88 the probability that two genes sampled from stage i and j “without”

replacement in time ¢ are non-identical-by-descent. Because H;,_;,.. . is equal to H’

in case
mm,t—1

1 NANa, we formulate H . When sampling two genes from stage m with replacement in



year t — 1, the same gene can be sampled twice with the probability of ﬁ X ﬁ X 2N,, = ﬁ,

which makes no contribution to Hy,, ;—1. Therefore, H,,,, ;—1 can be formulated as follows.

1 '
Hmm,[—l = - X0+(1 —m) XHmmt 1 (SS)
Asaresult, H) . is obtained.
, 1
Hi,yjmst = H (S6)

Unlike transfer by survival, transfer by reproduction allows the same gene to move multiple
pathways simultaneously, because genes are replicated. In the caseof 1IN AN Band 1 NA Ny,
sampling in year ¢ does not preclude the chance of sampling the same gene twice, because at
least one of the two genes are transferred by reproduction. Therefore,

H;

= H; =Hi,, it = Hnm,—1 (S7)

msjmrat mrjms,t

The number of genes in each sub-stage is given by

Ni,s = timNm (S8)
Nj,. =tjmNp (S9)
N, = finNm (S10)
Nj.. = fimNum. (S11)

Substituting equations S6 -S11 to equations S2 -S4 ,

5 timt jm N2, 1
Hij,l|lﬂAﬂa/:Z:1 Nl'N' X 1_1/(2Nm) mmt 1 (512)
(tim fj +f tim)N,
Hijilinang = Z { o X Hpym -1 (S13)
ﬁ-mfij,%,
Hijilinany = ———— X Hypy1|. (S14)
ij y ]; NiNj mm

As for H;j ;|1nBnz (Z = a, B, ), two genes, each sampled from stage i/ and j in time ¢, were
in stage k and /, or in stage / and k, in year ¢ — 1 respectively. In either situation, the probability

of non-identical-by-descent remains the same as that in year ¢ — 1, which is Hy;;—1, regardless



of whether they were transferred only by survival (case 1 N B N @), both by survival and by

reproduction (case 1 N B N B), or only by reproduction (case 1 N BN y).

H _ lesNJlsH NllsN]ksH
ij,tllﬂBﬁOl - iksjl‘vst + ilsjksJ

rer e ALY NiNj
Ik
1 i (l‘,'kl‘lekNj tilljkaNj )
= ———Hy 1+ ———Hi -1
oo\ Nl NiN;
I#k
o (it i+ it ) NN
=>> T Hto-1 (S15)
k=1 I=1 ‘-1
I#k
" & (N;, N; N;, N;
Hijil1nBng = ( el p Sj,,t'*'MHi st
kz]; NINJ ksJl NZN] krjl
I#k
N; N; N; N
+ ]l\l, ka, Hiy i + #Hizrjks,z)
iN; iN;
o (tik fjiNe Ny fixtjiNk N
= Z NN, kl,r—1+W klt-1
k=1 [=1 v B
I#k
ti fixNiN; Jutjk NN,
+IJJVTHkl,t—1 + l]JVTHklz 1
1 ” t + fixti] +1 + fitix )Nk N,
_ (ti fj1 + fixtji + ti fjx + futjx) Nk H 516)
N;N; ’
k=1 1= ity
I#k
n n
Nl N]lr Nler]kr
l tllﬂBﬂ ( zr]r r+ Hirj s
] kz]; NIN] krjl NZNJ IrJk
I#k
n n
fik fiiNkN; firfikNiN;
= Z( v LHypgo1 + = ]JV~N~ L Hyg1
k=1 [=1 1
I#k
n n
(fix fi1 +fzf k)NkN
Z{ e H (S17)
=1 1=1
I#k

Substituting equations S12 -S17 to equation S1 , we can formulate H;; ; as follows.

Hyj, = Zn: fintjoNw L (S + fint )N
VT L NN; T 1= 1/(2Ny) NiN;
NiNj mm,t—1



N < Z": {(tiktjz + 11t ji )Nk N . (tix fi1 + fixtji + tit fix + futjx) NeNg

= = N,'Nj N,-Nj
Ik
(fic fj1 + firfix) NN
4 N~lN.~1 Hig -1
vy
noa
Nm { timtjm
= + fimtjm + tim fim + fim [ } !
£ NzN] 1— 1/(2Nm) imtjm T timJjm imJjm mm,t—
n n
NN,
+ NN ((tik + fir) (@t + f0) + (G + fu) (Ejxc + fi)) Hirp1-
= o Vil
=
)
Nm { timtjm
= + fimtjm * tim fim + fim [ } 1
£ N,N 1_1/(2Nm) imljm imJjm imJjm mm,t—
NiN;
+ZZ NN, (aixaji+agaj)Hyp 1.

1.2 Formulation of H;; ;

Hj;; is split into mutually exclusive six subsets:

Hii s =Hii t|2nana + Hiit20ang + Hiitl2nany

+ Hijt|2nBra + Hiitl2nBng + Hiitl20Bys

(S18)

(S19)

Considering which sub-stages two genes are sampled from, we can formulate the six H;;; on the

right side of equation S19 .

Hiit2nAne =

N\’
N, Hi, it
2
timN,
{ Nl-m) Himsims,z}

n
m=1
n
m=1
n
H B Ni,,Ni,, H Ni,, Ni,, H
ii,l'znAﬂﬁ - T 0 Hipgimest L Umrims st
m=1
n
m=1
n

N?

m:] l
n

Niml‘ 2
Hiitlanany = o
m=1 !

2tim Fim N>
2lim fim Ny = Hp it

(S20)

(S21)



n 2
imIN,
S (L) (522)
N‘ mrtmr»
m=1 L
n n
Nik i NilsNikv
Hii,tlZﬂBﬁa = Z Nz : Hl'ksjls,l + NZ ‘ Hilsjks»[
k=1 I=1 i i
l#k
n n
_ 2NilsNiksH
- Z N2 s Jks»t
k=1 I=1 [
I#k
n n
2kt Nk N
= Z N2 Hils./.ksJ (823)
k=1 l[:}( i
+
n n
Niy Niy, Niy, Niyg
Hij,l'szﬂﬁ = Z N2 Hl.krl‘ls,t + NZ - Hikrils,l‘
k=1 [=1 i i
l#k
N;, N; N;, N;,
+ l,;;]Z - Hiksilrst + llzrvzlkb Hiksilrvt
i i
L 2N,' N,' 2Nz‘ Ni—
kr ls ks Ir
= —Hikrils,[ + —Hikrils,t
N? N?
k=1 I=1 i i
l#k
n n
2 fixtitNk N 2t fuNi N 24
= T ikrl‘lsJ N2 Hiksilrvt (S )
k=1 ll:}{ i i
+
n n
_ NikrNilr Nierikr H
Hii,t'ZﬂBﬂy - Z N2 Hikrjlrst + N2 ilrjkrst
k=1 I=1 i i
1#k
n n
_ 2Nierikr H
- Z N2 i Jkr st
k=1 I=1 [
I#k
n n
2 fir fuNk N
= Z THilrjer (825)
k=1 ll:]l{ i
+

As in the case of H; t» two genes are sampled from sub-stage i,,; with replacement.

msims,
Because all genes in sub-stage i,,; were transferred by survival from stage m, sub-stage i,
consist of genes that were randomly sampled 2t;,,N,, times ’without’ replacement from stage
m. Therefore, the probability of sampling two genes that are non-identical-by-descent without

replacement should remain the same between stage m in year ¢ — 1 and sub-stage i,,; in year ¢

(.e., H =H/ ). As with equation S5 , H;
m t q

=H . ; 1s formulated as follows.
m,t—1 Imslms, >

ms lms

H;

= X0+ |1~ XH ; . 526
mslms»t 2f,mNm ( 2tlmNm ) Imslms,t ( )



From equations S5 and S26,

’ 2 ¢
Himsims,l - Hmm,l—l

g L@
Imslmssf — mm,t—1-
mstms» 1 _ 1/(2Nm) 9

(S27)

It should be noted that H; ;  ; should not be equal to H,m,t — 1. Two genes are always sam-
pled from a common subset of stage m (i.e, sub-stage i,,s), which means that two genes are not
sampled from separate and independent surrogates of stage m of the previous year. Therefore,
sampling two genes from sub-stage i,,; with replacement is not equivalent to that from stage m

with replacement. Unlike H; H; . . should be equal to H,,, -1, because sub-stage i,,, s

mslms,l?

and i,,r, from which two genes are sampled, are independently formed from stage m.
Himsimr,t = Hmm,t—l (828)

In the case of H; the sources of two genes sampled are the same (i.e., sub-stage i,,) and

mrlmrst?

thus are not independent surrogates of stage m of the previous year, as with the case of H;

mslms,t*

Sampling the same gene twice occurs with the probability of which makes no contribu-

S S
2fimNm
tionto H; ;.. Inthe remaining conditions where the two genes are sampled without replace-
ment, the two genes are not identical-by-descent with a chance of H,,,, ;-1 because sub-stage i,
were formed by reproduction, or sampling with replacement. Therefore, H,, ;1 1s discounted

by the fraction of ﬁ

1
Himrimr = (1 - m) Hmm,t—l (829)

In the case of H;, ;,. 1, Hi\ i), .t» Hiy,iy,.0» and H;, i, ¢, two genes are sampled from independent

subset or copy of stage k and / of the previous year. Therefore,
Higirgr = Higgir = Higyirr = Higyigy 0 = Hit -1 (S30)

Substituting equations S27 -S30 to equations S20 -S25 ,

n 2
timN, 1-1/(2t;;,N,,
Hii,tlZﬂAﬂa' = Z {( l m) X ST )Hmm,t—l}

N; 1-1/(2N,)

m=1

n 2
tim fimN
Hijtl2nang = Z (—lleg1 = X Hmm,t—l)
m=1 J

1



n 2
JimNm 1
Hii,tlZﬂAﬂy = Z ( Ni x|1- 2f1mNm Hmm,t—l

m=1
n n
2tiktiiNe Ny
Hiitl2nBna = Z ( ———— X Hyy;-1
=1 1=1 N;
1%k
n n
2(tix fir + fixti) Nk Ny
Hiit|2nBng = Z{ — l2 l X Higr-1
=1 =1 N;
1%k
o O [ 2k fuNiN
Hijtl2nBny = Z (% X Hkl,t—l) : (S31)
=1 =1 N;
1%k

Substituting equations S31 to S19, we can formulate H;; ;.

H::\ = i i 2 I- 1/(2timNm) 2timfimN,%1
A = 1/(2N,) N2

2
ﬁ‘m m 1
1- Hyio
+( Nz‘ 2flmNm mm,t—1

n n
2(titi + tix fu + fixtu + fix fit) Ne N
£ 2.2 N2
l

mNm
N;
N,

Hyp—1

k=1 I=1
l#k

R {(r,-mNm)zl—l/(zr,-mNm) tim finNA
1

+
N; 1-1/(2N,,) N2

1

2
+(ﬁmN ) (1_ : )}Hmmt—l
Ni 2f1mNm '

m=

n n
2a;ra; ;N N;
> = i (S32)
k=1 [=1 i
I#k

1.3 Definition of generation time 7

We use generation time 7 to formulate effective population size N,. Here, we explain the defi-
nition of generation time.

Firstly, we decompose the population projection matrix into two: U matrix, which is made
up of #;; and describes the survival process, and F matrix, which is made up of stage-specific

fecundity f;;. In the case of the two-stage model,

R L N L Y L ) (S33)

171 122 1 tn 0 O



In the case of the three-stage model,

i 0 fi3 tin 0 0 0 0 fi3
ta tn ty |=| ta tn ta || 0 0 0 [=U+F. (S34)
0 13 t33 0 13 t33 00 O

By multiplying U matrix x times, we can obtain transition probabilities per x years. In the

case of the two-stage model,

X

Ut = I 12 _ | w2 . (S35)

fy 1» i1 U

Here, ii1; and ii,; are the probabilities that an individual in stage 1 remain in stage 1, or move to
stage 2, after x years, respectively. Now, we can formulate age-specific survival rate /,, which
denotes the probability of a newborn individual to survive until age x, and age-specific fecundity

m,, which is a expected number of newborns that an individual of age x can make.

lx =1y + o (836)

my = 0x — 4oy 12 (S37)

In the case of the three-stage,

tn 0 0 iy diz 13
U =\t tn tr | =| i1 din iin3 (S38)
0 13 33 31 i3 U33
lx = I/~t11 + ftgl + 1/731 (839)
i3
my=fi3 X ————— (540)

fd + i1 + 31
Then, we formulate generation time (7') as the expected age of a parent of a cohort.

X,
2 xlemy

= i
e Lo,

(S41)

o

where x,,,, s the maximum age defined as the age at which either of the two criteria (quoted

from Waples et al., (2013)) is satisfied.



1. oldest age for which [, was > 1 % of the value at age at maturity (L,)

2. oldest age for which the product /v, was > 1 % of the maximum /,v, for any age, where

vy 1s the reproductive value of an individual of age x

Equation S41 is exactly the mean age of net fecundity in the cohort (Carey & Roach, 2020).

10



2 Elements of matrix M, a

nd M3

Here, we show the elements of matrix M> and M3. These two matrices correspond to the matrix

M in equation 10 of the main text for the two- and three-stage model (Figure 2 of the main text),

respectively.
21 M,
Hiy Hyp-1
h:=| Hy, |=M2| Hy,
Hyoy Hizi
mipp miy mp3 Hii-1
=| my mp mo3 Hy iy
m3; mszy ms3 Hizi 1
where
I 1 —1/(2t11Ny)
TNy
I N \* 1= 1/(2621N1)
21 N, 1-1/(2Ny)
" :& 121
T M \T=1/02N)
miy = (t12N2)2 1- 1/(2[12N2) 21‘12f12]\,22 + (f12N2)2 (1
N 1-1/(2N2) N? N
- 1 —1/(2t2,N>)
2RI 2Ny)
N-: tat
my = — e

Ny \1-1/(2N>)

11

1
2f12N>

|

(S42)

(S43)

(S44)

(S45)

(S46)

(S47)

(548)



mi3 = N
1

- 2621122 N}
3=
N

2t11a12N2

m33 = f11l22 + azi2

22 M;

where

Hi-1
H 1
H33,1
= M;
Hizsq
Hy3 .4
Hizi
miy mip mi3z M4 Mmis Mg
myl My M3 M4 M5 Mg
| m31 m3y m33 m3s m3s mse
m41 M32 M43 M4q M4s5 M4
msy M4y Ms3 Ms4 M55 Mse
mel Msy Me3 Meq Mes Mg
» 1=1/(2t11N1)
miy =17,
1-1/(2Ny)
2
e = 21V 1 —1/(211N1)
21 =
N> 1-1/(2Ny)
m31=0

12

(S49)

(S50)

(S51)

(S52)

(S53)

(S54)

(S55)



Ny I11121

myy) = Em

ms; =0

me1 =0

miz =0

moy = %21 — 1/(2t2N>)
1-1/(2N2)

myy = |22 *1-1/(2132N2)
32 N3 1 - 1/(2N2)

my =0

Ny 12213

msp = Em

B (l23N3)2 1 —1/(2t23N3)

ma3 = N, 1-1/(2N3)
mas = 12 1 —1/(2t33N3)
B3 T/ (2N3)

13

(S56)

(S57)

(S58)

(S59)

(S60)

(S61)

(S62)

(S63)

(S64)

(S65)

(S66)

(S67)



= (S68)
f13t23N§
s = NN,

123133
N3

T T Ao~ (S69)
Ny 1 - ]/(2N3)
2

(§70)
f13t33N3 )
me3 = N,
(872)
nmig4 = 0
2121120y )
(S874)
msq4 = 0
(S75)
a4 = I11122
m
11132N] )
Msy = N
H1132N2 )
Mey = N
(§878)
nis = 0
2t20123N3 )
132133N2 )
mss = N
f13t22N3
mys = N,

14



(S81)
mss = 122133

_ /132

(S82)
mes Ny
2111 f13N3 (S83)
16 = T
2t21123N1 N3 (S84)
M6 = i
Ny
(S85)
mse = 0
fi13t21N3 (586)
Mye = N,
11133N1 (S87)
Mmse = Ny
(S88)
Mmee = 111133
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3 How to determine parameter values

We randomly produced 500 parameter sets for each of the two- and the three-stage model for sim-
ulation and model analysis. Here, we explain how we determined the values of each parameter

(demographic rates and the number of individuals in each stage).

Step 1 We draw four random numbers from the uniform distribution U (0, 1) for the two-stage
model. In the case of the three-stage model, six random numbers are drawn from the same

uniform distribution.
Step 2 We rearrange the random numbers in an increasing order.

Step 3 We multiply the random numbers by 100, and round them off to be integers. Moreover,

we add 0 and 100 to the sequences.

Step 4 We take the difference between the neighboring numbers: we subtract each number from
its next smaller one. As a result, five and seven numbers are generated for the two-stage

and the three-stage models, respectively.

Step S Each number is assigned to one of the demographic processes (i.e., growth, stasis, ret-
rogression, and reproduction) of each stage. As for the two-stage model, the first to fifth
numbers are assigned to (1) stasis at juvenile, (2) growth from juvenile to adult, (3) retro-
gression from adult to juvenile, (4) stasis at adult, and (5) reproduction, respectively. In
the case of the three-stage model, seven numbers are sequentially assigned to (1) stasis at
seed, (2) growth from seed to juvenile, (3) stasis at juvenile, (4) growth from juvenile to

adult, (5) retrogression from adult to juvenile, (6) stasis at adult, and (7) reproduction.

Step 6 We calculate the number of individuals of each stage as the sum of flows coming into

each stage.

Step 7 We calculate demographic rates by dividing the number of individuals of corresponding

flows by that of the stages from which the flows come out.

Step 8 We assess if the parameter values calculated in step 7 completely satisfy the following
three criteria. If they do, the values are added to the parameter sets. If not, the values are

discarded and we restart the procedures from Step 1.

16



1. Growth probability and fecundity should be greater than 0, otherwise the life cycle

would be broken off.

2. Survival probability of each stage (i.e., sum of growth, stasis, and retrogression prob-

abilities of each stage) is within the range of [0, 1] to be a probability.

3. At least one stasis probability is not zero, otherwise genes in different stages do not

mix with one another and are segregated eternally.
Step 9 We repeated Step 1 to 8 until the number of parameter sets reached 500.

The resultant parameter sets range the parameter space widely both for the two-stage and
for the three-stage models, indicating that our model is examined for a variety of demographic

strategies (Figure S1).

17



(a) Two-stage model

(b) Three-stage model
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Figure S 1: 500 parameter sets used in simulation and model analysis. One dot corresponds to
one parameter set. (a) Two-stage model, (b) three-stage model. There are some parameter pairs
where the dots occupy only the lower-left triangle (e.g., #1; and #21 in (a); 22 and #3 in (b)). This
is because of the second criterion in step 8, that is, the sum should not exceed 1
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4 Additional results

4.1 Validation of our model

(a) Two-stage model, N = 500 (b) Three-stage model, N = 500

1.000 - 1.000 -
0.998 |
0.996 - |'| 0.999 1 +|T
0.994 ‘ W
\ 0.998 -
0992 ™ T T T T T T
0.994 0.998 0998 0999 1.000

(c) Two-stage model, N = 1000 (d) Three-stage model, N = 1000

1,000 1 M 1.0000
0-999 7 HN 0.9995 - ﬁw
0.998 m

0.9990 H ‘ H

0.9990 0.9995 1.0000

Simulation results (r,)

0.997 -|

0997 0999

Theoretical expectation (1)
Figure S 2: Comparison between the theoretical expectation of the annual change rate of the
probability of non-identical-by-descent (17) and the simulation results of that of expected het-
erozygosity (r;) when N =500 and 1000 for both the two- and the three-stage model. (a) Two-

stage model, N = 500, (b) three-stage model, N = 500, (c) two-stage model, N = 1000, (d)
three-stage model, N = 1000. Vertical bars represent standard error of r,. Red lines indicate

rr=n
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(a)i=1, =2, two-stage model (b)i=1,j= 2, three-stage model

‘i‘
,4*’
0.01 1 0.00 1
= A
= '
S
= -0.01 1
T 0.00 1 ~
for) ',,"
g L A
Ju 0.00 0.01 -0.01 0.00
>
g (c)i=2,j=3,three-stage model  (d)i=1,j= 3, three-stage model
o ¥ 0.02 y
2 0.02-
©
= oM ]
E s oo
& 001
0.00 1
0.00 1
-0.01 1
-0.01 12 . . . A . . .
-0.01 0.00 0.01 0.02 -0.01 0.00 0.01 0.0z

Theoretical expectation (log(H; ./ H;;,))

Figure S 3: Comparison of demographic genetic structure between theoretical expectation
(log(H,i;/Hj;,)) and simulation results (log(H;;;/H i;.1)) when N =500 for both the two- and
the three-stage model. (a)i = 1, j = 2, two-stage model, (b)i = 1, j = 2, three-stage model,
(c)i =2, j = 3, three-stage model, (d) i = 1, j = 3, three-stage model. Vertical bars represent
standard error of r;. Red lines indicate log(H,-i,,/Hjj,,)=10g(I-AI,-,',,/I-AIjjJ)
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Figure S 4: Comparison of demographic genetic structure between theoretical expectation
(log(H;;/Hj,;)) and simulation results (log(ﬁ,-i,t/ﬁjj,,)) when N =1000 for both the two- and
the three-stage model. (a) i = 1, j = 2, two-stage model, (b)i = 1, j = 2, three-stage model,
(c)i =2, j = 3, three-stage model, (d) i = 1, j = 3, three-stage model. Vertical bars represent
standard error of r;. Red lines indicate log(H;;;/H; j’t)=log(ﬁll-,~’, / H jit)
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Figure S 5: Graphical comparison of tempotal dynamics of expected heterozygosity between the-
oretical expectation (i.e., dynamics of H;; ;) and simulation results (i.e., dynamics of H; ) under
apartocular parameter set in the two- and the three-stage model. Colors stand for combinations of
i and j. (a) Theoretical expectations and (b) simulation results of the two-stage model, (c) theo-
retical expectations and (d) simulation results of the three-stage model. Parameter set of the two-
stage modelis ty; = 0.115, 1 = 0.750, t12 = 0.333, t5o = 0.188, f12 =0.625,N; =52, N, =48,
while that of the three-stage model is t;; = 0.476, 1,1 = 0.405, ¢, = 0.568, 13, = 0.273,123 =
0.143,133 = 0.143, fi13 = 1.57, N; = 42, N, = 44, N3 = 14. Each parameter set was randomly
picked from the 500 parameter sets under N = 100 as an example case
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4.2 Comparison of demographic genetic structure with N, and

(@)i=1,]=2, two-stage model

(b)i=1,j=2, three-stage model
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Figure S 6: Comparison of demographic genetic structure (log(H;;;/H |, ;)) with effective pop-
ulation size (N,) when N = 500. (a) i = 1 and j = 2 of the two-stage model, (b)i =1 and j = 2,
(c)i=2and j =3,(d)i =1 and j = 3 of the three-stage model
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Figure S 7: Comparison of demographic genetic structure (log(H;;,/H, ;)) with effective pop-
ulation size (N,) when N = 1000. (a)i = 1 and j = 2 of the two-stage model, (b) i = 1 and
j=2,(c)i=2and j =3,(d)i =1and j = 3 of the three-stage model
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(a)i=1,]=2, two-stage model (b)i=1,j=2, three-stage model
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Figure S 8: Comparison of demographic genetic structure (log(H;;,/H;;,)) with the annual
change rate of expected heterozygosity (7) when N = 100. (a) i = 1 and j = 2 of the two-stage
model, (b)i=1and j =2,(c)i=2and j =3,(d)i =1 and j = 3 of the three-stage model
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Figure S 9: Comparison of demographic genetic structure (log(H;;;/H;;,)) with the annual
change rate of expected heterozygosity (17) when N = 500. (a) i = 1 and j = 2 of the two-stage
model, (b)i=1and j =2,(c)i=2and j =3,(d)i =1 and j = 3 of the three-stage model

Demographic genetic structure (log(H;; ./ H;;)
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(a)i=1,]=2, two-stage model (b)i=1,j=2, three-stage model
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Figure S 10: Comparison of demographic genetic structure (log(H;;;/H,;,)) with the annual
change rate of expected heterozygosity (7) when N = 1000. (a) i = 1 and j = 2 of the two-stage
model, (b)i=1and j =2,(c)i=2and j =3,(d)i =1 and j = 3 of the three-stage model

4.3 Dependence of N, and 7 to N
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Figure S 11: Effective population size (N, ) and the annual change rate of expected heterozygosity
(1) of the 500 parameter sets for each of N = 100, 500, and 1000. (a) N, of the two-stage model,
(b) N, of the three-stage model, (c) 7 of the two-stage model, (d) i of the three-stage model
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