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Abstract

Raman imaging is a powerful technique used in biological sample measurement. It gives

both spatial and spectral representation of the sample, that can be integrated with machine

learning systems to develop new medical diagnosis tool. The Raman measurements were

performed with an high-speed Raman microscope, the slit-scanning Raman microscope. It

extracts the underlying spatial and spectral information of a sample typically two orders of

magnitude faster than raster scanning. In this study, thyroid cell lines, FTC-133(cancerous)

and Nthy-ori 3-1(normal) were used as a model to investigate the pertinence of Raman

spectroscopy in the diagnosis of thyroid cancer. Line illumination Raman microscope ex-

tracts the underlying spatial and spectral information of a sample, typically, a few hundred

times faster than raster scanning. This makes it possible to measure a wide range of bio-

logical samples such as cells and tissues – that only allow modest intensity illumination to

prevent potential damage – within feasible time frame. However, a non-uniform intensity

distribution of the laser line illumination may induce some artifacts in the data and lower

the accuracy of machine learning models trained to predict sample class membership. Here,

using cancerous, and normal human thyroid follicular epithelial cell lines, FTC-133 and

Nthy-ori 3-1 lines, whose Raman spectral difference is not so large, I showed the standard

preprocessing of spectral analyses widely used for raster scanning microscope introduced

some artifacts. To address this issue, I proposed a detrending scheme based on random

forest regression, a nonparametric model-free machine learning algorithm, combined with

position-dependent wavenumber calibration scheme along illumination line. It was shown

that the detrending scheme minimizes the artificial biases arising from non-uniform laser

source and significantly enhances the differentiability of the sample states, i.e., cancerous

or normal epithelial cells, compared to the standard preprocessing scheme.
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1
Introduction

Raman spectroscopy is a non-invasive technique that has significantly influenced the field

of molecular analysis and characterization. Named after Sir C.V. Raman[5]., the Indian

physicist who discovered the Raman effect in 1928, this technique works on the principle

of inelastic scattering or shift of frequency of monochromatic light, typically a laser, lead-

ing to the generation of a unique and detailed spectral pattern of the sample under study,

characteristic of its vibrational or rotational state. When compared to other spectroscopy

techniques, such as IR, UV-Vis, or fluorescence spectroscopy, Raman spectroscopy offers

distinctive advantages. It can analyze complex samples in solvent environments without

the need for labeling or injecting any probes. This capability simplifies the sample prepa-

ration process and allows for a more straightforward analysis of the material in its natural

state. Over the last two decades, these qualities have led to Raman spectroscopy’s wide

15
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exploration in the fields of biology and disease diagnosis. The technique’s ability to offer

detailed molecular insights without significant alterations to the sample holds significant

promise for the development of next generation of disease diagnosis tools, including its po-

tential use in “in vivo” scenario, bringing us a step closer to real-time, non-invasive diagno-

sis. Advances in instrumentation have allowed for the development of Raman microscopes

that can scan the spatial dimension of samples. This means that Raman spectroscopy can

now be used to create images of samples, as well as spectra. The data collected from these

novel microscopes is typically referred to as a hyperspectral Raman image. However, like

any technique, Raman spectroscopy also has its own challenges. A key obstacle lies in data

standardization. With the absence of universally recognized methods for data acquisition,

pre-processing, and analysis, comparing results across different studies becomes a difficult

task. Variations in instrument design, sample nature, and data processing approaches can

further complicate matters.

1.1 Raman measurement of my research

Raman measurement was used to characterize the vibrational modes of cancer and non-

cancer human thyroid cell lines, FTC-133 (cancer) and Nthy-ori 3-1 (non-cancer), respec-

tively. Representative experimental images at specific wavenumbers are shown in Fig. 1.1.

Various notable Raman peaks of FTC-133 and Nthy-ori 3-1 cell lines were observed at the

different positions of wavenumber shown in the following Table 1.1 [2–4, 6, 7].

A home build line illumination Raman microscopy were used to perform the Raman

measurement. Line illumination Raman microscopy uses a laser illumination that is shaped

as a straight line and scans the sample from left to right, collecting Raman spectra simul-

taneously at each spatial position along the line axis (Fig. 1.2). The line illumination axis

in the following is denoted as ζ while the scanning axis, which is perpendicular to ζ , is

denoted as ξ . The line intensity variation is the primary cause of a non-homogeneous il-

lumination. The line intensity profile often deviates from the theoretical Gaussian profile

due to some laser alignment inaccuracies or lens qualities degradation. Subsequently Ra-
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Fig. 1.1. Experimental images of (A) FTC-133(FTC) (B) Nthy-ori 3-1(Nthy).

man spatial distribution at specific Raman shift follow such deviations. An illustration of

this deviation is demonstrated in Fig. 1.3, which shows a non-linear intensity profile at 325

cm−1, a prominent peak of calcium fluoride substrate (CaF2).
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Raman peaks

Wavenumber
peak(±3cm−1)

Assignment

669 ν7(δ : porphyrin deformation), observed in the
spectra of single human Red Blood Cell (RBC)

720 DNA
750 Cytochromes
811 O-P-O stretching RNA
853 Ring breathing mode of tyrosine & C-C stretch

of proline ring Glycogen
956 Crotenoids (absent in normal tissues)
980 C-C stretching β -sheet (proteins)=CH bending

(lipids)
1004 Phenylalanine
1076 C-C (lipid in normal tissues)
1048 Glycogen
1127 Cytochromes
1210 Phenylalanine and Tryptophan (Amide III)
1264 Triglycerides (fatty acids)
1307 Cytochromes
1337 Amide III & CH2 wagging vibrations from

glycine backbone & proline side chain A, G
(ring breathing modes in the DNA bases) C-H
deformation (protein)

1339 Tryptophan
1406 νs COO−(IgG)
1443 CH2 deformation (lipids and proteins)

Triglycerides (fatty acids)
1447 CH2 bending of proteins and lipids
1490 DNA
1544 Amide II
1584 Cytochromes
1655 Amide I (of collagen)
2850 νs CH2,lipids, fatty acids CH2 symmetric
2885 νs CH3, lipids, fatty acids
2890 CH2 asymmetric stretch of lipids and proteins
2913 CH stretch of lipids and proteins
2935 chain end CH3 symmetric band
3015 ν =CH of lipids

Table 1.1: Assignment of the important peaks in the Raman spectra of FTC-133 and Nthy-
ori 3-1 cell lines[2–4].
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Fig. 1.2. The concept of Line illumination Raman microscope.

Fig. 1.3. A surface plot of the Raman intensities at 325 cm−1 known as a prominent peak common
to calcium fluoride (CaF2) for a representative Raman image FTC-133.
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1.2 Literature review

Thyroid cancer starts in the thyroid gland, which is located in the front of the throat, be-

low the larynx. The thyroid gland contains two types of cells: follicular cells and C cells.

Follicular thyroid cancer is a challenging cancer to diagnose because most patients do not

experience any symptoms, even if they have cancer. Raman data of human thyroid cell

lines is used for analysis in this work. Follicular thyroid carcinoma is an invasive and

challenging diagnosis to identify malignant form of thyroid cancer based on morphology

description[2, 3, 8–12]. However, Raman hyperspectral microscopy is a powerful tool

based on an inelastic scattering of light is used in various fields such as chemistry, biomed-

ical and material science etc. which provides the chemical structure and spatial distribu-

tion of potential biomarkers in samples of molecules [4, 13].To detect specific molecular

anomalies occurs in cancer processes at the cellular level, Raman spectroscopy is very ef-

fective tool as it is sensitive to biochemical changes[14]. Raman spectroscopy is a label

free, non-destructive technique and sensitive to the molecular changes. It gives a finger-

print of the material. It is a non-invasive diagnostic technique that allow to study living

cells.

Deriving meaningful information from raw Raman spectra presents a considerable

challenge due to the contamination from noise and extraneous background signals. A dom-

inant factor in this complexity is autofluorescence, which is orders of magnitude greater

than Raman scattering, leading to spectra that are predominantly overshadowed by fluores-

cence. Fluorescence intensity is several orders of magnitude more intense than the weak

Raman scattering, Charge-coupled device (CCD) detector is also another source of noise

is reported by [1, 15]. So, to remove noise is a very important task before analyzing the

data. Background removal during the denoising process were investigated with threshold-

ing strategy using wavelet transform. They found satisfactory results in both simulated and

real signals without damaging their shape and area[15]. They applied their approach both

simulated and real Raman spectra.

A review paper on label-free brain tumor imaging using Raman-based methods was re-

ported by Hollon et al. [16]. They reviewed the articles on the application of three Raman-
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based imaging methods to neurosurgical oncology as well as the machine learning ap-

proach. They focused on the improvement of brain tumor patients by detecting tumor

infiltration, and guiding tumor biopsy by using label-free Raman-based imaging methods.

Martin et al.[17] worked for the development of an advanced hyperspectral imaging system

combining several recent advances in photonics technologies, including: a LCTF, an ICCD

camera, and a coherent fiber bundle, to produce a viable system for cancer detection. Their

system can record fluorescence and white light images at multiple wavelengths rapidly.

Raman spectroscopy is applied to analyze the apoptosis of single human gastric cancer

cells inducing 5-FU drug during incubation[6]. They showed that Raman spectroscopy is

a sensitive technique for detecting the apoptosis of human gastric carcinoma cells. They

performed PCA analysis and conclude that the discrimination achieved was mainly due

to scores in PC1. Raman measurement was performed from the cytosol of a living HeLa

cell by Palonpon et al.[18]. For live-cell imaging, they developed the Raman spectra that

can attain high spatial and temporal resolution. They observed that tiny tags in the cellular

silent region of the Raman scattering provide useful information of the chemical specificity

to tag target molecules with minimal perturbation.

Classification models are very familiar examples of machine learning algorithms. How-

ever, Deep Learning (DL) is a subset of machine learning that contains some complex ar-

chitecture and achieved promising results compared to conventional machine learning al-

gorithms. DL has been employed with excellent performance to a wide range of computer

vision problems for about a decade[19–22]. Particularly, DL have widely used in speech

recognition, image classification, object detection, natural language processing, etc. For

classification purpose, DL is used for cat and dog images, handwriting digit, fashion dress

image, vehicle images and shows tremendous success[23–26].

DL algorithms are mainly developed for image data analysis and several deep neural

networks exist for that. But for spectral data analysis, we need to develop DL architecture

by tuning hyperparameters and need to think about the amount of data. Because DL is a

data-hungry model. More data means the model learns more which is a bit challenging for

spectral data. Nevertheless, the researcher has been carried out their research by applying a
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data augmentation approach. For data augmentation, some researchers add random noise,

shift along the wavenumber axis, and taking a linear combination of the same phenotypes

[27, 28].

Deep learning is a very powerful technique compared to machine learning but the chal-

lenge is to interpret the results as it is a black box method we don’t know exactly what

is going to happen inside the architecture. Feature selection is the key tool for machine

learning problems as it reduces the computational complexity of the models, and helps

for understanding data. In machine learning, we have several feature selection methods

that tell us the importance of the features according to the scores. But it is not so much

clear how DL can be employed in the feature selection problem. Although during train-

ing the model, DL is unable to perform feature selection. That is why we should rethink

identifying the important features after the trained model.

Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learn-

ing is performed by Ho et al.[29]. In this research, they achieved 82% accuracy for low

signal-to-noise spectra by deep learning. They reported that high signal-to-noise ratios

(SNRs) are needed to reach high identification accuracies. They compared their CNN re-

sults with logistic regression (LR) and support vector machine (SVM) and observed signifi-

cantly better performance of CNN. They also verified their CNN performance by statistical

test by two-sample test of sample means. For the LR and SVM, they performed PCA and

kept 20 principal components and concluded that using only the first 20 principal compo-

nents not only decreases computation costs, but also increases accuracy by reducing the

amount of noise in the data.

Germond et al.[13] observed that Raman spectral peak intensities significantly corre-

lated with the gene expression of some genes contributing to antibiotic resistance genes.

They applied PCA followed by discriminant analysis (DA-PC) for the spectral data clas-

sification. They selected eight principal components for their model based on the Fisher

score. They performed a statistically significant test and calculated F-value to keep the

PCs in the subsequent discriminant analysis. Their proposed model exhibited 100% well-

classified observations on the training dataset as well as 100% successfully discriminated
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of the test data.

CNN is performed with raw and preprocessed Raman spectra from extracellular vesi-

cles (EVs) to find tumor-derived EVs by Lee et al.[30]. The proposed architecture of

the CNN model consists of three sets of convolution layers followed by a max-pooling

layer and four hidden layers. To compare the results of CNN, they performed PCA-linear

discriminant analysis (LDA) and PCA- quadratic discriminant analysis (QDA) on prepro-

cessed data and raw data. For PCA discriminant analysis, they found good performance on

accuracy only preprocessed data. Surprisingly, they found excellent performance on accu-

racy for CNN on raw data. What are the regions behind this miracle they did not explain

in detail? Classification accuracy was better in the fingerprint regions compared to high

frequency and full-spectrum regions in their analysis. Residual neural network (ResNet)

has been applied to decode Raman spectra-encoded suspension arrays (SAs) by Chen et

al.[31]. To visualize their classification performance, a t-distributed stochastic neighbor

embedding (t-SNE) was used. Their proposed model gives 100% classification accuracy.

They compared their ResNet results with other machine learning classifiers kNN, SVM,

FC, and CNN, and found excellent performance over the other models. They used the

normalized Raman spectra data without background subtraction in their analysis.

CNN is used to identify components in mixtures by Fan et.al [32]. They confirmed

their CNN results with other machine learning methods LR,kNN,RF, and back propagation

artificial neural network (BP-ANN). They performed a simulation experiment to identify

components in both simulated and real Raman spectral datasets of mixtures and found that

their CNN outperformed compared to others. To check the stability of the CNN, they

performed one hundred training for the CNN models of acetonitrile and methanol on a

simulated test set and found that their distributions of accuracy follow the approximate

Gaussian distributions with small variances.

Raman spectroscopy along with ML was used for endometriosis[33]. Their results

show that kNN-weighted method was the best classification model with sensitivity and

specificity values of 80.5% and 89.7%, respectively. They performed feature selection

based on the highest mean accuracy value and selected spectral interval (790–1729 cm−1)
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then they applied PCA to extract the relevant features for the selected spectral region. They

checked the statistical test (Student’s t-test) on the data and concluded that there were no

statistically significant differences between the patient and control groups in terms of 4

measurements such as age, BMI, uterine myomas, and adenomyosis.

Intraoperative brain cancer detection with Raman spectroscopy in humans was per-

formed by Jermyn et al.[34]. In this research, they applied boosted trees machine learning

method to analyze the spectra and checked the performance measure accuracy, sensitiv-

ity, specificity, and AUC. They employed a leave-one-out cross-validation approach and

analyzed statistically their classification accuracy by performing two-sided normal-based

test.

Breast cancer histology images classification using Convolutional Neural Networks

was done by Araujo T. et al.[35]. They employed CNN for feature extraction and clas-

sification purpose. They performed binary and multiclass classification. Even after feature

extraction by CNN the applied SVM for classification.

Raman spectroscopy of breast cancer cell data is analyzed for classification using one-

dimensional convolutional neural network by Ma et al. [36]. They performed data aug-

mentation to increase the number of spectra. For the comparison of the performance of

their 1D-CNN model, FDA and SVM with ten-fold cross-validation was used to classify

two types of breast samples. PCA with 20 components was applied to reduce the dimen-

sionality and complexity of the data set. Finally, they evaluated sensitivity, specificity, and

overall accuracy. They found that the performance of CNN model largely depends on the

learning rate and batch size during the training process. They observed that 1D-CNN al-

gorithm has higher accuracy than many other common algorithms and is capable to extract

features from the input spectra. Also, the combination of Raman analysis and 1D-CNN

model may be possible candidate to monitor the therapy of patients which was reported by

some other researchers.

Different classification algorithms were used to solve the problem of pigments visu-

alization, classification and identification via Raman spectral[37]. SNR (Signal to noise

ratio) is introduced to evaluate the stability of algorithms. They found that for the low
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SNR value, the accuracy of the algorithm decreases and for the high SNR value accuracy

increased. They performed RF for feature importance and effects of different hyperparam-

eter on the accuracy. Moreover, they checked performance of the classification algorithm

after applying the denoising algorithm considering low SNR. Denoising algorithm is very

important based on the classification algorithms what they observed.

Raman spectroscopy was used for classification of COVID-19 patients in this paper[38].

They considered 3 cases: COVID-19 patients, suspected cases, and healthy patients and try

to distinguish these 3 groups based on classification as well as statistical tests. They per-

formed the pairwise difference between 3 groups. They observed significance difference

between COVID-19 patients vs healthy patients in compare to other pairs.

In this thesis, a novel detrending scheme for preprocessing Raman data was developed.

The detrending scheme objectives to enhance the quality of Raman spectra by removing

some artifacts caused by experimental factors and to enhance the differentiability between

two phenotypes.

1.3 Layout of the thesis

The dissertation provides a comprehensive overview of the research conducted in the field

of Raman spectroscopy along with machine learning and focuses on the improvement and

evaluation of my novel detrending scheme for preprocessing Raman data.

In Chapter 1, the purpose of the dissertation and background of the study have been de-

scribed.

In Chapter 2, a brief description of some preliminary concepts like Principal Component

Analysis (PCA), Singular Value Decomposition (SVD), Random Forest (RF) etc. have

been discussed with illustrations.

In Chapter 3, three preprocessing scheme for the Raman data of FTC-133 and Nthy-ori 3-1

cell lines have been emphasized.

In Chapter 4, a comparative study of these three schemes to differentiate two phenotypes,

FTC-133 and Nthy-ori 3-1 are explained in detail.
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In Chapter 5, all the important results are summarized, and future plans have been de-

scribed.



2
Preliminary discussions

For the quantitative analysis of the data, several algorithms are needed. In this chapter, I

will explain briefly some essential topics/methods that are used in this research.

2.1 Performance Metrics for Machine learning

2.1.1 Confusion matrix

A confusion matrix demonstrates the performance of the classification model. This is

one of the techniques to summarize classifier performance. The confusion matrix can be

explained as follows:

27
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Fig. 2.1. Confusion matrix

TP: the number of true positives (actual cancer predicted as cancer), FP: the number of

false positives (actual non-cancer predicted as cancer), TN: the number of true negatives

(actual non-cancer predicted as non-cancer), and FN: the number of false negatives (actual

cancer predicted as non-cancer).

F1 score is a weighted average of precision and recall (sensitivity).

Recall =
T P

T P+FN

,

F1 =
2∗Precision∗Recall

Precision+Recall

Accuracy is mainly focused on the correct prediction (True Positives and True negatives)while

F1-score is focused on the wrong prediction (False Negatives and False Positives). False

Negative is very important for cancer identification. The model tells noncancer but actu-

ally, it was cancer, which is very dangerous in medical science.

2.1.2 Receiver Operating Characteristics curve

The receiver operating characteristic (ROC) curve is one of the important curves is used to

evaluate the performance of the model which involves the true positive rate (TPR), and the

false positive case rate (FPR). TPR and FPR are defined as follows:

T PR =
T P

T P+FN
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,

FPR =
FP

FP+T N
= 1−Speci f icity

The area under the ROC curve, known as the area under the curve (AUC) is the quantifier

of the performance. The larger the value of AUC means that the performance of the model

is better and AUC=1 for perfect classification.

Fig. 2.2. Class distribution and ROC curve
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2.2 Principal Component Analysis

Principal Component Analysis (PCA)[39–42] is one of the most important dimensionality

reduction and feature extraction methods that obtain important variables from a huge set

of variables available in a data set. It extracts a set of features in low dimensional space

from high dimensional data by taking a projection of irrelevant dimensions and captur-

ing the data information as much as possible. To perform PCA, we need to know about

the covariance matrix and eigenvalue-eigenvector concepts. The first principal component

(which corresponds to the largest eigenvalue) is a linear combination of original predictor

variables that takes the maximum variance in the data set. I am going to explain PCA with

a simple example below. Consider the matrix

A =



126 78

128 80

128 82

130 82

130 84

132 86


After transforming the original data to Z-scaled(x−µ

σ
), we get

Ascaled =



−1.566699 −1.549193

−0.522233 −0.774597

−0.522233 0

0.522233 0

0.522233 0.774597

1.566699 1.549193


Covariance matrix of Ascaled

C =

 1.2 1.13265577

1.13265577 1.2
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Eigenvalues are 2.33265577 and 0.06734423. Corresponding eigenvectors are

0.70710678

0.70710678


and

 0.70710678

−0.70710678


Projecting the scaled data to one dimension using this eigenvector, we get

Pro jecteddata =



−2.20326853

−0.91699703

−0.36927447

0.36927447

0.91699703

2.20326853


The first projected data can be found by the following formula:

(Transpose of eigenvector) * (Feature vector)

for example: −1.566699∗0.70710678+−1.549193∗0.70710678=−2.20326835894776

ann so on.
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(a) scatter plot of original data (b) scatter plot of scaled data

(c) scatter plot of scaled data in PC space (d) Explained variance of projected data

Fig. 2.3. Step by step visualization of PCA

2.3 Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the dimensionality reduction and denoising

techniques that allow an exact representation of any type of matrix[43–45]. It produces an

approximate representation with any desired number of dimensions by eliminating the less

important parts of the representation. Let A be an m× n matrix of rank r. Then A can

be written as the products of three matrices U, ∑, and V. Here U is an m × r column-

orthonormal matrix, V is an n × r column-orthonormal matrix and ∑ is a diagonal matrix.

The elements of ∑ are called the singular values of A.

Let us consider the following matrix A. In case that rank = 1, the result looks like:

σ1u1v∗1,and for rank = 2,we decompose the matrix into: σ1u1v∗1 +σ2u2v∗2. The image of

the matrix A is shown in Fig. 2.4a. Three decomposition matrices U , ∑, and V ∗ for the

matrix A are shown in Fig. 2.4b-2.4d respectively. Also, 1,2,3,4-rank approximation of

the matrix A are shown in Fig. 2.5a-2.5d respectively. It is observed that the 3-rank and

4-rank approximations are similar to the original A. By discarding the less important parts
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of the representation (two lower singular values), we can reconstruct the original matrix or

denoised version of the original matrix. This is the beauty of SVD.

A =



3 3 3 0 0

4 4 4 0 0

5 5 5 0 0

0 2 0 4 4

0 0 0 5 5



(a) image of the matrix A (b) image of the matrix U

(c) image of the matrix ∑ (d) image of the matrix V transpose

Fig. 2.4. Step by step visualization of SVD
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(a) image A rank-1 approximation (b) image A rank-2 approximation

(c) image A rank-3 approximation (d) image A rank-4 approximation

Fig. 2.5. Reconstruction of image by SVD

2.4 Multidimensional scaling (MDS)

Multidimensional scaling (MDS) is a powerful visual representation of data from high

dimension to low dimensional space based on the dissimilarities (distances) between sets

of instances[46–48]. If the two objects are close together in high-dimensional space, MDS

will retain those two objects close together in low-dimensional space. Distance matrix,

PD between each pair of objects is needed to calculate for MDS. Usually, the Euclidean

distance matrix is used, it is the squared value of the distance between objects. But we can

use any other distance.
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It minimize the following quantity

PD(X ,Y ) =
n

∑
i=1

n

∑
j=1

(
d(X)

i j −d(Y )
i j

)2

where d(X)
i j =

∥∥xi− x j
∥∥

L2
and d(Y )

i j =
∥∥yi− y j

∥∥
L2

are, respectively, the pairwise distances

between points i and j in high- and low-dimensional spaces. Here the original high-

dimensional data points X = [x1,x2, . . . ,xn]p×n ,xi ∈R p map to data points Y = [y1,y2, . . . ,yn]q×n ,yi ∈

Rq,y << p in a low-dimensional space.

2.5 Random Forest

2.5.1 Random Forest regression

A random forest regression(RFR) consists of several decision trees (DT)[49] and the final

prediction is the average of all individual trees. RFR is an ensemble machine learning

algorithm. It creates several DTs using bootstrapping (random sampling with replacement)

from the available data in the training set. Each DT gives its own individual prediction.

Averaging all individual predictions gives the RFR prediction shown in Fig. 2.6. So, RFR is

better than a single DT algorithm and it enhances the accuracy and decreases the overfitting.

A decision tree (DT) is one of the machine learning algorithms that make the tree, based

on a set of if-else conditions. DT helps to visualize the data in a better way. DT contains

several nodes like parent nodes, child nodes, decision nodes, and leaf nodes. To construct

DT, let T be a regression tree that splits at a node t. Suppose s is a proposed split for

a variable X that splits t into left and right child/daughter nodes tL and tR respectively

depending on the following conditions: X ≤ s or X > s; i.e., tL = {Xi ∈ t,Xi ≤ s} and

tR = {Xi ∈ t,Xi > s}. Regression node[50] impurity is decided by the sample variance

within the node. The impurity of t is defined by

∆̂(t) =
1
N ∑

Xi∈t
(Yi− Ȳt)

2
, (2.1)
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where Ȳt is the sample mean for t and N is the sample size of t. Similarly, impurities

for the daughter nodes are

∆̂(tL) =
1

NL
∑
i∈tL

(Yi− ȲtL)
2
, (2.2)

∆̂(tR) =
1

NR
∑
i∈tR

(Yi− ȲtR)
2
, (2.3)

where ȲtL is the sample mean for tL and NL is the sample size of tL and analogous for right

daughter node tR. The decrease in impurity under the split s for X equals

∆̂(s, t) = ∆̂(t)−
[
p̂(tL) ∆̂(tL)+ p̂(tR) ∆̂(tR)

]
, (2.4)

where p̂(tL) = NL/N and p̂(tR) = NR/N are the proportions of observations in tL and tR,

respectively. Maximizing the ∆̂(s, t) to find the best split-point s,which is equivalent to

minimizing the quantity
[
p̂(tL) ∆̂(tL)+ p̂(tR) ∆̂(tR)

]
. The splitting process for a tree is

considered finished when the number of training instances at a node falls below or equal

to a specified minimum threshold, say n. At this point, the node becomes a leaf node, and

the prediction made at that leaf node is typically the average of the target variable values

(Y values) of the training instances that reach that specific leaf node (Fig. 2.7).

For example, consider X = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] and

Y = [1,1.2,1.4,1.1,1,5.5,6.1,6.7,6.4,6,6,3,3.2,3.1,3]. Here, Y is our target. We construct a

DT based on X values. We split the X based on the sample variance. The spliting lines

at X = 5.5, 3.5, 11.5 and so on respectively. Scatter plots with spliting lines are shown in

the Fig. 2.7. Corresponding DT is shown in the Fig. 2.8. In Fig. 2.8, mse is the mean

square error which is defined in the Eqn. 2.1 and value is the average of the corresponding

Y values at that node.

Furthermore, I explain the procedure of random forest regression by using a simple

illustrative example in Fig. 2.9 as follows: we have measured a continuous variable y as a

function of an observable x. Our goal is to describe the relation y = f (x) where f is the

function we aim to approximate, with a statistical model. There are couples of strategies
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Fig. 2.6. Schematic diagram of Random Forest Regression.

Fig. 2.7. Scatter plots with spliting lines.
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Fig. 2.8. Decision tree.

that can be employed to approximate this function. If we have some prior knowledge about

the form of f , for instance if we know it is linear or polynomial in nature, a parametric

model such as linear regression or polynomial regression can be a good fit. On the other

hand, if no prior knowledge on f is available, we can employ non-parametric regression

model such as random forest that does not make assumptions on the functional form of

f . To understand random forest, we need to introduce its fundamental building block —

decision tree. Decision trees (DTs) create a model in the shape of a upside-down tree with

a set of connected nodes. This hierarchical structure begins with the root node at the top of

the tree, which holds the initial data set. From this root node, the data is partitioned based

on a chosen value of x, splitting the data into two distinct child nodes: a left child node

and a right child node. To contextualize this process, Fig. 2.9A, we show the approximated

function mapping x to y, estimated by a tree containing one root node and two child nodes,

essentially a tree formed by one data split guided by the following condition : x≤ i with i∈

[min(x),max(x)]. If the condition is fulfilled, the data reach the left child node; otherwise,

they go into the right child node. The estimated function, denoted as ŷ = f̂ (x), looks like

a Heaviside step-wise function. This is because the predicted values ŷ provided by a tree

are the mean values of y for those x values that falls within a particular terminal nodes,

either left or right. In simpler terms, given a tree with two terminal nodes, for each x
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value to be predicted, the assigned prediction ŷ will either be the average value of y for

the subset of observations that reach the left terminal node or the right terminal node,

depending on whether the x value satisfies the splitting condition at the root node. We

can also mention that if a tree is only composed of the root node, i.e. a unique node, the

approximated function f̂ is a constant function whose constant value is the mean value of

y. During the training phase of a decision tree (DT), the goal is to find the best splitting

conditions of the data set that minimize the root mean squared error defined as (RMSE)

=
√

1
n ∑

n
i=1(yi− ŷi)2, with the number of observations n. Fig. 2.10, for example, displays

the RMSE as a function of the x values splitting condition, for the tree with one root

node and two terminal nodes. To get a more accurate approximation of the function f

than a Heaviside step-wise function, the tree is growing up with multiple data splits until a

stopping condition is met. Commonly, a stopping condition can specify that a node will not

be split further if it contains fewer observation than a specified minimum criterion or if a set

of maximum tree depth is reached. Typically, the minimum sample size at terminal nodes

of the tree, and the minimum number sample of split, are the two main hyper-parameters

that control the quality of the approximated function, f̂ . Fig. 2.9A, the function becomes

more precise for 5 or 15 data splits, compared to just one split. A generalization of the

decision tree regression is random forest regression (RFR) that constructs an ensemble

of DTs. The term “random” in RFR refers to the method of bootstrap sampling with

replacement [50–52]. In RFR, each DT is constructed with a boostrapped sample drawn

from the original data set. This method ensures that the collection of trees presents a certain

level of diversity which is known to be a “safeguard” against overfitting the training data.

The final approximated function made by RFR, f̂RF is an aggregation of the estimated

functions given by individual DTs such that f̂RF(x) = 1
q ∑

q
i=1 fq(x) with the approximated

function of a single tree fq(x) and the total number of trees in the forest q. Fig. 2.9B shows,

for example, the estimation of the function f , given by random forest and a single decision

tree. The set of DTs (random forest) can approximate the underlying function or trend free

from overfitting without choosing a parameter such as order in polynomial regression. In

this research, I employed default hyperparameters values of RFR as follows: The number



2.5. Random Forest 40

of DTs in the random forest q is 100, the minimum number of samples belonging to a leaf

node is 1.

2.5.2 Random Forest classification

For the classification problem, Gini impurity is used instead of variance. For the random

forest binary classification, the optimal split is evaluated at each node τ within the binary

trees T , using the Gini impurity i(τ) which is defined as[53]

i(τ) = 1− p2
1− p2

0

where pk =
nk
n is the fraction of the nk samples from class k = {0,1} out of the total n

samples at node τ . Its decrease ∆i that results from splitting the node into two sub-nodes

τl and τr by setting a threshold tθ on variable θ is defined as

∆i(τ) = i(τ)− pli(τl)− pri(τr)

The decrease in Gini impurity resulting from this optimal split ∆iθ (τ,T ) is then recorded

for the best split. For the classification case, the final prediction is based on the majority

votes of all individual trees.

In conclusion, this chapter provides an overview and discussion of various useful al-

gorithms that will assist as the foundation for the evaluation conducted in later chapters.

These algorithms have been carefully chosen based on their relevance and applicability to

the research objectives.



2.5. Random Forest 41

Fig. 2.9. (A) A scatter plot of “observed” data with the approximate regressions by a DT in terms
of 3 different splits (1, 5, and 15). (B) A scatter plot with the approximate regressions by a single
DT with 15 splits and by a set of 100 DTs.
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Fig. 2.10. The root mean squared error (RMSE) as a function of the location at which the point to
split the given data set is determined for the data set used in Fig. 2.9.



3
Raman data preprocessing

3.1 Data preprocessing

Data preprocessing in Machine Learning is the most important and tedious step that aids

to enhance the quality of data. It is a technique of cleaning and organizing the raw data to

make it reasonable for building and training Machine Learning Algorithms. The measured

Raman spectra are corrupted by several phenomena like fluorescence background, cosmic

spikes and white noise, etc.[1],[54] shown in Fig. 3.1. Before analysis it is very important

to clean Raman data from all types of corruptions for further analysis.

Fig. 3.2 is displayed a schematic diagram of the three preprocessing workflows for

Raman image analysis. While wavenumber calibration is an important step in the pre-

processing of Raman data, it is mentioned separately as we observed a shift in the peak

43
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Fig. 3.1. Spectrum composition[1].

position of spectra obtained from different cells located at different spatial positions when

applying wavenumber calibration independently of the position along the illumination axis

ζ (referred to here as ‘without wavenumber calibration’ or ‘uncalibrated’)(Fig. 3.3). As a

consequence some non-negligible spatial dependence appears in both some of the resulting

Raman images and PC score images when the standard preprocessing without wavenum-

ber calibration is applied. Then I fixed our standard preprocessing workflow along with the

position-dependent wavenumber calibration along the illumination axis ζ to minimize spa-

tial dependencies between spatial axis and chemical intensity distribution in the following

analysis. Furthermore, I present a detrending scheme based on random forest regression to

enhance the differentiability of the Raman signals between FTC-133 and Nthy-ori 3-1.

3.1.1 Wavenumber calibration along illumination line

In line-illumination microscope experiments, the wavenumber axis is calibrated based on

the reference sample spectrum and for each individual pixel along the line direction. This

accounts for potential drifts in Raman peak positions that may occur along the line axis.
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The calibration protocol assumes a consistency of Raman shift drift errors in the scanning

direction and is established with a single Raman line measurement of ethanol, using a

0.5-second exposure time. Consequently, 400 spectra of ethanol are recorded at the CCD

detector and organized into a matrix of dimensions (m,ν) = (400,910), with 910 being

the number of pixels along the wavenumber axis. For each of the 400 ethanol spectra,

the seven theoretical Raman peaks of ethanol solution (884, 1052, 1096, 1454, 2880, 2930,

2974 cm−1) (Fig. 3.4) were detected at different pixel indices, and a third-order polynomial

model was used to estimate the continuous nonlinear relationship between pixel indices and

Raman shifts. Each estimated third order polynomial model provides a new wavenumber

axis of size 910 pixels resulting in the estimation of 400 new wavenumber axis in total.

A cubic spline model denoted by fkl , with the spatial position along the scanning axis

k ∈ [1,240] and the spatial position along the illumination line axis l ∈ [1,400], learns

the mapping between the new Raman shift axis ν j to the Raman intensity of individual

spectrum of a Raman image as fkl
(
ν j
)
. These different cubic spline models are then used

to interpolate all the individual spectrum of a Raman image on a consistent linear grid of

spectral resolution 3.8 cm−1 to have a common wavenumber axis between all spectra of a

Raman image and between different measurements.

3.1.2 Raman data preprocessing steps

Prior to analysis, Raman images underwent preprocessing with a standard protocol aimed

at minimizing known spectral artifacts. The preprocessing workflow consisted of several

steps: (1) cosmic ray removal: cosmic rays appear as intense spike in Raman spectra at ran-

dom position. Their localization can be expressed as an outlier detection problem, where

in each 2D Raman image u at each wavenumber νi, a pixel is considered as corresponding

to a cosmic ray if its intensity exceeds a threshold of µ(uνi)+8σ(uνi), where µ(uνi) is the

mean intensity of the Raman image u at νi and σ(uνi) is its standard deviation. Cosmic

ray intensity is then replaced by the mean intensity of the 9 closest neighboring pixels,

including the cosmic ray’s value. This cosmic ray detection and replacement is performed

recursively for each wavenumber until no more cosmic rays are detected. (2) Bias cor-
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rection: Constant value 520 photon counts was subtracted from each intensity due to the

intrinsic bias of our device. Then the position-dependent wavenumber calibration along

illumination axis was performed, explained in the previous section. (3) Noise reduction:

the Raman spectra can be degraded by various types of noise such as read-out noise, flu-

orescence background noise, Raman photon noise, and dark current noise. To improve

the signal-to-noise ratio of Raman images, singular value decomposition (SVD) denoising

is used by keeping the first 8 singular value components [44]. Intensity distributions of

four well known peaks are shown in Fig. 3.5. (4) Fluorescence background correction:

Raman spectra are distorted by a baseline fluorescence background originates from the

substrate, autofluorecence molecules in samples or other elements. We reduced this fluo-

rescent baseline in each individual Raman spectra of a Raman image by using the modified

polynomial algorithm (modpoly) [55] of order 8. Average spectrum of 6 cells are shown

in Fig. 3.6 and Fig. 3.7 after denoising and baseline corrections respectively. (5) Data nor-

malization: Raman spectra are subject to diverse multiplicative effects such as the varying

number of molecules at different positions, laser power fluctuations and focus drift among

others which modify Raman intensity. To make spectra comparable from experiments to

experiments or positions to positions total intensity normalization was employed. The nor-

malization procedure involves dividing the intensity u(k, l,νi) of each individual spectrum

in the Raman image by the constant ∑
ν
νi=1 u(k, l,νi). Normalization was performed over

the wavenumber range 581 cm−1 to 3025 cm−1 after truncation of the silent regions in

the range (1880-2805 cm−1). See also in Appendices Parameters selection for SVD and

baseline correction section.

Note that there are some spatial correlation between each principal component and

spatial axes ζ and ξ after standard preprocessing shown in Fig. 3.8 and Fig. 3.9. My target

was to remove this dependency by detrending each principal component.

3.1.3 Proposed detrending scheme

After standard preprocessing with position-dependent wavenumber calibration, the un-

folded (=preprocessed) Raman image of size (nm,ν) is expanded in an orthonormal ba-
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sis known as Karhunen-Loève (K-L) basis or principal component (PC) basis [39, 40] to

translate the Raman image as a set of 2D maps of PC scores of n×m pixels, denoted as

Qi(k, l) with 1 ≤ k ≤ n and 1 ≤ l ≤ m, or simply Qi otherwise noted. These maps reflect

a series of spectral variations over the physical space buried in the Raman image, which

can reflect the presence of slowly varying change of intensity related to non-homogenous

illumination effects as illustrated by the example of the 5th PC score Q5 (Fig. 3.10) with

a gradient of intensity. To further visualize these effects, we plot individual Q5(k, l) as a

function of the scanning axis ξ (corresponding to k), and the laser illumination line axis ζ

(corresponding to l), respectively (See Fig. 3.11C and Fig. 3.11E).

We suppose that, for Raman images without spatial degradation, the individual PC

score Qi should be non-correlated to both of illumination and scanning axes, leading to

symmetric distributions centered around zero between each PC score and these spatial

axes. However, some correlation between the first tens (� ν) principal component scores

and the spatial axes remain even after the application of position-dependent wavenumber

calibration (Fig. 3.11A) (Note again that, without calibration, artificial spatial correlations

are much more significant, e.g., Fig. 3.8). Importantly in the PC orthonormal basis, the PC

score are mutually uncorrelated, as shown by the correlation matrix of the full set of PC

scores (Fig. 3.13B).

This implies that the application of a nonlinear detrending correction is straightfor-

wards, i.e., the detrending operation to Qi does not affect to one another. This is not true if

we correct the individual Raman shifts as the spectral features of a Raman image are mu-

tually correlated among them, as seen by the correlation matrix of the preprocessed Raman

image (Fig. 3.13A).

The workflows to detrend the spatial correlation Qi along each spatial axis is as fol-

lows: we first employ a series of random forest regression (RFR) models [50, 52] to es-

timate the slowly varying relation between each Qi and the illumination axis ζ . Here we

chose the random forest regression model to estimate the underlying trend because of its

nonparametric nature, which is more adaptable in estimating unknown nonlinear relations

compared to parametric models such as polynomial regression. An example of the esti-
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mated trend by RFR is given for the 5th PC score Q5 along ζ (Fig. 3.11C). The spatially

averaged trend in Qi along the illumination axis ζ (denoted by Q̂i(l)) that could not be

removed by position-dependent wavenumber calibration are then subtracted from each Qi.

That is, Q′i(k, l) = Qi(k, l)− Q̂i(l) for all pairs of k and l. Afterwards, the same process

is repeated to remove the spatial correlation along the scanning axis ξ . That is, a new

series of RFR are performed to estimate the correlation to the scanning axis ξ (denoted

by Q̄i(k)) remaining in Q′i(Fig. 3.11E). The final correction of Qi (denoted by Q̄i) is then

given by Q̄i(k, l) = Q′i(k, l)− Q̄i(k) for all the pairs (k, l). However, for the PC 100th,there

is no improvement after detrending because PC100 is mainly noise shown in Fig. 3.12.

The detrended 2D PC maps along both the illumination and scanning axes on the top of

position-dependent wavenumber calibration are then translated to a detrended 3D Raman

image with size (n,m,ν). The advantages of choosing random forest regression (RFR)

over the averaged PC score, polynomial fitting of different orders are presented in Appen-

dices (Advantages of the random forest model with other models section). My proposed

scheme was performed on a Raman image of Dimethyl sulfoxide (DMSO) (see Appendices

in Measurement of Dimethyl sulfoxide (DMSO) section).

Average spectrum of 6 cells based on three schemes are shown in Fig. 3.14. One can

easily see the improvement of my detreding scheme compared to other two schemes. My

scheme reduces the variations of the intensity of spectra at each Raman shift in a Raman

image. This is reasonable because 6 cells are coming from one Raman image and so their

spectral difference should be low.

In conclusion, this chapter provides a detailed clarification of the proprosed developed

detrending scheme for Raman data preprocessing, highlighting its efficacy in improving

spectral quality. The comparison among the proposed scheme and conventional approaches

demonstrates a notably reduction in spectral differences, particularly for spectra with the

same phenotype.
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Fig. 3.2. Three preprocessing work flows
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Fig. 3.3. Enlarged peak positions of the averaged spectra of six cells contained in a Raman image
of FTC-133(#2) at two Raman shifts (A and C) without wavenumber calibration, (B and D) with
the position-dependent wavenumber calibration.

Fig. 3.4. (A) Ethanol all spectra (B) image plot of peak positions for ethanol spectra.
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Fig. 3.5. Intensity distribution in a space domain at four peaks after denoising without wavenumber
calibration: (A) cytochrome, (B) phenylalanine, (C) protein,and (D) lipid.
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Fig. 3.6. Average spectrum of 6 cells after denoising.

Fig. 3.7. Average spectrum of 6 cells after denoising.
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Fig. 3.8. The Pearson correlation coefficients between the spatial coordinates, illumination and
scanning axes, and the images of PCs of a Raman image of FTC-133(#2) preprocessed by standard
preprocessing without wavenumber calibration.
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Fig. 3.9. The Pearson correlation coefficients between the spatial coordinates, illumination and
scanning axes, and the images of PCs a Raman image of FTC-133(#2) preprocessed by standard
preprocessing with the position-dependent wavenumber calibration.
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Fig. 3.10. (A) Scatter plot of PC 5 score and ζ -coordinates, (B) Scatter plot of PC 5 score and
ξ -coordinates.
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Fig. 3.11. (A) Correlation between illumination axis coordinates and PCs (B) PC 5 scores value
distribution in a space domain after standard preprocessing with position-dependent calibration (C)
Scatter plot of PC 5 score and ζ -coordinates with RF regression line (D) detrended PC 5 scores
value distribution along ζ axis correction in a space domain (E) Scatter plot of detrended PC 5
score and ξ -coordinates with RF regression line (F) detrended PC 5 scores value distribution along
both axes correction in a space domain.
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Fig. 3.12. (A) PC 100 scores value distribution in a space domain after standard preprocessing with
position-dependent calibration (B) detrended PC 100 scores value distribution along ζ axis correc-
tion in a space domain (C) detrended PC 100 scores value distribution along both axes correction
in a space domain(D) Scatter plot of PC 100 score and ζ -coordinates with RF regression line (E)
Scatter plot of detrended PC 100 score and ξ -coordinates with RF regression line.
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Fig. 3.13. Average spectrum of 6 cells after normalization.



3.1. Data preprocessing 59

Fig. 3.14. Average spectrum of 6 cells:(A) without wavenumber calibration. (B) the position-
dependent wavenumber calibration. (C) the detrending scheme.



4
Differentiability of cell types enhanced by

detrending non-homogeneous pattern in

line-illumination Raman microscope

Raman microscopy is a label-free, vibrational imaging technique that reflects the under-

lying, unique spectral features of molecules constituting a sample to measure [56–58].

Despite its potential for use in areas such as disease diagnosis [59, 60], treatment moni-

toring [61], drug design [62], and cell therapy development [63], the practical application

of Raman spectroscopy in clinical settings faces challenges with regards to the relatively

long acquisition time of Raman images [64–66] and the lack of data standardization [67]

protocols between different microscope systems and experiments.

60
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The former is the consequence of the weak nature of Raman scattering, which requires

a long exposure time to capture enough signal for analysis. The latter is influenced by var-

ious instrumental and experimental factors such as optics, sample preparation, laser power

fluctuations, spectrometer drifts, autofluorescence, and multiple sources of noise. Multi-

step preprocessing workflows have been proposed to remove such artifacts in raw Raman

data. The workflows prioritize an objective design that involves optimizing cost func-

tions or quality parameters to assess the effectiveness of the preprocessing [1, 68, 69].The

traditional preprocessing techniques for Raman tabular data such as cosmic ray removal,

spectrometer calibration, denoising, baseline correction, and normalization have proven to

be effective in reducing setup dependencies and improving data comparability[70–72].

However, the standard preprocessing workflows that considered only the spectral di-

mension in the process may lead to only suboptimal correction and the overlook of im-

portant artifacts present in the spatial dimension of Raman images such as non-uniform

illumination, focus drift, and stripes. Here, non-uniform illumination refers to spatial vari-

ation in intensity of the laser source that is used to scan a sample. Line-illumination Raman

microscopes [73–75] which supply an illumination laser line to scan a sample in question

resulting in significantly shorter acquisition time (typically several hundreds times) com-

pared to raster scanning based on point illumination. There, the illumination line, typically

generated through a sequence of cylindrical lens, creates some non-homogeneous illumi-

nation source, which can affect the spatial distribution of photon counts in a Raman image

and negatively impacts the results of the subsequent chemometrics analysis. Despite at-

tempts to remove the consequence of a non-uniform illumination source in Raman data,

using scaling techniques such as area normalization under a spectral curve, there exists

room to improve further, as demonstrated in the paper. Additionally, non-uniform illumi-

nation in Raman microscopy can be caused by various factors such as laser misalignment,

poor lens quality, dust, or vignetting effects, and has a negative effect on all types of Raman

microscopes. Therefore, techniques that address non-uniform illumination correction are

in high demand for the restoration of Raman images.

In this paper is presented an analytical methodology that effectively eliminates non-
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uniform illumination in Raman images using the Karhunen-Loeve basis[76]. The method’s

performance is evaluated using follicular thyroid cancer cells (FTC-133) [10, 12] and nor-

mal thyroid cells (Nthy-ori 3-1) as samples in a Raman measurement analysis. Accurate

wavenumber calibration is emphasized to avoid potential inaccuracies, including reference

sample Raman peak position shifts caused by uneven illumination, and is performed pixel-

by-pixel along the line axis. The standard preprocessing protocol [77, 78] recommended

in the literature for Raman tabular data is found to be insufficient in correcting intensity

variation in Raman data due to non-uniform illumination, as indicated by the existence

of a correlation between the spatial coordinates (illumination axis, scanning axis) and the

distribution of Raman intensities at different wavenumbers. Therefore, potential misclassi-

fication of cells based on their spatial location rather than their actual chemical composition

are unavoidable.

We propose a solution to mitigate the issue of intensity variations coming from uneven

illumination laser source in Raman images using a random forest regression model[52]

in the Karhunen-Loeve basis. Following the position-dependent wavenumber calibration

scheme along illumination line (axis), the process involves estimating low-frequency de-

pendencies between the illumination axis and chemical features expressed in the basis,

and subtracting these estimations from each chemical feature to minimize unwanted inten-

sity variations along the axis. The same procedure is repeated for the vertical axis (scan-

ning direction) to the illumination line to further minimize intensity variations throughout

the images. This process, similar to a detrending technique, assumes that each individ-

ual chemical feature in the basis should follow a symmetric distribution. The proposed

method is applied after standard preprocessing, and its performance is evaluated through a

comparison of chemical homogeneity among single cells from the same phenotype. The

results show that this method significantly improves chemical homogeneity between sin-

gle cells of the same phenotype, and enhances chemical separability between two different

phenotypes, FTC-133 and Nthy-ori 3-1, by reducing the risk of misclassification caused by

undesired intensity variations.
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4.1 Cell culture

In this research, two cell lines were used: FTC-133 (human thyroid follicular carcinoma) as

a cancer cell line and Nthy-ori 3-1 (human thyroid follicular epithelial) as a non-cancer cell

line. The cells were seeded in a 2mL medium containing DMEM/Ham’s F-12 (FUJIFILM

Wako Pure Chemical Corporation, 042-30795) for FTC and RPMI1640 (nacalai tesque,

05176-25) for Nthy, along with 10% fetal bovine serum (GE Healthcare, SH30910.03)

and 1% penicillin-streptomycin-glutamine (FUJIFILM Wako Pure Chemical Corporation,

161-23201) at a cell number of 2× 105, on a calcium fluoride substrate (CRYSTRAN

LTD, Raman grade CaF2 CAFP13-0.2). After seeding, the cells were incubated in a CO2

incubator (5% CO2 , 37◦C) for 40-48 hours. Before the Raman measurement, the cellular

culture medium was replaced with warmed-up Tyrode’s buffer solution (145 mM NaCl, 1

mM CaCl2, 1 mM MgCl2, 5.4 mM KCl, 10 mM glucose and 10 mM HEPES with deionized

distilled water at a final pH of 7.4) after being rinsed twice with it.

4.2 Line illumination Raman microscope

The Raman images were acquired using a home-built line-illumination Raman microscope[18]

equipped with a continuous wave laser at 532 nm (Verdi V18; COHERENT). The power

density was set to 3.3 mW/ µm2 at the sample and the laser was expanded into a line

shape using a cylindrical lens, then focused onto the sample through a ×40 water im-

mersion objective lens (NA 1.25, CFI Apo 40×WI λ S; Nikon). The Raman photons

were backscattered through the same objective lens and collected by a spectrophotometer

(MK-300; Bunkoukeiki) after passing through a long-pass edge filter (LP03-532RE-25;

Semrock) that eliminates excitation line emission and Rayleigh photons. The Raman pho-

tons were dispersed by a 600 L/mm grating(500 nm blaze) and the dispersed transmission

was captured by a cooled (-70°C) CCD camera (PIXIS 400 BeXcelon;, Teledyne Prince-

ton Instruments). For each passage the line allows the collection of 400 Raman spectra

simultaneously with an exposure time of 5s. To form Raman images, a galvano-mirror is

used to scan the sample with the line from left to right. A Raman image was 400× 240
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pixels totaling 96,000 spectra, each with a spectral range of 182 cm−1 to 3,086 cm−1 and

a size of 910 pixels. In the following, we denote Raman image by a data cube u(m,n,ν),

in which (m,n,ν) = (400,240,910) in this work. The spectrometer calibration was carried

out using ethanol by a spectrometer software.

4.3 Data set characteristics and post-processing

Ten Raman images {ûi} (i = 1, ..,10) (5 FTC-133 and 5 Nthy-ori 3-1) were considered

for the analysis. From these 10 images, 60 single cells (28 cells of FTC-133 and 32 cells

of Nthy-ori 3-1) were extracted based on manual image segmentation. We preprocessed

each individual spectrum belonging to the cell region where the preprocessing runs over all

pixels belonging to the defined cell regions. As overall, the sample size of the preprocessed

data is 362,593, with 5 labeled FTC-133 and 5 labeled Nthy-ori 3-1.We performed k-means

clustering[79, 80] based on the individual spectrum of each Raman image to identify the

uniforminty of the proportion of the clusters within the individual single cells. For low

dimensional projection of all single cells average spectra, we applied multidimensional

scaling (MDS) [46, 47] and Uniform Manifold Approximation and Projection (UMAP)

[81, 82].

4.4 Results and discussion

In this section, we first highlight the significant impact of wavenumber calibration along

the line axis to detect subtle differences in Raman spectra between human thyroid carci-

noma FTC-133 and Nthy-ori-3-1 cell lines. Our explanatory analysis reveals that the use

of a standard wavenumber calibration procedure determined with a reference sample mea-

surement independently of positions along illumination line can lead to the emergence of

artificial Raman intensity spatial biases. This issue has not been widely acknowledged in

the literature. Second, to reduce intensity variations related to uneven illumination in Ra-

man images we propose a preprocessing workflow that introduces some spatial correction

in the principal component basis. This approach effectively reduces non-uniform inten-
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sity profiles in Raman images and enhances the accurate differentiation of Raman spectra

between FTC-133 and Nthy-ori 3-1 cell lines. Here, I will discuss the impact of three

preprocessing schemes in details that was explained in the Chapter 3.

4.4.1 Applications of the position-dependent wavenumber calibration

and the detrending scheme

Fig. 4.1 presents a series of visualization and descriptive statistics estimated on representa-

tive Raman images with and without position-dependent wavenumber calibration and with

the detrending scheme on top of the calibration. Panel (A) shows an uncalibrated Raman

image, while panel (B) shows the same image with position-dependent wavenumber cal-

ibration, which significantly reduces the artificial spatial correlation of the image. Panel

(C) shows the Raman image with the detrending scheme on top of the calibration. Panels

(D) and (E) show Pearson correlation coefficients (r) between the Raman image at each

individual wavenumber and the illumination axis ζ and the scanning axis ξ , respectively.

Panel (F) shows the averaged with one standard deviation Raman spectrum for the cell

region with the three preprocessings. Fig. 4.1D, without wavenumber calibration, shows

high positive correlation at certain Raman shifts, high negative correlation at other Raman

shifts, and weak correlation for some Raman shifts. The sign of correlation coefficient is

dependent on the definition of the coordinate system. Suppose that a Pearson correlation

coefficient is positive about +0.8. This is equally possible to be -0.8 if one inverts the axis

from positive to negative in the definition of the coordinate system. However, note that the

relative relationship, such that some Raman intensities correlate along one direction (e.g.,

positively) but the others do along the inverse direction (e.g., negatively) to the chosen axis,

holds once the coordinate system is fixed. This spatial correlation is significantly reduced

by the position-dependent calibration strategy indicating an apparent wavenumber drift

along the illumination axis, which could be attributed to chromatic aberration or changes

in physical properties resulting from laser light power variation along this axis. Along the

scanning axis some correlation pattern also exist for data without wavenumber calibration

as observed Fig. 4.1E but with lower amplitude than observed for the illumination axis.
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Similarly, same correlation analysis for all 5 FTC and 5 Nthy Raman images are shown in

Fig. 4.2-Fig. 4.5.

4.4.2 Classifications of FTC-133 and Nthy-ori 3-1 based on Raman

images

To evaluate the quality of the three different preprocessing schemes including with/without

the position-dependent wavenumber calibration and the detrending scheme on the top of

the position-dependent wavenumber calibration, on the Raman images, a comparative anal-

ysis of the classification performance of the two cell lines was conducted. Additionally, to

provide a visual representation of the effect of the three preprocessing strategies on the

data, the average single cell Raman spectra are projected into a low-dimensional space.

Fig. 4.7A, B, and C visualizes the projection of sixty average single cell spectra in a low-

dimensional space by performing multidimensional scaling (MDS) [46, 47] based on the

distance matrix (Fig. 4.6). This low dimensional representation manifests that the detrend-

ing scheme clearly enhances the differentiability between FTC-133 and Nthy-ori 3-1, as

shown in Fig. 4.7C (c.f., Fig. 4.7A and B) and in linear PCA projection shown in Fig. 4.11

as well.(See also Fig. 4.12) for the nonlinear projection, Uniform Manifold Approximation

and Projection (UMAP) [81, 82]). It is revealed that the enhanced differentiability by the

detrending scheme on the top of the position-dependent wavenumber calibration is statis-

tically ensured, free from the choice of 2D linear basis of MDS or by using 2D nonlinear

embedding algorithm like UMAP. Fig. 4.7D and E shows the box-and-whisker plot of 25

cross-validated accuracies of random forest classifier (RFC) [83, 84] models in predicting

of FTC-133/Nthy-ori 3-1 for the three different preprocessing schemes. That is, for each

preprocessing, a pair of two images of FTC-133 and Nthy-ori 3-1 were randomly chosen

25 times as test images to estimate the classification accuracy while the remaining 4 FTC-

133 and 4 Nthy-ori 3-1 images were used to train RFC. The RFC creates an ensemble of

100 decision trees on different subset of the training data on Raman spectra coming from

the training set, and predict class (FTC-133 or Nthy-ori 3-1) membership of unseen Ra-

man spectra from the test set based on the majority class voting of the 100 decision tress.
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Fig. 4.7D shows the RFC accuracy when considering average single-cell Raman spectra,

while Fig. 4.7E is obtained by considering all the spectra belonging to cells. From these

figures, it is evident that a proper wavenumber calibration adapted for line-illumination

microscopes and/or a detrending scheme is essential to stabilize the performance of the

classifiers. Indeed, the average RFC accuracy increases progressively from uncalibrated

data to detrended data, while the standard deviation of the accuracy decreases. This trend

emphasizes that our preprocessing method improves the stability of RFC classifier by re-

ducing the number of outliers. Similar trend exists for AUC and f1 score calculations are

shown in Fig. 4.8 and Fig. 4.9 respectively. Moreover, Fig. 4.10 shows the box-and-whisker

plot of 25 cross-validated accuracies by CNN for the three different preprocessing schemes

based on pixelwise spectra. The detrended scheme exhibits better performance compared

to both the uncalibrated and calibrated schemes.

4.4.3 Visualization of spectral stability via a cluster analysis

Fig. 4.13A, B, and C depict the results of k-means clustering maps with 5 clusters for a

representative Raman image of human follicular thyroid carcinoma cell line FTC-133 for

the three different preprocessing schemes. Here, the k-means clusterings were performed

independently for each preprocessing strategy. To compare visually between the three sets

of clusters, the cluster indices for each scheme were reordered in each image so that the

Euclidean distance between the centroid (corresponding to the median in spectral space)

of each cluster computed for three different preprocessed Raman images is minimized by

rearranging the index of cluster for each image (See the distance matrix between the rear-

ranged clusters of the three data sets in Fig. 4.14). In Fig. 4.14, the corresponding clusters

between the three preprocessed images were able to be identified rather straightforwards.

The corresponding cluster population ratios can be seen in Figures 4.13D-F. One can see

in Figures 4.13D-F that the population of the clusters within individual cells tend to be rel-

atively more diverse without using the detrending scheme. For example, the proportion of

cluster 3 (megenta) is relatively very high for cell 3 compared to other cells, which would

suggest the manifestation of a phenotypic difference. In turn, the proportion of cluster 3
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for cell 3 as well as other clusters are relatively less diverse across different single cells

for the detrending scheme compared to the other two preprocessing. Similarly, the results

of the same analyses for all ten Raman images are given in Fig. 4.15-Fig. 4.18. We then

emphasize that the detrending scheme reduce the variation of cluster proportion between

single cells of a Raman image. This is demonstrated Fig. 4.13G by showing a compara-

tive single-cell pairwise spectral cluster proportion Euclidean distance distribution for the

three preprocessing strategies via a box-and-whisker plot. Figure 4.13G manifests that the

detrending scheme naturally provides statistically consistent population distributions for

each single cell within the same image.

Fig. 4.19 summarizes the average Raman spectra variation of individual cells obtained

from 10 Raman images in terms of the three preprocessing strategies. Panels (A) and (B)

show the average spectra of 28 Nthy-ori 3-1 and 32 FTC-133 single cells, respectively, for

uncalibrated data. Panels (C) and (D) present the corresponding average spectra of the same

number of cells after incorporating the position-dependent wavenumber calibration. Lastly,

Panels (E) and (F) display the average spectra of the mentioned single cells after both the

position-dependent wavenumber calibration and the detrending scheme have been imple-

mented. The box-and-whisker plot for variation of Raman intensities in Fig. 4.19G and

Fig. 4.19H for Nthy-ori 3-1 and FTC-133, respectively, shows reductions in the variance

of the average Raman spectra as the three preprocessing strategies. We interpret that this

observed reduction of variance through the utilization of the 3 preprocessing strategies is

related to a minimization of unwanted variations coming from instrumental or experimen-

tal factors. This highlights the importance of developing proper preprocessing strategies to

obtain results in Raman imaging experiments consistent with enhanced differentiability of

the phenotypic differences. Sixty single cells average spectra of Nthy-ori 3-1 and FTC-133

together is shown in Fig. 4.20. At the pixel level, we observed very clearly that inten-

sity distribution is compact by my detrending scheme compare to standard preprocessing

schemes in Fig. 4.21.
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4.4.4 Confusion matrix and predicted probability

In Fig. 4.22, we found that 3 FTC spectra were misclassified and these 3 spectra located

far from the FTC group in UMAP space. Moreover, average spectra of these 3 cells are

different than other 3 cells in case of standard preprocessing without wavenumber calibra-

tion. However, in Fig. 4.23, we observed that all 6 FTC spectra were correctly classified

but 3 spectra located far from the FTC group in UMAP space shows very marginal prob-

ability around 0.5 in case of standard preprocessing with position-dependent wavenumber

calibration. But in case of the detrending scheme after the implementation of position-

dependent wavenumber calibration (Fig. 4.24), 6 cells were closer in UMAP space and

predicted probability becomes higher. Moreover,average spectra of these 6 cells are nearly

similar. A similar finding was observed for the another test pair (Nthy4 and FTC2) are

shown in the Fig. 4.25-Fig. 4.27.
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Fig. 4.1. (A)-(C) The Raman intensity distribution at 1008 cm−1 (dashed vertical line) in the
space domain of FTC-133(#2): (A) after standard preprocessing without wavenumber calibration,
(B) after standard preprocessing with position-dependent wavenumber calibration, (C) after the
detrending scheme applied on the top of position-dependent wavenumber calibration. (D)-(E) The
Pearson correlation coefficients between the Raman images at each wavenumber acquired by the
three preprocessings: (D) the illumination axis coordinate, (E) the scanning axis coordinate. (F)
The average Raman spectra over all cell regions, with three different preprocessings. Note that the
silent region at wavenumbers 1,880-2,805 cm−1 is omitted and replaced by a small gap.
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Fig. 4.2. The Pearson correlation coefficients between the Raman images at each wavenumber ac-
quired by the three preprocessings along the illumination axis coordinate for 5 FTC Raman images.
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Fig. 4.3. The Pearson correlation coefficients between the Raman images at each wavenumber
acquired by the three preprocessings along the scanning axis coordinate for 5 FTC Raman images.
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Fig. 4.4. The Pearson correlation coefficients between the Raman images at each wavenumber ac-
quired by the three preprocessings along the illumination axis coordinate for 5 Nthy Raman images.
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Fig. 4.5. The Pearson correlation coefficients between the Raman images at each wavenumber
acquired by the three preprocessings along the scanning axis coordinate for 5 Nthy Raman images.
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Fig. 4.6. The distance matrix between averaged single cell spectra of sixty cells (28 cells of FTC-
133 and 32 cells of Nthy-ori 3-1): (A) without wavenumber calibration. (B) the position-dependent
wavenumber calibration. (C) the detrending scheme.
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Fig. 4.7. (A)-(C) The multi-dimensional scaling (MDS) projection of the ten Raman images in-
cluding sixty single cells in total: (A) standard preprocessing without wavenumber calibration (B)
the position-dependent wavenumber calibration. (C) the detrending scheme. (D)-(E) The box-and-
whisker plot of test accuracy in the prediction of FTC-133/Nthy-ori 3-1 for three different prepro-
cessing schemes of 25-fold cross validation: (D) based on single cell average spectra (E) based on
pixelwise spectra.
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Fig. 4.8. (A)-(B) The box-and-whisker plot of area under curve (AUC) in the prediction of FTC-
133/Nthy-ori 3-1 for three different preprocessing schemes of 25-fold cross validation: (A) based
on single cell average spectra (B) based on pixelwise spectra.
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Fig. 4.9. (A)-(B) The box-and-whisker plot of f1 score in the prediction of FTC-133/Nthy-ori 3-
1 for three different preprocessing schemes of 25-fold cross validation: (A) based on single cell
average spectra (B) based on pixelwise spectra.
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Fig. 4.10. The box-and-whisker plot of accuracy in the prediction of FTC-133/Nthy-ori 3-1 for three
different preprocessing schemes of 25-fold cross validation by CNN based on pixelwise spectra.
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Fig. 4.11. PCA projection of averaged single cell spectra of sixty cells. (A) without wavenumber
calibration. (B) the position-dependent wavenumber calibration. (C) the detrending scheme.
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Fig. 4.12. An UMAP projection of averaged single cell spectra of sixty cells. (A) without wavenum-
ber calibration. (B) the position-dependent wavenumber calibration. (C) the detrending scheme.
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Fig. 4.13. (A)-(C) The k-means clustering maps with k = 5 for individual Raman spectra in the
Raman image for a representative FTC-133(#2): (A) standard preprocessing without wavenumber
calibration (B) the position-dependent wavenumber calibration. (C) the detrending scheme based
on random forest regression. (D)-(F) The relative populations of the clusters within each single
cell for FTC-133(1): (D) standard preprocessing without wavenumber calibration (E) the position-
dependent wavenumber calibration. (F) the detrending scheme. (G) The dependence of the diversity
measure of cluster distributions within individual single cells on the kinds of the three preprocessing
schemes.
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Fig. 4.14. The distance matrix between the centroid of each cluster obtained for the Raman image
of FTC-133(1):(A) with the position-dependent wavenumber calibration vs without wavenumber
calibration and (B) with the position-dependent wavenumber calibration vs the detrending scheme.
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Fig. 4.15. The k-means clustering maps with k = 5 for individual Raman spectra of 5 FTC Raman
images (A) without wavenumber calibration (top row), (B) the position-dependent wavenumber
calibration (middle row), (C) the detrending scheme based on random forest regression (bottom
row).
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Fig. 4.16. The relative populations of the clusters within each single cell for 5 FTC Raman images
(A) without wavenumber calibration (top row), (B) the position-dependent wavenumber calibration
(middle row), (C) the detrending scheme based on random forest regression (bottom row).
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Fig. 4.17. The k-means clustering maps with k = 5 for individual Raman spectra of 5 Nthy Raman
images (A) without wavenumber calibration (top row), (B) the position-dependent wavenumber
calibration (middle row), (C) the detrending scheme based on random forest regression (bottom
row).
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Fig. 4.18. The relative populations of the clusters within each single cell for 5 Nthy Raman images
(A) without wavenumber calibration (top row), (B) the position-dependent wavenumber calibration
(middle row), (C) the detrending scheme based on random forest regression (bottom row).
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Fig. 4.19. Average spectra of 32 Nthy-ori 3-1 and 28 FTC-133 cells. (A-B) standard preprocessing
without wavenumber calibration, (C-D) standard preprocessing with position-dependent wavenum-
ber calibration, (E-F) the detrending scheme after the implementation of position-dependent
wavenumber calibration. (G) The box-and-whisker plot for variation of Raman intensities for Nthy-
ori 3-1. (H) The box-and-whisker plot for variation of Raman intensities for FTC-133.
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Fig. 4.20. (A-C) Average spectra of 60 cells (32 Nthy-ori 3-1 and 28 FTC-133 cells): (A) stan-
dard preprocessing without wavenumber calibration, (B) standard preprocessing with position-
dependent wavenumber calibration, (C) the detrending scheme after the implementation of position-
dependent wavenumber calibration.
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Fig. 4.21. (A-C) Average spectra with one standard deviation of all individual spectra of 32 Nthy-ori
3-1 and 28 FTC-133 cells: (A) standard preprocessing without wavenumber calibration, (B) stan-
dard preprocessing with position-dependent wavenumber calibration, (C) the detrending scheme
after the implementation of position-dependent wavenumber calibration. (D) The box-and-whisker
plot for variation of Raman intensities for Nthy-ori 3-1. (E) The box-and-whisker plot for variation
of Raman intensities for FTC-133.
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Fig. 4.22. For standard preprocessing without wavenumber calibration: (A) Confusion matrix of
test set (Nthy2 and FTC1) (B) predicted probability of 6 cells of FTC1 image in UMAP projection
(C) average spectrum of 6 cells of FTC1 image. Note that remaining 8 images (4 Nthy and 4 FTC)
were train set.
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Fig. 4.23. For standard preprocessing with position-dependent wavenumber calibration: (A) Con-
fusion matrix of test set (Nthy2 and FTC1) (B) predicted probability of 6 cells of FTC1 image in
UMAP projection (C) average spectrum of 6 cells of FTC1 image. Note that remaining 8 images (4
Nthy and 4 FTC) were train set.
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Fig. 4.24. For the detrending scheme after the implementation of position-dependent wavenumber
calibration: (A) Confusion matrix of test set (Nthy2 and FTC1) (B) predicted probability of 6 cells
of FTC1 image in UMAP projection (C) average spectrum of 6 cells of FTC1 image. Note that
remaining 8 images (4 Nthy and 4 FTC) were train set.
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Fig. 4.25. For standard preprocessing without wavenumber calibration: (A) Confusion matrix of
test set (Nthy4 and FTC2) (B) predicted probability of 6 cells of Nth4 image in UMAP projection
(C) average spectrum of 6 cells of Nthy4 image. Note that remaining 8 images (4 Nthy and 4 FTC)
were train set.
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Fig. 4.26. For standard preprocessing with position-dependent wavenumber calibration: (A) Con-
fusion matrix of test set (Nthy4 and FTC2) (B) predicted probability of 6 cells of Nth4 image in
UMAP projection (C) average spectrum of 6 cells of Nthy4 image. Note that remaining 8 images
(4 Nthy and 4 FTC) were train set.
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Fig. 4.27. For the detrending scheme after the implementation of position-dependent wavenumber
calibration: (A) Confusion matrix of test set (Nthy4 and FTC2) (B) predicted probability of 6 cells
of Nth4 image in UMAP projection (C) average spectrum of 6 cells of Nthy4 image. Note that
remaining 8 images (4 Nthy and 4 FTC) were train set.
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4.5 Conclusion

Preprocessing is a central aspect of microscopic data science pipeline, as it minimizes

unwanted variations in data and enhances differentiability between different phenotypes

assuming the underlying information can support it. To improve the standardization of

hyperspectral Raman images acquired with line-scanning set-ups, we incorporated correc-

tions in the spatial domain. In particular, we showed potential wavenumber drifts along

the line illumination axis that altered the quality of the preprocessed Raman images. It

has been shown that neglecting to consider a wavenumber calibration that varies with the

pixel position along the illumination axis results in an apparent artificial spatial positive,

negative, or small gradient in Raman images dependent on wavenumbers. Additionally

we proved that standard preprocessing methods used in the field are ineffective in remov-

ing the influence of the non-homogeneous illumination, including slow-varying intensity

fluctuations, in Raman images. Using standard preprocessing methods that do not correct

spatial variations usually reduces the accuracy of the analysis and leads to misclassification

of cells or questionable spectral composition of cells.

To address this issues we introduced a novel position-dependent wavenumber calibra-

tion to reflect the possible chromatic aberration or changes in physical properties resulting

from laser light intensity variation along the illumination line direction, combined with a

detrending scheme of spatial correlation along illumination and scanning directions, based

on Karhunen-Loeve basis and a random forest regression. By using this proposed pre-

processing strategy, enhanced differentiability was observed between phenotypes in the

MDS plot and UMAP space, compared to the position-dependent wavenumber calibration.

It should also be noted that, after the position-dependent wavenumber calibration, some

(negligibly small) scars along the illumination axis were remained in the reconstructed Ra-

man image, which was removed by random forest regression-based detrending protocol.

The remaining issue is the validation of our working hypothesis that, for Raman im-

ages, the individual PC score is not correlated to the physical space. We interpret that, if

the sample distribution would actually have some apparent bias or trend in the physical

space in the data set of Raman images, this hypothesis does not necessarily hold. Thus,
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in actual applications, we must take into account how sufficiently the position-dependent

wavenumber calibration eliminates artificial spatial biases, and how samples are distributed

in the physical space over the data set to be analyzed, with a comparison of differentiability

of phenotypes in the reconstructed Raman signals.



5
Conclusions and future plans

In this dissertation, the following important issues were emphasized:

In Chapter 1, general introduction and literature review regarding this current work were

discussed.

In Chapter 2, some algorithms were discussed with illustrations that applied in this work.

In Chapter 3, I explained the three preprocessing schemes, namely uncalibrated, calibrated,

and detrended schemes. In the uncalibrated scheme, I found some artificial shift of the peak

position at some Raman shifts that create intensity variation among the cells in a Raman

image along the line illumination axis and scanning axis as well. Depending on the image,

some cell spectra are very different from others cell spectra. One can differentiate the spec-

tra even though they come from the same image by the uncalibrated preprocessing scheme.

However, peaks are aligned after calibrated scheme and intensity variation is now reduced
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regardless the position of the cells. But still we have some intensity variation based on the

position of the cells where they are located. After applying my detrended scheme, intensity

distributions are now homogeneous irrespective to the position of the cells. Moreover, the

spectra are closer to each other, and the variance of the spectra was reduced compared to

the other two schemes.

In Chapter 4, detailed quantitative analyses of three preprocessing schemes spectra were

explained. At first, I employed the Pearson correlation coefficients (r) between the Raman

image at each individual wavenumber and the illumination axis ζ and the scanning axis

ξ . A high value of the r was appeared for the uncalibrated preprocessing scheme which

manifest that the high spatial dependency between Raman shift and spatial coordinates.

After calibration, these dependency were reduced but after my detrending scheme nearly

no dependency exists. Secondly, low dimensional projections (PCA,MDS,UMAP) shows

very clear separation between two phenotypes by my detrending scheme compared to un-

calibrated and calibrated schemes. Thirdly, accuracy, AUC, and f1 score were evaluated

based on 25 cross-validation approaches. It is observed detrending scheme shows a high

average with low variance in the value of these three performance measures. Fourthly, k-

means clustering shows the homogeneous clusters within the cell by our detrending scheme

compared to the other two schemes. Moreover, the predicted probability of some spectra

shows a very marginal score near 0.5 while correct prediction by uncalibrated or calibrated

schemes but our detrended scheme shows the high score and closer scores for all spectra.

The feature selection[85–87] also called feature/variable importance describes which

features are relevant. It helps us a better understanding of the data and sometimes as-

sists model improvements by employing the feature selection. If a dataset has thousand

of features then probably some features may be redundant, some of the features may be

correlated and some of the features may be irrelevant for the model. If we use all the fea-

tures, it will require a huge amount of time to train the model, and model performance will

be reduced. So, feature selection is vitally important in model building. The purpose of

feature selection is to build the best probable model without redundant and irrelevant fea-

tures. On the other hand, Class Activation Mapping (CAM) was first introduced by Zhou
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et al. [88] in their paper titled “Learning Deep Features for Discriminative Localization" to

identify the regions of an input image that are most relevant to the network’s prediction for

a particular class. Grad-CAM (Gradient-weighted Class Activation Mapping) is a variant

of CAM, was introduced by Selvaraju et al. [89] that provides a more detailed and better

visualization of the important regions in an image. In the future, I am planning to employ

some feature selection methods, including Random Forest, Partial Least Squares (PLS) re-

gression variable importance scores, and ANOVA, to identify important features/variables.

Additionally, I intend to utilize CAM and Grad-CAM techniques to identify important re-

gions within Raman spectra.
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A
Supporting Information

A.1 Parameters selection for SVD and baseline correction

The choice of 8 components has been determined based on the maximization of the clas-
sification accuracy between FTC-133 and Nthy-ori 3-1, and the minimization of the signal
distortion. The parameters for both SVD denoising and polynomial fitting choices were
chosen based on the optimization of 25-fold cross validation accuracy for various pair
of hyperparameters. Fig. A.1 shows the accuracy distribution dependency on the order
of SVD and polynomial fitting for baseline correction. As seen in Fig. A.1, the polyno-
mial order 6 among the polynomial orders tested (6, 8 and 10) consistently resulted in
the largest standard deviations. The pairing of SVD denoising by keeping 8 components
with a 8th order polynomial model, denoted here by [SVD:Polyfit]=[8:8], resulted in the
smallest standard deviation. Although the mean accuracy of [8:10] is slightly higher than
[8:8], the standard deviation of accuracy is larger for [8:10] than for [8:8]. Thus, we chose
[SVD:Polyfit]=[8:8] in this work. To further clarify the signal distortion caused by re-
taining only a few SVD components in the denoising phase, we refer to Fig. A.2. When
retaining only 4 SVD components, the intensity profiles of cytochrome, protein and lipid
wavenumbers tend to be similar meaning we filtered out some important chemical infor-
mation from Raman spectra. On the other hand, when retaining anywhere from 8 SVD
components to 20 components, the difference in shape among cytochrome, protein and
lipids distribution becomes noticeable. Moreover the shape of the distribution remains
stable over the range of components used.
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Fig. A.1. The box-and-whisker plot of test accuracy in the prediction of FTC-133/Nthy-ori 3-1 for
the standard preprocessing without wavenumber calibration of 25-fold cross validation based on
pixelwise spectra: different pairs of singular value decomposition components for denoising and
polynomial fitting orders for baseline corrections.

Samples used and their representative and average spectra before and after processing
are shown in Fig. A.3.

At the pixel level spectra are noisy. For example, the figure Fig. A.4 shows the raw
spectra and a denoised version. The noise is also detectable in the spatial domain as can be
seen in a raw Raman image at wavenumber 1548 cm−1. After applying SVD denoising,
the irregularity of the signal is minimized.
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Fig. A.2. The Raman intensity distribution at known cytochrome peak 749 cm−1, protein peak
1683 cm−1 and lipid peak 2853 cm−1 for the Raman image of FTC-133(#2) for different singular
value decomposition components.
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Fig. A.3. Average spectra of 32 Nthy-ori 3-1 and 28 FTC-133 cells: before preprocessing (top) (A-
C) standard preprocessing without wavenumber calibration, standard preprocessing with position-
dependent wavenumber calibration,the detrending scheme.
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Fig. A.4. For the Raman image of FTC-133(#2) (A) few individual pixel level raw Raman spectra
(B) corresponding denoised spectra, (C-D) intensity distribution at 1548 cm−1: (C) raw Raman
image, (D) denoised Raman image.
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A.2 Advantages of the random forest model with other
models

To demonstrate the advantages of the random forest model, we showed the comparison
with a series of polynomial regressions of different order 3 to 12 as well as the averaged
PC score as an alternative way to estimate the unwanted trend in a Raman image. Specifi-
cally, to estimate the trend for each individual PC score, we averaged the set of points of PC
scores at each position of the illumination axis along the scanning axis. After subtracting
the trend along the illumination axis of each PC, we estimate the trend for each PC along
the scanning axis by taking the average along the illumination axis. To compare the effects
of these trend estimation methods (random forest regression, polynomial regressions and
average PC score), the set of preprocessed data was then visualized in the low dimensional
space using classical multidimensional scaling (MDS) (Fig. A.5). In this MDS space, we
observed that the separability between Nthy-ori 3-1 and FTC-133 improved when the data
was either corrected by the random forest procedure or average PC scores, compared to
polynomial regression. Indeed, polynomial regressions models are global models that can-
not describe some abrupt changes in the trend by such polynomial order of 3-12, as opposed
to local strategies by random forest and average PC scores that handle these changes much
more effectively. Fig. A.6 exemplifies the resultant Raman images at different wavenum-
bers 807, 1294, and 1407 cm−1 extracted by polynomial fitting of order 8, random forest
regression (RFR), and averge PC score. We can see that some scars (indicated by orange
arrow marks in the figure), materialized by stripes in Raman images, are present in the
reconstructed Raman images processed by polynomial regression, but are minimized when
corrected by random forest or local average PC scores. Furthermore, the classification ac-
curacy results, performed with the 25-fold cross-validation shows that random forest has
the higher performance, with a higher average accuracy associated with a lower standard
deviation accuracy (shown in Fig. A.7). We also observed that detrending by averaged
PC scores gives similar performance to RF regression. In this example, although the per-
formance of RF regression and average PC score schemes show a similar accuracy in the
classification between FTC-133 and Nthy-ori 3-1, we privilege random forest (RF) regres-
sion over average PC scores. The reason is that the average PC score scheme removes any
trend that exists in Raman images along illumination and scanning directions by definition.
On the contrary, RF regression corresponds to a series of step functions whose step width
can be adjusted by a hyperparameter, and also takes into account statistics generated by
bootstrap sampling using a limited data set (In Chapter2, a brief explanation Random For-
est regression was given). The default value of the hyperparameter we used in the paper
corresponded to a step width being one pixel. However, in theory, there should also exist
some samples whose spatial trend along illumination and/or scanning axis may not neces-
sarily arise from optics but from sample’s nature themselves. In such situation, there exists
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a room in random forest regression that the hyperparameter can be tuned for specific needs
in estimating the trend in diverse experimental contexts.
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Fig. A.5. The multi-dimensional scaling (MDS) projection of the ten Raman images including sixty
single cells in total for seven detrending methods.
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Fig. A.6. The Raman intensity distribution at three different peaks 807 cm−1, 1294 cm−1, 1407
cm−1 in the space domain for the Raman image of FTC-133(#2): polynomial fitting of order 8 (top
row), Random forest regression (middle row), average PC (bottom row). Orange arrows indicate
some fictitious straight lines (scars) created by polynomial fitting scheme.
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Fig. A.7. The box-and-whisker plot of test accuracy in the prediction of FTC-133/Nthy-ori 3-1 for
seven detrending methods of 25-fold cross validation based on pixelwise spectra.
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A.3 Measurement of Dimethyl sulfoxide (DMSO)

To evaluate the workflow on a homogeneous substrate, we measured a Raman image of
Dimethyl sulfoxide (DMSO) with a line exposure time of 3s. We added Fig. A.8 and
Fig. A.9 to demonstrate that our detrending scheme corrects the non-homogeneous profile.
As observed for cell samples, Fig. A.8 tells us that the “uncalibrated" data set demonstrates
a high correlation between the Raman shift and the spatial coordinates. The calibrated data
had a lower correlation, whereas, as expected, the data corrected by our detrending work-
flow did not demonstrate any correlations. As seen in Fig. A.8 that the Raman image at
2912 cm−1 has a homogeneous intensity distribution compared to the non-corrected ones.
One can also see in Fig. A.8F that after area-normalization all three schemes (with/without
position-dependent wave number calibration and detrending method) provide almost indis-
tinguishable Raman spectra of DMSO. Thus, the issue is that without detrending scheme
non-homogeneous profile remains in practice. To further confirm whether our detrend-
ing scheme can recover the chemical homogeneity of the DMSO sample, more effectively
than either the standard (uncalibrated data) and/or the position dependent wavenumber
calibration scheme (calibrated data), a k-means clustering with k = 3 was performed in-
dependently on the sets of Raman spectra preprocessed with the three different schemes.
The cluster assignment for each spectrum of the DMSO image is reported Fig. A.9A-C.
We observe that the uncalibrated and the calibrated preprocessed Raman spectra present a
gradient of group assignment. This indicates that the intensity variation along the illumi-
nation axis corrupt the expected chemical homogeneity. Conversely, the k-means cluster
map estimated after using the detrending scheme demonstrates a random mixing of the
three clusters, suggesting that we are able to restore a degree of a chemical homogene-
ity throughout the entire space. As seen in Fig. A.9D, in the principal component (PC)
space constructed with all preprocessed Raman images i.e., (position-dependently) noncal-
ibrated, (position-dependently) calibrated, and detrended, we found the detrended Raman
spectra are projected onto a very localized region. In contrast, noncalibrated and calibrated
spectra tend to spread over a larger area of the PC space. This observation further supports
that our detrending scheme effectively reduces intensity variability throughout a Raman
image.
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Fig. A.8. (A)-(C) The Raman intensity distribution at 2912 cm−1 (dashed vertical line) in the space
domain of DMSO: (A) after standard preprocessing without (position-dependent) wavenumber cali-
bration, (B) after standard preprocessing with position-dependent wavenumber calibration, (C) after
the detrending scheme applied on the top of position-dependent wavenumber calibration. (D)-(E)
The Pearson correlation coefficients between the Raman images at each wavenumber acquired by
the three preprocessings: (D) the illumination axis coordinate, (E) the scanning axis coordinate. (F)
The average with two standard deviation Raman spectra over whole regions obtained by the three
different schemes.
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Fig. A.9. (A)-(C) The k-means clustering maps with k = 3 for individual Raman spectra in the
Raman image for DMSO: (A) standard preprocessing without position-dependent wavenumber cal-
ibration (B) the position-dependent wavenumber calibration (C) the detrending scheme. (D) PCA
projection of all spectra based on three preprocessing schemes.
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