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Stability of energy landscape for Ising models

Bruno Hideki Fukushima-Kimura* Akira Sakai*† Hisayoshi Toyokawa‡ Yuki Ueda§

Abstract
In this paper, we explore the stability of the energy landscape of an Ising Hamiltonian when

subjected to two kinds of perturbations: a perturbation on the coupling coefficients and external
fields, and a perturbation on the underlying graph structure. We give sufficient conditions so that
the ground states of a given Hamiltonian are stable under perturbations of the first kind in terms of
order preservation. Here by order preservation we mean that the ordering of energy corresponding
to two spin configurations in a perturbed Hamiltonian will be preserved in the original Hamiltonian
up to a given error margin. We also estimate the probability that the energy gap between ground
states for the original Hamiltonian and the perturbed Hamiltonian is bounded by a given error margin
when the coupling coefficients and local external magnetic fields of the original Hamiltonian are i.i.d.
Gaussian random variables. In the end we show a concrete example of a system which is stable under
perturbations of the second kind.

1 Introduction
Finding optimal solutions for combinatorial optimization problems, some of which are known to be
NP-hard, is a very important problem. Among many possible approaches to such problems, the ap-
plication of Ising models to solve real social problems has been getting attention due to its versatility
(see [1]). More precisely, a given social combinatorial optimization problem can be mapped into a
Hamiltonian H on a graph G = (V, E), whose expression is given by

H(σ) = −
∑

b={x,y}∈E

Jbσxσy −
∑
x∈V

hxσx

for every Ising spin configuration σ ∈ {−1, 1}V , where {Jb}b∈E are coupling coefficients and {hx}x∈V

are local magnetic fields. In that approach, an optimal solution for the intended combinatorial prob-
lem corresponds to a ground state (or global minimum) σG of H, that is, σG ∈ arg min H. There
are some well-known methods that can be applied to obtain a ground state. Implementing a Markov
chain Monte Carlo (such as Glauber dynamics and stochastic cellular automata) is known as a way
to find an approximation for the Gibbs distribution whose highest peaks correspond to the ground
states of H. We refer for details to [2, 3, 4, 5] and also [6].

However, as long as we use Ising machines or any computer to perform numerical simulations to
find a ground state, we cannot avoid the error occurring due to the analog nature or the difficulty of
representing real numbers (see [7]). Because of these reasons, we should incorporate the error coming
from the coupling coefficients and local magnetic fields by introducing a perturbed Hamiltonian.
Hence, our original Hamiltonian H will be perturbed, originating a perturbed Hamiltonian Hδ whose
coupling coefficients and local magnetic fields have a maximal error δ. Then, the following natural
questions arise:
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(1) For any pair of configurations which are ordered in terms of energy with respect to the per-
turbed Hamiltonian Hδ, is that ordering preserved in the original Hamiltonian H, up to a given
error margin?

(2) Given a Hamiltonian H with coupling coefficients and local magnetic fields distributed as i.i.d.
Gaussian random variables, what is the probability that the energy gap in H between two
ground states respectively for H and the corresponding perturbed Hamiltonian Hδ is sufficiently
small?

In addition to the above questions (1) and (2), the following problem is also important when
using Ising machines and computers. It may be somewhat a waste of resources taking all coupling
coefficients and local magnetic fields into account. It may be useful to “eliminate” vertices of a
given graph whose contribution to the total energy is relatively small, in order to save memories of
computers. Hence, we also have the following natural question:

(3) Can we find a subset of a given graph such that for an arbitrary choice of configuration outside
of that region, the energy variation can be controlled?

In this paper, we investigate the stability of energy landscape of a given Hamiltonian under pertur-
bations from the view point of order preservation, aiming at answering the questions we addressed
above. Thanks to the order preservation property, we can obtain better estimates for the success
probability of finding a ground state compared to the result given in [7].

This paper is organized as follows. In Section 2, we provide a precise formulation for the ques-
tions we just posed and raise them again. In Section 3, we answer the questions (1’) and (2’) from
Section 2. In Section 4, we provide an example together with a sufficient condition that guarantees a
positive answer for question (3’).

2 Setting and the main questions
In this section, we introduce some necessary definitions and terminologies for discussing the stability
of energy landscape. Further we also introduce the notion of order preservation for a perturbed
system, which plays a central role in this paper. Here, order preservation means, roughly speaking,
if we take a ground state for a perturbed Hamiltonian (implemented by a device) then it should be
close to the ground state for an original Hamiltonian (intended mathematical problem) in energy, up
to a given error margin.

Let us begin by introducing the precise setting. Let G = (V, E) be a finite simple graph with the
vertex set V and the edge set E. The so-called original Hamiltonian H with coupling coefficients
{Jb}b∈E and external magnetic fields {hx}x∈V on G is defined by

H(σ) = −
∑

b={x,y}∈E

Jbσxσy −
∑
x∈V

hxσx (2.1)

for each σ = {σx}x∈V ∈ {−1, 1}V . Such a function H can be regarded as a cost function of an intended
problem. Given δ > 0, we denote by Hδ the perturbed Hamiltonian with the coupling coefficients
{J′b}b∈E and external fields {h′x}x∈V , i.e.,

Hδ(σ) = −
∑

b={x,y}∈E

J′bσxσy −
∑
x∈V

h′xσx (2.2)

where the J′b’s and h′x’s satisfy the bounds supb|Jb − J′b| ≤ δ and supx|hx − h′x| ≤ δ. This perturbation
will be often interpreted as a round-off in the following way. Let (J(1)

b J(2)
b . . . ) and (h(1)

x h(2)
x . . . ) be the

binary expansions of the fractional parts of Jb and hx, i.e.,

Jb = J(0)
b +

∑
i≥1

J(i)
b

2i , hx = h(0)
x +

∑
i≥1

h(i)
x

2i (2.3)
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where J(0)
b , h(0)

x ∈ Z and J(i)
b , h

(i)
x ∈ {0, 1} for i ≥ 1. If we set J′b = J(0)

b +
∑N

i=1
J(i)

b
2i and h′x = h(0)

x +
∑N

i=1
h(i)

x
2i

in the equation (2.2), then the error δ can be taken as 2−N . It means that the perturbed Hamiltonian
Hδ is obtained by rounding off the given parameters Jb’s and hx’s uniformly from the (N + 1)-th digit
of their binary expansions.

The main purpose of this paper is to clarify the stability of the ground states for a given Hamilto-
nian under a perturbation in terms of order preservation. In this paper, we will answer the following
questions:

(1’) Find a δ > 0 corresponding to a given ε > 0, so that, for any pair (σ, τ) that satisfies Hδ(σ) ≥
Hδ(τ), the ordering is preserved in H up to the error margin ε supξ,η |H(ξ) − H(η)|, i.e.,

H(σ) ≥ H(τ) − ε sup
ξ,η
|H(ξ) − H(η)| . (2.4)

Here, supξ,η |H(ξ) − H(η)| is the total margin of the original Hamiltonian.

(2’) Let (Ω,F ,P) be a probability space and let {Jb}b∈E and {hx}x∈V be mutually independent stan-
dard Gaussian random variables on this probability space. Estimate the probability that the
energy gap in H between ground states for H and Hδ, say σG and σ̃G, respectively, is controled
by the given error margin, explicitly,

P

(
0 ≤ H(σ̃G) − H(σG) ≤ ε sup

ξ,η
|H(ξ) − H(η)|

)
. (2.5)

A different aspect of stability of a given system is to find a nontrivial subsystem so that the energy
gap between any two spin configurations whose spins restricted to the subgraph coincide is bounded
above by a given error margin. Also, at the same time, we require that the number of vertices that can
be disregarded is at least of order Nα, where N = |V | and α ∈ [0, 1), so that such a number can go to
infinity as N → ∞. In the later part of this paper, we answer the following question for a particular
case:

(3’) Let |V | = N, and let {Jb}b∈E and {hx}x∈V be mutually independent standard Gaussian random
variables. Find a subset V0 ⊂ V for a given ε > 0 and α ∈ [0, 1) such that

P

 sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < ε sup

ξ,η
|H(ξ) − H(η)| & CNα ≤ |V \ V0| < N


is close to 1, where σV0 ∈ {−1, 1}V0 is the spin configuration σ restricted to V0 and τV\V0 ∈

{−1, 1}V\V0 is the restriction of the spin configuration τ to V \ V0.

Questions (1’), (2’) and (3’) above correspond to questions (1), (2) and (3) from Section 1, re-
spectively. In Section 3, we investigate the first two questions above, where for the second one we
adopt two different approaches. We obtain answers for question (2’) by means of a method involv-
ing the L∞-distance and a graph’s structure approach, and we compare these two methods for three
different graphs. Specifically, we consider sufficient conditions on the perturbation δ to satisfy or-
der preservation, and calculate the probability that such a sufficient condition holds. In Section 4,
we obtain an answer for the question (3’) when the graph is a one-dimensional torus Z/NZ without
external fields.

3 Stability under a Hamiltonian perturbation
This part is dedicated to provide solutions for questions (1’) and (2’) just posed in the end of the
previous section. Before we proceed to the next sections, let us introduce the quantity RH defined by

RH B max
ξ,η
|H(ξ) − H(η)|, (3.1)
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which is defined whenever a Hamiltonian H is given. Moreover, if G = (V, E) is a finite simple graph,
then we define kG by

kG := |E| + |V |. (3.2)

Keeping in mind the mathematical setting introduced in the beginning of Section 2, let us start
by showing that the order preservation property holds, that is, let us first answer the question (1’),
which consists in finding a δ > 0 corresponding to a given ε > 0 such that Hδ(σ) ≥ Hδ(τ) implies
H(σ) ≥ H(τ)−εRH; and later on, assuming some randomness on the spin-spin couplings and external
fields, we adopt two different approaches to answer question (2’) and estimate the probability that
the condition H(σ̃G) − H(σG) ≤ εRH is satisfied.

In order to solve the second problem, we will adopt two distinct approaches: a method that relies
on uniform estimates and a method where combinatorial estimates are considered instead, which will
be presented in Sections 3.2 and 3.3, respectively. In the last part of this section, we compare these
two methods and conclude that depending on the underlying graph structure of the problem, one of
them will give us a better lower bound for the probability from equation (2.5).

3.1 Order preservation of energy
The answer for question (1’) from Section 2 is provided by Theorem 3.2, however, let us show first a
preliminary result.

In [5], we have already established lower bounds for the total margin RH of the Hamiltonian H,
but for the reader’s convenience we include its proof in the present paper.

Lemma 3.1 (See [5]). Let us consider a finite simple graph G = (V, E) and a Hamiltonian H written
in the form

H(σ) = −
∑

b={x,y}∈E

Jbσxσy −
∑
x∈V

hxσx

for each σ ∈ {−1, 1}V . Then, we have

RH ≥
√

vH , where vH B
∑

b

J2
b +

∑
x

h2
x.

Proof. For any probability measure µ on the configuration space {−1, 1}V , we have

RH ≥
(
Eµ[H2] − Eµ[H]2

)1/2
,

where Eµ stands for the expectation with respect to the probability measure µ. If µ is particularly
chosen as the uniform distribution on {−1, 1}V , then we have

Eµ[H] B
1

2|V |
∑
σ

H(σ) = 0,

and

Eµ[H2] B
1

2|V |
∑
σ

H(σ)2

=
1

2|V |
∑
σ

− ∑
b={x,y}∈E

Jbσxσy −
∑
x∈V

hxσx

2

=
1

2|V |
∑
σ

 ∑
b,b′∈E

JbJb′σxσyσx′σy′ +
∑

x,x′∈V

hxhx′σxσx′


=

1
2|V |

∑
σ

∑
b∈E

J2
b +

∑
x∈V

h2
x

 = vH .
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Therefore, RH ≥
(
Eµ[H2] − Eµ[H]2

)1/2
=
√

vH . �

In order to prove the next result, it is convenient to consider the following notation introduced by
[7]. For any Ising spin configurations σ and τ, we consider the sets Dσ,τ and Wσ,τ defined by

Dσ,τ B {x ∈ V : σxτx = −1}

and
Wσ,τ B {{x, y} ∈ E : σxσyτxτy = −1},

where the products σxτx and σxσyτxτy are called the spin overlap and the link overlap, respectively.

Theorem 3.2. Given ε > 0 and configurations σ and τ, if the condition

0 < δkG ≤
1
2
ε
√

vH

is satisfied, then Hδ(σ) ≥ Hδ(τ) implies H(σ) ≥ H(τ) − εRH .

Proof. If we suppose that Hδ(σ) ≥ Hδ(τ), then, we have

H(τ) − H(σ) = (H(τ) − Hδ(τ)) + Hδ(τ) − Hδ(σ) + (Hδ(σ) − H(σ))

≤ (Hδ(σ) − H(σ)) − (Hδ(τ) − H(τ))

≤
∑

b={x,y}∈E

∣∣∣Jb − J′b
∣∣∣ ∣∣∣σxσy − τxτy

∣∣∣ +
∑
x∈V

∣∣∣hx − h′x
∣∣∣ |σx − τx|

= 2
∑

b∈Wσ,τ

∣∣∣Jb − J′b
∣∣∣ + 2

∑
x∈Dσ,τ

∣∣∣hx − h′x
∣∣∣

≤ 2δ(|Wσ,τ| + |Dσ,τ|).

Since |Wσ,τ| ≤ |E|, |Dσ,τ| ≤ |V |, kG = |E| + |V |, and RH ≥
√

vH , then, by our assumption, we obtain

H(τ) − H(σ) ≤ 2δkG ≤ ε
√

vH ≤ εRH .

Therefore, the conclusion of this theorem follows. �

3.2 Stability of ground states: first approach
In the previous subsection, we did not assume any randomness on the spin-spin couplings Jb’s and
local external fields hx’s. In this subsection, let us consider the same setting as stated in question (2’)
from Section 2. Precisely speaking, we assume that {Jb}b∈E and {hx}x∈V are mutually independent
random variables distributed according to a standard Gaussian distribution.

Under such assumptions, let us estimate the probability that the inequality H(σ̃G)−H(σG) ≤ εRH

holds, where ε is a given positive constant, by using a method that relies on uniform bounds with
respect to certain spin configurations. In the following lemma, we provide an upper bound for the
difference H(σ̃G) − H(σG).

Lemma 3.3. Given δ > 0, if σG and σ̃G are ground states for H and Hδ, respectively, then, we have

H(σ̃G) − H(σG) ≤ 2δkG. (3.3)

Proof. It follows from the definition of a ground state that Hδ(σ̃G) − Hδ(σG) ≤ 0, then

H(σ̃G) − H(σG) = (H(σ̃G) − Hδ(σ̃G)) + Hδ(σ̃G) − Hδ(σG) + (Hδ(σG) − H(σG))

≤ 2‖Hδ − H‖∞,
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where ‖ · ‖∞ stands for the uniform norm, as usual. Furthermore, for any spin configuration σ, we
have

|Hδ(σ) − H(σ)| =

∣∣∣∣∣∣∣∣
∑

b={x,y}∈E

(Jb − J′b)σxσy +
∑
x∈V

(hx − h′x)σx

∣∣∣∣∣∣∣∣
≤

∑
b∈E

∣∣∣Jb − J′b
∣∣∣ +

∑
x∈V

∣∣∣hx − h′x
∣∣∣

≤ δ(|E| + |V |) = δkG.

Then, ‖Hδ − H‖∞ ≤ δkG, therefore, we conclude the proof. �

By the lemma above , it follows that

P (H(σ̃G) − H(σG) ≤ εRH) ≥ P
(
δkG ≤

1
2
εRH

)
,

and by using the fact that RH ≥
√

vH (see Lemma 3.1), we conclude that

P (H(σ̃G) − H(σG) ≤ εRH) ≥ P
(
δkG ≤

1
2
ε
√

vH

)
. (3.4)

Finally, we have the following estimation for the probability that H(σ̃G)−H(σG) ≤ εRH holds, which
consists of one of the answers for the question (2’).

Theorem 3.4. Let {Jb}b∈E and {hx}x∈V be mutually independent standard Gaussian random variables.
It follows that

P (H(σ̃G) − H(σG) ≤ εRH) ≥ 1 − γ

kG;
(

2δkG

ε

)2 , (3.5)

where γ(s; x) is the distribution function of the chi-square distribution with s > 0 degrees of freedom,
that is,

γ(s; x) B
1

2s/2Γ(s/2)

∫ x

0
ts/2−1e−t/2dt

for x ≥ 0, and γ(s; x) B 0 for x < 0.

Proof. It follows from the above discussion that we have

P (H(σ̃G) − H(σG) ≤ εRH) ≥ P
(
δkG ≤

1
2
ε
√

vH

)
= P

vH ≥

(
2δkG

ε

)2
= 1 − P

vH <

(
2δkG

ε

)2 .
Since {Jb}b∈E and {hx}x∈V are mutually independent random variables distributed according to a stan-
dard Gaussian distribution, then the random variable vH is distributed as the chi-square distribution
with kG degrees of freedom. Therefore,

P

vH <

(
2δkG

ε

)2 = γ

kG;
(

2δkG

ε

)2 .
Thus, we obtain the lower bound of the target probability. �
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3.3 Stability of ground states: second approach
Before we proceed, let us point out the fundamental difference between the uniform approach and
the current approach to solve question (2’). Note that, if we use the same computations as considered
in the proof of Theorem 3.2 in the particular case where τ = σ̃G and σ = σG and use the fact that
Hδ(σG) ≥ Hδ(σ̃G), then it follows that

H(σ̃G) − H(σG) ≤ 2δ(|WσG ,σ̃G | + |DσG ,σ̃G |). (3.6)

Recall that the proof of Theorem 3.4 fundamentally relied on the fact that, by using the L∞-distance
estimates, the left-hand side of equation (3.6) could be bounded above by 2δkG. Note that the right-
hand side of equation (3.6) is also bounded above by 2δkG, therefore, let us explore the geometry of
the underlying graph G in order to see whether it is possible to obtain better bounds.

The value of |WσG ,σ̃G | + |DσG ,σ̃G | depends on the underlying graph structure and the relationship
between the ground states σG and σ̃G. Therefore, we should check the value of |WσG ,σ̃G | + |DσG ,σ̃G |

for the intended problem. In general, we look for a uniform estimation for the value of |Wσ,τ|+ |Dσ,τ|

for any σ and τ since the ground states σG and σ̃G in practice are unknown. First, let us show the
following lemma.

Lemma 3.5. For any two configurations σ and τ, we have

|Wσ,τ| ≤ (deg G) ·min
{
|Dσ,τ|, |V \ Dσ,τ|

}
,

where deg G stands for the maximum degree of G.

Proof. Let us assume that |Dσ,τ| = s, for some s such that 0 ≤ s ≤ |V |. Then, let us enumerate Dσ,τ as
Dσ,τ = {x1, . . . , xs} ⊂ V , where xi ∈ V for each i = 1, . . . , s. Moreover, we have |V\Dσ,τ| = |V |−s, and
therefore we can write V \Dσ,τ = {y1, . . . , y|V |−s} ⊂ V , where yi ∈ V for each i = 1, . . . , |V | − s. By the
definition of Dσ,τ, we have σxiτxi = −1 for every i = 1, . . . , s and σy jτy j = 1 for all j = 1, . . . , |V | − s.
If {xi, x j} ∈ E for distinct i and j in {1, . . . , s}, then

σxiσx jτxiτx j = (σxiτxi )(σx jτx j ) = (−1)2 = 1.

Thus, {xi, x j} < Wσ,τ. In a similar way, we conclude that in case {yi, y j} ∈ E for distinct i and j
in {1, . . . , |V | − s}, it follows that {yi, y j} < Wσ,τ. If {xi, y j} ∈ E for some i ∈ {1, . . . , s} and some
j ∈ {1, · · · , |V | − s}, then

σxiσy jτxiτy j = (σxiτxi )(σy jτy j ) = (−1) × 1 = −1.

Hence, {xi, y j} ∈ Wσ,τ. It follows that

Wσ,τ = {{x, y} ∈ E : x = xi, y = y j for some i, j}.

Therefore, we have

|Wσ,τ| ≤ (deg G) min{|Dσ,τ|, |V \ Dσ,τ|}.

�

Proposition 3.6. For any graph G, let σ and τ be two spin configurations. Then, we have

|Wσ,τ| + |Dσ,τ| ≤
(deg G + 1)|V |

2
. (3.7)

Proof. Using Lemma 3.5, if |Dσ,τ| ≤ |V |/2 then

|Dσ,τ| + |Wσ,τ| ≤ (deg G + 1)|Dσ,τ| ≤
deg G + 1

2
|V |,

7



otherwise, if |Dσ,τ| > |V |/2, it follows that

|Dσ,τ| + |Wσ,τ| ≤ (deg G)|V \ Dσ,τ| + |Dσ,τ|

= (deg G)|V | − (deg G − 1)|Dσ,τ|

≤ (deg G)|V | −
deg G − 1

2
|V |

=
deg G + 1

2
|V |.

�

Thus, we have the following theorem which is another answer for the question (2’) (see Theorem
3.4 for an alternative approach to the question (2’)).

Theorem 3.7. Let {Jb}b∈E and {hx}x∈V be mutually independent standard Gaussian random variables.
Then, we have

P (H(σ̃G) − H(σG) ≤ εRH) ≥ 1 − γ

kG;
(
δ|V |(deg G + 1)

ε

)2 . (3.8)

Proof. Analogously as in the proof of Theorem 3.4, it follows from equation (3.6), RH ≥
√

vH and
Proposition 3.6 that

P (H(σ̃G) − H(σG) ≤ εRH) ≥ P
(
δ ≤

ε
√

vH

2(|WσG ,σ̃G | + |DσG ,σ̃G |)

)
= P

vH ≥

(
2δ(|WσG ,σ̃G | + |DσG ,σ̃G |)

ε

)2
≥ P

vH ≥

(
δ|V |(deg G + 1)

ε

)2
= 1 − γ

kG;
(
δ|V |(deg G + 1)

ε

)2 ,
where we used the fact that vH is distributed according to a chi-square distribution with kG degrees
of freedom. �

3.4 Comparison between approaches
In the rest of this section, we compare the methods presented in Sections 3.2 and 3.3 passing through
several examples to which we apply Proposition 3.6.

The first example is the case where we consider complete graphs including the SK model. If we
consider complete graphs, then Theorem 3.7 provides us with better results if compared to Theorem
3.4.

Example 3.8. If G is a complete graph (that is, all vertices are connected to each other) with N
vertices, then we have

deg G + 1
2

|V | =
N2

2
.

On the other hand, the value of kG will be given by

kG := |E| + |V | =
N(N − 1)

2
+ N =

N(N + 1)
2

.

8



Therefore,

deg G + 1
2

|V | < kG.

Hence the uniform upper bound for |Wσ,τ| + |Dσ,τ| we obtained in Proposition 3.6 is always better
than kG. Furthermore, we can calculate the explicit value of |Wσ,τ| + |Dσ,τ| when G is a complete
graph. From the proof of Lemma 3.5, by assuming that G is a complete graph, we can say that
|Wσ,τ| = |Dσ,τ|(|V | − |Dσ,τ|). Therefore,

|Wσ,τ| + |Dσ,τ| = |Dσ,τ|(N + 1 − |Dσ,τ|) ≤
(N + 1)2

4
,

and the proof of Theorem 3.7 implies

P (H(σ̃G) − H(σG) ≤ εRH) ≥ P

vH ≥

(
2δ(|WσG ,σ̃G | + |DσG ,σ̃G |)

ε

)2
≥ P

(
vH ≥

δ2(N + 1)4

4ε2

)
= 1 − γ

(
kG;

δ2(N + 1)4

4ε2

)
.

The following example considers King’s graphs and Theorem 3.7 works better than Theorem 3.4
as well as the above example.

Example 3.9. Let G be an N × M King’s graph. The N × M King’s graph can be visualized as an
N × M chessboard where each of its squares corresponds to a vertex of the graph, and each edge
represents a legal move of a king in a chess game. In that way, the inner vertices of the graph have 8
neighbors each, while the vertices in the corners have 3 neighbors each, and each of the remaining
vertices on the sides of the graph has 5 neighbors. For an N × M King’s graph, we have

deg G + 1
2

|V | =
9
2

MN,

since deg G = 8. Moreover, we have

kG = |E| + |V | = 5MN − 3(M + N) + 2.

If M and N are sufficiently large, then we have

deg G + 1
2

|V | < kG.

In the following example, differently from the previous ones, we can see that the estimate pro-
vided by Theorem 3.4 suits better than that of Theorem 3.7.

Example 3.10. If G is a star graph with degree k ≥ 3, that is, G consists of one vertex placed in the
center and other k vertices connected only with the center, then

deg G + 1
2

|V | =
(k + 1)2

2
.

Furthermore, we have

kG = |E| + |V | = 2k + 1.

Therefore, we obtain

deg G + 1
2

|V | > kG.

9



(a) Complete graph. (b) N × N King’s graph.

(c) Star graph.

Figure 1: Minimal number of digits to be considered in the binary expansions of the pa-
rameters so that with probability higher than 99% the difference H(σ̃G)−H(σG)
represents a value smaller than 1% of RH , as a function of the size of the graph.

According to the above examples, we conclude that it is not always possible to guarantee that the
uniform upper bound of |Wσ,τ| + |Dσ,τ| provided by Proposition 3.6 works better than kG = |E| + |V |.
Thus, we may have to consider such bounds separately when considering different graphs in order to
obtain an optimal estimate for the probability that inequality H(σ̃G) − H(σG) < εRH holds.

Let us consider again the problem of stability where we take into account only a finite number of
terms in the binary expansions of the parameters (Jb)b∈E and (hx)x∈V as we illustrated in the beginning
of Section 2. In Figure 1, corresponding to the sizes of different graphs, we show the minimum
number of digits necessary to be considered in the binary expansions of such parameters such that
with probability at least 99% the difference H(σ̃G) − H(σG) represents a value smaller than 1% of
RH . On each plot we compare the different methods developed in this paper, where the first method
corresponds to the estimate from Theorem 3.4 and the second method corresponds to the estimate

10



from Theorem 3.7. In Figure 1a, we also included a third estimate from Example 3.8 which is sharper
and gives us better results when compared to the other methods. As we expected, the second method
provides us with better results when compared to the first one for complete graphs and for N × N
King’s graphs when N is sufficiently large. On the other hand, for star graphs the first method is more
appropriate, moreover, a certain discrepancy of performance is easily observed.

4 Stability under a perturbed graph
In this section, we consider the stability of energy landscape when a given spin system defined on
a graph is compressed into a smaller subsystem. Differently from the previous sections, we fix a
given Hamiltonian and we assume a sufficient condition that guarantees the existence of a nontrivial
subset of the entire vertex set outside of which we can randomly assign any spin configuration and
the energy of the system is kept under control up to a certain error margin.

Let G = (V, E) be a finite simple graph, and let H be the Hamiltonian on G given by

H(σ) = −
∑
{x,y}∈E

Jx,yσxσy

for every configuration σ ∈ {−1, 1}V , where {Jx,y}{x,y}∈E is a collection of mutually independent stan-
dard Gaussian random variables. What we would like to show is that we can compress the whole
system into a nontrivial subsystem so that the energy landscape of such subsystem is close to the
original one up to a given error margin. More precisely, our goal is to find a class of examples for
which given a positive constant ε, there is a positive δ such that the subsystem V0 = V0(δ) of V ,
defined from the relation

V \ V0 B
{
x ∈ V : |Jx,y| < δ holds for every y such that {x, y} ∈ E

}
,

is non-trivial, has size comparable to the size of V , and satisfies

sup
σ,η∈{−1,1}V

∣∣∣H(σ) − H(σV0 , ηV\V0 )
∣∣∣ < εRH (4.1)

with high probability, see Figure 2.

V

V0

σ
V0

η
V \V0

Figure 2: We want to approximate the energy of a configuration σ defined in the whole
vertex set V by the energy of a configuration that coincides with σ in V0 and
whose spins ηi’s in the set V \ V0 are arbitrary.
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4.1 One-dimensional discrete torus
Let us solve the problem stated above in the particular case where the graph G is a one-dimensional
discrete torus.

Theorem 4.1. Let G = (V, E) be a one-dimensional discrete torus with N vertices, that is, V =

{1, 2, . . . ,N} and E = {{1, 2}, {2, 3}, . . . , {N − 1,N}, {N, 1}}. Given ε > 0, let δ be a positive number
such that δ < ε/

√
2π. Then, if A is a subset of the event {0 < |V\V0| < N}, it follows that

P

{ sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < εRH

}
∩ A

 ≥ P(A) −
1 − 2

π

N
(√

2
π
− 2δ

ε

)2 (4.2)

holds for each N ≥ 3. In particular, given constants C > 0 and α ∈ [0, 1), we have

P

{ sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < εRH

}
∩

{
CNα ≤ |V\V0| < N

}
≥

(
1 −

C
N1−αθ2

)2 1

1 + 1+2θ−3θ2

Nθ2

− θN−
1 − 2

π

N
(√

2
π
− 2δ

ε

)2 (4.3)

for N sufficiently large, where

θ =

∫ δ

−δ

e−ξ
2/2

√
2π

dξ. (4.4)

Before we follow to the proof of the result above, let us clarify the theorem by providing the
reader with some practical results. Let us consider the particular case where C = 1 and α ∈ (0, 1).
Corresponding to different values of ε and δ, we obtain lower bounds for the probability that the size
of V\V0 is at least Nα and condition (4.1) holds, see the table below.

Examples
N ε δ α Minimum

size of V\V0

Right-hand side of
(4.3)

108 0.05 0.0198 0.4 1584 0.877
108 0.05 0.0198 0.5 104 0.361
108 0.1 0.0398 0.5 104 0.810
1012 0.01 0.00398 0.5 106 0.811
1012 0.05 0.0199 0.5 106 0.992
1012 0.1 0.0399 0.5 106 0.998
1012 0.05 0.0199 0.6 ≈ 1.58 × 107 0.879
1012 0.05 0.0199 0.65 ≈ 6.31 × 107 0.563

Table 1: Applications of Theorem 4.1.

Let us observe that for any pair σ, τ of spin configurations, we have

|H(σ) − H(σV0 , τV\V0 )| =

∣∣∣∣∣∣∣∣∣∣∣
∑
x∈V0

∑
y∈V\V0
{x,y}∈E

Jx,yσx(σy − τy) +
∑

{x,y}⊆V\V0
{x,y}∈E

Jx,y(σxσy − τxτy)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
∑
x∈V0

∑
y∈V\V0
{x,y}∈E

Jx,yσxσy(1 − σyτy) +
∑

{x,y}⊆V\V0
{x,y}∈E

Jx,yσxσy(1 − σxτxσyτy)

∣∣∣∣∣∣∣∣∣∣∣
12



=

∣∣∣∣∣∣∣∣∣∣
∑

y∈V\V0

∑
x∈V
{x,y}∈E

Jx,yσxσy

[
1x∈V0 (1 − σyτy) + 1x∈V\V0 (1 − σxτxσyτy)/2

]∣∣∣∣∣∣∣∣∣∣
≤ 2

∑
y∈V\V0

∑
x∈V
{x,y}∈E

|Jx,y| ≤ 2δ
∑

y∈V\V0

deg(y).

In particular, if G is the one-dimensional torus as in Theorem 4.1, it follows that

sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ ≤ 4δ|V\V0|. (4.5)

Now, let us prepare two lemmas in order to prove Theorem 4.1.

Lemma 4.2. For RH = supξ,η|H(ξ) − H(η)|, we have

2
N∑

x=1

|Jx,x+1| − 4 min
x=1,...,N

|Jx,x+1| ≤ RH ≤ 2
N∑

x=1

|Jx,x+1|, (4.6)

hence, with probability 1,

RH ∼ 2

√
2
π

N as N approaches infinity.

Proof. Without loss of generality, we assume minx|Jx,x+1| = |JN,1|. Let us fix σ1 = 1. Then, de-
pending on the sign of J1,2, we can determine σ2 to minimize (or maximize) H(σ). We continue this
procedure up to σN and we have

min
σ∈{−1,1}N

H(σ) ≤ −
N∑

x=1

|Jx,x+1| + 2 min
x=1,...,N

|Jx,x+1|,

max
σ∈{−1,1}N

H(σ) ≥
N∑

x=1

|Jx,x+1| − 2 min
x=1,...,N

|Jx,x+1|

(the additional terms exist if frustration exist at σN and σ1). Hence the inequality of the lemma is
proven.

To show the last statement, we divide all terms by N and use the law of large numbers for the
folded normal distribution. �

Lemma 4.3. If we assume N ≥ 3, then it follows that

E [|V \ V0|] = Nθ2

and

E
[
|V \ V0|

2
]

= Nθ2
(
1 + 2θ − 3θ2 + Nθ2

)
.

Proof. For each i = 1, . . . ,N, let us define a random variable Xi by letting

Xi =

 1 if |Ji−1,i| < δ and |Ji,i+1| < δ,
0 otherwise.

Then, by the definition of V0, the condition i ∈ V \V0 is equivalent to Xi = 1. Therefore, the expected
value of the size of V \ V0 will be given by

E [|V \ V0|] = E

 N∑
i=1

Xi

 =

N∑
i=1

E [Xi] = Nθ2.

13



Furthermore, we write

|V \ V0|
2 =

N∑
i=1

X2
i + 2

N∑
i=1

XiXi+1 +

N∑
i=1

∑
j<{i−1, i, i+1}

XiX j.

Here, the random variables Xi and Xi+1 are not mutually independent but we have

XiXi+1 =

 1 if |Ji−1,i| < δ, |Ji,i+1| < δ and |Ji+1,i+2| < δ,

0 otherwise.

Thus, it follows that the identity

E
[
|V \ V0|

2
]

= Nθ2 + 2Nθ3 + N(N − 3)θ4

= Nθ2
(
1 + 2θ − 3θ2 + Nθ2

)
holds, and we complete the proof. �

Proof of Theorem 4.1. Let us start by splitting the probability in the left-hand side of equation (4.2)
as

P

{ sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < εRH

}
∩ A


≥ P

{ sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < εRH

}
∩


∣∣∣∣∣∣∣ 1
N

N∑
x=1

|Jx,x+1| −

√
2
π

∣∣∣∣∣∣∣ <
√

2
π
−

2δ
ε

 ∩ A


= P

 sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < εRH

∣∣∣∣∣∣ B
 P (B) ,

where B is the event given by

B =


∣∣∣∣∣∣∣ 1
N

N∑
x=1

|Jx,x+1| −

√
2
π

∣∣∣∣∣∣∣ <
√

2
π
−

2δ
ε

 ∩ A. (4.7)

From equation (4.5), Lemma 4.2, and the fact that, under condition B (subset of A), minx=1,...,N |Jx,x+1| ≤

δ, it follows that the conditional probability above satisfies

P

 sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < εRH

∣∣∣∣∣∣ B
 ≥ P 2δ|V \ V0| < ε

 N∑
x=1

|Jx,x+1| − 2 min
x=1,...,N

|Jx,x+1|


∣∣∣∣∣∣∣ B


≥ P

2δ
ε
|V \ V0| <

 N∑
x=1

|Jx,x+1| − 2δ


∣∣∣∣∣∣∣ B


= P

2δ
ε

|V \ V0| + ε

N
<

1
N

N∑
x=1

|Jx,x+1|

∣∣∣∣∣∣∣ B


≥ P

2δ
ε
<

1
N

N∑
x=1

|Jx,x+1|

∣∣∣∣∣∣∣ B

 = 1,

then

P

 sup
σ,τ∈{−1,1}N

∣∣∣H(σ) − H(σV0 , τV\V0 )
∣∣∣ < εRH

∣∣∣∣∣∣ B
 = 1. (4.8)
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The rest of the proof consists of estimating the probability of the event B. Let us write

P(B) ≥ P(A) + P


∣∣∣∣∣∣∣ 1
N

N∑
x=1

|Jx,x+1| −

√
2
π

∣∣∣∣∣∣∣ <
√

2
π
−

2δ
ε

 − 1. (4.9)

It follows from Chebyshev’s inequality that

P


∣∣∣∣∣∣∣ 1
N

N∑
x=1

|Jx,x+1| −

√
2
π

∣∣∣∣∣∣∣ ≥
√

2
π
−

2δ
ε

 ≤ σ2
FG

N
(√

2
π
− 2δ

ε

)2 , (4.10)

where σ2
FG is the variance of the folded Gaussian random variable Y = |J1,2| which is equal to 1 − 2

π
.

By using equations (4.8), (4.9) and (4.10), equation (4.2) follows.
In particular, if A is the event given by A = {CNα ≤ |V\V0| < N}. Note that

P(A) = P(|V\V0| ≥ CNα) − P(|V\V0| = N), (4.11)

where P(|V\V0| = N) = θN . By the Paley-Zygmund inequality and Lemma 4.3, we have

P (|V \ V0| ≥ CNα) ≥
(
1 −

CNα

E[|V \ V0|]

)2
E[|V \ V0|]2

E[|V \ V0|
2]

=

(
1 −

CNα

Nθ2

)2 1

1 + 1+2θ−3θ2

Nθ2

for N sufficiently large, therefore, equation (4.3) holds. �

4.2 Generalizations
The most natural step in further investigations is to extend the results obtained in Section 4.1 to the
case where we include i.i.d. standard Gaussian external fields, and also extend such results to a larger
class of examples such as to a d-dimensional torus or even to finite graphs with bounded degree. Note
that, by assuming the absence of external fields, in the same way as we obtained inequality (4.5), one
can show that

|H(σ) − H(σV0 , τV\V0 )| ≤ 2δ
∑

y∈V\V0

deg(y) (4.12)

holds for any graph. So, analogously as in the one-dimensional torus case, it is expected that if we
find a lower bound for RH , as we did in Lemma 4.2, which is comparable to the right-hand side of
equation (4.12), then we may derive an extension of our results for a larger class of graphs. Some
numerical results suggest that, for an Ising spin system in a d-dimensional torus with i.i.d. standard
Gaussian spin-spin couplings and without external fields, RH is still of order N, but it still lacks a
rigorous proof of that observation due to the difficulty of dealing with frustrated configurations in a
higher dimensional torus.

The simulations presented in this section were performed by using a modified version of the
stochastic cellular automata algorithm studied in [5, 6] to estimate the maximum and minimum value
of the Hamiltonian H in order to find an approximation of RH corresponding to different values of
N. Note that, in such plots, each dot represents the value of RH (resp. RH/N) corresponding to a
torus with N vertices for a realization of the random values of spin-spin couplings (i.i.d. standard
Gaussian random variables). In the one-dimensional case (see Figure 3), we see that the value of
RH/N approximates the value 2

√
2/π ≈ 1.5957, as expected due to Lemma 4.2.
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(a) (b)

Figure 3: The dependence of RH with respect to the size of the system N in the one di-
mensional case and its asymptotic behavior as N grows.

Now, for the two and three dimensional cases (see Figure 4), when we consider larger values
of N, the value of RH/N seems to approximate the values 2.564 and 3.329, respectively. Note that
such simulated values represent lower bounds for the real value of the limit RH/N as N approaches
infinity, so the true limits are still unknown. Furthermore, we conjecture that such limit exists in
any dimension and the random variable RH/N converges almost surely due to the fact that, in higher
dimension, its simulated values seem to fluctuate less around an asymptotic limit as compared to the
one-dimensional case.

It is straightforward to show that, for the d-dimensional torus, we have

RH ≤ 2
d∑

k=1

∑
i∈V

|Ji,i+ek |,

where ek stands for the k-th canonical vector of the d-dimensional Euclidean space, then

lim sup
N

RH

N
≤ 2d

√
2
π
. (4.13)

Moreover, it follows from the fact that RH ≥

√∑
b J2

b (see Lemma 3.1) and the Cauchy–Schwarz
inequality that

1
√

N

∑
b

|Jb| ≤ RH . (4.14)

Therefore, we see that there is still room for improvement and the need of rigorous proofs about the
existence and determination of the limit limN→∞ RH/N, originating a mathematical problem which is
interesting by itself.
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(a) Two dimensional. (b) Two dimensional.

(c) Three dimensional. (d) Three dimensional

Figure 4: The dependence of RH with respect to the size of the system N in the two dimen-
sional and three dimensional cases and their asymptotic behavior as N grows.
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