

Instructions for use

Title Integrating Machine Learning and Optimization Techniques for Short-Term Management of Shared E-Scooters under
Demand Uncertainty

Author(s) Saum, Narith

Citation 北海道大学. 博士(工学) 甲第15624号

Issue Date 2023-09-25

DOI 10.14943/doctoral.k15624

Doc URL http://hdl.handle.net/2115/90860

Type theses (doctoral)

File Information Narith_Saum.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

INTEGRATING MACHINE LEARNING AND OPTIMIZATION

TECHNIQUES FOR SHORT-TERM MANAGEMENT OF SHARED E-

SCOOTERS UNDER DEMAND UNCERTAINTY

A dissertation submitted to the Division of Engineering and Policy for Sustainable

Environment, Graduate School of Engineering, Hokkaido University in partial fulfillment of

the requirements for the Degree of Doctor of Philosophy in Engineering

By

NARITH SAUM

Examination Committee

Associate Professor Sugiura Satoshi

Professor Uchida Ken-etsu

Professor Toru Hagiwara

Associate Professor Takahashi Sho

Division of Engineering and Policy for Sustainable Environment

Graduate School of Engineering

Hokkaido University

Sapporo, Japan

September 2023

INTEGRATING MACHINE LEARNING AND OPTIMIZATION

TECHNIQUES FOR SHORT-TERM MANAGEMENT OF SHARED E-

SCOOTERS UNDER DEMAND UNCERTAINTY

Division of Engineering and Policy for Sustainable Environment

Graduate School of Engineering

Hokkaido University

Sapporo, Japan

September 2023

iii

ABSTRACT

Shared mobility has proliferated in global cities as an innovative transportation mode

enhancing urban mobility and as a potential solution to address first- and last-mile problems.

Recently, a new emerging shared transportation, dockless electric scooters (e-scooters), has

gained popularity worldwide for their specific advantages, including environmentally friendly,

time and cost-saving mode, congestion, parking constraint, and satisfied riding experience.

Besides these advantages, this shared mode has several disadvantages, including volatile

demand, excessive or starving stations, short service life, costly maintenance, battery

recharging, and distribution regulations. As a new transportation mode, there are limited studies

about shared e-scooters, especially related to daily operations. Therefore, this study aims to

develop an efficient framework for better managing this dockless shared service by taking

advantage of open-source historical ridership data, machine learning, and deep learning

methods. This study thus is separated into three main sections as follows.

From the literature review, shared e-scooters are mainly used for recreational or tourism

activities, which differs from shared bikes. These trip purposes with dockless policy led to high

demand volatility while requiring a higher service level. To deal with the heteroscedasticity

(i.e., non-constant variation) of the demand, both demand and variance prediction models are

developed using deep learning (Recurrent Neural Networks) and Autoregressive Conditional

Heteroskedasticity (ARCH), respectively. Moreover, Box Cox transformation was also

employed to remove the heteroscedasticity. Based on numerical results from three real-world

datasets (Austin TX, Minneapolis MN, and Thammasat TH), machine learning and deep

learning achieved higher prediction accuracy than conventional regression models, SARIMAX.

Box Cox transformation can improve the prediction accuracy, especially MAE by around

5.36%, while the supply planning with this transformation is very efficient for lower service

levels. Nevertheless, the application of this transformation technique in supply planning for

higher service levels exhibits decreased efficiency due to its exponential conversion

characteristic, thereby revealing a weakness of Box Cox transformation. In this case, the supply

planning model with original data and predicted variance by SGARCH achieves lower

oversupply. At 95% served demand, accounting for heteroscedasticity in supply planning could

reduce the oversupply by 26.22%.

Even machine learning and deep learning models can outperform conventional statistical

models; their performance strongly depends on the choice of hyperparameters, while

optimizing these hyperparameters is usually computationally expensive. To deal with this

problem (i.e., Hyperparameter Optimization or HPO), this study proposed a novel algorithm,

Iterative Decision Tree (IDT), which employs a Decision Tree regressor based on the

Classification and Regression Tree (CART) algorithm as the surrogate function. Our algorithm

suggests several new candidates per iteration as random or extreme points from a few best-

performed leaves. This characteristic allows IDT to be trained in parallel, which solves the main

disadvantage of previous sequential model-based algorithms (ex., Bayesian Optimization). To

evaluate the performance of IDT, it was employed to optimize several benchmark problems,

including nonconvex functions and HPO of machine learning and deep learning models. As a

result, IDT showed very effective performance for both computational time and objective value

compared to benchmark algorithms.

iv

Based on the above results, a new framework for short-term rebalancing planning was

proposed for the unique characteristic of shared e-scooters, including volatile and

heteroscedastic demand, recharging the battery, and faulty e-scooters. Monte Carlo simulation

based on the predicted trip gaps and standard deviations was employed to generate the

stochastic demand scenarios. The framework was examined based on e-scooter data from

Minneapolis MN, while k-means clustering algorithm was employed to aggregate the trip

generation and attraction for the total clusters of 15, 30, and 60. For this data-driven stochastic

optimization problem, two separated formulations were constructed and solved by the Integer

Linear Programming (ILP) and the Hybrid of Ant Colony Optimization with ILP (ACO-ILP).

Under limited computational time, ILP solver is efficient for solving small-size problems (15

and 30-cluster problems), but the Hybrid approach is more efficient for large-size problems (60-

cluster problems). Based on the numerical result of the most practical case (60-cluster

problems), our data-driven framework for rebalancing planning for shared e-scooters could

reduce the expected objective value by around 13.27% and 16.68% compared to historical

weekly and daily data.

In summary, dockless shared e-scooters require proper operational planning to minimize

their negative impacts, so that this shared mode can become a potential solution for compacted

urban mobility. This objective can be achieved through the proposed data-driven framework,

which integrates machine learning and optimization techniques to minimize the demand

uncertainty and driving distance for the rebalancing vehicle. For instance, start-of-art prediction

models with hyperparameter optimization can effectively handle the volatile demand of shared

e-scooters, while rebalancing optimization planning can be addressed through the exact

approach (ILP solver) or the heuristic algorithm (ACO-ILP).

Keywords: Autoregressive Conditional Heteroskedasticity, Deep Learning, Demand

Uncertainty, Heuristic Optimization Algorithm, Hybrid Optimization Algorithm,

Hyperparameter Optimization, Integer Linear Programming, Machine Learning, Shared

Electric Scooters, and Shared Service Rebalancing.

v

ACKNOWLEDGEMENTS

Behind the accomplishment of this research, numerous individuals deserve my sincere

gratitude. Firstly, I would like to thank AUN/SEED-Net for the scholarship and the opportunity

to pursue my Ph.D. Degree at two prestigious universities, Sirindhorn International Institute of

Technology (SIIT) in Thailand and Hokkaido University (HU) in Japan. This experience has

been truly transformative, as it allowed me to collaborate with professionals, acquire specialized

skills, and gain invaluable life lessons during my time abroad.

Secondly, I would like to express my deep gratitude to my advisors, Assoc. Prof. Dr.

Mongkut Piantanakulchai and Assoc. Prof. Dr. Satoshi Sugiura, for their invaluable guidance,

constructive comments, and insightful advice that played a pivotal role in ensuring that my

research yielded timely results for graduation. Additionally, I am sincerely grateful for the

presence and active participation of Assoc. Prof. Dr. Kriengsak Panuwatwanich, Assoc. Prof.

Dr. Chawalit Jeenanunta, and Dr. Warut Pannakkong, who graciously dedicated their valuable

time to serve as members of my thesis committee during my proposal examination and final

defense. Their constructive feedback and valuable suggestions have significantly contributed

to enhancing the quality of my research. Furthermore, I would like to extend my gratitude to

Prof. Dr. Uchida Ken-etsu, Prof. Dr. Toru Hagiwara and Assoc. Prof. Dr. Sho Takahashi for

their unwavering support and valuable recommendations throughout my research journey at

HU. Their expertise and guidance have been instrumental in shaping my research trajectory.

I would like to extend my deepest gratitude to all the staff members from both universities

and the AUN/SEED-Net program. Their kindness, assistance, and unwavering support

throughout my study are beyond measure. Their invaluable contributions have played a

significant role in making my academic journey a smooth and fulfilling one. Lastly, I cannot

express enough gratitude to all my family, friends, and colleagues. Their continuous motivation,

assistance, and guidance have been immeasurable. I am truly grateful for their unwavering

support and encouragement throughout my academic endeavors.

Narith Saum

vi

TABLE OF CONTENTS

Page

ABSTRACT (iii)

ACKNOWLEDGEMENTS (v)

TABLE OF CONTENTS (vi)

LIST OF TABLES (ix)

LIST OF FIGURES (x)

LIST OF SYMBOLS/ABBREVIATIONS (xiii)

CHAPTER 1 INTRODUCTION 1

1.1 Overview 1

1.2 Research gaps 3

1.3 Research objectives 4

1.4 Main contributions 4

1.5 Thesis outline 5

References 7

CHAPTER 2 A REVIEW OF SHARED E-SCOOTERS 9

2.1 History of electric scooter 9

2.2 Introduction of shared dockless e-scooters 11

2.3 Social perception on shared e-scooters 13

2.4 Trip characteristics and impacts on urban mobility 14

2.5 Related accidents 15

2.6 Policy regulations 17

2.7 Environmental life cycle assessment 18

2.8 Short-term operational planning 19

2.9 Discussion and conclusion 21

References 22

CHAPTER 3 SHORT-TERM SUPPLY LEVEL PLANNING FOR SHARED E-SCOOTERS

 29

3.1 Introduction 29

3.2 Methodology 31

3.2.1 Research framework 31

3.2.2 Data transformation 33

3.2.3 Demand prediction 34

3.2.4 Variance prediction 37

vii

3.2.5 Supply level planning 38

3.3 Data collection and featuring 41

3.4 Demand and variance prediction 46

3.4.1 Demand prediction results 46

3.4.2 Variance prediction results 52

3.5 Supply planning design 56

3.6 Discussion and conclusion 58

References 59

CHAPTER 4 HYPERPARAMETER OPTIMIZATION BY ITERATIVE DECISION TREE

(IDT) 63

4.1 Introduction 63

4.2 Literature review 67

4.3 Methodology 72

4.4 Numerical results 79

4.4.1 Optimization result of nonconvex functions 79

4.4.2 HPO result of SVM for hand-written digits dataset 81

4.4.3 HPO result of RF for car evaluation dataset 83

4.4.4 HPO result of AE for MNIST dataset 86

4.4.5 HPO result of CNNs for CIFAR-10 dataset 88

4.4.6 HPO result of RF and GRUs for shared e-scooter demand prediction 90

4.5 Discussion and sensitivity analysis 93

4.6 Conclusion 96

References 97

CHAPTER 5 REBALANCING SHARD E-SCOOTERS UNDER DEMAND

UNCERTAINTY 103

5.1 Introduction 103

5.2 Literature review 106

5.3 Methodology 108

5.3.1 Research framework 108

5.3.2 Demand prediction by GB 113

5.3.3 Variance prediction by SGARCH 114

5.3.4 Description of rebalancing problem 116

5.3.5 Rebalancing formulation by ILP solver 120

5.3.6 Rebalancing formulation by hybrid ACO-ILP algorithm 122

5.4 Application of demand and variance prediction 124

5.4.1 Data collection and description 124

5.4.2 Result of demand prediction 128

5.4.3 Result of variance prediction 129

5.5 Result of rebalancing optimization 130

5.5.1 Parameter settings 130

5.5.2 Sensitivity of the number of scenarios 132

5.5.3 15-cluster problem 133

viii

5.5.4 30-cluster problem 135

5.5.5 60-cluster problem 136

5.5.6 Discussion 137

5.6 Conclusion 138

References 139

CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 145

6.1 Conclusion 145

6.1.1 Findings and recommendations from short-term supply planning 145

6.1.2 Findings and recommendations from hyperparameter optimization 146

6.1.3 Findings and recommendations from rebalancing planning 146

6.2 Recommendations for future study 147

APPENDIX: Python Code 148

BIOGRAPHY 161

ix

LIST OF TABLES

Table Page

2.1 Standard fee of dockless shared e-scooters in each region 13

3.1 Dataset’s information 41

3.2 Description of inputs for demand prediction models 46

3.3 Description of hyperparameter optimization for demand prediction models 49

3.4 Performance comparison based on RMSE and MAE 51

3.5 Mean oversupply comparison for four supply level models 57

4.1 Summary of hyperparameter tuning methods of deep learning models 70

4.2 Parameter settings for hyperparameter optimization algorithms 78

4.3 Car evaluation dataset [83] 84

4.4 Hyperparameter range for convolutional neural networks (CNNs) 89

5.1 Performance of several algorithms for Rebalancing Optimization 111

5.2 List of notations for rebalancing optimization 119

5.2 Results of trip gap prediction and variance prediction 129

5.3 Parameter settings for the rebalancing optimization 131

x

LIST OF FIGURES

Figures Page

1.1 General step of using shared dockless e-scooter 1

1.2 Relationship between thesis chapters 7

2.1 Types of electric scooters 9

2.2 Evolution of motorized or electric kick scooters (e-scooters) 10

2.3 Deployment month and year of shared scooters by countries and operators with the capital

raised and number of phone app installations (Source: operator’s Facebook & Instagram,

Crunchbase website, and Google play store) 12

2.4 Summary of previous studies about shared dockless e-scooters 21

3.1 Framework for supply level planning 33

3.2 Flowchart of Random Forest (RF): average all predictions for regression problem and

majority-voting for classification problem 35

3.3 Schematic illustrations of (a) recurrent neural networks, (b) long short-term memory

neural networks, and (c) gated recurrent unit 36

3.4 Flowchart of supply level models comparison 40

3.5 Average hourly e-scooter demand by census in Austin, Texas 42

3.6 Hourly demand of shared e-scooters in Austin TX (top), Thammasat University (bottom-

right), and Minneapolis MN (bottom-left) 43

3.7 Average hourly demand of shared e-scooters by day of the week, public holiday, and

annual events (festival or fair) 44

3.8 Lag-wise Pearson correlation of weather’s attributes on shared e-scooter demand 44

3.9 The proposed architecture of GRUs model 47

3.10 Hyperparameter optimization of GRUs by BO for Downtown Census in Austin, TX 50

3.11 Demand prediction by GRUs with original and Box Cox scale for Downtown Census in

Austin, TX 52

3.12 Daily scatter plot and histogram of GRUs’ residuals for Downtown Census in Austin,

TX: (top) original data and (bottom) Box Cox transformed data 53

3.13 Variance prediction for residuals of GRUs with original scale data of Downtown Census

in Austin, TX 55

3.14 Comparison of supply level models of GRUs at 98% served demand (cover rate of

around 90%) of Downtown Census in Austin, TX 55

3.15 Impact of exponential conversion on supply level estimation with Box Cox transformed

data 55

4.1 Example of DT regressor with CART algorithm: top tree corresponding to the partition of

the bottom left panel and the perspective plot of the prediction surface is on the bottom right

panel [78] 73

4.2 Iterative Decision Tree with new candidates as extreme points (left: IDT-E) and as random

points (right: IDT-R) 75

4.3 Optimization procedure for (4.6) by Iterative Decision Tree with Extreme points (IDT-E)

with the parameters of 2 best-performed leaves and eight initial random points 76

xi

4.4 Optimization procedure for Schwefel function (4.7) by Iterative Decision Tree with

Random points (IDT-R) with the parameters of 5 best-performed leaves, two random points in

each leaf, and 100 initial random points 77

4.5 Global convergence curve (average value) of HPO algorithms for the nonconvex

functions: Cross-in-tray, Eggholder, and Styblinski-Tang 80

4.6 Box plot of best results of HPO algorithms for the nonconvex functions: Cross-in-tray,

Eggholder, and Styblinski-Tang 80

4.7 Mean and STD of feature importance metrics by IDT-R for each parameter of the

nonconvex functions: Cross-in-tray, Eggholder, and Styblinski-Tang 81

4.8 Hand-written digits dataset [79] 82

4.9 Numerical results of SVM’s HPO for digit classification: (top) global convergence curve

and (bottom) Box plot of best results of HPO algorithms 83

4.10 Numerical results of RF’s HPO for car evaluation dataset: (top) global convergence

curve and (bottom) Box plot of best results of HPO algorithms 85

4.11 Architecture of Autoencoder as dimensionality reduction for MNIST dataset 86

4.12 Numerical results of Autoencoder’s HPO for MNIST dataset: (top) Global convergence

curve, (bottom-left) Box plot of best results of HPO algorithms, and (bottom-right) Mean and

STD of feature importances by IDT-R 87

4.13 Architecture of Convolutional Neural Networks (CNNs) for the CIFAR-10 dataset 89

4.14 Numerical results of CNNs’ HPO for CIFAR-10 dataset: (top) Global convergence curve

and (bottom) Mean and STD of feature importances of CNNs by IDT-R 90

4.15 Numerical results of HPO of RF (left) and GRUs (right): Thammasat dataset 92

4.16 Numerical results of HPO of RF (left) and GRUs (right): Minneapolis dataset 92

4.17 Numerical results of HPO of RF (left) and GRUs (right): Austin dataset 93

4.18 Pareto fronts of the performance of HPO algorithms in benchmark problems (Y-

Objective value, X-Computational time) 94

4.19 Pareto fronts of the performance of HPO algorithms for shared e-scooter demand

prediction models, RF and GRUs (Y-Objective value, X-Computational time) 95

4.20 Sensitivity analysis for parameters (number of initial points (N), number of best-

performed leaves (T), number of random points (R) in each leaf, and number of iterations (I))

of Iterative Decision Tree with Random (IDT-R) for the case of Styblinski-Tang function,

Random Forest, and Autoencoder. 95

5.1 Research framework 112

5.2 Flowchart of gradient boosting (GB) 113

5.3 Effect of demand uncertainty on expected unmet demand 115

5.4 Trip clustering generated by the k-means algorithm (red stars = depot and charging

stations; blue dots = centers of trip clusters; gray dots = street centers of pickup and drop-off

trips) 126

5.5 Hourly pickup and drop-off trips and the trip gap for shared e-scooters in Minneapolis,

MN 126

5.6 Histograms and Poisson distributions of the pickup and drop-off demands of shared e-

scooters 127

5.7 Hyperparameter optimization by Bayesian optimization for trip gap prediction 128

5.8 Trip gap predicted using the testing data for cluster 37 128

xii

5.9 Variance prediction based on residuals of the GB model for cluster 37 130

5.10 Sensitivity analysis on the number of scenarios 132

5.10 Exploration and exploitation tradeoff of ant colony optimization (left) and the

convergence curve (right) for 15-cluster problems 133

5.11 (top) Optimal route sequence of an instance in the 15-cluster problem and (bottom) its

optimal pickup and drop-off results (CH: charging station, CL: cluster of trips) 134

5.13 Exploration and exploitation tradeoff of ant colony optimization (left) and the

convergence curve (right) for 30-cluster problems 135

5.14 Average objective value for 30 random instances for 15-, 30-, and 60-cluster problems

 136

5.15 Exploration and exploitation tradeoff of ant colony optimization (left) and the

convergence curve (right) for 60-cluster problems 137

xiii

LIST OF SYMBOLS/ABBREVIATIONS

Symbols /

Abbreviations
Terms

ACO Ant Colony Optimization

AE Autoencoder

ANNs Artificial Neural Networks

ARCH Autoregressive Conditional Heteroscedasticity

ARIMA Autoregressive Integrated Moving Average

BO Bayesian Optimization

CNNs Convolutional Neural Networks

DT Decision Tree

E-Scooter Electric Scooter

GA Genetic Algorithm

GARCH Generalized Autoregressive Conditional Heteroscedasticity

GB Gradient Boosting

GNNs Graph Neural Networks

GRU Gated Recurrent Units

GS Grid Search

HPO Hyperparameter Optimization

IDT Iterative Decision Tree

ILP Integer Linear Programming

LSTM NNs Long-Short Term Memory Neural Networks

RF Random Forest

RNNs Recurrent Neural Networks

RS Random Search

SBRP Static Bike Rebalancing Problem

SIIT Sirindhorn International Institute of Technology

SVM Support Vector Machine

TPE Tree structured Parzen Estimator

TU Thammasat University

XGBoost Extreme Gradient Boosting

1

CHAPTER 1

1. INTRODUCTION
1.1 Overview

Interest in active and shared service transportation is growing as a result of urban

congestion, technological advancement, and environmental concerns. Due to this, shared

mobility has become increasingly popular in big cities worldwide as a cutting-edge mode of

transportation that improves urban mobility and as a potential remedy for the issue of first- and

last-mile connectivity with public transport [1]. Bike sharing, vehicle sharing, ride-sourcing,

and, more recently, shared electric (e-) scooters are all examples of sharing service modes [2].

While fixed routes, driver availability, and vehicle scheduling frequently provide restrictions

on public transportation, shared micromobility (bike, e-bike, and e-scooter) is a time- and

money-efficient feeder. Bridging the existing transportation network gap can also expand the

public transit service area. The idea of sharing services for transportation originates in economic

models that date back to the 1990s and are based on peer-to-peer sharing or cooperative

consumption of resources. The factors facilitating this sharing service among strangers include

online social network platforms, online payment, and global positioning systems (GPS) enabled

mobile technology.
In Santa Monica, California, shared dockless e-scooters were first deployed in September

2017 after Bird Rides Inc., a micromobility firm, scattered thousands of e-scooters throughout

the city. Because of their affordability, comfort, and ease of use, these scooters quickly gained

popularity among users [3]. The term “micromobility” refers to a short-range trip that is too far

to walk and too short to drive, especially the first-/last-mile problems. A year later, this unicorn

operator could reach 10 million rides with more than 2 million unique riders and operated in

more than 100 cities. In 2018, the total number of dockless e-scooter trips in the US was 38.5

million, while those of station-based and dockless bikes were 36.5 million and 9 million,

respectively [4]. And shared scooter ridership doubled (86 million trips) in 2019 [5]. By May

2019, more than 65 dockless e-scooter operators were providing services in more than 150 cities

and 40 universities in more than 35 countries worldwide. The general steps for using shared e-

scooters are as follows: download a phone application and online registration, log in to find the

nearby devices, scan the QR code to unlock the scooter, enjoy your trip by e-scooter, park the

scooter at the appropriate parking place, scan QR code to finish the trip and online payment

(see Figure 1.1). The trip fare is calculated as an unlock fee of 1 USD plus 0.15 USD/minute.

Figure 1.1 General step of using shared dockless e-scooter

2

Most people (70%) viewed electric scooters positively, including expanding transportation

options, a car-free lifestyle, convenience for short trips, complementing public transit,

convenience for female users, and increasing vehicle equitability specifically for the low-

income community [6, 7]. Several aspects of trip satisfaction of dockless e-scooter were

evaluated, such as trip satisfaction (88%), satisfaction with scooter availability (85%), ease of

sign-up (85%), ease of parking (82%), cost satisfaction (81%), fun to ride (75%), and positive

impact on the environment (66%) [8]. Moreover, the trip purposes of dockless e-scooter are

joyriding (34%), running errands (23%), commuting (19%), visiting someone (13%), and work

break/lunch (9%). Since the trip fare of shared e-scooters is relatively higher than shared bikes,

people do not use e-scooter for commuting but for other leisure or tourism activities. Based on

MOVO scooter, the e-scooter is powered by Lithium-Ion batteries, so it produces CO2 only 4.6g

per person per kilometer compared to 190g and 120g for automobiles and motorcycles,

respectively.

On the other hand, there were also some negative impacts of shared dockless e-scooters,

such as accidents, conflict with the pedestrian, littering on the sidewalk or public/private spaces,

vandalism, thief, battery explosion, frame defect, and ineffective distribution leading to the

crowded or starved area. However, stricter regulation and more effective training measures

could improve some of these problems, accidents, and pedestrian conflicts. And new technology

and design could reduce the risk of battery explosion and frame defects. Another important

issue of shared e-scooters is the emission from operations, including distribution, rebalancing,

and charging collection [9]. Three common strategies for recharging e-scooters are paying

freelance chargers (e-scooter juicers), battery swapping, and collecting low-battery e-scooters

to nearby charging stations. Some operators pay freelance chargers to collect, charge and

redistribute the low-battery e-scooters, but this strategy struggles with ineffective collection

methods (too many chargers, longer collection distance, polluted collecting vehicles) and

explosion accidents (due to unqualified facilities and inexperienced chargers). The battery

swapping seems to be a good choice, but replacing each scooter takes a long time, challenging

to combine with rebalancing routing. The last strategy is more common in practice as the

operators collect the low-battery e-scooters to charge at nearby stations before redistribution

again.

Unlike other transportation modes, shared e-scooters are preferable only for short-length

trips, less than 3km, unless they will not be cost and time effective anymore. Moreover, the

demand is highly volatile due to the nature of trip duration and the primary trip purposes, leisure

and tourism activities. As a dockless mode, the spatiotemporal patterns are difficult to predict

and cluster. This leads to the problem of high operational costs and complicated rebalancing

with many criteria, including excessive or shortage, low battery, and defective e-scooters.

Precise demand prediction and effective rebalancing are necessary to stay competitive among

operators and reduce the negative impacts of this environmentally friendly mode. To address

the operational challenges associated with shared dockless e-scooters, we examined various

robust prediction models and employed them to forecast the spatiotemporal demand and supply

level of these shared e-scooters. Chapter 2 and Chapter 3 of this study reviewed numerous

machine learning and deep learning models proposed or utilized to predict challenging time

series problems, such as the stock market, electricity demand, traffic demand, etc. It is important

to note that deep learning is a subset of machine learning. However, these terms are commonly

3

(as well as in this study) utilized to refer to different groups of prediction models. For instance,

deep learning encompasses prediction models with artificial neurons, such as ANNs, AE,

CNNs, GNNs, RNNs, and others. On the other hand, machine learning models typically refer

to different prediction algorithms, such as DT, K-Nearest Neighbors (KNN), RF, SVM,

XGBoost, etc. In general, deep learning exhibits high configurational adaptability owing to its

architecture, consisting of multiple layers, with each layer comprising a varying number of

nodes or computational mechanisms aimed at extracting relevant features from the data.

Consequently, deep learning often outperforms machine learning models in several aspects due

to its inherent capacity to automatically learn hierarchical representations from data. These

advantages include superior feature extraction, the ability to handle high-dimensional and

complex data, capture non-linear correlations, support end-to-end learning, and demonstrate

scalability. Furthermore, we reviewed and utilized several optimization algorithms to address

the rebalancing challenges in e-scooter sharing, aiming to reduce operational costs, unsatisfied

demands, and emissions associated with the rebalancing process.

1.2 Research gaps

This study aims to improve the short-term operational planning for shared e-scooters,

which have several challenging characteristics such as trip characteristics (short-range trips),

trip purposes, physical characteristics (short-service life and recharging the battery),

regulations, and emissions from rebalancing and distribution. The general characteristics of

shared e-scooters are reviewed in Chapter 2, which covers the history of e-scooter evolution,

the adoption of e-scooters in sharing services, social perception towards this shared

micromobility, impacts on urban mobility, accidents, policy regulations, environmental life

cycle assessments, and operational planning. Understanding these characteristics enables

effective management of the operational planning of shared e-scooters, minimizing negative

impacts and maximizing positive ones. Furthermore, subsequent chapters examine operational

planning approaches in similar shared services, including demand prediction models,

rebalancing optimization planning, and optimization algorithms. Then several research gaps

were discovered as follows:

• Many robust prediction models have been proposed to forecast transportation demand,

specifically for shared bikes and e-scooters. However, most of these models have primarily

focused on accuracy performance, neglecting the presence of heteroscedasticity (or non-

constant variation) in transportation demand. As a result, the valuable information in

historical data has not been effectively utilized. This research gap has raised two key

questions: "Which approaches can be employed to address the issue of heteroscedasticity in

shared e-scooter demand?" and "How can accounting for heteroscedasticity benefit

operational planning?"

• The optimization of hyperparameters highly influences the performance of machine learning

and deep learning models. Sequential-based algorithms, such as Bayesian Optimization

(BO) and Tree of Parzen Estimators (TPE), are well-suited for expensive problems like

hyperparameter optimization (HPO) of deep learning models. However, their

implementation in parallel computing can be challenging. On the other hand, population-

based algorithms are suitable for inexpensive problems. They can be trained in parallel but

4

cannot retain the historical evaluation points and only communicate within the current

population. Therefore, there is a need for algorithms that bridge the gap between these two

approaches, the sequential-based and population-based approaches. These algorithms should

be well-suited for optimizing problems that fall into neither cheap nor expensive categories,

such as HPO problems.

• Although machine learning and deep learning models can achieve state-of-the-art prediction

performance, the distribution or rebalancing based solely on these predicted demand values

often leads to a service level of only 50%. Conversely, some prior studies have addressed

demand uncertainty by assuming that the demand follows specific distributions, such as the

Poisson distribution. Consequently, there is a need for rebalancing frameworks designed

explicitly for shared e-scooters that effectively minimize and account for the demand

uncertainty.

1.3 Research objectives

Based on the above operational challenges for shared dockless e-scooters and the research

gaps, this thesis aims to review their general background and to improve the operational

management of this new transportation mode using historical ridership data and other related

information. Therefore, the objectives of this study could be summarized as follows:

• Review the general characteristics of dockless e-scooter, including the history of the scooter,

history of shared dockless e-scooter, regulations, environmental impact, and impacts on

urban mobility.

• Propose and evaluate the framework for supply planning for shared e-scooters based on

forecasted spatiotemporal demand and variance using deep learning and autoregressive

conditional heteroscedasticity, respectively.

• Propose and evaluate a new hyperparameter tuning algorithm, Iterative Decision Tree (IDT),

which is suitable for hyperparameter optimization of machine learning and deep learning

models.

• Propose and evaluate the data-driven framework for short-term (ex., a few hours)

rebalancing planning for shared e-scooters with new mathematical formulations combining

three important characteristics of this sharing service: demand uncertainty, low battery, and

faulty e-scooters.

1.4 Main contributions

The findings from this research, in response to the aforementioned research gaps and

objectives, contribute to practical and academic implications. Firstly, this study

comprehensively reviews shared e-scooters, including their development history, adoption in

shared services, social perception, trip characteristics, accidents, policy regulations,

environmental life cycle assessments, and operational planning challenges. These insightful

perspectives enable decision-makers, regulators, and operators to formulate appropriate

strategic policies to minimize negative impacts and maximize positive impacts.

Secondly, this study proposes several approaches to address heteroscedasticity in

transportation demand, particularly in shared e-scooter demand. By employing machine

learning models for demand prediction and utilizing data transformation techniques such as

5

Box Cox and variance prediction using ARCH, efficient estimation for supply planning at low

and high service levels is achieved. The effectiveness of these approaches was evaluated using

three different real-world datasets based on the proposed oversupply metric.

Thirdly, the proposed algorithms, IDT, demonstrate their effectiveness in searching for

near-global optimal solutions within limited computational time. In practical applications, IDT

reduces training time compared to sequential-based algorithms by parallel training. Moreover,

the historically evaluated points are still utilized to update its surrogate function, decision tree

regression, ensuring no loss of information like population-based algorithms.

Lastly, the optimization of static rebalancing planning was conducted on stochastic demand

generated through Monte Carlo simulation with predicted demand and variance. To enhance

practicality, this rebalancing optimization problem can be solved using either an exact algorithm

(ILP GLPK solver) or a hybrid algorithm (ILP-ACO), depending on computational time

constraints. Based on numerical results, our approach effectively reduces demand uncertainty

through demand and variance prediction, resulting in shorter driving distances for the

rebalancing vehicle and lower operational costs compared to baseline approaches that rely on

historical daily or weekly data. The proposed framework is applicable and customizable for

specific practical cases, ex., preferred service level and adjustable safety stock.

Some parts of this thesis were already published in international conferences, while others

were (and will be) published in international journals. Those international conferences and

journals are as follows:

• Saum, N., & Piantanakulchai, M. (2019). A Review on an Emerging New Mode of Transport:

The Shared Dockless Electric Scooter. In Proceedings of 13th International Conference of

Eastern Asia Society for Transportation Studies (EASTS 2019), 9-12 September 2019,

Colombo, Sri Lanka.

• Saum, N., Sugiura, S., & Piantanakulchai, M. (2020). Short-Term Demand and Volatility

Prediction of Shared Micro-Mobility: a case study of e-scooter in Thammasat University. In

Proceedings of Forum on Integrated and Sustainable Transportation Systems (FORUM ISTS

2020), 3-5 November 2020, Delft, The Netherlands.

https://doi.org/10.1109/FISTS46898.2020.9264852.

• Saum, N., Sugiura, S., & Piantanakulchai, M. (2022). Hyperparameter Optimization Using

Iterative Decision Tree (IDT), IEEE Access, vol. 10, pp. 106812-106827,

https://doi.org/10.1109/ACCESS.2022.3212387.

• Saum, N., Piantanakulchai, M., & Sugiura, S., “Supply Level Planning for Shared E-

Scooters Considering Spatiotemporal Heteroscedastic Demand”, Transportation Research

Interdisciplinary Perspectives. (Under Review).

• Saum, N., Sugiura, S., & Piantanakulchai, M., “Optimizing Shared E-Scooter Operations

under Demand Uncertainty: A Framework integrating Machine Learning and Optimization

Techniques”, IEEE Access. (Under Review).

1.5 Thesis outline

To accomplish the research objectives outlined above, the thesis was divided into four main

chapters, with an additional chapter dedicated to summarizing all findings, recommendations,

and suggestions for future studies. Figure 1.2 illustrates the interconnection between these four

https://doi:10.1109/FISTS46898.2020.9264852
https://doi:10.1109/FISTS46898.2020.9264852
https://doi:10.1109/ACCESS.2022.3212387
https://doi:10.1109/ACCESS.2022.3212387

6

main chapters of the thesis. Chapter 2 delves into the history and previous studies of shared

dockless e-scooters, highlighting several significant research gaps, operational challenges, and

relevant characteristics in the short-term operational planning of shared e-scooters. One

research gap identified in Chapter 2 pertains to supply level estimation, particularly for

heteroscedastic datasets. Chapter 3 builds upon this by extensively reviewing demand and

variation prediction models and exploring various approaches to determine the most efficient

supply level estimation models. Our investigation into demand prediction models in Chapter

3 revealed that the choice of hyperparameters significantly influences the performance of

machine learning and deep learning models. Consequently, in Chapter 4, we expanded our

literature review on hyperparameter optimization (HPO) algorithms and proposed two novel

algorithms, IDT-E and IDT-R. The insights gleaned from Chapters 2, 3, and 4 were then

applied to enhance the efficiency of rebalancing planning for shared dockless e-scooters in

Chapter 5. The details in each chapter of this thesis are summarized in short as follows:

• Chapter 1: provides a general overview of the research, including the emergence of shared

dockless e-scooter, its related operational problems, research gaps, research objectives,

research contributions, and thesis organization.

• Chapter 2: provides a comprehensive review of the history and previous studies related to

shared dockless e-scooters. This review chapter is structured into eight sections, including

the history of electric scooters, the introduction of dockless shared e-scooters, social

perception of shared e-scooters, trip characteristics and their impacts on urban mobility,

accidents, policy regulations, environmental life cycle assessments, and short-term

operational planning.

• Chapter 3: presents a detailed description of the proposed framework for designing short-

term supply planning for shared e-scooters. The chapter begins with a general introduction

and proceeds with a literature review of different approaches employed in supply planning

management, such as demand prediction models, variance prediction models, and data

transformation techniques. Subsequently, the supply planning framework and relevant

formulations are developed. The effectiveness of this framework is evaluated using three

different real-world datasets of shared e-scooter operating in Austin TX, Minneapolis MN,

and Thammasat University TH. Finally, the discussions and conclusions are made based on

the numerical results.

• Chapter 4: offers a general background on hyperparameter optimization problems and

provides a comprehensive review of various techniques used to optimize hyperparameters.

The hyperparameter optimization for recurrent neural network architectures (i.e., RNNs,

LSTM NNs, and GRUs) is also present in this chapter. Additionally, we introduce the

proposed algorithm, Iterative Decision Tree (IDT), and present numerical results comparing

IDT to several baseline hyperparameter optimization (HPO) algorithms, namely Grid Search

(GS), Random Search (RS), Tree-structured Parzen Estimator (TPE), Genetic Algorithm

(GA), Bayesian Optimization (BO) with Gaussian process, and BO with Random Forest.

The comparison is based on several benchmark problems, including nonconvex functions,

HPO of machine learning models, HPO of deep learning models, and HPO of shared e-

scooter demand prediction by RF and GRUs.

7

• Chapter 5: discusses the relevant challenges associated with the operational management

of shared e-scooters. Additionally, we present a literature review of various approaches used

in the operational planning of sharing services, explicitly focusing on bike sharing. Drawing

from the insights gained from the previous chapters and the literature review in this section,

a data-driven framework is developed for the short-term static rebalancing of shared e-

scooters. The rebalancing problems, considering demand uncertainty, are formulated as

integer linear programming, whereas an ILP solver “GLPK” and a hybrid algorithm “ACO-

ILP” are employed to optimize 30 random instances for each cluster scenario (15, 30, and

60) grouping by the k-means algorithm. The effectiveness of the proposed framework is

evaluated using the open data from Minneapolis MN.

• Chapter 6: the conclusions and discussions of the research findings are given. Based on

these findings, several directions for future study are suggested.

Figure 1.2 Relationship between thesis chapters

References

[1] S. Shaheen and N. Chan, "Mobility and the sharing economy: Potential to facilitate the

first-and last-mile public transit connections," Built Environment, vol. 42, no. 4, pp. 573-

588, 2016, doi: https://doi.org/10.7922/G2862DN3.

[2] C. S. Smith and J. P. Schwieterman, "E-scooter scenarios: evaluating the potential mobility

benefits of shared dockless scooters in Chicago," Chaddick Institute for Metropolitan

Development, Depaul University. Dec 2018.

[3] T. K. Trivedi et al., "Injuries associated with standing electric scooter use," JAMA network

open, vol. 2, no. 1, pp. e187381-e187381, 2019.

[4] NACTO. Shared Micromobility in the U.S.: 2018. Available: https://nacto.org/shared-

micromobility-

2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%2

0in%202018.

[5] NACTO. Shared Micromobility in the U.S.: 2019. Available: https://nacto.org/shared-

micromobility-2019/

https://doi.org/10.7922/G2862DN3
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2019/
https://nacto.org/shared-micromobility-2019/

8

[6] R. Clewlow, F. Foti and T. Shepard-Ohta, "Measuring Equitable Access to New Mobility:

A Case Study of Shared Bikes and Electric Scooters," POPULUS 2018, Available:

https://trid.trb.org/view/1576769.

[7] R. R. Clewlow, "The Micro-Mobility Revolution: The Introduction and Adoption of

Electric Scooters in the United States," POPULUS 2018, Available:

https://trid.trb.org/view/1528426.

[8] M. Toll. (2018). The results are in and Americans are loving electric scooter share

programs. Available: https://electrek.co/2018/08/14/americans-love-electric-scooter-

shares/

[9] M. Chester, "The Electric Scooter Fallacy: Just Because They’re Electric Doesn’t Mean

They’re Green," ed, 2018.

https://trid.trb.org/view/1576769
https://trid.trb.org/view/1528426
https://electrek.co/2018/08/14/americans-love-electric-scooter-shares/
https://electrek.co/2018/08/14/americans-love-electric-scooter-shares/

9

CHAPTER 2

2. A REVIEW OF SHARED E-SCOOTERS
2.1 History of electric scooter

Scooter, derived from “scoot” which means fast movement, represents an entertainment

product sliding on land, water, ice, and children’s toy skateboard car [1]. Like other

transportation modes, electrification was also adapted to the scooter, called electric or e-

scooter, as soon as 1991 by Honda intending to replace gasoline-powered scooters rooted from

1902. Currently, the word “Scooter” is given to various transportation modes such as self-

balance, motorized, motor scooters, and mobility scooters (see Figure 2.1).

Figure 2.1 Types of electric scooters

A motor scooter is a sort of motorcycle with a step-through chassis and a platform for the

rider's feet; well-known models include Vespa and Lambretta. A motorized scooter is a powered

stand-up scooter employing a small utility gas or electric engine. Due to their low or zero

emissions, motor scooters are becoming increasingly popular in China, Taiwan, and Europe [2].

In this instance, countries in the Asia-Pacific area with a large motorbike population, such as

Taiwan, China, Vietnam, Indonesia, and Thailand, anticipate burgeoning demand for electric

motor scooters. Electric self-balancing scooters are becoming increasingly popular because of

their affordability, lightweight, fashionable appearance, and off-road potential. Additionally,

since the development of dockless sharing services in the past several years, standing electric

scooters (such as Segways and motorized scooters) have been highly sought-after. Mobility e-

scooters are another mode that has helped older people live better lives by allowing them to

participate in social activities like shopping, running errands, or going to the doctor [3]. Last

but not least, motorized scooters have been increasingly popular in recent years thanks to

dockless services. They first became popular for short trips in densely populated urban areas in

the 2000s.

10

At the moment, shared services provide three different types of scooters: Segways, motor

scooters, and motorized scooters. Since the motorized or electric kick scooter is the newest

growing mode and has a high acceptance rate, we concentrated on it following the thesis's

purview. Figure 2.2 only depicts the most significant developments in the electric scooter (e-

scooter), which resembles the motorized scooters used today for shared transportation. The first

scooters were simple children's toys made from a soapbox, some scraps of board, and an old

pair of roller skates. Then it evolved into a commercial product and was made available for

kid's sports. For miniskirt riders like Autoped, ABC Skootomota, and Austro Motorette, the

powered scooter was created specifically for them between the 1910s and 1920s [4, 5]. Such a

scooter was later converted into a motor scooter, most notably the iconic Japanese Rabbit and

Italian Vespa [1]. The "Kick-n-Go," a scooter powered by a pedal on a lever, was created by the

Honda Corporation in 1974. Although it still needed as much work as a standard scooter, kids

loved this inventive scooter. Before the rise of bicycles, kids may benefit from using steel

scooters with two little bicycle wheels, which were popular among dog scooters. In 1996, Wim

Ouboter, the inventor of the micromobility system that addresses the first-/last-mile problem

(i.e., the distance is too short to drive but too far to walk), created a stylish foldable aluminum

scooter that was a very portable and lightweight mode of transportation. In 1999, this design

was sold to Razor and unveiled in Tokyo, where it quickly caught on as a fashion trend. With

the Go-Ped brand, one of the first and most well-known producers of motorized scooters,

Patmont Motor Werks began operations in 1985 and debuted its gasoline and electric scooters

in 2001 and 2003, respectively [6].

Figure 2.2 Evolution of motorized or electric kick scooters (e-scooters)

Electric vehicles' propulsion systems can be divided into four categories: fuel-cell electric

vehicles, plug-in hybrid electric vehicles, hybrid electric vehicles, and battery electric vehicles

(FCEVs). HEVs have both a gasoline engine and a battery, but the gasoline engine or

regenerative braking generates the battery energy and cannot be replenished by the electrical

grid. A BEV relies solely on its battery for power, but a PHEV uses both its battery and an

internal combustion engine. Another form of electric vehicle is an FCEV, which runs on

hydrogen and oxygen. Even though it is still under development, it is regarded as the most

environmentally friendly electric car because it only emits water [7]. However, the e-scooter

used for shared mobility only has a built-in or swappable battery that the power grid can

11

recharge. The top 5 brands of motorized scooters now on the market are Razor, Segway-

Ninebot, Xiaomi, Swagtron, and EcoReco. As shown in Figure 2.1, the power, speed, and

charging range of the contemporary electric kick scooter are 200–1300 W, 20–60 km/h, and

10–120 km, respectively. According to information on the item on the Alibaba website, the

battery is mostly made of lithium, while some producers also use LG or Samsung batteries.

Additionally, these batteries have a warranty of one to two years and charge for three to eight

hours. They also have a recharging cycle of about 300 (in some cases, more than 900). The

majority of the scooter's frame is made of carbon fiber, aluminum alloy, or steel. Depending on

the battery, frame type, and brand, a motorized scooter can cost between 50 to 700 USD.

2.2 Introduction of shared dockless e-scooters

In recent years, the growth of micromobility enterprises has been extensively reported.

Customers can choose from easy first-mile/last-mile transportation options thanks to businesses

in China like Ofo and Mobike, and in the US like Citi Bike and Jump Bike. The shared dockless

e-scooters developed by Lime and Bird in the US in 2018 re-energized the micromobility trend.

Compared to shared bikes at 13 percent in 8 years and shared vehicles at 16 percent in 18 years,

the adoption rate of shared e-scooters in major US cities reached 3.6 percent in less than a year

[8]. In the first seven months and the first 14 months, respectively, one million and six million

e-scooter rides were completed, according to Lime data [9]. The demand for e-scooters has

increased as e-scooter-sharing services become more widely used in nations like the US, France,

Germany, Spain, Singapore, and Thailand. Electric scooters are purchased by companies like

Bird, Lime, Spin, Jump, Razors, and Neuron, which provide these sharing services, primarily

from well-known manufacturers.

Figure 2.3 displays the month and year of the initial rollout of shared scooters across all

operators and nations. To address the last-mile issue in smart cities, university campuses, and

other major workplaces, Samocat's founders developed the smart payment platform for station-

based kick-scooter sharing. For this innovative concept, Samocat earned numerous national and

international awards. In August 2015, they began testing their rental kick scooter in Russia

before quickly expanding to other European nations. However, this startup company could not

garner much social attention because of the inconvenience of station-based mode and kicking

weariness. The first dockless e-scooter sharing service from Telepod was introduced in August

2016 following several months of testing in Singapore. However, the rigorous regulations,

constrained permitted space, high prices, graffiti, and thieves prevented this new enterprise

from becoming more well-known. A year later, two more operators, named Neuron and

Popscoot, joined this sharing service. It wasn't until September 2017 that a large dockless e-

scooter company, Bird, received approval to deploy their e-scooters in California. After that,

dockless scooters gained popularity and spread to other places. After Bird's success, many

months later, another major dockless e-scooter supplier, Lime, followed by Spin, Skip,

BlueDuk, and Goat, began rolling out their e-scooters across numerous US states.

12

Figure 2.3 Deployment month and year of shared scooters by countries and operators with the

capital raised and number of phone app installations (Source: operator’s Facebook &

Instagram, Crunchbase website, and Google play store)

The local operators like Troty, Grin, and Voi have introduced shared e-scooters to certain

European nations (France and Spain), Brazil, and Mexico, in addition to the US-based operators

Bird and Lime. After the shared e-scooters' outstanding success for the whole year, many

additional nations started to acknowledge this mode's influence on urban mobility and started

testing it. Many unicorn businesses, like Lyft, Grab, and Bolt-Taxify, entered the dockless e-

scooter era after spotting the potential opportunity. Due to the significant demand in Asian

nations, Neuron Mobility expanded its operations outside of Singapore to Thailand in October

2018, Malaysia in the early months of 2019, and Australia in the following few months.

Kickgoing scooter made the first e-scooter deployment in South Korea in September 2018, and

four additional operators (Gbility, GogoSsingcity, Ryde, and elecle) may begin making e-

scooter deployments in the first few months of 2019. By the end of May 2019, more than 150

cities and 40 institutions were served by the dockless e-scooter fleets provided by about 60

companies.

According to Table 2.1, European users pay the highest rate of $6.27 for a 30-minute trip,

followed by users in Israel, the United States, and Mexico, who pay $5.6, $5.5, and $5.2,

respectively. A 30-minute e-scooter trip in ASEAN nations costs between $3 and $3.52. While

the price for a Lime E-Bike and E-Scooter is the same, it is slightly more expensive than the

prices for shared bikes (conventional bikes), such as the Jump-Bike ($2 for 30 minutes) and

Ford Gobike ($3 for 30 minutes). Dockless electric scooters have a recharge range of 24 to 60

kilometers and can travel at a top speed of 23 to 48 kilometers per hour. It is recommended to

use e-scooters with faster speeds since the fee is determined by the amount of time used [10].

13

For a 3.5 km trip, traveling at an average speed of 10 and 15 km/h saves 7 minutes and $1,

respectively.

Table 2.1 Standard fee of dockless shared e-scooters in each region

Region

(e-scooter operator)

Standard Fee USD Equivalent

Unlock Fee Riding Fee Unlock Fee Riding Fee

US (Bird) $1 0.15 $/min $1.00 0.150 $/min

Europe (Lime) €1 0.15 €/min $1.14 0.171 $/min

Mexico (Lime) MEX $10 MEX 3 $/min $0.52 0.156 $/min

Israel (Bird) NIS 5 0.5 NIS/min $1.40 0.140 $/min

Singapore (Neuron) SGD 1 SGD 0.12 $/min $0.74 0.089 $/min

Thailand (Neuron) ฿20 3 ฿/min $0.64 0.096 $/min

Malaysia (Neuron) RM 3 0.3 RM/min $0.75 0.075 $/min

Note: exchange rate based on April 2019

2.3 Social perception on shared e-scooters

Two early studies by the research team in POPULUS published in 2018 discussed the

potential of shared dockless e-scooters. The first report, published in July 2018, surveyed over

7,000 people in major US cities [8]. Their results found that more than 70% of respondents

view this mode positively, including expanding transportation options, car-free lift style,

convenient replacement for personal vehicles or ride-hailing, and a complement of public

transit. Moreover, it could reduce the active transportation gender gap, and improve vehicle

equitability, especially for low-income communities [8, 11]. Another questionnaire survey in

2018 by Qualtrics based on 500 adults across the US showed that dockless shared e-scooter was

agreed to be a lasting innovation transportation mode (55%), particularly the experienced riders

for 72% [12]. The majority of riders showed high satisfaction with this mode, including trip

satisfaction (88%), satisfaction with scooter availability (85%), ease of sign-up (85%), ease of

parking (82%), cost satisfaction (81%), fun to ride (75%), and positive impact on the

environment (66%). Shared e-scooters were used for the purposes of joyriding 34%, running

errands 23%, commuting 19%, visiting someone 13%, and work break/lunch 9%. For this

reason, 19% of respondents still prefer using e-scooters even if they cost more than other modes,

while 13% chose not to use e-scooter again as it is either unsafe or inconvenient. This survey

also found that 75% agreed with the positive impact on air pollution by more e-scooter usage,

but only 17% believed that this mode could deal with congestion.

In addition, Fitt and Curl (2019) conducted a questionnaire survey to understand the

perception of users and non-users in several cities in New Zealand. 71% of the respondents

experienced shared e-scooters, while 75% used them more than once. The main reason for

trying e-scooters for the first time is to try e-scooters and have fun. And they, mostly younger

people, men, and full-time employers, will likely use it again for commuting, social

engagement, and the supermarket. With the availability of e-scooter, 58% of the trips come

from active mode, 23% come from private or shared vehicles, and 11% would not be made

without e-scooters [13]. Another study by the author employed a social practice approach based

on an online qualitative survey in four large cities in New Zealand [14]. This study aimed to

14

explore the early changes in the materials, competencies, and meanings associated with urban

mobility and the disruptive potential of these changes for urban transport and broader social

relations. Sixty online surveys from the student at the University of Minnesota were done to

assess the correlation between e-scooter usage and five prominent personalities [15]. And they

found that students with higher extraversion scores were significantly more likely to use e-

scooters than those with lower scores.

Furthermore, the mode choice model was developed based on a stated preference survey

to understand the factors and potential shift from carsharing to e-scooter sharing of young users

in Munich [16]. The Technology Acceptance Model was extended to identify the factors that

affect the intention to continue using e-scooters based on survey data in Chicago [17]. Two

important salient factors determining users’ decisions are perceived usefulness and perceived

reliability (i.e., availability in time and space, particularly for mandatory trips). At the same

time, other critical drivers are social influence, perceived ease of use, variety seeking, and

perceived enjoyment. In Turkey, an Online questionnaire was conducted to understand the

predictors influencing behavioral intention toward shared e-scooter [18]. As a result, behavioral

intention is significantly affected by social influence, effort expectancy, performance

expectancy, and price sensitivity, but environmental awareness and hedonic motivation.

2.4 Trip characteristics and impacts on urban mobility

One of the most popular topics about shared e-scooters is the spatiotemporal trip

characteristics and their impacts on urban mobility. Smith and Schwieterman (2018) evaluated

the potential of shared dockless e-scooters on urban mobility based on several scenarios. They

found that dockless e-scooters could be time- and cost-effective for short-range trips, less than

3 km, compared to the private automobile. Therefore, this mode could increase the non-auto

trip options from 45% to 75% and increase job reachability by 16% [10]. And the new results

based on multimodal transportation accessibility analysis in Chicago, US, found that dockless

e-scooter possibly reduces travel time by 24% - 29% compared to walking and public transit

(around 3 to 5 minutes) and increases job reachability by 12.3% and over 20% for 30-minutes

and 60-minutes public transit commuting trip respectively [19]. McKenzie published two

papers comparing the spatiotemporal usage pattern of e-scooter to dock-based bikes and ride-

hailing [20, 21]. Based on the traffic condition in Washington, the author found that e-scooters

are faster than ride-hailing during rush hour & traffic congestion. His results also show a clear

difference in both temporal and spatial patterns between dockless e-scooters and capital bikes.

Some temporal similarity was found between e-scooter and casual bike usage, but still

significantly different spatial distribution. The station-based shared bikes are mainly used for

commuting, while the shared e-scooters (casual bike users) are used for other purposes such as

leisure, recreation, or tourism. Likewise, Younes, Zou, Wu, and Baiocchi (2020) employed

negative binomial regression to compare the temporal characteristics of dockless e-scooter and

station-based bikes in Washington. They also confirmed the dissimilarity between dockless e-

scooter and member capital bike users [22]. They also found that member bike-sharing tends to

be the least sensitive to changing weather conditions due to habitual travel behavior, the less

expensive pricing structure, or not having an alternative mode. In addition, dockless e-scooters

15

are not statistically sensitive to precipitation, probably because of the ease of trip ending. Lastly,

all micromobility users are susceptible to changing gas prices, especially dockless e-scooters.

In Singapore, Zhu, Zhang, Kondor, Santi, and Ratti (2020) also compared the

spatiotemporal pattern between dockless e-scooters and bike-sharing. E-scooters have spatially

compact and quantitatively denser distribution, while their high demand is associated with

attractive places such as metros and dormitories. In addition, scooter sharing has a better

performance than bike-sharing in terms of the increased sharing frequency and decreased fleet

size, but dockless e-scooter requires high maintenance cost for rebalancing and charging.

Rainfall and high temperatures at noon suppress the usage but non-conclusively [23]. Dockless

e-scooters and e-bikes were compared using the Austin (TX) data from December 2018 to May

2019 [24]. E-bikes (3.23 m/s) are faster than e-scooters (2.49 m/s). However, both modes were

ridden slower for recreational purposes than for commuting. The riding speed of these two

modes was similar over days of the week but different over hours of the day.

Furthermore, Jiao and Bai (2020) employed spatial analysis and negative binomial

regression to examine the spatial pattern based on the open-sourced data in Austin, Texas.

Higher e-scooter trips are associated with high population density, higher education, compact

landuse, closer distance to the city center, better connectivity, and transit station. However,

ridership surprisingly negatively correlates with the proportion of the young population [25].

Comparably, the e-scooter departure and arrival trips in Austin are positively associated with

the proportion of residential, commercial, education, and industrial area [26]. And based on the

Spatial Durbin model, the morning departures are associated with residential landuse but not

educational landuse, and vice-versa. Positive correlations were also found with bike facilities,

bus stops, and employment density, but the parameter of median income. Once again, Bai and

Jiao (2020) used the data from Austin (TX), and Minneapolis (MN) to examine the spatial usage

pattern against urban environment [27]. They found different usage patterns in the Minneapolis

dataset based on spatial analysis and negative binomial regression. Ridership of dockless e-

scooter in Minneapolis had a positive correlation with household income but negative

correlations with the industrial area, open space and parks, and transportation facilities. The

temporal pattern in these two cities is also different, i.e., afternoon and weekend preference for

Austin, but evening preference for Minneapolis. In addition to factors found in previous studies,

holidays and special events was found to be significantly increased the e-scooter but not bike

sharing [28]. H. Li, Yuan, Novack, Huang, and Zipf [29] uncovered 100 proxy trip purposes of

shared e-scooter in Washington, D.C., by spatiotemporal topic modeling method based on OD

data, POI, landuse, and landcover.

2.5 Related accidents

There were many reports regarding shared e-scooter-related accidents, attracting more

research interest. The reasons of these accidents could be:

• Insufficient regulations (ex., helmet) and training, especially for new riders.

• Small wheels, lightweight, and standing characteristics make it susceptible to hazardous road

surfaces, especially during nighttime, including potholes, speed bumps, curb ramps, uphill

and downhill streets, etc.

16

• Unreliable or unstandardized materials cause battery explosions, malfunctions, defects of

frame and handlebar, brake failure, etc.

Based on 324 posts, just 6.17 percent included a person wearing protective gear, and 6.79

percent featured protective gear in some other way [30]. In Southern California, 249 e-scooter-

related patients from two metropolitan emergency rooms were gathered in order to study the

injury features and typical usage patterns of dockless e-scooters [31]. 228 riders and 21 non-

rider pedestrians made up the data that was gathered between September 2017 and August 2018.

These patients are, on average, 34 years old, and 58 percent are men. Falls (80%), collisions

with objects (11%), and being struck by moving vehicles (9%) are the most frequent incidents.

The accident rates were highest from 3 pm to 11 pm (57%) and from 7 am to 3 pm (26%) and

11 pm to 7 am (17%), respectively. In addition, three risky behaviors—not wearing a helmet

(95 percent), tandem riding (8 percent), and disobeying traffic laws (9 percent)—were noted.

Despite the fact that the leasing agreement required them to be at least 18 years old, the

investigation also discovered that about 11% of the patients were under 18. Although it is

forbidden to ride on the sidewalk, 26% of them did so, nonetheless. Only 4.4 percent of riders

reported wearing a helmet, even though it is mandatory by law in California. As a result, head

injuries—which account for 40% of cases—are the most frequent, followed by fractures/cuts

and sprains/bruises, which account for 32% and 28% of cases, respectively. 30 percent of the

149 patients had to stay in the hospital for more than 4 hours, and two had to be admitted to

intensive care units.

The electronic medical records from two emergency rooms in Utah, the US, are used by

Badeau et al. (2019) to quantify and describe the injuries caused by dockless e-scooters. Fifty

data points from June 15 to November 15 of 2018, were used in this analysis, as opposed to 8

data points from June 15 to November 15 of 2017. They divided the injuries into three

categories based on the data from 2018: major head injury (8%), major musculoskeletal injury

(36%), and minor injury (56%) [32]. A research team from California and New York also

constructed the anatomic distribution of e-scooter injuries using the motorized scooter-related

injuries from the US National Electric Injury Surveillance System (NEISS) [33]. Between 2013

and 2017, data on 32,400 injuries were obtained, and between 2016 and 2017, the number of

injuries rose by 77%. On the other hand, Bresler et al. (2019) also studied craniofacial injuries

using motorized scooter-related injuries from NEISS. They received 990 cases between 2008

and 2017, with the most common injuries being to the head (62%), face (24%), mouth (7%),

neck (6%), air (1%), and eye (1%) [34].

Medical records of 90 patients related to e-scooter from the emergency department in

Dallas (TX) were used to investigate craniofacial injuries [35]. The results found that 62% were

male, 58% of craniofacial injuries were severed, and 18% were related to alcohol. 13 electronic

medical records of The George Washington University Hospital revealed the increasing number

of Severe injuries of skull fracture, central cord syndrome, and vertebral compression fracture,

raising the awareness on the issues of safety and public health related to e-scooter [36].

Similarly, 169 e-scooter crashes in news reports across the US from 2017 to 2019 were collected

to construct a crash dataset [37]. Overall, there was a growing trend for the reported e-scooter-

involved crashes, while 73% and 50% of victims are male and 18 to 40 years old, respectively.

50% of the cases happened at night, and the three main locations of crashes are street/arterials

(50%), intersections (25%), and sidewalks (15%). The collision types are hit-vehicle (65%) and

17

fall-off (25%), resulting in fatalities (30%) and severe injuries (40%). A detailed study of the

collision between pedestrians and e-scooters was used to highlight the safety risks and the

incidence to help shape public policy to ensure the safety of both riders and pedestrians [38].

In New Zealand, two pieces of research used accident records from the emergency department

[39, 40]. The result from Mayhew and Bergin (2019) showed that 57% of victims are male,

primarily European ethnics (57%), and between 20 to 40 years old (65%). Moreover, 25% of

cases need surgery for extremities (84%) and head/face (44%). Several recent studies are related

to e-scooter accidents in Sweden [41], factors contributing to the number of e-scooter injury

accidents in Austin TX [42], early fatalities associated with shared e-scooters in the US [43],

and association of scooter-related injury and hospitalization in the US [44].

2.6 Policy regulations

As a new vehicle introduced to the shared service, the regulations for this mode may vary

from one country to another or even city, and from time to time. Therefore, the regulations could

be split into: regulations for e-scooter applying to personal or shared vehicles and regulations

for shared service providers. The regulations for e-scooter are vehicle size (width, length,

height, and weight), power capacity, fire safety, speed, helmet, driving license or certificate,

rider age, license plate, riding path (footpath is allowed or not), etc. For operators, the

regulations include a business license, vehicle registration, distribution plan, response plan to

abandoned/damaged/improper parking, educating rider, commercial general liability insurance,

clean-hand certificate, etc. The violations could be fined, the vehicle seized, or jailed.

Anderson-Hall, Bordenkircher, O’Neil, and Scott (2019) assessed the operators’ inventory,

device specification, and regulation in many important cities in the US. Their results could be

used to draw the lesson learned from trial and error of this mode and regulation changes in these

cities [45]. Similarly, regulation, equity policy, guidelines, and pilot programs from 61

municipalities in the US were used to explore the best practice municipal e-scooter policy [46]

or the later version [47]. They found that 59% of these cities have either fleet or operator caps,

and the pilot program was implemented in only 54% of the studied cities, so the majority (70%)

have an equity policy. In Rosslyn of Virginia (US), 181 surveys of riders and non-riders were

used to analyze the safety perception of pedestrians towards the presence of e-scooters and the

experience of sidewalks blocked by e-scooters [48]. On average, around half of them feel

uncomfortable with e-scooters, especially non-users (76% for unsafe and very unsafe, and 75%

for often and always-frequency of sidewalk blocked). However, only 16% of 606 observed e-

scooters were not appropriately parked, and 6% blocked pedestrian right-of-way. Moreover,

3666 parking practices in 5 cities in the US were used to analyze the parking violation frequency

of bikes, e-scooters, and motor vehicles [49]. However, they found that motor vehicles,

especially ride-hailing and food delivery services, impede access far more (24.7%) than bikes

(0.3%) and e-scooters (1.7%).

In Sweden, Gössling (2020) used the content analysis of 173 reports from local media,

including printed media, radio websites, and TV, to assess the concerns before and after the

introduction of shared e-scooters. As a result, they suggest the urban planner propose several

necessary regulations regarding this mode, such as maximum speed, mandatory bicycle

infrastructure use, dedicated parking, and the number of operators [50]. In Vienna (Austria),

18

weekly data from six operation geofences and no-parking zones were recorded to examine the

spatial analyses [51]. They discovered that the geofence of each operator is dynamically

changed to maximize the ridership under the fleet size regulation. Moreover, they recommend

that the public sector establish incentives to ensure outlying and/or transit-poor neighborhoods,

increase the fleet cap if the operator expands their geofence, and reach the goals of the city’s

pilot regarding safety, equity, and the sustainability of the scheme. In France, ethnomethodology

and multimodal conversation analysis were employed to examine the conflict with pedestrians

based on the video record from three e-scooter riders on Paris’s street [52]. Several recent

studies on policy regulation are economic regulation of e-scooter in the US [53], parking

regulations across 37 cities in the US [54], municipal guidelines among e-scooter use from 150+

cities in the US [55], e-scooter regulations in Bergen, Norway [56], and visual attention on the

shared road between pedestrian, cyclist, and e-scooter [57].

2.7 Environmental life cycle assessment

Since dockless e-scooters are powered by battery recharging from the electric grid, it is

considered a sustainable transportation mode, just like walking and cycling. The question is,

“Is this dockless sharing mode really green?”. Energy analyst Matt Chester wrote an essay about

the emissions from dockless e-scooters (2018) in Washington, DC. Based on three popular e-

scooter models (Ecoreco S5, Ninebot, and Swagtron), their relative CO2 emissions per

kilometer are 5.6, 4.7, and 2.5 grams (using DC electric grid emission rates of 0.622 grams per

watt-hour). Only 1% to 2% of the CO2 emissions from driving a typical US automobile at the

same distance are attributed to riding an e-scooter. Additionally, he considered three scenarios

for the emission from shared e-scooters while carrying them to and from places where they may

be charged (20 caped by Bird, and competitive between charging contractor limit to fewer).

3.22 km, 8.1 km, and 16.1 km were employed in the analysis because there was no information

on the distance of collecting e-scooters. The most effective scenario for recharging journeys is

an e-scooter making five trips per day at a distance of 2.4 kilometers, which results in only 2

percent of car emissions, whereas the least efficient case accounts for 28% of the car emissions

and the medium-efficient case accounts for 8% of them. Shared e-scooters produce more overall

CO2 emissions than vehicles in the least-efficient scenario, which occurs if less than 28% of

scooter journeys displaced car trips [58].

Moreau et al. (2020) conducted the life cycle assessment of electric scooters under the

modal split of Brussels (Belgium) and life span sensitivity. At the base case of 7.5 months life

cycle, dockless e-scooter produces CO2 of 131g per person per kilometer, but this could be

reduced to 91g, 51g, and 40g for one year, 2.5 years and five years life cycle, respectively,

compared to 110g for the modal share replaced by dockless e-scooter [59]. However, personal

e-scooters produce only 67g per person per kilometer, which is better than dockless e-scooters

because of their shorter life span, improper usage, vandalism, and rebalancing. In this case,

shared e-scooters require 9.5 months lifespan to become green mobility in the current situation.

In Germany, scenario analysis about the emission of shared e-scooters was examined based on

the condition of Berlin and Bochum. In Berlin, the authors analyze the life cycle assessment

considering several conditions, including longer lifespan, swappable battery, solar power, and

the possibility of transporting from the manufacturer by plane. For the base case (2 years

19

lifespan, swappable battery, and battery swapping and broken devices collection by diesel-van),

dockless e-scooters emit CO2 of 73 g per person per kilometer, and the emission could be up to

235 g if the lifespan is just six months [60]. These authors also used the modal share scenarios

to evaluate the potential emission, parking space, and traffic space demand of dockless e-scooter

in Bochum. The results show that dockless e-scooters could improve urban mobility and

emission if they could replace individual motorized transport and especially become intermodal

mobility services with public transit [61].

In addition, the Consequential LCA (CLCA) was proposed to assess the environmental

impacts of urban mobility disruption by free-floating e-scooter in Paris [62]. The result found

that shared e-scooter generated an extra 13 ktCO2eq in one year under the assumption of one

million users mainly shifting from lower-emitting modes (active mode, metro, and mass rapid

transit). From scenario analysis, the suggestions for improving the carbon footprint from this

mode are the increased lifetime mileage and choice of servicing (collecting e-scooters for

recharging or battery swapping). Moreover, de Bortoli [63] later employed an integrated modal

LCA to assess Paris's three private and shared micromobility vehicles, including bikes, second-

generation e-scooters, and e-mopeds. The highlights of this study found that the ownership does

not contribute to the emission but the vehicle lifetime mileage, while the emission ranking of

this shared micromobility is between the personal ICE modes and the active modes (including

the public railing system). Similarly, using Minneapolis as the case study, Peng, Nishiyama,

and Sezaki [64] assessed the emission reduction from shared micromobility (shared bike and

scooter). The Monte Carlo simulation showed that 60% of shared micromobility trips likely

came from personal vehicle and public transit trips resulting in GHG emission reduction of

126.4 to 151.3 tons (about 0.012% of the total on-road emission).

2.8 Short-term operational planning

Regarding operational-related research, we can separate the previous studies into two main

parts, short-term demand prediction and operational planning optimization. Several demand

prediction models, including statistical models, machine learning, and deep learning, were

proposed or employed to predict the spatiotemporal demand for shared e-scooters. On the other

hand, previous studies examined the operational planning for shared e-scooter, including fleet

size optimization, deterministic or stochastic rebalancing, collecting e-scooter for recharging,

charging station design, and facility planning.

He and Shin [65] proposed a novel spatiotemporal graph capsule neural network called

GCScoot, to predict the spatiotemporal shared e-scooters’ trip flow in three different cities

Austin TX, Louisville KY, and Minneapolis MN. The improved architecture, GCScoot2, was

later proposed and evaluated on one additional dataset in Chicago IL [66]. As a result, they got

huge accuracy improvement compared to baseline models, but it also requires lots of

topological information along with long training time. Recurrent Neural Network (RNN) was

employed to predict the temporal latent features from Convolutional Autoencoder, called

encoder-recurrent neural network–decoder (ERD) framework [67]. The Convolutional

Autoencoder works as dimensional reduction, especially the sparse data. This ERD framework

showed enhanced performance compared to the baseline Long Short-Term Memory (LSTM)

Neural Network based on shared e-scooter data operating in Gwangjin district, Seoul, South

20

Korea. On the other hand, Phithakkitnukooon, Patanukhom, and Demissie [68] dealt with

demand sparsity of the grid e-scooter ridership in Calgary (Canada) by using a mask model or

region of interest (ROI) to guide the fully convolutional network, called Masked Fully

Convolutional Network (MFCN). Spatio-Temporal Multi-Graph Transformer (STMGT) is a

graph convolutional network based on adjacency, functional similarity, demographic similarity,

and transportation supply similarity graphs was proposed to forecast the hourly shared e-scooter

demand in Austin TX and Washington DC [69]. Kim Sujae, Choo, Lee, and Kim Sanghun [70]

employed LSTM model to predict the hourly demand in the grids grouped into several clusters

by community structure method. This framework was evaluated on one-month data of e-scooter

operating in Seocho and Gangnam districts of Seoul, South Korea. Moreover, the bagging

ensemble approach based on XGBoost, RF, and Extra Tree (ET) was employed to predict the

clustered daily demands of shared e-scooter deploying on Jeju Island, South Korea [71].

On the other hand, there were several studies about the operational planning for dockless

shared e-scooter. Masoud et al. [72] constructed the mathematical formulation to minimize total

charging collection distance and solved it by several optimization algorithms in allocating

freelance e-scooter-chargers. The simulated assignment problems were solved by the adaptive

College Admission Algorithm (ACA) in comparison to the MILP solver and Black Hole

Optimizer (BHO) algorithm. The open data in Minneapolis MN, and Louisville was employed

to construct the data-driven demand model based on Poisson processes (temporal) and Kernel

Density Estimation (spatial) for comparison of different electric scooter sharing design options,

including the impact of fleet size and the cost of managing their charging [73]. Tolomei et al.

[74] employed a deep learning model called 3D-CLoST to forecast the shared e-scooter

demand, then greedily assigned workers to relocate the surplus and shortage using data from

Austin TX, and Louisville KY, as the case study. Osorio, Lei, and Ouyang [75] formulated the

overnight rebalancing of shared e-scooter accounting for the possibility of charging on the

vehicle as the MIP and solved the large instance by the discrete-continuous hybrid model for

integrating the line-haul and local operations. This proposed framework was evaluated based

on simulated demand following the normal distribution. Two-stage stochastic programming

was proposed for long-term planning (i.e., investment cost on charging facilities, fleet size, and

relocation schedule) and short-term planning (i.e., minimizing relocation cost, charging cost

and penalty of unserved demand) [76]. Multi-agent deep reinforcement learning, called ESB-

DQN, was proposed to optimize the rebalancing operation and battery swap by encouraging

customers (incentive) to pick up the e-scooter in the nearby regions [77]. Finally, Altintasi and

Yalcinkaya [78] employed GIS-based multi-criteria to optimize charging station locations to

integrate this mode with the existing public facilities, points of interest, and population density.

The proposed model was examined based on the data in Karsiyaka, Izmir, Turkey.

21

Figure 2.4 Summary of previous studies about shared dockless e-scooters

2.9 Discussion and conclusion

Even though the primary sources of the energy grid continue to be emission sources like

coal and natural gas, electrification is now one of the best ways to reduce emissions from vehicle

traffic. The use of shared micromobility, particularly e-scooters and e-bikes, has been crucial in

addressing urban transportation problems like congestion, mobility, emissions, and parking

shortages. These shared services aim to address the first- and last-mile issues in densely

populated urban regions. In this situation, dockless e-scooters are gaining popularity and have

been embraced in many cities across the globe. Lime and Bird are the two most well-known

companies that offer shared e-scooters, and their markets are worth up to a billion dollars.

Because they are time and money efficient for short-distance trips between 0.8 and 3.5 km,

shared e-scooters are becoming increasingly popular. The simplicity of finding/parking, the lack

of restrictions, the adaptability of the routes, and the enjoyable experience are further appealing

elements. The unlock cost ($0.52 - $1.40) and the riding price (0.075 - 0.17 $/minute) for shared

e-scooters vary from region to region. As mentioned above, dockless e-scooters have many

impacts on urban mobility, such as vehicle equitability, job reachability, reduced vehicle trips,

safe and convenience for females, and extended public transit catchment area. Additionally,

most customers (88 percent) are happy with the trip, and more than 70% think this mode has a

good impact on congestion and the environment.

With the rise in popularity of dockless e-scooters, many problems are also becoming more

prevalent, including safety concerns, conflicts with pedestrians, street littering, and theft. The

number of e-scooter incidents has also increased public awareness of scooter use or the

introduction of dockless e-scooters in various locations, particularly in Europe. Numerous

things, including unsafe riding practices, battery explosions, scooter flaws, and inadequate road

infrastructure, contribute to these accidents. Furthermore, service providers cannot address the

violations and instruct users on how to use e-scooters properly. As a result, ever-stricter laws

and norms are put into place. These restrictions include speed limit, riding lane or area, parking

infrastructure, helmet, improved phone application, payment method, and device requirements

(weight, size, and fire safety standards).

22

In conclusion, dockless shared e-scooters present both advantages and disadvantages.

Thus, it is essential for all stakeholders, including authorities, operators, and users, to

collaborate and cooperate in order to minimize negative impacts and maximize positive

impacts. As a newly emerging shared transportation mode, there is still limited research on the

short-term operational planning of dockless shared e-scooters, which is the primary focus of

this study. However, valuable insights can be gained from other sharing services, particularly

bike sharing, which shares similarities with e-scooter sharing. As discussed earlier, shared e-

scooters encounter more operational planning challenges compared to other sharing services,

such as fluctuating demand due to short-range trips and unusual trip purposes, emissions

resulting from inefficient rebalancing planning, and high maintenance costs due to vandalism,

property vulnerability, and battery charging. Unlike most shared transportation modes that

experience two peak demand periods during morning and evening rush hours, shared e-scooters

face high demand throughout the day and evening, necessitating more frequent rebalancing

efforts. Moreover, their operational planning must consider tasks like relocating low-battery e-

scooters to charging stations and collecting broken e-scooters for repairs. The rebalancing

planning for shared e-scooters should also take into account significant regulatory factors,

including distribution regulations, registration fees per e-scooter, limitations on the number of

e-scooters, and timely response to flooded areas with an excessive presence of e-scooters.

References

[1] M.-t. WANG and M. YOU, "The study of evolution of motor scooters," Bulletin of

Japanese Society for the Science of Design, vol. 56, no. 2, pp. 23-32, 2009.

[2] K. Kendall, M. Kendall, B. Liang and Z. Liu, "Hydrogen vehicles in China: replacing the

Western Model," International Journal of Hydrogen Energy, vol. 42, no. 51, pp. 30179-

30185, 2017.

[3] D. Eck et al., "Mobility assistance for older people," Applied Bionics and Biomechanics,

vol. 9, no. 1, pp. 69-83, 2012.

[4] Goner, "A brief history of scooters," ed, 2018.

[5] Madcharge, "ELECTRIC SCOOTER: ORIGINS, HISTORY AND EVOLUTION," ed,

2018.

[6] Urbanscooters, "Go-Ped Scooters," ed, 2019.

[7] K. Ogura and M. L. Kolhe, "Battery technologies for electric vehicles," in Electric

Vehicles: Prospects and Challenges: Elsevier, 2017, pp. 139-167.

[8] R. R. Clewlow, "The Micro-Mobility Revolution: The Introduction and Adoption of

Electric Scooters in the United States," POPULUS 2018, Available:

https://trid.trb.org/view/1528426.

[9] A. Adeyemi, "Electric Scooters And Micro-Mobility: Here's Everything You Need To

Know," ed, 2019.

[10] C. S. Smith and J. P. Schwieterman, "E-scooter scenarios: evaluating the potential mobility

benefits of shared dockless scooters in Chicago," Chaddick Institute for Metropolitan

Development, Depaul University. 2018.

https://trid.trb.org/view/1528426

23

[11] R. Clewlow, F. Foti and T. Shepard-Ohta, "Measuring Equitable Access to New Mobility:

A Case Study of Shared Bikes and Electric Scooters," POPULUS 2018, Available:

https://trid.trb.org/view/1576769.

[12] M. Toll. (2018). The results are in and Americans are loving electric scooter share

programs. Available: https://electrek.co/2018/08/14/americans-love-electric-scooter-

shares/

[13] H. Fitt and A. Curl, "E-scooter use in New Zealand: Insights around some frequently asked

questions," University of Canterbury, 2019, Available:

https://ir.canterbury.ac.nz/handle/10092/16336.

[14] H. Fitt and A. Curl, "The early days of shared micromobility: A social practices approach,"

Journal of Transport Geography, vol. 86, pp. 102779, 2020, doi:

https://doi.org/10.1016/j.jtrangeo.2020.102779.

[15] J. Cutts, M. Coleman and T. Vu, "Big Five Personality and E-Scooter Usage,"

Undergraduate Journal of Psychology, vol. 19, 2020.

[16] M. Abouelela, C. Al Haddad and C. Antoniou, "Are young users willing to shift from

carsharing to scooter–sharing?," Transportation Research Part D: Transport and

Environment, vol. 95, pp. 102821, 2021, doi: https://doi.org/10.1016/j.trd.2021.102821.

[17] M. Javadinasr, S. Asgharpour, E. Rahimi, P. Choobchian, A. K. Mohammadian and J. Auld,

"Eliciting attitudinal factors affecting the continuance use of E-scooters: An empirical

study in Chicago," Transportation Research Part F: Traffic Psychology and Behaviour,

vol. 87, pp. 87-101, 2022, doi: https://doi.org/10.1016/j.trf.2022.03.019.

[18] R. G. Öztaş Karlı, H. Karlı and H. S. Çelikyay, "Investigating the acceptance of shared e-

scooters: Empirical evidence from Turkey," Case Studies on Transport Policy, vol. 10, no.

2, pp. 1058-1068, 2022, doi: https://doi.org/10.1016/j.cstp.2022.03.018.

[19] C. S. Smith, "E-Scooter Mobility: Estimates of the Time-Savings and Accessibility

Benefits Achieved via Chicago's 2019 E-Scooter Pilot Program," Chaddick Institute Policy

Series, 2020.

[20] G. McKenzie, "Spatiotemporal comparative analysis of scooter-share and bike-share usage

patterns in Washington, D.C," Journal of Transport Geography, vol. 78, pp. 19-28, 2019,

doi: https://doi.org/10.1016/j.jtrangeo.2019.05.007.

[21] G. McKenzie, "Urban mobility in the sharing economy: A spatiotemporal comparison of

shared mobility services," Computers, Environment and Urban Systems, vol. 79, pp.

101418, 2020, doi: https://doi.org/10.1016/j.compenvurbsys.2019.101418.

[22] H. Younes, Z. Zou, J. Wu and G. Baiocchi, "Comparing the Temporal Determinants of

Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation

Research Part A: Policy and Practice, vol. 134, pp. 308-320, 2020, doi:

https://doi.org/10.1016/j.tra.2020.02.021.

[23] R. Zhu, X. Zhang, D. Kondor, P. Santi and C. Ratti, "Understanding spatio-temporal

heterogeneity of bike-sharing and scooter-sharing mobility," Computers, Environment and

Urban Systems, vol. 81, pp. 101483, 2020, doi:

https://doi.org/10.1016/j.compenvurbsys.2020.101483.

[24] M. H. Almannaa, H. I. Ashqar, M. Elhenawy, M. Masoud, A. Rakotonirainy and H. Rakha,

"A Comparative Analysis of E-Scooter and E-Bike Usage Patterns: Findings from the City

of Austin, TX," arXiv preprint arXiv:2006.04033, 2020.

https://trid.trb.org/view/1576769
https://electrek.co/2018/08/14/americans-love-electric-scooter-shares/
https://electrek.co/2018/08/14/americans-love-electric-scooter-shares/
https://ir.canterbury.ac.nz/handle/10092/16336
https://doi.org/10.1016/j.jtrangeo.2020.102779
https://doi.org/10.1016/j.trd.2021.102821
https://doi.org/10.1016/j.trf.2022.03.019
https://doi.org/10.1016/j.cstp.2022.03.018
https://doi.org/10.1016/j.jtrangeo.2019.05.007
https://doi.org/10.1016/j.compenvurbsys.2019.101418
https://doi.org/10.1016/j.tra.2020.02.021
https://doi.org/10.1016/j.compenvurbsys.2020.101483

24

[25] J. Jiao and S. Bai, "Understanding the Shared E-scooter Travels in Austin, TX," ISPRS

International Journal of Geo-Information, vol. 9, no. 2, pp. 135, 2020.

[26] O. Caspi, M. J. Smart and R. B. Noland, "Spatial associations of dockless shared e-scooter

usage," Transportation Research Part D: Transport and Environment, vol. 86, p. 102396,

2020.

[27] S. Bai and J. Jiao, "Dockless E-scooter usage patterns and urban built Environments: A

comparison study of Austin, TX, and Minneapolis, MN," Travel Behaviour and Society,

vol. 20, pp. 264-272, 2020, doi: https://doi.org/10.1016/j.tbs.2020.04.005.

[28] A. Hosseinzadeh, A. Karimpour and R. Kluger, "Factors influencing shared micromobility

services: An analysis of e-scooters and bikeshare," Transportation Research Part D:

Transport and Environment, vol. 100, pp. 103047, 2021, doi:

https://doi.org/10.1016/j.trd.2021.103047.

[29] H. Li, Z. Yuan, T. Novack, W. Huang and A. Zipf, "Understanding spatiotemporal trip

purposes of urban micro-mobility from the lens of dockless e-scooter sharing," Computers,

Environment and Urban Systems, vol. 96, pp. 101848, 2022, doi:

https://doi.org/10.1016/j.compenvurbsys.2022.101848.

[30] J.-P. Allem and A. Majmundar, "Are electric scooters promoted on social media with safety

in mind? A case study on Bird's Instagram," Preventive Medicine Reports, vol. 13, pp. 62-

63, 2019.

[31] T. K. Trivedi et al., "Injuries associated with standing electric scooter use," JAMA network

open, vol. 2, no. 1, pp. e187381-e187381, 2019.

[32] A. Badeau, C. Carman, M. Newman, J. Steenblik, M. Carlson and T. Madsen, "Emergency

department visits for electric scooter-related injuries after introduction of an urban rental

program," The American Journal of Emergency Medicine, vol. 37, no. 8, pp. 1531-1533,

2019.

[33] M. Aizpuru, K. X. Farley, J. C. Rojas, R. S. Crawford, T. J. Moore and E. R. Wagner,

"Motorized scooter injuries in the era of scooter-shares: A review of the national electronic

surveillance system," The American Journal of Emergency Medicine, vol. 37, no. 6, pp.

1133-1138, 2019, doi: https://doi.org/10.1016/j.ajem.2019.03.049.

[34] A. Y. Bresler, C. Hanba, P. Svider, M. A. Carron, W. D. Hsueh and B. Paskhover,

"Craniofacial injuries related to motorized scooter use: a rising epidemic," American

Journal of Otolaryngology, vol. 40, no. 5, pp. 662-666, 2019.

[35] B. Trivedi, M. J. Kesterke, R. Bhattacharjee, W. Weber, K. Mynar and L. V. Reddy,

"Craniofacial injuries seen with the introduction of bicycle-share electric scooters in an

urban setting," Journal of Oral and Maxillofacial Surgery, vol. 77, no. 11, pp. 2292-2297,

2019.

[36] C. D. Schlaff, K. D. Sack, R.-J. Elliott and M. K. Rosner, "Early Experience with Electric

Scooter Injuries Requiring Neurosurgical Evaluation in District of Columbia: A Case

Series," World Neurosurgery, vol. 132, pp. 202-207, 2019.

[37] H. Yang, Q. Ma, Z. Wang, Q. Cai, K. Xie and D. Yang, "Safety of micro-mobility: analysis

of E-Scooter crashes by mining news reports," Accident Analysis & Prevention, vol. 143,

pp. 105608, 2020, doi: https://doi.org/10.1016/j.aap.2020.105608.

https://doi.org/10.1016/j.tbs.2020.04.005
https://doi.org/10.1016/j.trd.2021.103047
https://doi.org/10.1016/j.compenvurbsys.2022.101848
https://doi.org/10.1016/j.ajem.2019.03.049
https://doi.org/10.1016/j.aap.2020.105608

25

[38] N. Sikka, C. Vila, M. Stratton, M. Ghassemi and A. Pourmand, "Sharing the sidewalk: A

case of E-scooter related pedestrian injury," The American Journal of Emergency Medicine,

vol. 37, no. 9, pp. 1807.e5-1807.e7, 2019, doi: https://doi.org/10.1016/j.ajem.2019.06.017.

[39] S. Beck, L. Barker, A. Chan and S. Stanbridge, "Emergency department impact following

the introduction of an electric scooter sharing service," Emergency Medicine Australasia,

vol. 32, no. 3, pp. 409-415, 2020.

[40] L. J. Mayhew and C. Bergin, "Impact of e‐scooter injuries on Emergency Department

imaging," Journal of Medical Imaging and Radiation Oncology, vol. 63, no. 4, pp. 461-

466, 2019.

[41] H. Stigson, I. Malakuti and M. Klingegård, "Electric scooters accidents: Analyses of two

Swedish accident data sets," Accident Analysis & Prevention, vol. 163, pp. 106466, 2021,

doi: https://doi.org/10.1016/j.aap.2021.106466.

[42] A. Azimian and J. Jiao, "Modeling factors contributing to dockless e-scooter injury

accidents in Austin, Texas," Traffic Injury Prevention, vol. 23, no. 2, pp. 107-111, 2022,

doi: https://doi.org/10.1080/15389588.2022.2030057.

[43] E. Karpinski, E. Bayles, L. Daigle and D. Mantine, "Characteristics of early shared E-

Scooter fatalities in the United States 2018–2020," Safety Science, vol. 153, pp. 105811,

2022, doi: https://doi.org/10.1016/j.ssci.2022.105811.

[44] M. D. Traynor et al., "Association of scooter-related injury and hospitalization with

electronic scooter sharing systems in the United States," The American Journal of Surgery,

vol. 223, no. 4, pp. 780-786, 2022, doi: https://doi.org/10.1016/j.amjsurg.2021.06.006.

[45] K. Anderson-Hall, B. Bordenkircher, R. O'Neil and S. C. Scott, "Governing micro-

mobility: A nationwide assessment of electric scooter regulations," presented at the

Transportation Research Board 98th Annual Meeting, Washington DC, 2019. Available:

https://trid.trb.org/view/1572811, doi: https://trid.trb.org/view/1572811.

[46] R. William and K. Matt, "Exploring Best Practice for Municipal E-Scooter Policy in the

United States.," presented at the 99th Annual Meeting of the Transportation Research

Board, 2020. Available: https://ssrn.com/abstract=3512725, doi:

https://doi.org/10.1016/j.tra.2021.06.025.

[47] R. William, K. Matt and B. David, "Exploring Best Practice for Municipal E-Scooter Policy

in the United States," Transportation Research Part A: Policy and Practice, vol. 151, pp.

18-27, 2021, doi: https://doi.org/10.1016/j.tra.2021.06.025.

[48] O. James, J. I. Swiderski, J. Hicks, D. Teoman and R. Buehler, "Pedestrians and E-Scooters:

An Initial Look at E-Scooter Parking and Perceptions by Riders and Non-Riders,"

Sustainability, vol. 11, no. 20, pp. 5591, 2019.

[49] A. Brown, N. J. Klein, C. Thigpen and N. Williams, "Impeding access: The frequency and

characteristics of improper scooter, bike, and car parking," Transportation Research

Interdisciplinary Perspectives, vol. 4, pp. 100099, 2020, doi:

https://doi.org/10.1016/j.trip.2020.100099.

[50] S. Gössling, "Integrating e-scooters in urban transportation: Problems, policies, and the

prospect of system change," Transportation Research Part D: Transport and Environment,

vol. 79, pp. 102230, 2020, doi: https://doi.org/10.1016/j.trd.2020.102230.

https://doi.org/10.1016/j.ajem.2019.06.017
https://doi.org/10.1016/j.aap.2021.106466
https://doi.org/10.1080/15389588.2022.2030057
https://doi.org/10.1016/j.ssci.2022.105811
https://doi.org/10.1016/j.amjsurg.2021.06.006
https://trid.trb.org/view/1572811
https://trid.trb.org/view/1572811
https://ssrn.com/abstract=3512725
https://doi.org/10.1016/j.tra.2021.06.025
https://doi.org/10.1016/j.tra.2021.06.025
https://doi.org/10.1016/j.trip.2020.100099
https://doi.org/10.1016/j.trd.2020.102230

26

[51] M. E. Moran, B. Laa and G. Emberger, "Six scooter operators, six maps: Spatial coverage

and regulation of micromobility in Vienna, Austria," Case Studies on Transport Policy,

2020, doi: https://doi.org/10.1016/j.cstp.2020.03.001.

[52] S. Tuncer, E. Laurier, B. Brown and C. Licoppe, "Notes on the practices and appearances

of e-scooter users in public space," Journal of Transport Geography, vol. 85, pp. 102702,

2020, doi: https://doi.org/10.1016/j.jtrangeo.2020.102702.

[53] K. Button, H. Frye and D. Reaves, "Economic regulation and E-scooter networks in the

USA," Research in Transportation Economics, vol. 84, pp. 100973, 2020, doi:

https://doi.org/10.1016/j.retrec.2020.100973.

[54] A. Brown, "Micromobility, Macro Goals: Aligning scooter parking policy with broader city

objectives," Transportation Research Interdisciplinary Perspectives, vol. 12, pp. 100508,

2021/12/01/ 2021, doi: https://doi.org/10.1016/j.trip.2021.100508.

[55] Q. Ma, H. Yang, Y. Ma, D. Yang, X. Hu and K. Xie, "Examining municipal guidelines for

users of shared E-Scooters in the United States," Transportation Research Part D:

Transport and Environment, vol. 92, pp. 102710, 2021, doi:

https://doi.org/10.1016/j.trd.2021.102710.

[56] S. Sareen, D. Remme and H. Haarstad, "E-scooter regulation: The micro-politics of market-

making for micro-mobility in Bergen," Environmental Innovation and Societal Transitions,

vol. 40, pp. 461-473, 2021, doi: https://doi.org/10.1016/j.eist.2021.10.009.

[57] A. Pashkevich, T. E. Burghardt, S. Puławska-Obiedowska and M. Šucha, "Visual attention

and speeds of pedestrians, cyclists, and electric scooter riders when using shared road – a

field eye tracker experiment," Case Studies on Transport Policy, vol. 10, no. 1, pp. 549-

558, 2022, doi: https://doi.org/10.1016/j.cstp.2022.01.015.

[58] M. Chester, "The Electric Scooter Fallacy: Just Because They’re Electric Doesn’t Mean

They’re Green," ed, 2018.

[59] H. Moreau, L. de Jamblinne de Meux, V. Zeller, P. D’Ans, C. Ruwet and W. M. Achten,

"Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between

Dockless E-Scooters, Displaced Transport, and Personal E-Scooters," Sustainability, vol.

12, no. 5, pp. 1803, 2020.

[60] S. Severengiz, S. Finke, N. Schelte and N. Wendt, "Life Cycle Assessment on the Mobility

Service E-Scooter Sharing," in 2020 IEEE European Technology and Engineering

Management Summit (E-TEMS), 2020, pp. 1-6: IEEE.

[61] S. Severengiz, S. Finke, N. Schelte and H. Forrister, "Assessing the Environmental Impact

of Novel Mobility Services using Shared Electric Scooters as an Example," Procedia

Manufacturing, vol. 43, pp. 80-87, 2020, doi:

https://doi.org/10.1016/j.promfg.2020.02.114.

[62] A. de Bortoli and Z. Christoforou, "Consequential LCA for territorial and multimodal

transportation policies: method and application to the free-floating e-scooter disruption in

Paris," Journal of Cleaner Production, vol. 273, pp. 122898, 2020, doi:

https://doi.org/10.1016/j.jclepro.2020.122898.

[63] A. de Bortoli, "Environmental performance of shared micromobility and personal

alternatives using integrated modal LCA," Transportation Research Part D: Transport and

Environment, vol. 93, pp. 102743, 2021, doi: https://doi.org/10.1016/j.trd.2021.102743.

https://doi.org/10.1016/j.cstp.2020.03.001
https://doi.org/10.1016/j.jtrangeo.2020.102702
https://doi.org/10.1016/j.retrec.2020.100973
https://doi.org/10.1016/j.trip.2021.100508
https://doi.org/10.1016/j.trd.2021.102710
https://doi.org/10.1016/j.eist.2021.10.009
https://doi.org/10.1016/j.cstp.2022.01.015
https://doi.org/10.1016/j.promfg.2020.02.114
https://doi.org/10.1016/j.jclepro.2020.122898
https://doi.org/10.1016/j.trd.2021.102743

27

[64] H. Peng, Y. Nishiyama and K. Sezaki, "Assessing environmental benefits from shared

micromobility systems using machine learning algorithms and Monte Carlo simulation,"

Sustainable Cities and Society, vol. 87, pp. 104207, 2022, doi:

https://doi.org/10.1016/j.scs.2022.104207.

[65] S. He and K. G. Shin, "Dynamic Flow Distribution Prediction for Urban Dockless E-

Scooter Sharing Reconfiguration," in Proceedings of The Web Conference 2020, 2020, pp.

133-143.

[66] S. He and K. G. Shin, "Distribution Prediction for Reconfiguring Urban Dockless E-

Scooter Sharing Systems," IEEE Transactions on Knowledge and Data Engineering, vol.

34, no. 12, pp. 5722-5740, 2022, doi: https://doi.org/10.1109/TKDE.2021.3062074.

[67] S. W. Ham, J.-H. Cho, S. Park and D.-K. Kim, "Spatiotemporal Demand Prediction Model

for E-Scooter Sharing Services with Latent Feature and Deep Learning," Transportation

Research Record, vol. 2675, no. 11, pp. 34-43, 2021, doi:

https://doi.org/10.1177/03611981211003896.

[68] S. Phithakkitnukooon, K. Patanukhom and M. G. Demissie, "Predicting Spatiotemporal

Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional

Network," ISPRS International Journal of Geo-Information, vol. 10, no. 11, pp. 773, 2021.

[69] Y. Xu, X. Zhao, X. Zhang and M. Paliwal, "Real-Time Forecasting of Dockless Scooter-

Sharing Demand: A Spatio-Temporal Multi-Graph Transformer Approach," 2021.

[70] S. Kim, S. Choo, G. Lee and S. Kim, "Predicting Demand for Shared E-Scooter Using

Community Structure and Deep Learning Method," Sustainability, vol. 14, no. 5, pp. 2564,

2022.

[71] P. W. Khan, S.-J. Park, S.-J. Lee and Y.-C. Byun, "Electric Kickboard Demand Prediction

in Spatiotemporal Dimension Using Clustering-Aided Bagging Regressor," Journal of

Advanced Transportation, vol. 2022, pp. 8062932, 2022, doi:

https://doi.org/10.1155/2022/8062932.

[72] M. Masoud, M. Elhenawy, M. H. Almannaa, S. Q. Liu, S. Glaser and A. Rakotonirainy,

"Heuristic approaches to solve e-scooter assignment problem," IEEE Access, vol. 7, pp.

175093-175105, 2019.

[73] A. Ciociola, M. Cocca, D. Giordano, L. Vassio and M. Mellia, "E-Scooter Sharing:

Leveraging Open Data for System Design," in 2020 IEEE/ACM 24th International

Symposium on Distributed Simulation and Real Time Applications (DS-RT), 2020, pp. 1-8,

doi: 10.1109/DS-RT50469.2020.9213514.

[74] L. Tolomei, S. Fiorini, A. Ciociola, L. Vassio, D. Giordano and M. Mellia, "Benefits of

Relocation on E-scooter Sharing - a Data-Informed Approach," in 2021 IEEE International

Intelligent Transportation Systems Conference (ITSC), 2021, pp. 3170-3175, doi:

10.1109/ITSC48978.2021.9564809.

[75] J. Osorio, C. Lei and Y. Ouyang, "Optimal rebalancing and on-board charging of shared

electric scooters," Transportation Research Part B: Methodological, vol. 147, pp. 197-219,

2021/05/01/ 2021, doi: https://doi.org/10.1016/j.trb.2021.03.009.

[76] A. M. Fathabad, X. Li, J. Cheng and Y.-J. Wu, "Data-Driven Optimization for E-Scooter

System Design," (in English), Tech Report 2022.

https://doi.org/10.1016/j.scs.2022.104207
https://doi.org/10.1109/TKDE.2021.3062074
https://doi.org/10.1177/03611981211003896
https://doi.org/10.1155/2022/8062932
https://doi.org/10.1016/j.trb.2021.03.009

28

[77] G. Losapio, F. Minutoli, V. Mascardi and A. Ferrando, "Smart balancing of E-scooter

sharing systems via deep reinforcement learning," in 22nd Workshop "From Objects to

Agents", Bologna, Italy, 2022, vol. 2963, pp. 83–97: CEUR-WS.org.

[78] O. Altintasi and S. Yalcinkaya, "Siting charging stations and identifying safe and

convenient routes for environmentally sustainable e-scooter systems," Sustainable Cities

and Society, vol. 84, pp. 104020, 2022, doi: https://doi.org/10.1016/j.scs.2022.104020.

https://doi.org/10.1016/j.scs.2022.104020

29

CHAPTER 3

3. SHORT-TERM SUPPLY LEVEL PLANNING FOR SHARED E-

SCOOTERS
3.1 Introduction

Supply level planning plays a crucial role in operational management, as it is influenced

by various factors such as operating costs, resource constraints, customer satisfaction, and

environmental emissions. As discussed in the previous chapters, dockless shared e-scooters

encounter several operational challenges, including volatile demand, high operating costs,

unforeseen trip purposes, emissions, and regulations. As a dockless mode, operators must

strategically allocate their limited e-scooters to the right place and time, utilizing several

strategies such as overnight distribution, regular or real-time rebalancing or relocation, and

customer incentives. Addressing these issues requires effective estimation of the supply level

for this emerging shared micromobility. In this study, the term "short-term supply level

planning" refers to the estimation of the total supply of shared e-scooters within a planning

horizon of one day (e.g., hourly intervals). Various prediction models have been employed and

proposed to forecast spatial and temporal demand, including statistical models, machine

learning, and deep learning, to improve the effectiveness of supply level planning of shared

transportation modes.

In time-series analysis, the Autoregressive Integrated Moving Average (ARIMA) model,

along with its seasonal variant known as Seasonal-ARIMA (SARIMA), holds prominence.

Moreover, reference [1] provides insights into additional advancements in this domain.

Implementing the ARIMA model mandates the assurance of both normality and stationarity.

Notably, the challenge of normality can be effectively addressed using the Box-Cox

transformation method, as expounded in [2]. Among machine learning models, Random Forest

regression (RF) stands out for its remarkable predictive accuracy. Remarkably, this model's

performance could be on par with certain deep learning architectures [3]. Following a similar

conceptual framework as RF, XGBoost undertakes data fitting via gradient-boosted decision

trees, thereby effectively reducing the computational time [4].

Machine learning models show their effective performance compared to conventional

statistical models and even have comparable results with deep learning models [3, 5]. Another

advantage of machine learning is interpretability which is the main limitation of deep learning

models. Decision Tree (DT) algorithm is one of the most powerful models and has several

extensions to improve the prediction performance and generalization, such as random forest or

RF, extra tree or ET, gradient boosting or GB [6], extreme gradient boosting or XGBoost [7],

etc. For instance, RF showed huge prediction improvement compared to DT and Naïve Bayes

in predicting the usage frequency of shared e-scooters at the University of Malaya [8]. Support

Vector Machine (SVM) was employed to predict the daily and hourly bike-sharing demand [9].

In predicting the daily demand of station-based bike sharing in Seoul, k-nearest neighbors

(KNN) had better prediction performance than linear regression, but it is still lots worse than

RF and SVM [10].

Over the recent decades, deep learning has garnered significant attention due to its

auspicious performance surpassing traditional methodologies. In managing sequential data,

Recurrent Neural Networks (RNNs) exhibit superior efficacy compared to conventional neural

30

network architectures. This advantage stems from their incorporation of a recurrent cell (tanh

or sigma cell), enabling the retention of prior memory. The evolution of RNNs led to the

conception of Long-Short Term Memory Neural Networks (LSTM NNs), a progression

achieved by introducing specialized gates (forget gate, input gate, and output gate) into the

recurrent cell. These gates work synergistically to adeptly manage long-term dependencies [11].

Moreover, LSTM NNs effectively circumvent the shortcomings of RNNs, such as the

predicaments of vanishing and exploding gradients [12, 13]. Subsequently, to streamline the

architecture and reduce trainable parameters, the amalgamation of the forget gate and input gate

into a singular update gate resulted in the inception of the Gated Recurrent Unit (GRU) [14].

Unlike LSTM, the GRU comprises only two gates: the update gate and the reset gate.

Additionally, a variety of other extensions of LSTM NNs are explored in comprehensive

surveys of RNNs [12].

Even though the family of RNNs successfully improves the performance of sequential or

temporal prediction, these architectures were considered to have a limited performance for

spatiotemporal datasets. This is because RNNs are usually trained spatially independently or

based on only local information. To account for the spatial pattern for traffic flow,

Convolutional Neural Networks (CNNs) and RNNs were combined using CNNs to extract the

spatial pattern while RNNs to learn the temporal patterns [15]. Similarly, 3-Dimensional CNNs

with LSTM NNs were employed to forecast PM2.5 concentration in China [16]. To deal with

non-Euclidean spatial pattern extraction of CNNs, Graph Neural Networks (GNNs) are recently

developed and extended, as reviewed by [17]. For GNNs, the non-Euclidean features are used

as information filters to control the parameter-sharing between nodes. For instance, the link

connection is used as the adjacency matrix for Hybrid GNNs for road traffic prediction [18].

Furthermore, three non-Euclidean features (neighborhood, functional similarity, and

transportation connectivity) were used to construct the spatial dependency for GNNs to predict

ride-hailing demand [19].

Conversely, the exploration of volatility or variance analysis has been predominantly

concentrated within the field of econometrics, wherein it holds the potential to furnish

invaluable insights to bolster decision-making endeavors. The Autoregressive Conditional

Heteroscedasticity (ARCH) model emerges as a statistical regression framework tailored for

prognosticating forthcoming variance or volatility [1]. This paradigm encompasses two distinct

formulations: ARCH in variance and ARCH in mean (ARCH-M). ARCH solely incorporates

the squared residuals from preceding lags as independent variables, while the Generalized

ARCH (GARCH) model encompasses historically predicted variances as well. The GARCH

model has spurred numerous extensions, including but not limited to Power ARCH, Threshold

ARCH, and Exponential ARCH. Notably, several ARCH models were employed to predict the

return rate of daily closing prices for the Shanghai and Shenzhen 300 Index [20]. Likewise, in

a similar vein, ARMA-GARCH and ARMA-TARCH were utilized to anticipate volatility in

both traditional and sustainable stock indices within the FTSE4Good index series family by Ti

et al. [21]. In addition, diverse adaptations, including ARMA-GARCH, SARIMA-GARCH, and

SARIMA-SGARCH, were trained to forecast the precipitation index [22], daily peak electricity

demand [23], and internet traffic [24], respectively. While ARCH-M exhibits incremental

enhancements in predictive accuracy over ARIMA, it may grapple with convergence criteria

and protracted training durations. Recently, there has been a confluence of GARCH and deep

31

learning models to foresee price volatility across pivotal metals such as Gold, Silver, and

Copper [25, 26].

In this case, several prediction models have been employed and adapted to predict the

spatiotemporal demand of dockless shared e-scooters such as spatiotemporal graph capsule

neural network (GCScoot [27] and GCScoot2 [28]), encoder-recurrent neural network–decoder

(ERD) [29], Masked Fully Convolutional Network (MFCN) [30], Spatio-Temporal Multi-

Graph Transformer (STMGT) [31], LSTM NNs [32], and bagging ensemble approach of

XGBoost, RF, and Extra Tree (ET) [33]. To encapsulate, many formidable prediction models

have been advanced for anticipating transportation demand, specifically for shared bicycles and

e-scooters. However, the preponderance of these models primarily centers on enhancing

accuracy metrics. Consequently, the inherent heteroscedasticity observed in transportation

demand is often overlooked, resulting in an underutilization of historical data insights.

Moreover, the variance associated with heteroscedastic datasets is not constant, necessitating

its incorporation in supply strategizing. Articulated differently, the determination of inventory

or supply levels is intrinsically linked to both the residuals emanating from the demand

forecasting model and the dataset's heteroscedastic nature. Hence, a comprehensive variance

analysis emerges as imperative for crafting a refined supply level estimation model. Achieving

this nuanced approach can be facilitated through the formulation of conditional variance

models, exemplified by constructs like SGARCH, or by adopting data transformation

methodologies such as the Box Cox transformation.

This study furnished prospective contributions to the domain of shared e-scooters and

supply level strategizing. Initially, the study unveiled spatiotemporal trends in shared e-scooter

demand through the analysis of three distinct datasets from Thammasat University (Thailand),

Minneapolis (Minnesota), and Austin (Texas). Secondly, the study addressed the

heteroscedastic nature inherent in shared e-scooter demand when shaping supply level

strategies. This was manifested by the introduction of the Mean Oversupply (MO) metric,

designed to facilitate the assessment of efficiency at specific proportions of served demand.

Lastly, the inquiry illuminated the merits and demerits associated with the application of the

Box Cox transformation, encompassing its repercussions on demand prediction precision and

supply-level strategizing.

3.2 Methodology

3.2.1 Research framework

Based on the literature review in the previous section, we could see that many methods

were proposed to deal with spatiotemporal demand prediction, including statistical regression

models, machine learning algorithms, and shallow or deep learning approaches. Even though

these regression models could achieve state-of-art performance, there are still prediction errors

or residuals commonly presenting in the form of mean squared error (MSE), Root MSE

(RMSE), mean absolute error (MAE), etc. Reducing these metrics leads to lower demand

uncertainty resulting in higher planning efficiency. Since the inventory or supply level planning

party depends on the variation of demand prediction models, variance analysis is necessary to

further reduce the uncertainty, particularly for a heteroscedastic dataset. Therefore, this section

32

aims to answer the second objective by combining the demand and variance predictions to

design an efficient supply planning model.

To realize this aim, the methodology (see Figure 3.1) employed in this section was

delineated into five core segments: data preprocessing, data manipulation, demand projection,

variance projection, and supply level estimation. The initial phase encompassed the collection,

encoding, and incorporation of diverse attributes, encompassing shared e-scooter data,

meteorological variables, annual events, public holidays, days of the week, and temporal

intervals. Drawing upon insights from the literature review, a prevalent practice was the

normalization of data within the range of 0 to 1, aligning them for compatibility with specific

activation functions; however, instances of training on the original scale were also identified.

Recognizing the potential enhancements in prediction accuracy and mitigation of

heteroscedastic effects attributed to the Box Cox transformation [34], the subsequent stage

incorporated this transformation as an additional option for data manipulation.

In the subsequent phase, an array of machine learning and deep learning models were

conceived to undertake the prediction of shared e-scooter demand on an hourly basis.

Concurrently, Grid Search (GS) and Bayesian Optimization (BO) were utilized to tune the

hyperparameters of the prediction models, including Seasonal Autoregressive Integrated

Moving Average with exogenous variables (SARIMAX), RF, XGBoost, Fully Connected

Neural Networks (FCNNs), RNNs, and GRUs. The primary objective underpinning the

comparative performance assessment of Box Cox-transformed data against original/normalized

data aimed to highlight a distinct contrast: while the residuals stemming from prediction models

employing Box Cox-transformed data exhibited an absence of heteroscedasticity, such effects

were discernible in the case of models using original or normalized data. In this stage, several

variation models (constant, daily, and SGARCH variances) were employed to forecast the

residuals of these demand prediction models. Under its capacity in mitigating heteroscedastic

tendencies [2, 34], the Box Cox transformation ensured a constant variance in the transformed

data.

Then again, within the scope of accuracy evaluation, the optimal models among original

and normalized data were selected. The residuals of these models were subsequently subjected

to variance analysis across three distinct scenarios: constant variance, daily variance, and

variance prediction through the employment of SGARCH. Consequently, the transformed Box

Cox data exhibited singular variance modeling (Constant Variance), while the original or

normalized data were subjected to three variance models (constant, daily, and SGARCH

variances). In the pursuit of variance analysis and the formulation of supply level estimation,

exclusive scrutiny was devoted to three models—SARIMAX, XGBoost, and GRUs. The

exclusion of XGBoost and RF stemmed from their analogous predictive performance, while

GRUs were chosen based on their parity with the performance levels observed in FCNNs and

RNNs. Subsequently, the anticipated demand (step 3) and the projected variance (step 4) were

synergistically leveraged in devising the Supply Level framework of step 5. In this phase, a

novel metric, the Mean Oversupply (MO), was introduced to facilitate a comparative

assessment of the efficacy of the four supply-level models across a specified spectrum of served

demand, ranging from 70% to 98%.

33

Figure 3.1 Framework for supply level planning

3.2.2 Data transformation

Data transformation could impact prediction performance and conform the data to

assumptions specifically for statistical models. From previous studies, the demand prediction

models, especially machine learning and deep learning models commonly trained with original

or normalized scale. Two popular normalization techniques aim to convert the data to have the

same distribution (mean and z-score normalization) or the same scale (min-max normalization

or 0-1 scale). Min-max normalization in Eq. 3.1 was considered in this study as it is suitable

for some activations of deep learning models (ex., ReLU). Alternatively, the Box Cox

transformation stands as a widely adopted power transformation methodology grounded in a

likelihood maximization estimator. Its principal objectives encompass the stabilization of

variance, the reduction of skewness, and the alignment of data with a normal distribution. Box

Cox transformation supports only the positive value, so Yeo and Jonhson [35] extended the

formulation in Eq. 3.2 to support both positive and negative values while improving the

normality and symmetry. The formulation of these two transformations is as follows:

𝑥𝑡
𝑛𝑜𝑟𝑚 = 𝑥𝑡 −min⁡(𝑥𝑡)/(max(𝑥𝑡) − min⁡(𝑥𝑡)) (3.1)

34

𝑥𝑡,𝑟
𝐵𝐶 =

{

 𝜆𝑟

−1 [(𝑥𝑡,𝑟 + 1)
𝜆𝑟
− 1] ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ if 𝜆𝑟 ≠ 0, 𝑥𝑡,𝑟 ≥ 0

ln(𝑥𝑡,𝑟 + 1) ⁡⁡⁡⁡⁡⁡ if 𝜆𝑟 = 0, 𝑥𝑡,𝑟 ≥ 0

− [(−𝑥𝑡,𝑟 + 1)
2−𝜆𝑟

− 1] /(2 − 𝜆𝑟)⁡⁡⁡⁡⁡if 𝜆𝑟 ≠ 2, 𝑥𝑡,𝑟 < 0

−ln(−𝑥𝑡,𝑟 + 1) ⁡⁡⁡⁡⁡⁡⁡ if 𝜆𝑟 = 2, 𝑥𝑡,𝑟 < 0

 (3.2)

Where 𝑥𝑡
𝑛𝑜𝑟𝑚 is the normalized scale of the variable 𝑥𝑡, while 𝑥𝑡,𝑟

𝐵𝐶 is the Box Cox scale of

e-scooter demand 𝑥𝑡,𝑟 at time 𝑡 and region 𝑟. 𝜆𝑟 is Box Cox transformation’s parameter for

region 𝑟. Since e-scooter demand is a nonnegative variable, the change was the first case of Eq.

3.2, but it has the maximum requirement. In other words, the predicted transformed demand

𝑥̂𝑡,𝑟
𝐵𝐶 , including the supply level, must be less than −1/𝜆, specifically when 𝜆 < 0.

3.2.3 Demand prediction

3.2.3.1 Autoregressive integrated moving average (ARIMA)

ARIMA or Box-Jenkins model is a popular time series model applying differencing to

make data stationary (Integrated) while the disturbances follow a linear autoregressive moving

average (ARMA) specification. To remove the seasonal patterns, ARIMA was extended by

deseasonalizing and including the seasonal ARMA, called SARIMA. Occasionally, the

independent variables of these two models also include the exogenous variables, called

ARIMAX or SARIMAX. The general formulation of SARIMA(p,d,q)(P,D,Q,S) [1] are as

follows:

𝜌(𝐿𝑝)𝜌𝑆(𝐿
𝑃)∆𝑑∆𝑆

𝐷𝒚𝒕 = α + 𝜃(𝐿
𝑝)𝜃𝑆(𝐿

𝑃)𝜖𝑡 (3.3)

Where:

𝜌𝑆(𝐿
𝑃) = 1 − 𝜌𝑆,1(𝐿

𝑆) − 𝜌𝑆,2(𝐿
2𝑆) − ⋯− 𝜌𝑆,𝑃(𝐿

𝑃𝑆)

𝜃𝑆(𝐿
𝑃) = 1 + 𝜃𝑆,1(𝐿

𝑆) + 𝜃𝑆,2(𝐿
2𝑆) + ⋯+ 𝜃𝑆,𝑃(𝐿

𝑃𝑆)

𝐿 is lag operator (𝐿𝑗𝑦𝑡 = 𝑦𝑡−𝑗)

α is constant term

∆𝑑 is differencing by ∆ operator 𝑑 times (0 – 2)

∆𝑆
𝐷 is deseasonalizing by ∆ operator between seasonal lag 𝑆

𝜖~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎2) is white noise disturbance

3.2.3.2 Random forest (RF)

Random Forest (RF) is a powerful machine learning algorithm dealing with high

dimensional data while requiring just a small amount of data and training time, introduced by

Breiman [36]. RF leverages the results from many random decision trees’ predictions (see

Section 4.2.1), while large numbers of trees are built from randomly selected inputs or

combinations of inputs (bootstrapping or bootstrap sampling), see Figure 3.2. In this case,

hundreds of bootstrapping samples (i.e., randomly resampling with replacement) were drawn,

while decision tree regression was built for each sample (called week learners). For regression

35

problems, RF is simply the average prediction results from each regression tree, while majority-

voting was employed for classification problems. This bootstrap aggregating (or bagging)

technique could improve the prediction performance of DT as it has high-variance and low-bias

procedures. This study trained the RF model using a Python module, RandomForestRegressor

of scikit-learn. Several parameters of RF were examined, such as number of trees in the forest,

criterion, and depth of regression tree.

Figure 3.2 Flowchart of Random Forest (RF): average all predictions for regression problem

and majority-voting for classification problem

3.2.3.3 Extreme gradient boosting (XGBoost)

Extreme Gradient Booting (XGBoost) is an efficient, scalable, and distributed gradient

booting regressor, started as a research project in the Distributed (Deep) Machine Learning

Community (DMLC) group [4]. Unlike other gradient boosting algorithms, XGBoost has clever

penalization of base estimators, a proportional shrinking of terminal nodes, Newton Boosting,

extra randomization parameters, automatic feature selection, and parallel computing. Moreover,

it also accepts sparse input and the input types as a dense matrix, sparse matrix, data file, or

their own class xgb.DMatrix. XGBoost can quickly optimize the loss function as it considers

both the first-order gradient 𝑔̂𝑚(𝑥) = [
𝜕𝐿(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)
]
𝐹(𝑥)−𝐹𝑛−1(𝑥)

 and the second order gradient

ℎ̂𝑚(𝑥) = − [
𝜕𝐿2(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)2
]
𝐹(𝑥)−𝐹𝑛−1(𝑥)

. Instead of residuals, the base learner of XGBoost was

trained on the negative ratio of these two gradient functions, (−𝑔̂𝑚(𝑥)/ℎ̂𝑚(𝑥)). In this case,

the python package of XGBoost was used, while two parameters were tuned including depth of

the trees and the number of gradient-boosted trees.

36

3.2.3.4 Recurrent neural networks (RNN, LSTM, GRU)

Figure 3.3 shows the three popular cells of RNNs used in transportation demand

prediction, i.e., simple RNNs cell (a), LSTM cell (b), and GRU cell (c). There are four common

architectures of RNNs based on the number of inputs and outputs: one-to-one, one-to-many,

many-to-one, and many-to-many. In the previous studies, most of the RNNs were employed as

many-to-one architecture based on the local information, while several spatial features were

included, such as POI, employment density, population density, etc. Therefore, the architecture

could be trained spatially combined or spatially independent. Since the spatial features are

static, separate models could provide better prediction performance, but this technique is time-

consuming for many spatial data. On the other hand, many-to-many architecture RNNs could

be another option as historical data of all spatial demands and external features were combined

as the input to predict all the future spatial demands. Since this study did not process the exterior

spatial features, the demand prediction was examined for both spatially independent and

spatially combined cases, while the best prediction models were selected.

Figure 3.3 Schematic illustrations of (a) recurrent neural networks, (b) long short-term

memory neural networks, and (c) gated recurrent unit

The simple RNNs have sigma (sigmoid function) or tanh cells working as memory cells

which fuse the current input with previous states. These cells enable RNNs to perform better

than conventional neural networks. The formula of RNNs cell could be written as:

𝑦𝑡 = ℎ𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) (3.4)

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1/(1 + 𝑒𝑥) (3.5)

Where 𝑥𝑡⁡, ℎ𝑡 and 𝑦𝑡⁡denote the cell's inputs, recurrent information, and output at the time

t. And 𝑊ℎ⁡⁡,𝑊𝑥, and b are training weights and biases.

The standard LSTM NNs have three gates: Forget Gate, Input Gate, and Output Gate.

Forget Gate could be removed from the LSTM cell, but its performance was poor [12].

Therefore, the mathematical expressions of LSTM NNs are:

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓) (3.6)

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖) (3.7)

𝐶𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊𝐶ℎℎ𝑡−1 +𝑊𝐶𝑥𝑥𝑡 + 𝑏𝐶) (3.8)

37

𝑡𝑎𝑛ℎ(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥) (3.9)

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ 𝐶𝑡
′ (3.10)

𝑂𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑂ℎℎ𝑡−1 +𝑊𝑂𝑥𝑥𝑡 + 𝑏𝑂) (3.11)

ℎ𝑡 = 𝑂𝑡 ∘ 𝑡𝑎𝑛ℎ(𝐶𝑡) (3.12)

Where ∘ denotes the pointwise multiplication of two matrices called Hadamard product. W

and b are training weight matrices and bias vectors, respectively. 𝑓𝑡 is forget gate, 𝑖𝑡 is the input

gate and 𝐶𝑡
′ is current memory. 𝐶𝑡 is the combination of current memory 𝐶𝑡

′ and long-term

memory 𝐶𝑡−1. Finally, the output gate 𝑂𝑡 controls the temporal information for the output ℎ𝑡.

GRU has only two gates, reset gate and update gate, so it requires shorter training time than

LSTM NNs [3] with comparable performance [37]. For this reason, GRU is more suitable for

hyperparameter tuning than LSTM NNs. The training process of GRU could be expressed as

follows:

𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟ℎℎ𝑡−1 +𝑊𝑟𝑥𝑥𝑡 + 𝑏𝑟) (3.13)

𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑧ℎℎ𝑡−1 +𝑊𝑧𝑥𝑥𝑡 + 𝑏𝑧) (3.14)

ℎ𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊ℎ̃ℎ(𝑟𝑡 ∘ ℎ𝑡−1) +𝑊ℎ̃𝑥𝑥𝑡 + 𝑏ℎ̃) (3.15)

ℎ𝑡 = (1 − 𝑧𝑡) ∘ ℎ𝑡−1 + 𝑧𝑡 ∘ ℎ𝑡̃⁡ (3.16)

Likewise, W and b denote the matrices of training weights and vectors of bias, respectively.

𝑟𝑡 denotes the reset gate, while 𝑧𝑡 denotes the update gate. Within this context, the GRUs’

output ℎ𝑡 at a given time instance t is realized as a linear combination of the previous output

ℎ𝑡−1 and the projected output ℎ𝑡̃. The sequential layers of GRU in this study are the input layer

with GRU cell, dropout layer, n number of hidden layers with GRU cell, and dense layer as the

output layer.

3.2.4 Variance prediction

As acknowledged, it is understood that the true data cannot be precisely forecasted (i.e.,

𝑦 = ⁡ 𝑦̂ + 𝜎(𝑋)𝜀), given the assumption of an absence of associated errors in the observed data.

In this particular context, 𝑦̂ = ⁡Ε(𝑦|𝑋), Ε(𝜀|𝑋) = 0, Var(𝜀|𝑋) = Ε(𝜀2|𝑋) − Ε2(𝜀|𝑋) = 1,

Var(𝑦|𝑋) = 𝜎2(X) > 0, and 𝑋 and 𝜀 are independent. Homoscedasticity pertains to the

circumstance where variance remains consistent, whereas heteroscedasticity indicates variable

variance. For models grounded in probabilistic principles, such as those predicated on

assumptions of stationary data, data distribution, and homoscedasticity, diagnostic assessments

hold significance. Regrettably, this facet has been frequently overlooked within the context of

machine learning and deep learning. In situations featuring heteroscedastic data, the variance

can be constructed as a function of the random variables 𝑋. In the domain of time-series

analysis, the assessment of heteroscedasticity of residuals is typically conducted through the

examination of autocorrelation in squared residuals and the employment of the Lagrange

Multiplier (ARCH-LM) test. Typically, the formulation of variance involves the utilization of

the previous variances and squared residuals. This conception of conditional variance is rooted

in the notion that periods marked by high and low variance are clustered together [1]. At this

juncture, two distinct alternatives emerge: the incorporation or exclusion of the conditional

38

variance in influencing the conditional mean. The simultaneous prediction approach, which

entails integrating the conditional variance within the conditional mean, can yield a nonconvex

objective function, thereby leading to heightened computational demands. This is primarily due

to the augmented parameter set that necessitates estimation, particularly during hyperparameter

tuning. Given these considerations, the present study has opted to pursue the avenue of

disjointly predicting the anticipated mean and the conditional variance. This decision entails

disregarding the influence of the conditional variance on the expected mean. This approach

offers several merits, notably a streamlined model formulation through univariate variance

modeling, alongside simplified hyperparameter tuning for both demand and variance

prediction. However, a drawback lies in the potential foregone accuracy enhancement

achievable by encompassing the conditional variance in the demand prediction model. For

example, in a similar vein, ARIMA and GARCH were employed to predict the demand and

variance, respectively, for safety stock estimation by Trapero et al. [38]. In this study, resulting

from the demand prediction process detailed in Section 3.2.3 were employed to train the

variance models. This yielded the formulation of three distinct variance models: constant

variance as described in Eq. 3.17, daily seasonal variance as articulated in Eq. 3.18, and

forecasted variance achieved via SGARCH as delineated in Eq. 3.19, as presented below:

𝜎𝑐𝑜𝑛
2 (𝑟) =

1

𝑇
∑ 𝜀(𝑡,𝑟)

2𝑇
𝑡=1 ⁡⁡ (3.17)

𝜎𝑠𝑒𝑎𝑠
2 (𝑡, 𝑟) =

1

𝑁
(𝜀(𝑡−24,𝑟)

2 + 𝜀(𝑡−2∗24,𝑟)
2 +⋯+ 𝜀(𝑡−𝑁∗24,𝑟)

2)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3.18)

𝜎𝑆𝐺𝐴𝑅𝐶𝐻
2 (𝑡, 𝑟) = 𝑎0 + 𝑎1𝜀(𝑡−1,𝑟)

2 + 𝑎2𝜀(𝑡−2,𝑟)
2 + 𝑎3𝜀(𝑡−24,𝑟)

2 + 𝑏1𝜎(𝑡−1,𝑟)
2 + 𝑏2𝜎(𝑡−2,𝑟)

2 + 𝑏3𝜎(𝑡−24,𝑟)
2 (3.19)

In Eq. 3.17, the constant variance of the region 𝑟, denoted as 𝜎𝑐𝑜𝑛
2 (𝑟), manifests as the

average of squared residuals stemming from the projected demand within that specific region.

Correspondingly, Eq. 3.18 presents the formulation of the seasonal daily variance, 𝜎𝑠𝑒𝑎𝑠
2 (𝑡, 𝑟),

which signifies the average of squared residuals pertaining to the anticipated demand during

the identical hour of each day. Here, 𝑁 denotes the total number of days. Although the

theoretical equivalence of the seasonal variance on average to the constant variance is expected,

the former usually exhibits a marginal diminution due to the propensity for evaluation residuals'

mean to deviate from zero. Formally, 𝜎𝑐𝑜𝑛
2 (𝑟) =

1

24
∑ 𝜎𝑠𝑒𝑎𝑠

2 (𝑡, 𝑟)24
𝑡=1 +

1

24
∑ (𝐸[𝜀𝑠𝑒𝑎𝑠(𝑡, 𝑟)] −
24
𝑡=1

𝐸[𝜀(𝑟)])
2
. Notably, the computation of the constant and daily seasonal variances is grounded in

the training dataset. Lastly, Eq. 3.19 presents the predicted variance by SGARCH,

𝜎𝑆𝐺𝐴𝑅𝐶𝐻
2 (𝑡, 𝑟), which was trained separately for each region 𝑟. The SGARCH model's training

leveraged maximum log-likelihood estimation [1]. In this context, a daily seasonal pattern (S =

24) was chosen, and insignificant parameters (at the 95% confidence level) in this equation

would be discarded.

3.2.5 Supply level planning

As depicted in Figure 3.1, the conceptual framework introduced in this research endeavors

to facilitate periodic rebalancing operations by adeptly harnessing insights from historical data.

This strategic framework endeavors to forecast forthcoming demand and variance, thereby

facilitating the design of well-informed supply levels or inventory levels. Within this

39

investigation, the term "supply level" is defined as the aggregate of supplies stemming from

operator-initiated rebalancing, drop-offs, and available e-scooters within the vicinity. Notably,

operators tasked with rebalancing e-scooters must meticulously factor in fluctuations in drop-

off demand, inventory levels, and lead time, all of which can be approximated through the

models outlined in this study. In accordance with our approach, the estimation of total supply

is grounded in the demand side, precisely pick-up demand. The study's focal point revolves

around the anticipation of comprehensive demand before the initiation of rebalancing actions.

As a result, the aggregate supply level is inferred from the demand side, specifically employing

solely the pick-up data. To elaborate further, the term "supply level" within this context—

pertaining to inventory or order-up-to levels—adheres to the same formulation as the

confidence interval, which represents the summation of the projected pick-up demand (as

detailed in Section 3.2.3) and the safety stock (hinged on the predicted variance outlined in

Section 3.2.4). The comparative examination of various supply level models was conducted to

elucidate the efficacy of considering the heteroscedastic nature inherent in shared e-scooter

demand, thereby informing operational planning with heightened precision.

Safety stock signifies the inventory allocation aimed at averting stockouts, a consequence

of demand fluctuations, inaccuracies in forecasts, and supply lead time [39]. In the context of

station-based shared bicycles, supply levels are devised in alignment with the target service

level, denoting the likelihood of encountering a shortage event for both pick-up and drop-off

demands [39, 40]. However, in the scenario of dockless shared e-scooters, users possess the

flexibility to terminate their trips at any locations, thus permitting the disregard of service levels

for drop-off trips. Given the variance across supply level models in terms of service levels and

backorder levels, the typical approach involves juxtaposing the deviations from the target cycle

service level and backorder level (scaled by safety stock), often illustrated through curves. This

facilitates the comparative assessment of inventory or supply level models [38]. Notably, this

study took a distinct approach by evaluating supply level models at equivalent percentages of

served demand (as depicted in Figure 3.4). This methodology consequently permits a

comparison through a singular metric, denoted as the Mean Oversupply. The definitions of key

expressions—Supply Level (𝑆(𝑡,𝑟)), Served Demand (𝑆𝐷𝑡,𝑟), Percentage of Served Demand (𝑃),

Oversupply (𝑂𝑡,𝑟) and Mean Oversupply (𝑀𝑂) —are delineated below:

𝑆(𝑡,𝑟) = 𝐷̂(𝑡,𝑟) + 𝑑 ∗ 𝜎(𝑡,𝑟)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3.20)

𝑆𝐷(𝑡,𝑟) = min{⁡𝐷(𝑡,𝑟)⁡,⁡⁡⁡𝑆(𝑡,𝑟)}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3.21)

𝑃 = ⁡∑ ∑ 𝑆𝐷(𝑡,𝑟)
𝑇
𝑡=1

𝑅
𝑟=1 ∑ ∑ 𝐷(𝑡,𝑟)

𝑇
𝑡=1

𝑅
𝑟=1⁄ (3.22)

𝑂𝑡,𝑟 = ⁡max{S(𝑡,𝑟) − 𝐷(𝑡,𝑟)⁡; 0}⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3.23)

𝑀𝑂 =⁡
1

𝑅𝑇
∑ ∑ 𝑂𝑡,𝑟

𝑇
𝑡=1

𝑅
𝑟=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (3.24)

Eq. 3.20 illustrates the Supply Level, denoted as S(𝑡,𝑟), as the sum of the forecasted hourly

demand 𝐷̂(𝑡,𝑟) and the forecasted safety stock within the time interval 𝑡 of region 𝑟. In this

equation, safety stock is represented as the outcome of multiplying the predicted standard

deviation 𝜎(𝑡,𝑟) and safety stock parameter 𝑑, which is contingent upon the function involving

the target service level 𝑍𝑠𝑐𝑜𝑟𝑒, lead time, and time increment [38, 39, 41]. The forecasted

40

standard deviations 𝜎(𝑡,𝑟), as detailed in Section 3.2.4, is the square root of the predicted

variance—potentially emanating from the constant variance, daily seasonal variance, or

conditional variance computed by SGARCH. Lead time and time increment are influenced by

the rebalancing frequency, thereby remaining consistent across various supply level models. As

a consequence, these parameters are held constant at a unit value. In this specific context, 𝑑 and

𝑍𝑠𝑐𝑜𝑟𝑒 exhibit equivalence; nevertheless, the safety stock parameter(𝑑) is deliberately adjusted

to attain the targeted percentage of served demand (refer to Figure 3.4).

Figure 3.4 Flowchart of supply level models comparison

41

The served demand in Eq. 3.21 signifies the lesser value between the actual demand 𝐷(𝑡,𝑟)

and the supply level 𝑆(𝑡,𝑟). In cases where the supply level falls below the actual demand, a

portion of the demand remains unmet (i.e., 𝑆𝐷(𝑡,𝑟) = 𝑆(𝑡,𝑟)). Conversely, if the supply level

surpasses the actual demand, a surplus of supply—outlined in Eq. 3.23 (i.e., 𝑆𝐷(𝑡,𝑟) = 𝐷(𝑡,𝑟)

and 𝑂(𝑡,𝑟) = 𝑆(𝑡,𝑟) − 𝐷(𝑡,𝑟) ≥ 0)—is incurred. In Eq. 3.22, the percentage of served demand

signifies the ratio of the total projected served demand to the overall actual demand. Given that

the total actual demand constitutes the summation of both served and unserved demand, the

percentage of unserved demand corresponds to one minus the percentage of served demand

(1 − 𝑃). Consequently, an efficient supply level model is characterized by the smallest mean

oversupply, as detailed in Eq. 3.24, while concurrently preserving an equivalent percentage of

served (or unserved) demand. It's noteworthy that at a particular percentage of served demand,

distinct supply level models may exhibit varying safety stock parameter values, as depicted in

Figure 3.4. Here, 𝑅 represents the total count of regions, while 𝑇 a signifies the total count of

time intervals.

3.3 Data collection and featuring

In this study, an exploration was undertaken encompassing three distinct datasets. Initially,

data was procured from Neuron Mobility, the operator overseeing shared e-scooters within

Thammasat University's Rangsit Campus in Thailand. The additional datasets were sourced

from publicly accessible platforms relating to Austin, Texas, and Minneapolis, Minnesota,

within the United States. In the instance of Austin, a preprocessing step was employed wherein

trips during the initial months of introduction were excluded, primarily due to concentrated

operations within the downtown region. The identification and removal of anomalous trips were

conducted through a series of criteria, including criteria based on trip duration (below 30

seconds or exceeding two hours), trip distance (below 20 meters or beyond 10 kilometers), and

date (falling outside the final date boundary). Referring to the concluding date in Table 3.1, the

cumulative samples for Thammasat, Minneapolis, and Austin were established as 2,352 (24

hours multiplied by 98 days), 4,704 (24 hours multiplied by 196 days), and 13,680 (24 hours

multiplied by 570 days), respectively.

Table 3.1 Dataset’s information

Description Thammasat (TH) Minneapolis (MN) Austin (TX)

Start Date 23-Jan-19 14-May-19 1-Aug-18

End Date 30-Apr-19 25-Nov-19 21-Feb-20

Days 98 196 570

Trips 29,132 913,781 8,689,720

Time Intervals (T) 2,352 4,704 13,680

Regions (R) 1 15 30

Trip Distance (km) 1.3 1.7 1.5

Trip Duration (min) 11.6 12.7 10.4

In this experimental context, the term "demand" pertains to the collective count of pick-up

trips occurring within a specific time interval (1 hour) and region. For the Thammasat Rangsit

42

Campus, which spans approximately 3.21 square kilometers, our focus encompassed generating

demand predictions for the comprehensive area. Concerning the Austin dataset, trips were

categorized based on census tracts, each averaging an area of 2.05 square kilometers. While

shared e-scooter operations extended across more than 50 census tracts within the Austin

metropolitan zone, our analysis exclusively targeted the top 30 censuses characterized by an

average hourly demand exceeding one trip. A substantial discrepancy in demand was observed

between the downtown census and other censuses, with average hourly demands measuring

around 208 and 10, respectively (refer to Figure 3.5). In the Minneapolis dataset, trip locations

were recorded in terms of street names, thereby necessitating the utilization of street centers as

trip coordinates. To introduce diversity in spatial clustering, the k-means algorithm was

implemented for trip grouping in Minneapolis. By adhering to the Elbow method, the optimal

number of spatial clusters was determined as 15. Consequently, the average area of these

clusters approximated 10 square kilometers, albeit the inner clusters—characterized by denser

trip activity—were proportionately smaller than the outer regions.

Figure 3.5 Average hourly e-scooter demand by census in Austin, Texas

Much like the impact of weather conditions on shared bicycles, the utilization of e-scooters

is similarly influenced. Weather Underground, a worldwide meteorological network, furnishes

43

an array of weather-related variables at hourly intervals (www.wunderground.com). Notably,

this historical weather data was exclusively gathered from international airports, thereby

occasionally engendering significant geographic disparity from the area of study's center. Seven

pertinent weather attributes were sourced from Wunderground for training purposes,

encompassing temperature, precipitation, wind speed, humidity, wind gust, atmospheric

pressure, and dew point. In instances of missing values, this research adopted the approach of

linear interpolation to ensure data completeness.

Figure 3.6 illustrates anomalous trends in shared e-scooter demand. Upon closer

examination, these heightened demand instances were discernibly associated with specific

annual festivals or gatherings. In the context of Austin, notable annual events included the

Annual SXSW, Pecan Street Festival, H-E-B Austin Symphony, and City Limits Music Festival.

Similarly, in Minneapolis, peak ridership aligned with events such as OpenStreets, Pride

Festival Parade, Stone Arch Bridge Festival, Uptown Art Fair, and State Fair Festival. Notably,

at Thammasat University, an upsurge in demand was evident during the two-day "Season

Market" promotional event. The influence of public holidays was also noteworthy, particularly

in the Thammasat dataset, where a marked decline in ridership was observed owing to reduced

student presence on campus during such holidays.

Figure 3.6 Hourly demand of shared e-scooters in Austin TX (top), Thammasat University

(bottom-right), and Minneapolis MN (bottom-left)

http://www.wunderground.com/

44

Figure 3.7 Average hourly demand of shared e-scooters by day of the week, public holiday,

and annual events (festival or fair)

Figure 3.8 Lag-wise Pearson correlation of weather’s attributes on shared e-scooter demand

Beyond the recurring daily and weekly patterns, the usage trends of shared e-scooters

exhibited marked seasonality. This was evident through the pronounced surge in demand during

summer, juxtaposed with a relative decline during winter. Notably, the operators in Minneapolis

were compelled to suspend operations during the winter season due to safety concerns, a trend

characterized by a gradual decline in ridership leading up to the onset of snowy conditions.

Furthermore, shared e-scooter operators adhered to advisory measures, such as postponing

operations during significant events like the state visit of the US president to Minneapolis on

October 10, 2019. Consequently, these characteristics were recorded as binary attributes,

encompassing factors such as annual events or fairs, public holidays, time of day, day of the

week, day of the month, and temporary suspensions (specifically in Minneapolis). From a short-

trip perspective, the average journey distance for Thammasat, Austin, and Minneapolis stood at

approximately 1.3, 1.5, and 1.7 kilometers, respectively. Additionally, riders spent an average

of about 11.6, 10.4, and 12.7 minutes on the e-scooter. By considering the average fare [42],

the revenue generated per trip in these respective cities amounted to around 1.75, 2.56, and 2.91

US dollars. At this pricing structure, the cost per e-scooter trip was relatively higher compared

to shared bikes, a likely factor contributing to the limited popularity of shared e-scooters for

commuting purposes.

As shown in Figure 3.7 for Minneapolis, the ridership patterns manifest a notable

resemblance from Monday to Thursday, while the ridership on Friday is relatively higher that

other weekdays, specifically during the evening. The ridership in this city on Saturday is

marginally high during the afternoon, but this ridership is lower than that on Friday during the

evening. This phenomenon can be attributed to individuals opting for e-scooters to engage in

leisurely pursuits following an exhaustive workweek, especially Friday evening and night. On

Sunday, the ridership on this day in Minneapolis exhibits a pattern akin to weekdays, but with

a relatively diminished nighttime demand compared to the rest of the week. For the Austin

45

dataset, the ridership patterns on weekdays closely resemble those observed in Minneapolis.

However, demand in Austin experiences a significant increase on Saturdays in contrast to other

weekdays, while Sunday's ridership mirrors that of typical weekdays, except for a slightly

heightened demand in the afternoon. From these two datasets, a discernible divergence between

weekdays and weekends is noticeable, featuring a minor morning peak. This indicates the

utilization of shared e-scooters for commuting purposes, albeit at a relatively modest ratio.

During public holidays, Austin witnesses subdued demand in comparison to regular days, yet

still surpassing the majority of weekdays during the afternoon, while the demand trend in

Minneapolis echoes that of Sundays. Notably, both cities experience a substantial surge in

demand during annual festival days, with Austin's demand reaching nearly double that of

regular days.

At Thammasat University, weekend demand exhibits a relatively diminished trend

compared to weekdays, with Friday afternoons registering lower demand compared to other

weekdays. This pattern underscores the interrelation between e-scooter demand and the

presence of students and faculty on the campus. Typically, demand peaks on Tuesdays,

surpassing other weekdays. Furthermore, ridership also corresponds to student activities—

demand rises from early morning until the afternoon but notably declines around 7 am,

coinciding with students being primarily engaged in class. Analogous to the preceding datasets,

Thammasat's ridership experiences significant surges during annual events.

Figure 3.8. illustrates the Pearson correlation between the prevailing ridership and lagged

weather attributes. In this context, both Austin and Minneapolis exhibit a congruent trend

wherein the current demand displays a robust correlation with weather attributes, notably

temperature and humidity. The correlation coefficients adopt a contrasting pattern that reflects

the daily cycle. Conversely, Thammasat's current demand manifests a weak correlation with

contemporaneous weather conditions, yet a strong correlation with past or future weather

conditions. This discrepancy can be attributed to distinct peak demand periods for e-scooters

around midday, as opposed to the temperature's peak occurring at approximately 3 pm.

Consequently, historical weather attribute data were also incorporated into the demand

prediction models, with a specific focus on machine learning and deep learning models.

The demand patterns delineated earlier influenced the selection of inputs for the demand

prediction models, as succinctly outlined in Table 3.2. Given the presence of both daily and

weekly seasonal fluctuations, the temporal scope for demand prediction encompassed a span of

24 to 168 hours (equivalent to 24 times 7 days). Notably, as delineated in Table 3.2, the

application of Box Cox transformation (# Trips BC) demonstrated a marked reduction in the

volatility of hourly demand in comparison to the original scale (# Trips). Three input

components—historical average of overall demand (encompassing weekly, holiday, and event

patterns) —are particularly pivotal for the SARIMAX model, given its inherent limitation in

accommodating the binary values of these exogenous variables. Furthermore, the temporary

ban was imposed only in Minneapolis, this attribute was incorporated into the prediction models

as a binary variable.

46

Table 3.2 Description of inputs for demand prediction models

Inputs Thammasat (TH) Minneapolis (MN) Austin (TX)

Trips 11.59 ± 11.65 12.50 ± 22.39 16.91 ± 59.98

Trips BC 2.72 ± 1.55 1.65 ± 1.73 1.88 ± 2.56

Temperature 30.46 ± 3.31 15.96 ± 9.33 19.70 ± 9.37

Dew point 23.48 ± 2.89 9.29 ± 8.81 13.24 ± 8.84

Humidity 68.28 ± 16.05 66.89 ± 16.22 69.96 ± 20.27

Wind speed 12.15 ± 5.00 14.26 ± 7.78 13.01 ± 9.23

Wind gust 0.06 ± 2.19 7.66 ± 16.82 4.95 ± 13.46

Pressure 1010.24 ± 2.78 983.87 ± 6.31 996.93 ± 13.38

Precipitation 0.12 ± 0.46 0.16 ± 1.09 0.10 ± 1.03

HAO weekly 11.88 ± 8.78 192 ± 159.68 527.44 ± 369.44

HAO holiday 11.63 ± 7.68 157.98 ± 141.91 409.31 ± 282.48

HAO event 25.38 ± 18.14 253.53 ± 220.21 1082.10 ± 793.52

Hour of day 0 - 1 0 - 1 0 - 1

Day of week 0 - 1 0 - 1 0 - 1

Day of month 1 - 31 1 - 31 1 - 31

Holiday 0 - 1 0 - 1 0 - 1

Event 0 - 1 0 - 1 0 - 1

Ban - 0 - 1 -

Note: HAO: Historical Average of Overall demand, & BC: Box Cox scale

To ensure the generalizability of the models, the whole datasets were partitioned into two

segments: the training subset (in-sample) and the testing subset (out-of-sample). The initial 75%

of the dataset was allocated for training the models, while the remaining 25% was reserved for

evaluation purposes (refer to Figure 3.6). From Figure 3.7, volatility remains low during

periods of steady demand but escalates proportionally with heightened demand levels.

Similarly, numerous leisurely events, festivals, and fairs take place during the summer, resulting

in increased and fluctuating demand for shared e-scooters. Consequently, 75% of the training

subset was randomly designated for model training, and the remaining 25% was set aside for

model assessment. This random partitioning approach was chosen due to its significantly

reduced computational times in comparison to techniques like K-Folding, particularly during

hyperparameter optimization. Furthermore, it allows the models to learn explanatory variables

(such as events, holidays, and bans) that pertain to specific dates, which might be omitted if

employing conventional time-series splitting. However, due to the relatively modest size of the

Thammasat Dataset, all available data were utilized for both model training and evaluation

purposes.

3.4 Demand and variance prediction

3.4.1 Demand prediction results

Aligned with the research framework depicted in Figure 3.1, six predictive models were

employed to forecast the hourly ridership of shared e-scooters. These models comprised

SARIMAX, RF, XGBoost, FCNNs, RNNs, and GRUs. The deep learning models (FCNNs,

47

RNNs, and GRUs) were implemented using Keras and TensorFlow, Python libraries, within the

Jupyter Notebook environment. Subsequently, Random Forest and XGBoost were trained

utilizing the Scikit-learn and XGBoost libraries, respectively. Lastly, SARIMAX was trained

using the STATA statistical software as it facilitated the out-of-bag evaluation process.

The description of the GRU cell formulation was presented in Section 3.2.3.4. The

architectural configuration of GRUs is illustrated in Figure 3.9, encompassing the input layer

with GRU nodes, a single dropout layer, a cluster of hidden layers with GRU nodes, and the

output layer with conventional neurons. In Figure 3.9, input sequences are sequentially

arranged before entering the input layer, and the outputs from this layer are subject to dropout

at a specific rate to enhance learning efficacy with smoother learning curves. Uniform activation

functions and node counts were applied across the hidden layers. Within this architecture, the

output layer may consist of one or multiple neurons, permitting training of temporal demand

either spatially independently or spatially combined, respectively. Both spatially independent

and spatially integrated configurations were explored, with the optimal outcome chosen. These

two training methodologies each possess merits and drawbacks. Spatially independent training

enables models to attain optimal learning curves unhindered, albeit at the cost of disregarding

valuable information from neighboring regions. Conversely, the model featuring multiple

spatial outputs capitalizes on shared correlated information across regions to enhance prediction

performance, albeit necessitating careful optimization for best results.

Figure 3.9 The proposed architecture of GRUs model

While deep learning models can surpass traditional probabilistic models and machine

learning algorithms in performance, they also necessitate labor-intensive hyperparameter

optimization. Hyperparameter Optimization (HPO) involves fine-tuning aspects such as the

number of GRU nodes within the input layer, dropout rate, and the number of hidden layers,

among others. Various strategies were employed during this phase, encompassing grid search,

random search, and automatic optimization techniques like Bayesian Optimization, Tree-

structured Parzen Estimator, and genetic algorithms, among others. Bayesian Optimization

(BO) holds prominence as a sequential optimization methodology well-suited for resource-

intensive problems, particularly those inherent to deep learning. BO relies on two crucial

components: a surrogate function employing Gaussian Processes, and an acquisition function

using Upper Confidence Bound to balance exploration and exploitation. To optimize the GRU

configurations, Keras Tuner [43], a Python package for Bayesian optimization-based HPO, was

48

employed. This process was executed within the Keras and TensorFlow frameworks, operating

through Jupyter Notebook. Default settings were employed for all Bayesian Optimization

parameters, with the validation loss serving as the objective function. The initial points were

set to 10, and the maximum iterations were capped at 80. Furthermore, the number of epochs

was adjusted through early stopping criteria, incorporating a patience value of 10 and a

maximum epoch limit of 150.

In this research, Bayesian Optimization (BO) was applied to fine-tune nine pivotal

hyperparameters of the Gated Recurrent Units (GRUs), encompassing aspects such as the

lookback length, input layer’s activation function and number of GRU nodes, dropout rate,

number of hidden layers, hidden layers’ activation function and number of GRU nodes, output

layer’s activation function, and batch size (as outlined in Table 3.3). The HPO procedure was

carried out in a series of sequential steps due to several factors (refer to Figure 3.10): prolonged

training time stemming from the lookback length and number of hidden layers, challenges

related to local optima, iterations failing to converge, and instances of exploding iterations

where the loss function attains an infinite value. Initially, deep learning models with a solitary

hidden layer were independently optimized for diverse lookback lengths (24, 48, …, 168) to

identify the most optimal lookback length. Subsequently, for each designated lookback length,

the BO algorithm, employing the aforementioned configuration, sought to minimize the

validation loss by manipulating factors such as the number of nodes per layer, dropout rate,

activation function of each layer, and batch size. Following the determination of the optimal

lookback length, the configuration of deep learning models underwent re-optimization to

account for a higher number of hidden layers. Within this optimization, three activation

functions—ReLU, Tanh, and Sigmoid—were considered, alongside dropout rates ranging from

0.00 to 0.40 in increments of 0.01. The number of nodes per layer was confined between 10

and 500 with an interval of 10. The batch size was examined within the range of 4 to 1000. The

remaining parameters of the GRUs retained their default values, encompassing the optimizer

(Adam), learning rate (0.001), and the employment of Mean Squared Error (MSE) as the loss

function.

The predictive efficacy of the Gated Recurrent Units (GRUs) was juxtaposed against five

additional benchmark models, namely SARIMAX, RF, XGBoost, FCNNs, and RNNs.

Moreover, the influence of Box Cox transformation on Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE) was demonstrated by incorporating the Historical Average (HA)

model. The other five models for demand prediction underwent optimization using BO for

FCNNs and RNNs, and grid search for SARIMAX, RF, and XGBoost. This optimization

process is outlined in Table 3.3. Notably, SARIMAX, RF, and XGBoost models were trained

individually for each distinct region, while FCNNs and RNNs shared the same configurations

as GRUs. To mitigate overfitting issues, especially prevalent in RF and XGBoost, the difference

between training and validation loss was maintained at approximately 15%. A brief overview

of these five baseline models is presented below:

• SARIMAX: As evidenced in Figure 3.7, a distinct daily and weekly pattern is observed.

Hence, SARIMAX was structured to incorporate a daily seasonality (i.e., S=24). This

involved integrating three exogenous variables within the SARIMAX model, namely the

hourly average demand categorized by day of the week, public holidays, and events. To

facilitate the out-of-bag evaluation, SARIMAX was trained using a statistical program,

49

STATA. As outlined in Table 3.3, a grid search was executed to optimize six parameters of

SARIMAX. These encompassed the degree of differencing (d), deseasonalizing degree (D),

seasonal (P) and non-seasonal (p) autoregressive lag polynomial, and seasonal (Q) and non-

seasonal (q) moving average lag polynomial. Importantly, all parameters, including the

exogenous variables, needed to be statistically significant at a 95% confidence level.

Ultimately, the model exhibiting the smallest Root Mean Squared Error (RMSE) was

selected.

• RF: This model was trained in a spatially independent manner for each spatial (i.e., region)

demand, where historical ridership and other relevant features were flattened prior to model

training. The tuning of RF involved a grid search for three key hyperparameters: the

lookback length (ranging from 24 to 168), the number of trees in the forest (ranging from 10

to 500), and the maximum depth of the trees (ranging from 0 to 15).

• XGBoost: This model underwent a training process similar to that of RF.

• FCNNs: The architecture of FCNNs closely resembled that of GRUs (refer to Figure 3.9),

employing simple neurons in each node. As a reference model, FCNNs were configured with

a maximum of 2 hidden layers and up to 100 nodes per layer, adhering to the conventional

architecture [3, 44]. Other hyperparameters of FCNNs were optimized using BO, as outlined

in Table 3.3. In this context, FCNNs were trained both spatially independently and in a

combined manner, with the selection of the optimal models.

• RNNs: The training process for RNNs resembled that of FCNNs, except that a simple RNN

cell was used in each node.

Table 3.3 Description of hyperparameter optimization for demand prediction models

Model Parameters Value Range Tuning

GRUs

RNNs

FCNNs

Lookback length (LL) 24, 48, …, 168

Bayesian

Optimization

Activation input layer Relu, Tanh, Sigmoid

Nodes input layer 10, 20, 30, …, 500

Dropout rate 0.0 - 0.40

Hidden layer (#HL) 1 - 5

Activation of hidden layer Relu, Tanh, Sigmoid

Nodes in hidden layer 10, 20, 30, …, 500

Activation output layer Relu, Tanh, Sigmoid

Batch size 4 - 1000

XGBoost

Lookback length 24, 48, …, 168
Grid

Search
Gradient-boosted trees 10, 15, 20, …, 500

Max-depth of tree 0, 1, 2, …, 10

Random

Forest

Lookback length 24, 48, 72, …, 168
Grid

Search
Trees in the forest 10, 15, 20, …, 300

Max-depth of tree 0, 1, 2, …, 15

SARIMAX

(p, d, q) *

(P, D, Q, 24)

p 0 - 5

Grid

Search

d 0 - 2

q 0 - 5

P 0 - 2

D 0 - 2

Q 0 - 2

50

Based on our analysis, it was evident that the sigmoid activation function required nearly

twice the number of epochs compared to the Tanh or ReLU functions, although it exhibited a

smoother learning curve. Furthermore, the Austin dataset necessitated spatially independent

training, while the Minneapolis dataset was trained with multiple spatial outputs. The outcomes

of hyperparameter optimization for GRUs using the original scale, guided by BO, are depicted

in Figure 3.10, specifically for the Downtown Census in Austin, TX. The optimal lookback

length was determined to be 120, and three hidden layers demonstrated superior prediction

performance. Notably, training GRUs with original data resulted in improved outcomes

compared to their normalized counterparts, particularly with respect to model generalization.

This observation was underpinned by the fact that the optimal architectures for normalized data

frequently employed Tanh or Sigmoid activation functions, leading to effective learning of the

training data and susceptibility to overfitting issues, especially when contrasted with benchmark

models. These findings aligned with prior research [34], where it was demonstrated that Box

Cox transformation facilitated simpler models in comparison to the original scale. This was

evident in SARIMAX models, where many exogenous variables turned out to be insignificant.

Additionally, the optimal GRUs model for Austin data featured two hidden layers for the

original scale, as opposed to only one for data transformed with Box Cox. Consequently, Box

Cox transformation proves to be advantageous for deep learning applications, as it can curtail

training times, especially during hyperparameter tuning.

Figure 3.10 Hyperparameter optimization of GRUs by BO for Downtown Census in Austin,

TX

2000

2100

2200

2300

2400

2500

2600

2700

2800

M
S

E

Hyperparameter Optimization

MSE-eval

HL: 1 1 1 1 1 1 1 2 3 4 5

 LL: 24 48 72 96 120 144 168 120 120 120 120

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60 70 80

M
S

E
-e

v
al

Number of iterations

Convergence curve of BO

1000

2000

3000

4000

5000

6000

7000

8000

0 20 40 60 80

M
S

E

Number of epochs

Learning curve of GRUs

MSE-train

MSE-eval

51

Table 3.4 presents a comprehensive comparison of performance between Box Cox

transformed data and the original or normalized counterparts (excluding the Thammasat Dataset

due to a lack of testing data). For both original and normalized data, deep learning models

exhibited enhancements in prediction performance, as reflected in the RMSE and MAE metrics.

Notably, these improvements were significantly influenced by the number of tuned

hyperparameters. Box Cox transformation showcased similar trends in the Austin and

Thammasat datasets, whereas its impact differed in the Minneapolis dataset. Functioning as a

generalized logarithmic transformation, Box Cox effectively compressed the atypical demand

outliers towards the mean, thereby fostering model simplification and an increase in accuracy,

particularly with the MAE metric. This phenomenon is evident in Table 3.2, which highlights

that the ratio of demand's mean to standard deviation between the original and Box Cox scales

stood at approximately 7 and 15, respectively. Furthermore, Table 3.4 underscores that while

the RMSE of the Historical Average (HA) in the original scale was lower than that in the Box

Cox scale, the converse was true for the MAE metric. The impact of Box Cox transformation

on demand volatility is the rationale behind the relatively inferior performance of deep learning

models for the Minneapolis dataset compared to SARIMAX. This is attributed to the fact that

Box Cox transformation rendered temporal information from neighboring regions less

pertinent. Consequently, it is evident that Box Cox transformed data from Minneapolis should

be trained spatially independently. In essence, Box Cox transformation is particularly

advantageous when dealing with datasets characterized by high irregularity or a limited number

of exogenous variables. In summary, across all datasets, Box Cox transformation yielded

reductions of 0.14% and 5.36% in the RMSE and MAE metrics, respectively.

Table 3.4 Performance comparison based on RMSE and MAE

Dataset Models

Original or Normalized Data Box Cox Transformed Data

RMSE-

Eval.

RMSE-

Test

MAE-

Eval.

MAE-

Test

RMSE-

Eval.

RMSE-

Test

MAE-

Eval.

MAE-

Test

Thammasat

Thailand

GRUs 5.27 - 3.41 - 5.18 - 3.37 -

RNNs 5.52 - 3.75 - 4.91 - 3.40 -

FCNNs 5.52 - 3.76 - 5.00 - 3.46 -

XGBoost 5.21 - 3.64 - 5.17 - 3.46 -

RF 5.30 - 3.72 - 5.31 - 3.56 -

SARIMAX 5.47 3.82 5.26 3.62

HA 11.65 - 8.69 - 12.24 - 8.32 -

Minneapolis

Minnesota

GRUs 6.96 6.34 3.58 2.89 7.18 6.92 3.67 2.99

RNNs 7.07 6.25 3.49 2.85 7.75 6.82 3.80 2.95

FCNNs 7.53 6.48 4.06 3.08 8.38 7.30 3.83 3.33

XGBoost 7.44 6.44 4.04 3.37 7.16 6.04 3.66 2.73

RF 7.34 6.39 3.85 3.21 7.35 6.20 3.76 2.81

SARIMAX 7.79 6.24 4.08 3.07 7.72 6.03 3.85 2.64

HA 21.21 16.83 12.97 11.08 23.80 17.39 12.28 8.55

Austin

Texas

GRUs 11.24 11.28 4.15 3.70 11.20 11.01 4.00 3.54

RNNs 11.34 11.58 4.21 3.73 11.52 11.96 4.10 3.60

FCNNs 11.47 11.22 4.16 3.67 12.50 11.86 4.21 3.72

XGBoost 11.29 11.83 4.29 3.89 13.06 11.75 4.29 3.70

RF 12.18 12.00 4.31 3.92 12.54 12.21 4.26 3.77

SARIMAX 12.30 11.13 4.58 3.83 12.60 11.23 4.40 3.54

HA 50.49 36.44 14.82 12.53 53.95 37.30 14.34 10.90

52

Figure 3.11 Demand prediction by GRUs with original and Box Cox scale for Downtown

Census in Austin, TX

SARIMAX exhibited superior predictive accuracy on the testing dataset compared to other

models due to the testing data aligning with a period of low demand. Nonetheless, this

regression model demonstrated limitations during high-demand periods, such as summer, while

GRUs achieved robust performance across both training and testing datasets. Figure 3.11

visually illustrates a comparison of e-scooter demand predictions using GRUs, considering both

the original and Box Cox scales, specifically for the Downtown census in Austin, Texas. Both

models demonstrated adeptness in capturing the hourly demand patterns of shared e-scooters.

Although variations in prediction results exist between the two models, particularly during peak

demand periods, their overall predictive performance remains commendable. Notably, both

models accurately predict low-demand periods during the nighttime, yet exhibit diminished

performance during the afternoon and evening when demand and volatility are high, as depicted

in Figure 3.12.

3.4.2 Variance prediction results

Capturing valuable insights from historical data plays a pivotal role in formulating effective

operational strategies for dockless shared e-scooters, enabling efficient resource management

and cost minimization. While advanced demand prediction models have demonstrated

remarkable capabilities in forecasting future demand, inherent uncertainties remain, particularly

associated with the residuals of these demand prediction models. Illustrated in Figure 3.1,

safety stock serves as a customary approach to accommodate these uncertainties, contingent

upon the fluctuations in demand. This underscores the importance of variance analysis in

crafting an optimized supply level. Two crucial attributes of residuals wield significance in the

design of supply levels: their distribution and heteroscedastic nature. Residuals stemming from

forecasting models typically adhere to either a Normal or Student's t-distribution. This attribute

bears relevance in the selection of the confidence level value (𝑍𝑠𝑐𝑜𝑟𝑒) or the cover rate (the

proportion of data residing within the confines of the confidence interval). As expounded in

Section 3.4, the concept of heteroscedasticity pertains to the temporal pattern exhibited by

residuals, necessitating that inventory design aligns proportionally with this observed pattern.

53

Figure 3.12 illustrates the scatter plot and histogram of daily residuals for GRUs in both

the original and Box Cox scales. In the case of the original scale, the distribution displayed

heavier tails compared to the normal distribution, thereby suggesting the suitability of the

student's t-distribution for these residuals. On the other hand, for GRUs using the Box Cox

scale, the residuals exhibited somewhat thicker tails, albeit to a practically negligible extent.

Observing the daily scatter plot, a distinct daily pattern emerged in the residuals for the original

scale, whereas this pattern remained nearly constant for the Box Cox scale. To validate the

presence of heteroscedasticity in the residuals, an ARCH-LM test was conducted. The outcome

revealed the rejection of the null hypothesis (indicating no ARCH effects), given the p-value

falling below the 5% threshold for both the original and Box Cox scales. It's worth noting,

however, that the coefficients of the SGARCH model in the Box Cox scale were relatively

minute, thereby allowing for the statistical disregard of ARCH effects [1, 34].

Figure 3.12 Daily scatter plot and histogram of GRUs’ residuals for Downtown Census in

Austin, TX: (top) original data and (bottom) Box Cox transformed data

54

In the context of GRUs using the original scale, as depicted in Figure 3.12 (top), the 97.5%

upper Confidence Interval (CI) maintained a consistent standard deviation and yielded a cover

rate (Service Level Type I) of 96.79%. The subtle variation was not the primary concern; rather,

it was the distribution of residuals surpassing the upper CI. In the initial half (0-11), merely

0.56% of residuals exceeded the upper CI, while in the latter half (12-23), this proportion

escalated to 2.65%. This disparity indicated that while the upper CI with a constant standard

deviation performed admirably in the first half, its effectiveness waned in the subsequent half.

Conversely, the 97.5% upper CI considering the daily standard deviation achieved an overall

cover rate of 96.8%, accompanied by outlier residuals (laying above the upper CI) of 1.65%

and 1.55% for the first and second halves, respectively. With this cover rate, the percentage of

served demand (Service Level Type II) amounted to 99.24% and 99.36% for the upper CI

employing constant and daily standard deviation, respectively. Furthermore, the upper CI with

a constant standard deviation translated to a supply ratio (the ratio of total supply to total actual

demand) of 145%, whereas that of the upper CI considering daily standard deviation was

139.4%. In essence, despite sharing the same cover rate, the upper CI (or supply level) based

on the daily standard deviation demonstrated lower inventory (resulting in reduced operational

costs) while concurrently exhibiting a higher percentage of served demand (yielding increased

trip revenue) compared to the upper CI dependent on a constant standard deviation.

Depicted in Figure 3.12, the residuals associated with the original scale persisted in

displaying a seasonal pattern, which was corroborated by the ARCH-LM test that established

the existence of ARCH effects. To delve further into the variance patterns, the SGARCH model

in Eq. 3.19 was introduced for analysis. The comparison of variance prediction models, namely

Constant, Daily Seasonal, and SGARCH, is presented in Figure 3.13, focusing on the residuals

of GRUs employing the original scale within the Downtown Census of Austin, Texas. This

graphical representation elucidates the limitations of constant variance or mean squared error,

given their incapacity to capture conditional variance. While the daily seasonal variance does

to some extent incorporate the diurnal volatility pattern, it proves insufficiently adaptable to

long-term demand fluctuations. Conversely, the predicted variance derived from the SGARCH

model exhibits notable flexibility in tracking conditional variance. However, this approach does

possess a key drawback: substantial errors are propagated to the subsequent seasonal step. The

comparison of four supply-level models of GRUs at a 98% served demand is showcased in

Figure 3.14. Supply levels characterized by constant variance exhibit excessive oversupply

during nighttime demand but fall short of meeting afternoon demand requirements. Conversely,

the supply level predicated on Box Cox variance demonstrates commendable performance,

albeit with certain peak points stemming from the logarithmic inversion effect. Supply levels

grounded in daily and SGARCH variance share a comparable pattern, yet the latter,

underpinned by SGARCH variance, more effectively allocates uncertainty across long-term

demand fluctuations.

In essence, variance analysis proved essential for the original or normalized datasets,

whereas the Box Cox transformed data necessitated only constant variance consideration.

Within the context of original or normalized data, three distinct variances were scrutinized:

constant, daily, and forecasted variances as determined by the SGARCH model. The study

encompassed a comparison of four distinct supply level models for each demand prediction

model. Among these, three pertained to the demand prediction model employing the original or

55

normalized scale, incorporating diverse variance models (constant, daily, and SGARCH-

predicted variances). The fourth supply level model corresponded to the demand prediction

model utilizing the Box Cox transformed scale in conjunction with constant variance. The

supply level designs underwent assessment across three distinct demand prediction models:

SARIMAX, XGBoost, and GRUs. These prediction models represent established

methodologies in the realms of statistical-based, machine-learning, and deep-learning

modeling, respectively.

Figure 3.13 Variance prediction for residuals of GRUs with original scale data of Downtown

Census in Austin, TX

Figure 3.14 Comparison of supply level models of GRUs at 98% served demand (cover rate

of around 90%) of Downtown Census in Austin, TX

56

3.5 Supply planning design

As indicated earlier, confidence intervals prove inadequate for guiding daily operational

planning due to their failure to incorporate the magnitude of residuals, particularly in the case

of heteroscedastic datasets. Furthermore, different CI models tend to yield varying inventory

levels (operational cost) and anticipated served demand (trip revenue), even when maintaining

the same cover rate. Hence, this study opted to evaluate supply level models based on an equal

percentage of served demand (equivalent number of served or unserved demands) to facilitate

a comparison of oversupplies (referred to as MO). To achieve uniform percentages of served

demand, the safety stock parameter (d) was individually adjusted for each supply level model,

adhering to the guidelines outlined in the flowchart presented in Figure 3.4. In practical

applications, this parameter should be configured according to the desired service level

(consistent with 𝑍𝑠𝑐𝑜𝑟𝑒) or iteratively tuned until the supply level attains the maximum number

of e-scooters.

The comparison of mean oversupply (MO) in Table 3.5 was conducted using the training

data for the Thammasat dataset, while the remaining two datasets were assessed using the

testing dataset. Based on the outcomes observed in the Thammasat dataset, Box Cox

transformation exhibited effectiveness in supply level determination, yielding the lowest mean

oversupply across models, with the exception of XGBoost. Additionally, the SARIMAX model

utilizing Box Cox transformed data demonstrated comparable MO values when compared to

the worst-case scenario of GRUs with constant variance. Interestingly, the SARIMAX model

even outperformed GRUs in terms of mean oversupply at higher percentages of served demand

(95% and above). Overall, GRUs exhibited smaller MO values in comparison to SARIMAX,

underscoring the significance of accurate demand prediction. The disparity between the least

favorable and most favorable cases of GRUs' supply level models exhibited a noteworthy

increase as the percentage of served demand rose, peaking at 98% served demand. To elaborate,

operators aiming to achieve a 98% served demand using the supply level model with constant

variance encountered an average hourly oversupply of 8 e-scooters. In contrast, adopting the

supply level model with Box Cox variance allowed for a reduction in oversupply to

approximately seven e-scooters per hour. By implementing this reduction strategy, operators

could potentially save up to 30 e-scooters during a 3-hour rebalancing cycle for ten spatial

regions, thereby eliminating the need to relocate these redundant 30 e-scooters.

In this comparative analysis of the Minneapolis dataset, the trend of the MO metric

mirrored that of the accuracy performance. Specifically, SARIMAX and XGBoost

demonstrated good performance with Box Cox transformation, whereas GRUs exhibited lower

MO with the original scale. The variation in MO was subtle at lower percentages of served

demand (or 𝑑 < 0), but it became notably pronounced at higher percentages. This dataset also

underscored the limitations of Box Cox transformation, as it led to elevated MO values at 98%

served demand. This outcome could be attributed to the impact of the exponential

transformation, especially when the lambda (𝜆) value approaches -1, which amplifies the

discrepancy between the Box Cox scale and the conversion scale (as illustrated in Figure 3.15).

Hence, it becomes imperative to cautiously restrict the maximum value of the designed supply

level, denoted as 𝑆(𝑡,𝑟), for Box Cox transformed data. Despite SARIMAX achieving the lowest

MO in this dataset due to its superior demand prediction on the testing dataset, it is conceivable

57

that GRUs would excel in both demand prediction accuracy and mean oversupply during

periods of heightened demand, such as the summer season.

The application of Box Cox transformation yielded minimal MO values in the Austin

dataset for served demands up to 90%. However, akin to the Minneapolis scenario, this

technique encountered challenges at higher served demand percentages. Nevertheless, the

performance of the predicted variance was commendable. At a served demand of 95%, GRUs

exhibited a reduction of approximately one MO unit between constant variance and predicted

variance models. This indicates that operators could potentially save around 30 e-scooters per

hour (equivalent to 720 e-scooters in daily rebalancing operations). This gain could be

substantially magnified with an increase in the number of regions or a longer rebalancing

interval; for instance, a reduction of up to 50 e-scooters per hour for 50 regions or approximately

Table 3.5 Mean oversupply comparison for four supply level models

Dataset

Supply Level

Model
Mean Oversupply by Percentage of Served Demand

Demand Model Variance Model 70% 75% 80% 85% 90% 95% 98%

Thammasat

Thailand

GRUs

Constant Variance 0.615 0.835 1.179 1.710 2.707 4.880 8.069

Daily Variance 0.586 0.816 1.160 1.704 2.629 4.490 7.130

SGARCH Variance 0.591 0.815 1.181 1.704 2.605 4.458 7.259

Box Cox Variance 0.465 0.695 1.069 1.631 2.557 4.330 7.091

XGBoost

Constant Variance 0.546 0.774 1.106 1.667 2.754 4.928 8.184

Daily Variance 0.546 0.793 1.138 1.670 2.601 4.441 7.075

SGARCH Variance 0.577 0.814 1.147 1.668 2.566 4.313 6.909

Box Cox Variance 0.527 0.773 1.132 1.672 2.572 4.385 6.951

SARIMAX

Constant Variance 0.745 1.029 1.414 2.029 3.063 5.304 8.974

Daily Variance 0.772 1.046 1.418 2.021 2.941 4.779 7.563

SGARCH Variance 0.721 0.992 1.401 2.030 3.022 5.022 7.831

Box Cox Variance 0.631 0.897 1.282 1.875 2.813 4.603 7.304

Minneapolis

Minnesota

GRUs

Constant Variance 0.582 0.803 1.142 1.980 3.562 6.894 11.845

Daily Variance 0.597 0.821 1.155 1.676 2.700 4.916 8.202

SGARCH Variance 0.594 0.829 1.155 1.653 2.516 4.412 7.504

Box Cox Variance 0.573 0.815 1.200 1.823 2.948 5.868 11.484

XGBoost

Constant Variance 0.538 0.785 1.185 1.849 3.428 6.892 12.078

Daily Variance 0.589 0.855 1.242 1.891 3.024 5.379 8.844

SGARCH Variance 0.704 0.976 1.351 1.918 2.907 4.912 8.212

Box Cox Variance 0.439 0.639 0.942 1.437 2.364 4.682 8.880

SARIMAX

Constant Variance 0.538 0.778 1.129 1.695 2.994 5.977 10.696

Daily Variance 0.571 0.806 1.149 1.706 2.629 4.702 7.844

SGARCH Variance 0.618 0.857 1.203 1.717 2.529 4.210 6.957

Box Cox Variance 0.414 0.602 0.891 1.371 2.254 4.333 8.407

Austin

Texas

GRUs

Constant Variance 0.528 0.740 1.054 1.538 2.577 5.457 11.131

Daily Variance 0.484 0.686 1.000 1.520 2.538 5.003 9.784

SGARCH Variance 0.492 0.709 1.030 1.537 2.485 4.683 8.380

Box Cox Variance 0.305 0.502 0.822 1.356 2.329 4.699 9.094

XGBoost

Constant Variance 0.533 0.769 1.124 1.665 2.682 5.608 11.766

Daily Variance 0.495 0.720 1.065 1.629 2.679 5.241 10.259

SGARCH Variance 0.540 0.786 1.144 1.681 2.642 4.958 8.886

Box Cox Variance 0.349 0.573 0.932 1.523 2.627 5.081 9.521

SARIMAX

Constant Variance 0.546 0.771 1.105 1.623 2.616 5.305 10.768

Daily Variance 0.543 0.765 1.097 1.623 2.563 4.780 9.038

SGARCH Variance 0.496 0.728 1.077 1.619 2.548 4.583 7.992

Box Cox Variance 0.330 0.530 0.849 1.382 2.338 4.469 8.375

58

Figure 3.15 Impact of exponential conversion on supply level estimation with Box Cox

transformed data

100 e-scooters for the same spatial coverage with a 2-hour rebalancing cycle. Similar to the

Minneapolis case, the MO of SARIMAX was inferior to that of GRUs and XGBoost due to the

seasonal demand pattern. In summation, across all datasets, incorporating conditional variance

in supply level design resulted in a potential reduction of oversupply by approximately 26.22%

at a 95% served demand level (equivalent to a shortage reduction of 5%).

3.6 Discussion and conclusion

This study presents a pragmatic framework aimed at devising an efficient supply planning

strategy for addressing the heteroscedastic demand encountered in shared dockless e-scooter

systems. The investigation involves the application of a range of prominent deep learning and

machine learning models to predict hourly demand, followed by an analysis of the residuals'

variance. The efficacy of this proposed methodology is evaluated across three distinct datasets

pertaining to dockless shared e-scooter operations in Austin, TX, Minneapolis, MN, and

Thammasat, TH.

The process entails meticulous hyperparameter tuning for both machine learning and deep

learning models. The empirical findings indicate that demand prediction models, particularly

those based on deep learning, exhibit remarkable performance levels. However, the residuals

do not conform to the characteristics of white noise. This realization underscores the necessity

of devising supply strategies tailored to the peculiarities of heteroscedastic demand. Such

strategies involve the employment of variance-stabilizing transformations, exemplified by the

Box Cox transformation, or the adoption of variance analysis, encompassing options such as

daily seasonal variance or predicted variance through SGARCH.

While seasonal variance effectively curtails oversupply, its effectiveness diminishes when

confronted with more protracted temporal residuals, notably those associated with yearly

patterns. However, the introduction of a conditional variance model like SGARCH can

surmount this limitation. An equally intriguing avenue is the utilization of the Box Cox

transformation, a variance-stabilizing transformation. This approach not only enhances the

performance of demand prediction models, particularly in terms of Mean Absolute Error

(MAE), but also facilitates judicious supply-level planning, particularly at lower percentages

59

of served demand. It is imperative, though, to set an appropriate upper limit for supply-level

planning when employing the Box Cox transformation to address higher percentages of served

demand.

At a 95% served demand level, incorporating the consideration of heteroscedastic demand

into supply level planning can yield a significant reduction in oversupply, quantified at 26.22%.

In summation, this study underscores the insufficiency of demand prediction, even when

leveraging deep learning, for short-term operational planning of shared e-scooter systems.

These systems are characterized by high maintenance costs, short service life, erratic demand

patterns, and stringent regulations. From a policy standpoint, operators stand to benefit from

adopting our framework to mitigate demand uncertainties in their daily operations. This

framework can be complemented by other strategies, such as customer incentives and a hybrid

approach encompassing real-time and periodic rebalancing mechanisms.

References

[1] StataCorp, Stata Time-Series Reference Manual. Stata Press College Station, Texas, 2013.

[2] A. Rusyana, Nurhasanah, Marzuki and M. Flancia, "SARIMA model for forecasting

foreign tourists at the Kualanamu International Airport," in Proceedings of the 12th

International Conference on Mathematics, Statistics, and Their Applications (ICMSA),

2016, pp. 153-158, doi: 10.1109/ICMSA.2016.7954329.

[3] B. Wang and I. Kim, "Short-term prediction for bike-sharing service using machine

learning," Transportation Research Procedia, vol. 34, pp. 171-178, 2018, doi:

https://doi.org/10.1016/j.trpro.2018.11.029.

[4] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," in Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2016, pp. 785–794, doi: https://doi.org/10.1145/2939672.2939785.

[5] A. Oyedele et al., "Deep learning and Boosted trees for injuries prediction in power

infrastructure projects," Applied Soft Computing, vol. 110, pp. 107587, 2021, doi:

https://doi.org/10.1016/j.asoc.2021.107587.

[6] J. H. Friedman, "Greedy function approximation: A gradient boosting machine," The

Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001, doi:

https://doi.org/10.1214/aos/1013203451.

[7] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the

22nd acm sigkdd international conference on knowledge discovery and data mining, 2016,

pp. 785-794.

[8] S. M. H. Moosavi et al., "Understanding and Predicting the Usage of Shared Electric

Scooter Services on University Campuses," Applied Sciences, vol. 12, no. 18, pp. 9392,

2022.

[9] S. Suman, S. Mishra and H. K. Tripathy, "A Support Vector Machine Approach for

Effective Bicycle Sharing in Urban Zones," in Cognitive Informatics and Soft Computing,

Singapore, 2021, pp. 73-83: Springer Singapore.

[10] C. Gao and Y. Chen, "Using Machine Learning Methods to Predict Demand for Bike

Sharing," in Information and Communication Technologies in Tourism 2022, Cham, 2022,

pp. 282-296: Springer International Publishing.

https://doi.org/10.1016/j.trpro.2018.11.029
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1016/j.asoc.2021.107587
https://doi.org/10.1214/aos/1013203451

60

[11] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9,

no. 8, pp. 1735-1780, 1997.

[12] Y. Yu, X. Si, C. Hu and J. Zhang, "A review of recurrent neural networks: LSTM cells and

network architectures," Neural computation, vol. 31, no. 7, pp. 1235-1270, 2019, doi:

https://doi.org/10.1162/neco_a_01199.

[13] C. Xu, J. Ji and P. Liu, "The station-free sharing bike demand forecasting with a deep

learning approach and large-scale datasets," Transportation Research Part C: Emerging

Technologies, vol. 95, pp. 47-60, 2018, doi: https://doi.org/10.1016/j.trc.2018.07.013.

[14] K. Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical

machine translation," arXiv preprint arXiv:1406.1078, 2014.

[15] Y. Wu, H. Tan, L. Qin, B. Ran and Z. Jiang, "A hybrid deep learning based traffic flow

prediction method and its understanding," Transportation Research Part C: Emerging

Technologies, vol. 90, pp. 166-180, 2018, doi: https://doi.org/10.1016/j.trc.2018.03.001.

[16] C. Wen et al., "A novel spatiotemporal convolutional long short-term neural network for

air pollution prediction," Science of The Total Environment, vol. 654, pp. 1091-1099, 2019,

doi: https://doi.org/10.1016/j.scitotenv.2018.11.086.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu, "A Comprehensive Survey on

Graph Neural Networks," IEEE Transactions on Neural Networks and Learning Systems,

pp. 1-21, 2020, doi: https://doi.org/10.1109/TNNLS.2020.2978386.

[18] Z. Zhang, M. Li, X. Lin, Y. Wang and F. He, "Multistep speed prediction on traffic

networks: A deep learning approach considering spatio-temporal dependencies,"

Transportation Research Part C: Emerging Technologies, vol. 105, pp. 297-322, 2019, doi:

https://doi.org/10.1016/j.trc.2019.05.039.

[19] X. Geng et al., "Spatiotemporal multi-graph convolution network for ride-hailing demand

forecasting," in Proceedings of the AAAI Conference on Artificial Intelligence, 2019, vol.

33, pp. 3656-3663.

[20] Y. Wu, "The Simulation Study of Shanghai and Shenzhen 300 Index By Garch Models," in

2011 International Conference on Information Management, Innovation Management and

Industrial Engineering, 2011, vol. 3, pp. 30-33, doi:

https://doi.org/10.1109/ICIII.2011.293.

[21] A. Ti, Z. Du and W. Zhang, "Analysis on the Volatility of Sustainable Stock Index and

Traditional Stock Index Based on GARCH Model," in 2019 International Conference on

Economic Management and Model Engineering (ICEMME), 2019, pp. 47-50, doi:

10.1109/ICEMME49371.2019.00018.

[22] G. Zhang, S. Ali, X. Wang, G. Wang, Z. Pan and J. Zhang, "SPI-based drought simulation

and prediction using ARMA-GARCH model," Applied Mathematics and Computation,

vol. 355, pp. 96-107, 2019.

[23] C. Sigauke and D. Chikobvu, "Prediction of daily peak electricity demand in South Africa

using volatility forecasting models," Energy Economics, vol. 33, no. 5, pp. 882-888, 2011.

[24] S. Kim, "Forecasting internet traffic by using seasonal GARCH models," Journal of

Communications and Networks, vol. 13, no. 6, pp. 621-624, 2011, doi:

https://doi.org/10.1109/JCN.2011.6157478.

https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1016/j.trc.2018.07.013
https://doi.org/10.1016/j.trc.2018.03.001
https://doi.org/10.1016/j.scitotenv.2018.11.086
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1016/j.trc.2019.05.039
https://doi.org/10.1109/ICIII.2011.293
https://doi.org/10.1109/JCN.2011.6157478

61

[25] Y. Hu, J. Ni and L. Wen, "A hybrid deep learning approach by integrating LSTM-ANN

networks with GARCH model for copper price volatility prediction," Physica A: Statistical

Mechanics and its Applications, vol. 557, pp. 124907, 2020.

[26] W. Kristjanpoller and E. Hernández, "Volatility of main metals forecasted by a hybrid

ANN-GARCH model with regressors," Expert Systems with Applications, vol. 84, pp. 290-

300, 2017.

[27] S. He and K. G. Shin, "Dynamic Flow Distribution Prediction for Urban Dockless E-

Scooter Sharing Reconfiguration," in Proceedings of The Web Conference 2020, 2020, pp.

133-143.

[28] S. He and K. G. Shin, "Distribution Prediction for Reconfiguring Urban Dockless E-

Scooter Sharing Systems," IEEE Transactions on Knowledge and Data Engineering, vol.

34, no. 12, pp. 5722-5740, 2022, doi: https://doi.org/10.1109/TKDE.2021.3062074.

[29] S. W. Ham, J.-H. Cho, S. Park and D.-K. Kim, "Spatiotemporal Demand Prediction Model

for E-Scooter Sharing Services with Latent Feature and Deep Learning," Transportation

Research Record, vol. 2675, no. 11, pp. 34-43, 2021, doi:

https://doi.org/10.1177/03611981211003896.

[30] S. Phithakkitnukooon, K. Patanukhom and M. G. Demissie, "Predicting Spatiotemporal

Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional

Network," ISPRS International Journal of Geo-Information, vol. 10, no. 11, p. 773, 2021.

[31] Y. Xu, X. Zhao, X. Zhang and M. Paliwal, "Real-Time Forecasting of Dockless Scooter-

Sharing Demand: A Spatio-Temporal Multi-Graph Transformer Approach," 2021.

[32] S. Kim, S. Choo, G. Lee and S. Kim, "Predicting Demand for Shared E-Scooter Using

Community Structure and Deep Learning Method," Sustainability, vol. 14, no. 5, pp. 2564,

2022.

[33] P. W. Khan, S.-J. Park, S.-J. Lee and Y.-C. Byun, "Electric Kickboard Demand Prediction

in Spatiotemporal Dimension Using Clustering-Aided Bagging Regressor," Journal of

Advanced Transportation, vol. 2022, pp. 8062932, 2022, doi:

https://doi.org/10.1155/2022/8062932.

[34] N. Saum, S. Sugiura and M. Piantanakulchai, "Short-Term Demand and Volatility

Prediction of Shared Micro-Mobility: a case study of e-scooter in Thammasat University,"

in 2020 Forum on Integrated and Sustainable Transportation Systems (FISTS), 2020, pp.

27-32: IEEE.

[35] I. K. Yeo and R. A. Johnson, "A new family of power transformations to improve normality

or symmetry," Biometrika, vol. 87, no. 4, pp. 954-959, 2000.

[36] L. Breiman, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001, doi:

https://doi.org/10.1023/A:1010933404324.

[37] S. Kumar, L. Hussain, S. Banarjee and M. Reza, "Energy Load Forecasting using Deep

Learning Approach-LSTM and GRU in Spark Cluster," in 2018 Fifth International

Conference on Emerging Applications of Information Technology (EAIT), 2018, pp. 1-4,

doi: https://doi.org/10.1109/EAIT.2018.8470406.

[38] J. R. Trapero, M. Cardós and N. Kourentzes, "Empirical safety stock estimation based on

kernel and GARCH models," Omega, vol. 84, pp. 199-211, 2019, doi:

https://doi.org/10.1016/j.omega.2018.05.004.

https://doi.org/10.1109/TKDE.2021.3062074
https://doi.org/10.1177/03611981211003896
https://doi.org/10.1155/2022/8062932
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/EAIT.2018.8470406
https://doi.org/10.1016/j.omega.2018.05.004

62

[39] P. L. King, "Crack the code: Understanding safety stock and mastering its equations,"

APICS Magazine, vol. 21, no. 2011, pp. 33-36, 2011.

[40] E. D. O'Mahony, "Smarter tools for (Citi) bike sharing," Ph.D. dissertation, Cornell

University., 2015.

[41] Y.-H. Seo, "A Dynamic Rebalancing Strategy in Public Bicycle Sharing Systems Based on

Real-Time Dynamic Programming and Reinforcement Learning," Ph.D. dissertation, Seoul

National University, South Korea, 2020.

[42] N. Saum and M. Piantanakulchai, "A Review on an Emerging New Mode of Transport:

The Shared Dockless Electric Scooter," in Proceedings of the Eastern Asia Society for

Transportation Studies, Srilanka, vol. 12, 2019.

[43] T. O'Malley et al., "Keras documentation: Keras Tuner," Available:

https://github.com/keras-team/keras-tuner

[44] X. Liu, A. Gherbi, W. Li and M. Cheriet, "Multi features and multi-time steps LSTM based

methodology for bike sharing availability prediction," Procedia Computer Science, vol.

155, pp. 394-401, 2019.

https://github.com/keras-team/keras-tuner

63

CHAPTER 4

4. HYPERPARAMETER OPTIMIZATION BY ITERATIVE DECISION

TREE (IDT)
4.1 Introduction

There has been considerable focus from both the academic and corporate sectors on the

implementation of machine learning (ML) and deep learning (DL) techniques, influenced by

various factors [1], [2], [3], and [4]. Initially, the utilization of conventional statistical models

becomes problematic when dealing with the ever-expanding volumes of high-dimensional data.

Additionally, the advanced algorithms derived from ML and DL have demonstrated impressive

predictive capabilities, significantly influencing the demanding business landscape. Lastly, the

recent advent of high-performance computing resources enables the rapid training of intricate

models encompassing millions of trainable parameters, especially when executed in parallel.

However, these ML and DL models need a lot of computational work, particularly when it

comes to fine-tuning the hyperparameters (outer variables) and optimizing the trainable or

ordinary parameters (inner variables). Trainable or ordinary parameters denote the weight

matrix or bias vector associated with a specific model, and they are automatically optimized or

learned during the model training phase. On the other hand, hyperparameters relate to parameter

sets that users frequently set. The hyperparameters for straightforward artificial neural networks

(ANNs) can include batch size, learning rate, activation function, number of layers, and neurons

per layer, among others. The training dataset is used to optimize ordinary parameters, which are

primarily continuous variables (inner optimization). Conversely, hyperparameters can take on

continuous, integer, binary, or categorical values, resulting in objective functions that are

typically non-differentiable. And these objective functions are optimized using the validation

dataset (known as outer optimization). Additionally, certain studies have aimed to optimize both

the ordinary parameters and hyperparameters expeditiously, either by treating them as a unified

objective function [5], [6], [7] or by considering multiple objective functions [8], [9], [10].

Hyperparameter Optimization (HPO) can be addressed through the utilization of meta-learning,

employing either a single learning algorithm (homogeneous meta-learning) or multiple learning

algorithms (heterogeneous meta-learning). This approach enables the simultaneous

optimization of both the configuration of the learners and the learning algorithms themselves.

A thorough examination of heterogeneous meta-learning can be found in [1], while popular

frameworks such as Auto-WEKA, Hyperopt-sklearn, Auto-sklearn, Auto-Net, etc., have been

developed. In conclusion, there has been a lot of prior research on automatic machine learning

(AutoML) to reduce human intervention and bias, making it more approachable for laypeople.

This study exclusively centers on Hyperparameter Optimization (HPO), assuming the

objective function to be black-box, computationally intensive, and non-differentiable. As

discussed in [1] and [4], the origins of the HPO problem can be traced back to the early 1990s

when researchers began comparing the predictive performance of a single model with varying

configurations. The primary objective of HPO is to identify the optimal combination of

hyperparameters that yield the highest or lowest prediction performance on the validation dataset,

depending on whether it involves maximization or minimization. The maximization variant of

the HPO problem is typically formulated as follows:

64

𝑥∗ = argmax
𝑥

{𝑓(𝑥): 𝑥 ∈ 𝑋} (4.1)

The objective function 𝑓(𝑥) in HPO represents the quantity to be maximized, which could

be metrics such as accuracy or the negative Mean Squared Error (MSE). However, in HPO, this

function lacks an explicit expression as its value corresponds to the evaluated performance of

the model on the evaluation dataset or a specific objective function, such as a weighted average

MSE computed from the training and validation datasets. The optimal set of hyperparameters

𝑥∗ represents the combination that yields the highest value of the objective function, while 𝑥

represents a potential hyperparameter combination drawn from the search space 𝑋.

A significant body of literature on Hyperparameter Optimization (HPO) exists, which can be

classified into distinct categories: manual search, model-free approach, model-based approach,

population-based approach, and optimization-based approach.

Manual Search (MS), also referred to as “Trial and Error,” “Babysitting,” or “Grad Student

Descent,” is an HPO technique that relies on human expertise to determine the adjustments to

be made to hyperparameters in each iteration. It involves a series of trial-and-error experiments,

guided by the practitioner's knowledge and historical experience until either time constraints

are reached or a stopping criterion is met [11]. As a result, MS often relies on "rule of thumb"

or default settings, relying on prior knowledge and personal preferences. This approach is time-

consuming and computationally expensive [12], often leading to locally optimal results [13],

[14], and limited reproducibility [1]. However, MS provides valuable insights into the impact

of individual hyperparameters and does not require significant computational resources [15].

Therefore, MS is well-suited for addressing HPO challenges associated with simple learning

algorithms with few hyperparameters.

Model-Free Approach encompasses those automatic HPO techniques that rely on trial-and-

error or random-walk exploration of the hyperparameter space. This approach primarily includes

two main techniques: Grid Search (GS) and Random Search (RS). GS is a fundamental method

in HPO that involves evaluating all possible combinations of hyperparameters. However, GS is

highly sensitive to the number of hyperparameters, as the number of potential configurations

increases exponentially. To mitigate this challenge, GS is often conducted on a coarse grid, ex.,

step sizes of 100 or powers of 2. Alternatively, certain hyperparameters may be varied while

keeping others fixed to estimate the model's performance [16]. RS involves evaluating learning

algorithm configurations randomly sampled within each hyperparameter's lower and upper

bounds until the allocated budget is depleted. Given that each hyperparameter affects the

objective function differently, RS is theoretically more effective than GS when working with a

tight budget or in high-dimensional spaces [17]. Floria and Andonie [18] introduced an extension

to Random Search (RS) known as Weighted Random Search (WRS), where each hyperparameter

is assigned a distinct probability of change. Additionally, the Multi-fidelity approach has been

applied to RS for HPO. This approach allocates low-fidelity (early stopping) and high-fidelity

evaluations to underperforming and potentially promising configurations. Bandit-based

algorithms, such as successive halving [19], [20], [3], and Hyperband [21], divide the total budget

(e.g., 100 epochs) into several rungs (e.g., 10 epochs per rung). All configurations are compared

within each rung, and half of the configurations with unfavorable performance are eliminated.

65

One advantage of these model-free approaches is that the configurations can be trained

independently, making it straightforward to implement model parallelism [1], [3], [4].

Model-Based Approach, also known as sequential model-based optimization (SMBO),

utilizes a surrogate regression model 𝑓(𝑋) to understand the impact of hyperparameters 𝑋 on the

given black-box function 𝑓(𝑥). The surrogate function is trained using a limited number of initial

random configurations, and subsequently, an acquisition function is employed to propose a new

candidate configuration. Subsequently, the performance of this new configuration is evaluated,

and the surrogate function is updated accordingly. This sequential process continues iteratively

until the stopping criteria are met. Within the Model-Based Approach, numerous algorithms have

been proposed, each utilizing distinct surrogate models and strategies for selecting new

hyperparameters. These algorithms include Bayesian Optimization (BO) [22], [23], [24],

Sequential Model-based Algorithm Configuration (SMAC) employing random forest [25], Tree-

structured Parzen Estimator (TPE) [14], Nelder-Mead [26], and several others. In order to reduce

the training time of sequential HPO algorithms, several multi-fidelity approaches have been

combined with Bayesian Optimization (BO). Examples of such combinations include Freeze-

thaw BO [27], BO with Bayesian Optimal Stopping (BO-BOS) [28], and BO with HyperBand

(BOBH) [29]. Most algorithms within this approach suggest only a single new candidate per

iteration, which makes parallelization challenging. However, there have been efforts to enable

parallel computing in Sequential Model-Based Optimization (SMBO) approaches, including

BOBH [29], BO with Pure Exploration (GP-UCB-PE) [30], BO with multi-points Expected

Improvement (BO-q-EI) [31], and Batch BO with parallel knowledge gradient [32].

Population-Based or Nature-Inspired Approach refers to optimization techniques that draw

inspiration from biological evolution, involving concepts such as reproduction, mutation,

selection, and the interaction of agents [33]. Within this approach, numerous algorithms have

been proposed to solve optimization problems across various fields, and recently, some popular

algorithms have been applied to Hyperparameter Optimization (HPO). For instance, the

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has been utilized for the parallel

optimization of Convolutional Neural Networks (CNNs) architectures [34]. The Genetic

Algorithm (GA), known as one of the most popular evolutionary algorithms, has been employed

for parallel search in various configurations, including CNNs [13], Deep Belief Networks (DBN)

[35], Lenet-5 CNNs, and convolutional autoencoder [36]. Additionally, other population-based

algorithms have been applied in Hyperparameter Optimization (HPO), such as Particle Swarm

Optimization (PSO) [11], Univariate Dynamic Encoding Algorithm for Searches (uDEAS) [37],

Cuckoo Search [38], Differential Evolution (DE) [39], Simulated Annealing (SA) [40], and

Harmony Search [41]. These nature-inspired algorithms have also been extended to enhance their

searching performance, for example, the combination of GA and Tabu Search (Tabu_Genetic

Algorithm) [42], GA with Local Search (Memetic Algorithm) [43], and the Statistically-driven

Coral Reef Optimization algorithm with Hybridisation (HSCRO) [44].

In the optimization-based or gradient-based approach, several studies have made efforts to

estimate the gradients of validation performance with respect to all hyperparameters. For

example, Maclaurin et al. [5] employed backpropagation of stochastic gradient descent with

momentum to compute the exact gradients of continuous hyperparameters in a neural network

architecture. Brock et al. [6] introduced One-Shot Model Architecture Search through

HyperNetworks (SMASH) to approximate architecture weights using HyperNet. Likewise,

66

Lorraine and Duvenaud [7] extended SMASH, known as Hyper-Training, by applying the chain

rule to jointly optimize deep learning's weights and hyperparameters through stochastic

optimization. Furthermore, the bilevel optimization framework has been utilized to

simultaneously optimize the validation loss (outer objective) and training loss (inner objective)

for tasks such as data augmentation strategy [9] and the integration of gradient-based HPO and

meta-learning [10].

In summary, extensive research has been conducted on HPO algorithms, with a focus on

assisting automated machine learning. Two prominent approaches in this field are the sequential

and population-based approaches. The sequential-based approach is well-suited for scenarios

involving expensive objective functions. However, it has a limitation in that it suggests only one

new candidate in each iteration, making it challenging to implement in parallel computing. On

the other hand, the population-based approach is more suitable for situations with inexpensive

objective functions, as it can suggest dozens to hundreds of new candidates per generation,

enabling easy parallel computation. A significant disparity exists between the sequential-based

and population-based approaches in terms of the number of candidates suggested per iteration.

Additionally, reproducibility, particularly for deep learning models, is a concern, as many HPO

algorithms tend to retrain repetitive candidates, leading to variations in results. This study

proposes a novel HPO algorithm called Iterative Decision Tree (IDT) to address these limitations.

IDT is a sequential-based algorithm that utilizes Decision Tree (DT) regression as the surrogate

function. In other words, a DT regressor is employed to partition the search space based on the

evaluated points, ensuring that all possible candidates within each region yield the same expected

result. Unlike traditional approaches, IDT does not rely on an acquisition function. Instead, it

suggests new candidates by selecting extreme or random points from the best-performed region

(exploitation). To enhance exploration capabilities, the algorithm suggests new candidates from

a few up to a dozen of the best-performed regions, thereby increasing the diversity of the search.

By offering flexibility in selecting the number of new candidates per iteration and emphasizing

reproducibility, IDT aims to overcome the limitations of existing HPO algorithms.

The following is a summary of the study's contributions:

• Introduce a novel algorithm for hyperparameter optimization (HPO) called Iterative Decision

Tree (IDT), which utilizes Decision Tree regression as the surrogate function. This approach

addresses certain limitations observed in existing algorithms. The proposed IDT algorithm

consists of two variants: IDT-E, which selects extreme points as new candidates, and IDT-R,

which employs random selections.

• Conduct a comparative analysis of the proposed algorithms (IDT-E and IDT-R) against several

widely-used state-of-the-art algorithms, namely Grid Search, Random Search, Bayesian

Optimization, Random Forest, Tree-structured Parzen Estimator, and Genetic Algorithm.

• Assess the efficacy of the IDT algorithm by evaluating its performance on diverse optimization

problems, including benchmark nonconvex functions and hyperparameters of Support Vector

Machine (SVM), Random Forest (RF), Auto-Encoder (AE), and Convolutional Neural

Networks (CNNs). The evaluation of hyperparameter optimization involves employing

benchmark datasets such as digits classification, car evaluation classification, MNIST, and

CIFAR-10 for the respective models.

67

4.2 Literature review

Even machine learning (ML) and deep learning (DL) models could outperform the

statistical approaches, but they need to be traded off between accuracy against training cost and

model complexity. Therefore, hyperparameter optimization (HPO) or hyperparameter tuning is

necessary to control DL models' reproducibility, accuracy, and overfitting. As a result from

Chapter 3, some configurations or hyperparameters of machine learning and deep learning

models could perform worse than statistical models. Under computational time constraints, the

HPO approaches presented above were employed to optimize only some important

hyperparameters, while other hyperparameters might be fixed or use default values.

Most RNNs were trained with default parameters or standard architecture to reduce the

training time during hyperparameter tuning. LSTM-based Sequence to Sequence (S2S)

architecture was used to predict the household loading based on 60 sequence length and Adam

optimizer, and tuning two parameters, number of hidden layers and nodes per layer [45]. The

combination of feedforward NNs and LSTM NNs was employed to predict the PM2.5

Concentration in Jingjinji area, China [46]. The authors constructed the model by combining 2

FNN layers with one or two LSTM NNs layers with a sequence length of 48, 3 neighborhoods,

100 epochs, 256 batch size, 0.1 dropout rate, and RMSprop optimizer. The architecture, 1-

Shared Feedforward NNs + 2-Bi-directional RNNs + Soft Attention Mechanism, was proposed

to predict bike sharing (Citi Bike) in New York [47]. The authors trained this architecture to

predict the real value using Relu activation and 50 epochs. RNNs were used for intrusion

detection with only two tuned parameters, learning rate and number of nodes per layer [48]. To

deal with the volatility of residential’s loading, LSTM NNs were used to predict the loading of

household appliances by tuning only one parameter, the sequence length [49]. The combination

of LSTM NNs and Gaussian Mixture Model (GMM) was proposed to predict the health status

of aircraft turbofan engines [50]. This model’s configuration comprises one LSTM layer with

64 nodes, 10% dropout rate, batch size of 10, Adam optimizer with learning rate (0.0001) and

gradient clipping (1.0), and 5-component GMM.

C. Xu, Ji, and Liu (2018) used LSTM NNs to predict dockless shared bike demand in

Nanjing (Jiangsu), China. Grid search on four parameters (number of epochs, batch size,

number of nodes, and dropout rate) of LSTM NNs was examined [51]. Wang and Kim (2018)

employed Random Forest, LSTM NNs, and GRU to predict station-level bike availability in

Suzhou (China), and these models yielded almost the same performance. This study set the

parameters for GRU NNs and LSTM NNs as: 2 hidden layers, 100 nodes in each hidden layer,

and 25 epochs [52]. Kumar, Hussain, Banarjee, and Reza (2018) employed RNNs, LSTM NNs,

and GRU to predict electricity load by tuning only two parameters, number of hidden layers

and number of nodes per layer. Their results showed that the performance of these three models

could be ranked from worst to best as RNNs, LSTM NNs, and GRU, respectively [53]. Huang

and Kuo (2018) combine 1-Dimensional Convolutional Neural Networks and LSTM NNs to

predict the hourly PM2.5 Concentration in Beijing [54]. This architecture comprises three layers

of CNN1D with SELU activation connecting to one-layer LSTM NNs and a dense output layer

with sigmoid activation. The data were transformed with normalization before inputting into

the architecture, while the best model was selected using early stoppage criteria. Random

Search algorithm was proposed to tune the configuration of GRU in detecting the electricity

68

cyber-attack [55]. This algorithm was used to find the optimal values of 4 parameters such as

number of layers, number of nodes per layer, activation function, and optimizer. On the other

hand, Manual Search was performed to find optimal hyperparameters (ex., hidden layers,

number of nodes, dropout rate, learning rate, number of epochs, batch size and lookback length)

of Bi-LSTM NNs in fog-cloud-based intrusion detection [56].

This architecture was also the baseline for multistep shared bike availability [57]. Similarly,

LSTM NNs were used to predict City Bike demand in New York by fixing the number of hidden

layers to 2 with 1000 nodes each [58]. To improve the performance of LSTM NNs, the authors

added demand data from the nearby regions, called Neighborhood-Augmented LSTM NNs, to

predict taxi-passenger demand in Porto, Portugal [59]. The authors performed grid search for

many parameters, such as number of neighborhoods, window size, number of hidden layers,

number of nodes per layer, batch size, epochs, and dropout rate. Uddin, Bapery, and Arif (2019)

used GRU model to predict depression statements on Bangla social media. This study used

hyperparameter tuning for four parameters: number of GRU layers, layer size, batch size, and

number of epochs [60].

Grid Search was employed to tune the parameters (Transformation, number of hidden

layers, number of nodes per layer, dropout rate, epoch, learning rate, optimizer) of LST NNs

for Solar Irradiance Forecasting [61]. LSTM NNs were used to predict the time series datasets

on Kaggle by randomly tuning two parameters, including the number of hidden layers and

nodes per layer [62]. The combination of CNN1D with ANNs was used to predict the daily

rainfall in Maharashtra [63]. To ascertain the best configuration of the model, the authors try

some random searches for several parameters, including activation function, epoch, number of

hidden layers, number of nodes per layer, batch size, learning rate, dropout rate, number of

filters, kernel size, pooling size, and loss function, while fixing other three parameters such as

data normalization, five lookback lags, and Adam optimizer. LSTM architecture with 4 dropout

layers and 4 hidden LSTM layers was employed to predict daily open prices of GOOGL and

NKE, while 4 cases of epochs (12, 25, 50, 100) were examined [64]. LSTM NNs and GRUs

were employed to forecast wind power, while several hyperparameters were optimized by

manual search (ex., number of hidden layers, and number of nodes per layer) and grid search

(ex., batch size, epochs, optimizer, activation function, and kernel initializer) [65]. Similarly,

grid search was also employed to optimize the hyperparameters (ex., number of nodes per layer,

batch size, dropout rate, activation function, lookback length, and epochs) of LSTM NNs and

GRUs in pore pressure prediction [66]. Several recent studies employed grid search to optimize,

RNN models for waste disposal rate prediction [67, 68], RNN models for high-speed train

vibration prediction [69], graph convolutional recurrent neural networks (GCRNNs) for water

demand forecasting [70], and RNN-based hybrid and ensembles for stock market prediction

[71].

Yahyaoui (2019) employed three optimizations, Bayesian optimization with Gaussian

Process (BO-GP), Tree-structured Parzen Estimator (TPE), and Covariance Matrix Adaptation

Evolutionary Strategy (CMAES), to tune the configuration of LSTM NNs in financial time

series forecasting. These three algorithms were employed to find the best parameter of LSTM

NNs’ parameters: Sequence Length, Number of Hidden Layers, Number of Nodes per layer,

Dropout Rate, Learning Rate, and Activation Function of Hidden Layers. His result shows that

TPE could achieve the overall highest performance for in-sample and out-of-sample metrics,

69

speed, and low trial-to-trial variability [72]. Wu et al. (2019) employed Bayesian Optimization

(BO) algorithm to find the optimal parameters for RF, CNNs, and RNNs. This BO algorithm

cannot tune sequential decision parameters such as the number of layers, number of nodes per

layer, and filter size. In this case, they employed BO algorithm to optimize only the learning

rate and batch size for RNNs [22]. TPE was used to tune LSTM NNs in household appliances'

load consumption by tuning four parameters, including sequence length, number of hidden

layers, number of nodes per layer, and optimizer optimization [73]. In addition, TPE

optimization was applied for hyperparameter tuning of Multi-Attention Recurrent Neural

Networks and compared with the random and manual search [74]. In this research, the authors

tuned several parameters such as activation function, attention length, number of nodes per

layer, dropout rate, and learning rate, while other parameters were fixed as sequence length

(24), batch size (128), epoch (10), Adam optimizer, and Normalization.

Swarm optimizations were also popular for hyperparameter tuning for deep learning. For

instance, Rashid, Aziz, and Hasan (2019) employed Particle Swarm Optimization (PSO)

algorithm for tuning the parameters of RNNs in machine failure prediction. However, PSO is

feasible for only the linear parameters, so this algorithm could cope with only the learning rate

[75]. Harmony Search Algorithm was employed to tune the CNNs models to predict the MNIST

and Cifar-10 datasets [41]. Four critical parameters of CNNs were tuned by this algorithm,

including kernel size, pooling size, number of channels, and strides. [38]. Five public datasets

were used to evaluate the efficiency of the Cuckoo Search Algorithm in tuning the parameters

of LSTM NNs, including the number of hidden layers, number of nodes per layer, and

optimizers [38]. On the other hand, Bouktif, Fiaz, Ouni, and Serhani (2020) combined PSO and

Genetic Algorithm (GA) to find the optimal parameters for LSTM NNs for electric load

forecasting. Their methodology was used to find the optimal parameter one by one, including

the number of sequences, sequence length, starting point, number of nodes, batch size,

activation function, and optimizer [76].

Differential evolution was used to tune two variables (number of nodes per layer and batch

size) of LSTM NNs for motion classification [39]. The sequence length is fixed to be 25 and 8

for EEG and BVP, respectively, while the number of epochs and learning rate are 10 and 0.0025.

The authors compare the performance with other algorithms at three different levels of

interactions, such as 50, 100, and 300. Yoo (2019) proposed an automatic parameter

optimization for deep neural networks using Univariate Dynamic Encoding Algorithms for

Searches (uDEAS). As a result, this algorithm could converge to the optimal solution using 402

and 802 searches compared to 218 and 224 possibilities of grid search for three parameters,

learning rate, number of hidden layers, and batch size [37]. Lastly, two deep learning models

(RNNs and CNNs) and three datasets (human intension recognition EEG, activity recognition

by wearable sensors IMU, and activity recognition by pervasive sensors RFID) were employed

to evaluate the performance of Orthogonal Array Tuning Method (OATM) [77]. For RNNs, the

authors tuned several parameters, such as the learning rate, the regularization coefficient, the

number of hidden layers, and the number of nodes in each hidden layer. On the other hand,

some parameters of CNNs were tuned, including the learning rate, the filter size, the number of

convolutional and pooling layers, and the number of nodes in the second fully connected layer.

In summary, this study also evaluates the effectiveness of the proposed HPO algorithm,

Iterative Decision Tree (IDT), in predicting the spatiotemporal demand of shared e-scooters.

70

Due to time limitations, we selected only two models, Random Forest (RF) and Gated Recurrent

Units (GRUs), as the case study. The evaluations were performed on three datasets, as

mentioned in the previous chapter, namely Thammasat (TH), Minneapolis (MN), and Austin

(TC). Based on the literature reviewed above, it is commonly observed that several

hyperparameters of recurrent neural network architectures need to be optimized to achieve

desirable prediction results. These hyperparameters include the lookback length, number of

layers, number of nodes per layer, activation function, dropout rate, learning rate, and batch

size. Therefore, in this study, we also optimized these hyperparameters for GRUs to predict the

spatiotemporal demand of shared e-scooters. In this section, RF was employed to predict the

spatiotemporal demand of shared e-scooters while optimizing several hyperparameters,

including the lookback length, sampling rate, number of trees in the forest, and maximum depth

of the tree.

Table 4.1 Summary of hyperparameter tuning methods of deep learning models

Authors Year
Deep Learning

Models

Hyperparameter
Tuning Method

Hyperparameters

Fixed Varied

1 Marino et al. 2016

LSTM NNs

Sequence2-

Sequence

Grid Search
60 Lookback Length,

Adam

No. HLayers,

No. Nodes/layer

2 Fan et al. 2017
FNN + LSTM

NNs
No

48 Lookback Length, 2

FNNs+1/2 LSTM NNs, 3

Neighborhoods, 100 Epoch 256

Batch Size, 10% Dropout Rate,

RMSProp

-

3 P. Chen et al. 2017
SFNNs+ Bi-

RNNs + SAM
No

Real-Value, 2 HLayers Relu

Activation, 12 Nodes/layer, 50

Epochs

-

4 Yin et al. 2017 RNNs Grid Search
Normalization,

100 Epochs

Learning Rate &

No. Nodes/layer

5 Kong et al. 2017 LSTM NNs Grid Search

Linear Activation, Adam, 2

HLayers + 1Dense Layer, 512

Nodes/layer

Lookback Length

6 Kong et al. 2017 LSTM NNs
Tree-structured

Parzen Estimator
-

Lookback Length, No. HLayers,

No. Nodes/layer, Optimizer

7 C. Xu et al. 2018 LSTM NNs Grid Search
5 Neighborhoods, Adam,

Standardization

Batch Size, Dropout Rate,

No. of Nodes & Epoch

8
B. Wang &

Kim
2018

LSTM NNs

& GRU
Grid Search

2 HLayers, 25 Epochs,

100 Nodes/layer
Lookback Length

9 Kumar et al. 2018
RNNs, LSTM

NNs, GRU
Grid Search 24 Lookback Length

No. of HLayers &

No. of Nodes/layer

10 Huang & Kuo 2018
CNN1D +

LSTM NNs
No

Normalization, SELU/ Sigmoid,

24 Lookback Length, 3 CNN1D

layers + 1 LSTM NNs layer,

Early Stoppage

-

11 Nabil et al. 2018 GRU Random Search
10 Epochs, 350 Batch Size,

20% Dropout Rate

No. Layers, No. Nodes/layer,

Optimizer & Activation

12 Lee et al. 2018 CNN
Harmony Search

Algorithm
2 Conv layers + 2 ANN layer

Kernel Size, Pooling Size, Stride,

Padding

13 Nakisa et al. 2018 LSTM NNs
Differential

Evolution

25/8 Lookback Length

10 Epochs

0.0025 Learning Rate

No. Nodes/layer, Batch Size

14 Liu et al. 2019 LSTM NNs No
20 Lookback Length, 2

HLayers, 100 Nodes/layer
-

15 Y. Pan et al. 2019 LSTM NNs No

24 Lookback Length, 2

HLayers, 1000 Nodes/layer

-

71

Authors Year
Deep Learning

Models

Hyperparameter
Tuning Method

Hyperparameters

Fixed Varied

16 Le Quy et al. 2019 LSTM NNs Grid Search
Normalization, Adam,

Tanh Activation

Lookback Length, Batch Size, No.

of Neighborhoods, Epochs,

HLayers, Nodes per Layer &

Dropout Rate

17 Uddin et al. 2019 GRU Grid Search 0.0001 Learning Rate
No. of HLayers, Epochs,

Nodes/layer, Batch Size

18
Husein &

Chung
2019 LSTM NNs Grid Search -

Transformation, No. HLayers,

No. Nodes/layer, Dropout Rate,

Epoch, Learning Rate, Optimizer

19
Peter &

Matskevichus
2019 LSTM NNs Random Search - No. Layers, No. Nodes/layer

20 Yahyaoui 2019 LSTM NNs

BO-GP, TPE

Covariance

Matrix

Adaptation

Evolutionary

Strategy

Adam, Early Stoppage (1000),

32 Batch Size, Linear Activation

for Output Layer

Lookback Length, No. HLayers,

No. Nodes/layer, Dropout Rate,

Learning Rate, Activation Function

of HLayers

21 J. Wu et al. 2019

Random Forest,

CNNs, RNNs,

Cascade Forest

Bayesian

Optimization

1 HLayers,

28 Lookback Length,

128 Nodes/layer

Batch Size, Learning Rate

22
Mashlakov et

al.
2019

Multi-Attention

RNNs

Tree-structured

Parzen Estimator

24 Lookback Length, 128 Batch

Size, 10 Epochs, Adam,

Normalization

Activation Function, No. layer of

Attention, No. Nodes/layer,

Dropout Rate, Learning Rate

23 Rashid et al. 2019 LSTM NNs
Particle Swarm

Optimization

100/500/1000 Epochs

2/4/6 Nodes/layer
Learning Rate

24
Srivastava et

al.
2019 LSTM NNs

Cuckoo Search

Algorithm
400 Epochs

No. HLayers, No. of Node/layer

Optimizer

25 Yoo 2019
Autoencoder

CNN

Univariate

Dynamic

Encoding

Algorithm

1 HLayer, 20 Epochs

2 CNN Layers, 20 Epochs, 3

Filter Size

Learning Rate, No. Nodes, Batch

Size, Conv L1 & L2

26
X. Zhang et

al.
2019

CNNs

RNNs

Orthogonal

Array

Tuning Method

Adam

Learning Rate, Filter Size, No.

Conv. &Pool Layers, No. Nodes

ANN layers

Learning Rate, No. Hlayers+2

LSTM, No. Nodes/layer,

Regularization Coef.

27
M. I. Khan &

Maity
2020

CNN1D +

ANNs
Random Search

5 Lookback Length, Adam,

Normalization

Activation Function, Epoch,

No. HLayers, No. Nodes/layer,

Batch Size, Learning Rate,

Dropout Rate, No. of Filter, Kernel

Size, Pooling Size, Loss Function

28 Boukif et al. 2020
LSTM NNs +

ANNs

Genetic

Algorithm +

Particle Swarm

Algorithm

1 LSTM + 3 ANN layers, Early

Stoppage, Dropout Rate,

No. Nodes/ANNs layer

No. of Sequence, Lookback

Length, Starting Points, Activation

Function, No. LSTM, Batch Size,

Optimizer

29
Moghar &

Hamiche
2020 LSTM NNs Grid Search

5 LSTM Layers + 4 Dropout

Layers,

50 Lookback Length, 96

Nodes/layer

Epoch

30 Q. Wu et al. 2020

LSTM NNs +

Gaussian

Mixture Model

No

64 Nodes, 10 Batch Size, Adam

Optimizer, 0.0001 Learning

Rate, 1.0 Gradient Clipping,

10% Dropout Rate, Data

Augmentation

-

31 Ham et al. 2021
ERD or

CNNs +RNNs
Grid Search

5 Lookback Length, 5 RNNs

layers

Learning rate, Activation Function

GRU or LSTM cell, Input features

32 Kisvari et al. 2021
LSTM NNs &

GRUs

Grid Search

Manual Search
-

Batch Size, Epochs, Optimizer,

Activation Function, Kernel

Initializer, No. Nodes/layer, No.

HLayers

72

Authors Year
Deep Learning

Models

Hyperparameter

Tuning Method

Hyperparameters

Fixed Varied

33 Wei et al. 2021
LSTM NNs &

GRUs
Grid Search -

No. Nodes/layer, Batch Size,

Dropout Rate, Epochs, Activation

Function, Lookback Length

34
Y. Huang et

al.
2021 SpAttRNN No

0.01 Learning Rate, 30 Epochs,

128 LSTM nodes, 10 Spatio-

Attention Outputs

-

35 Vu et al. 2021
LSTM NNs &

RNNs
Grid Search

1 HLayer with 128 Nodes

2 HLayer with 600 Nodes
Lookback Length

36 Vu et al. 2022
LSTM NNs &

RNNs
No

1 Input Layer + 1 HLayer,

128 Nodes/layer
-

37 Siłka et al. 2022 LSTM NNs Grid Search

8 LSTM Layers + 2 ANN

Layers, ReLU output Activation

Function

Optimizer, Lookback Length, Error

Margin

38 Zanfei et al. 2022 GCRNNs Grid Search

3 GCN Layers + 2 LSTM

Layers

100 Epochs, 24 Batch Size

No. Nodes and Edges

39 Syed et al. 2023
RNNs & Bi-

LSTM NNs
Manual Search 10% Dropout Rate, Adam

No. HLayers, No. Nodes/layer,

Learning Rate, Epochs, Batch Size,

Lookback Length

40 Song & Choi 2023

CNNs + LSTM

NNs

GRUs-CNNs

Ensembles

Grid Search

10 Early Stopping Patience,

1D-Conv with 32 Filters, 3 Size

& 1 Stride

Lookback Length, Dropout Rate,

Epochs, Learning Rate, No.

HLayers, No. Nodes/layer, Batch

Size

4.3 Methodology

Decision Tree (DT) is a powerful non-parametric supervised learning technique that builds

the classification or regression models as a tree structure. As shown in Figure 4.1, DT composes

of three main elements: root node (parent node), decision node (child node or interior node),

and terminal node (leaf node). The root node is the initial node covering the entire sample and

may get split into decision nodes or leaf nodes. The decision node represents the decision rule

using data features to get two or more branches, while the leaf node represents the outcome.

There are several popular algorithms proposed for a decision tree from a dataset, such as

Iterative Dichotomiser 3 (ID3), ID3’s extensions (C4.5 and C5.0), and Classification and

Regression Tree (CART).

73

Figure 4.1 Example of DT regressor with CART algorithm: top tree corresponding to the

partition of the bottom left panel and the perspective plot of the prediction surface is on the

bottom right panel [78]

The decision tree regressor (or regression tree) was built based on the CART algorithm

using a Python module, DecisionTreeRegressor, of scikit-learn [79]. The detailed formulation

of this algorithm can be found in their documentation or in [78]. The formulation of DT with

MSE as the loss function for a given training vectors xi ∈ R
n, i = 1,… , Iand the label vector

y ∈ Rlspliting on node m with feature j and threshold tm (i.e., splitting candidate θ = (j, tm))

is as follows:

Qm
left(θ) = {(x, y)|xj ≤ tm} (4.2)

Qm
right(θ) = {(x, y)|xj > tm} (4.3)

G(Qm, θ) =
nm
left

nm
H(Qm

left(θ)) +
nm
right

nm
H(Qm

right(θ)) (4.4)

H(Qm) =
1

nm
∑ (y − y̅m)

2
y∈Qm (4.5)

Where Qm
left(θ) and Qm

right(θ)⁡are the subsets of data partitioned on node m to the left and

right nodes, respectively. The quality of a candidate split G(Qm, θ) is minimized and grown

until the maximum allowable depth θ∗ = argminθG(Qm, θ). The split quality is simply the

weighted average of loss function H(Qm) as MSE of that node (i.e., the prediction of the node

y̅m is the average value). In case of a classification problem with targe class values of (0, 1,…,

K-1), the criterion or loss function could be the Gini impurity H(Qm) = ∑ pmk(1 − pmk)k or

Entropy H(Qm) = −∑ pmk log(pmk)k , where pmk =
1

nm
∑ I(y = k)y∈Qm .

Our proposed method, the Iterative Decision Tree (IDT), is a sequential model-based

optimization (SMBO) technique that uses decision tree regression as the surrogate function. DT

regressor is suitable for learning the correlation between hyperparameters and the black-box

74

objective function, often referred to the loss function in machine learning. It provides short

training time, the ability to handle categorical and conditional variables, small datasets with

multiple features, and nonlinear relationships. From the parameter setting of CART, as

mentioned above, DT is employed to partition the overall search space based on the evaluated

points. In this case, the DT regressor works as the surrogate function so that the new candidates,

as extreme or random points, can be drawn from the promising regions (terminal nodes). In

other words, the DT regressor is used to predict the expected objective value of all the

combinations of hyperparameters. After that, the new candidates were selected from the

combinations given the highest expected objective (i.e., the highest promising region). For other

promising regions following the sorted evaluated points, the new candidates were selected from

each region independently.

Figure 4.2 shows the Iterative Decision Tree algorithms with the new candidates as

extreme points (IDT-E) or random points (IDT-R). IDT starts with some initial candidates (𝑁)

as grid or random, then the objective values of these candidates are evaluated. The decision

tree regressor is trained with the input as the initial candidates and the output as objective values.

In this algorithm, DT is trained using the CART algorithm with MSE as the loss function while

the tree is grown until the terminal node is pure (i.e., the terminal nodes have only one sample

or many samples with the same objective values). In each iteration, the 𝑇 best performed leaves

or terminal nodes are selected, while the new candidates are chosen as 𝑅 random points or all

extreme points from each leaf. The repetitive candidates are removed before evaluating the

objective function. This iterative loop (training DT, selecting 𝑇 best performed leaves, selecting

new candidates, removing the redundant candidates, and evaluating the new candidates) are

performed until reaching the maximum iterations, or there are no new candidates. If the

termination criteria are met, the best solution is chosen, and the algorithm is ended. It is worth

noting that IDT algorithm can not secure the global optimal solution but a near-global solution.

Therefore, IDT is suitable for HPO, where the objective functions are not too expensive or too

cheap.

75

Figure 4.2 Iterative Decision Tree with new candidates as extreme points (left: IDT-E) and as

random points (right: IDT-R)

To better understand the concept of our proposed methodology, two examples were

provided using Equations (4.6) and (4.7). As shown in Figure 4.3, IDT started with six initial

random points, and four new candidates were suggested from the extreme points of two top

leaves. After evaluating these four new candidates, DT was retrained and suggested three new

candidates (one repetitive candidate). This sequential loop was performed until reaching the

stopping criteria. From one to another iteration, the newly recommended candidates were closer

and closer to the global optimal location. After the fourth iteration, we got the optimal result as

0.7626 (objective of -6.00522), while the actual global result is 0.7573 (objective of -6.02074).

We will get closer to the actual global result if we do several more iterations.

𝑓(𝑥) = (6𝑥 − 2)2 sin(12𝑥 − 4) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ∈ [0, 1] (4.6)

𝑓(𝑥, 𝑦) = −𝑥 sin (√|𝑥|) − 𝑦 sin(√|𝑦|) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥, 𝑦 ∈ [−500, 500] (4.7)

76

Figure 4.3 Optimization procedure for (4.6) by Iterative Decision Tree with Extreme points

(IDT-E) with the parameters of 2 best-performed leaves and eight initial random points

Figure 4.4 shows the five iterations of the optimization procedure of the Schwefel function

(4.7) by IDT-R with the parameters of 5 best-performed leaves, two random points in each leaf,

and 100 initial random points. In this example, 100 random initial points were selected to train

the DT regressor. The CART algorithm split the overall search space into 100 regions

(representing 100 terminal nodes). 2 points were randomly drawn from 5 best-performed leaves

scattering in many local optimal regions. Similarly, the new candidates were suggested in

several regions, which represent the exploration capability of IDT-R. In the third iteration, IDT-

R searched in only two regions, while IDT-R searched only in the global optimal region in the

77

4th and 5th iterations, i.e., exploitation. In just five iterations with total searches of 150, the new

candidates were almost on the top of the global optimal solution.

Figure 4.4 Optimization procedure for Schwefel function (4.7) by Iterative Decision Tree

with Random points (IDT-R) with the parameters of 5 best-performed leaves, two random

points in each leaf, and 100 initial random points

To reveal the effectiveness of the proposed approach, we will compare them with several

benchmark algorithms, including Grid Search or GS, Random Search or RS, Bayesian

Optimization based on Gaussian Processes with Lower Confidence Bound or GP-LCB,

Bayesian Optimization based on Random Forest regressor with Lower Confidence Bound or

RF-LCB [80], Tree-Structured Parzen Estimator or TPE [81], and Genetic Algorithm or GA

[82], see Table 4.2. The comparison was examined both on the benchmark problems and the

demand prediction of shared e-scooter. The benchmark problem included the optimization of

nonconvex functions (Cross-in-tray, Eggholder and Styblinski-Tang functions), machine

learning models (Support Vector Machine or SVM and Random Forest or RF), and deep

learning models (Autoencoder or AE and Convolutional Neural Networks or CNNs). The HPO

78

of these models was examined using the benchmark datasets such as hand-written digits dataset

[79], car evaluation dataset [83], MNIST [84], and CIFAR-10 [85]. For demand prediction of

shared e-scooter, two models (RF and GRUs) were examined.

Table 4.2 Parameter settings for hyperparameter optimization algorithms

Algorithm Parameter

Value Range

SVM, RF, AE,

CNNs, GRUs

Nonconvex

Function

GP-LCB
Number of initial random points 50 - 150 100 - 300

Kappa 0.0 - 2.0 0.0 - 2.0

RF-LCB
Number of initial random points 50 - 150 100 - 300

Kappa 0.0 - 2.0 0.0 - 2.0

TPE
Number of initial random points 50 - 150 100 - 300

Number of candidates for EI 20 - 50 20 - 50

GA

Population size 5 - 30 10 - 50

Mutation probability 0.01 - 0.5 0.01 - 0.5

Elite ratio 0.0 - 0.1 0.0 - 0.1

Crossover probability 0.2 - 0.7 0.2 - 0.7

Parent portion 0.1 - 0.5 0.1 - 0.5

IDT-E

&

IDT-R

Number of initial random points 50 - 150 100 - 300

Number of best-performed leaves 2 - 5 2 - 10

Number of randoms in each leaf 1 - 3 2 - 5

The proposed algorithms (IDT-E and IDT-R) seek near-global optimization under

constrained computational resources and offer the feature importance metric to better

understand the effect of hyperparameters on the objective function. Additionally, these

important metrics can be used to create an effective search space, for example, by designating

a coarse grid to less significant hyperparameters and a wider range to those that are more

important. Impurity-based feature importance, also known as Gini importance, is calculated as

the normalized total decrease of the impurity criterion (for example, R2-score) [79]. In contrast

to binary or categorical features, this metric tends to be quite biased and favors high cardinality

features. Therefore, the relation between the factors and the response is primarily interpreted

using the non-biased permutation-based feature importance. The difference in impurity score

between the original data and the randomly reordered (permuted) data for each feature is used

to calculate the permutation-based feature importance. Both feature importance based on

79

impurities and feature importance based on permutations is compared in this study, with 100

permutations.

4.4 Numerical results

4.4.1 Optimization result of nonconvex functions

Since the global optimal values of nonconvex functions are known, optimizing these

functions has frequently been used to assess the efficiency of optimization techniques. Problems

involving the optimization of nonconvex functions occur when any of the constraints or the

objective functions are nonconvex. Several viable regions, locally optimal points, flat regions,

and saddle points are characteristics of nonconvex functions. Most optimization algorithms can

only offer a near-global optimal solution when working within a constrained computing budget

since the global optimal point of a loss function is unknown in the real world. Three benchmark

nonconvex functions were tentatively chosen based on the difficulty of the problems, which

ranged from easy to challenging. Although the mathematical expression for the cross-in-tray

function is complex, the fact that it only has two parameters, and four global solutions makes it

a simple task. Conversely, the Eggholder function is a difficult problem because there is only

one global solution, and the range of values for its two parameters is quite large. As it only has

one global solution with n parameters, the Styblinski-Tang function was chosen to make the

problem more complex. The ranges of objective value for these three functions also vary. The

expression of Cross-in-tray function (Eq. 4.8), Eggholder function (Eq. 4.9), and Styblinski-

Tang function (Eq. 4.10) are:

𝑓(𝑥, 𝑦) = −0.0001 [|sin 𝑥 sin 𝑦 exp(|100 −
√𝑥2 + 𝑦2

𝜋
|)| + 1]

0.1

 (4.8)

𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin√|
𝑥

2
+ (𝑦 + 47)| − 𝑥 sin√|𝑥 − (𝑦 + 47)| (4.9)

𝑓(𝑥𝑖) =
1

2
∑𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

𝑛

𝑖=1

⁡⁡ (4.10)

Where the search domain of (Eq. 4.8), (Eq. 4.9), and (Eq. 4.10) is between [−10, 10],

[−512, 512], and [−5, 5], respectively. The Styblinski-Tang function's n value was set to 5,

meaning that five parameters were optimized (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5).

The global minimum values of the benchmark nonconvex functions Cross-in-tray,

Eggholder, and Styblinski-Tang are, respectively, -2.06261, -959.6407, and -195.8308. Except

for the cross-in-tray function, which has four symmetric optimal points, all functions have a

single global optimal point. Due to limited computational resources, the HPO algorithms cannot

guarantee the global optimal solution for our parameters, just a close to global one. The average

of each nonconvex function calculation trial for the 400 total searches represents the global

convergence curve in Figure 4.5. IDT-E and IDT-R produce comparable outcomes when

starting with an initial set of 200 random points on average, but IDT-R reaches the optimal

region more quickly. Because IDT-R only generates roughly 15 new candidates per iteration

compared to IDT-E's 20 (2x2x5) candidates for Cross-in-tray and Eggholder and 50 (5x2x5)

80

candidates for Styblinski-Tang. In other words, when solving problems with several decision

variables, IDT-E engages in more exploration than exploitation. After a few iterations

(inadequate exploitation) for the Styblinski-Tang function, IDT-E meets the stopping condition

(maximum number of examined points). As a result, RS is just marginally superior.

Figure 4.5 Global convergence curve (average value) of HPO algorithms for the nonconvex

functions: Cross-in-tray, Eggholder, and Styblinski-Tang

Figure 4.6 Box plot of best results of HPO algorithms for the nonconvex functions: Cross-in-

tray, Eggholder, and Styblinski-Tang

The best outcome of HPO algorithms for nonconvex functions is shown in a box plot in

Figure 4.6. The majority of HPO algorithms might easily reach one of the optimal solutions for

the Cross-in-Tray function. Four algorithms—GP-LCB, RF-LCB, IDT-E, and IDT-R—

achieved the best result in this case, with IDT-R having the greatest average value and the lowest

variance (i.e., high stability). With regard to the Eggholder function, the best results from all

algorithms had a comparatively high standard deviation, presumably due to local optima or

insufficient exploitation. GA performed similarly to RS, although with a larger variance. Due

to the small population size in some trials, GA may have achieved favorable outcomes but also

fell into local optima. IDT-R performed better than other algorithms overall in terms of mean

and standard deviation. Although IDT-R had the best performance, the Styblinski-Tang function

was similar to the first two functions in terms of how GP-LCB, RF-LCB, and IDT-R performed.

The following algorithms have the shortest average computation times: GS (0.01s), RS (0.06s),

GA (0.56s), IDT-E (0.66s), IDT-R (1.01s), TPE (2.74s), RF-LBC (59.72s), and GP-LCB

(817.67s).

81

Figure 4.7 Mean and STD of feature importance metrics by IDT-R for each parameter of the

nonconvex functions: Cross-in-tray, Eggholder, and Styblinski-Tang

The feature importances of the functions with 2 and 5 were 50% and 20%, respectively,

based on a large number of random points in the search space. The importances of the features

based on impurity and permutation were equal in this instance. Figure 4.7 illustrates how

permutation importances are much closer to the ideal value and have a lower variation than

feature importances (i.e., impurity-based feature importances). As a result, the permutation

importances should be used as the foundation for this metric's interpretation.

4.4.2 HPO result of SVM for hand-written digits dataset

Suitable for both classification and regression, Support Vector Machine (SVM) is a reliable

supervised learning technique. SVM is based on the idea of decision planes, which use decision

boundaries or hyperplanes to best divide the data into various categories. SVM can handle

various classification or regression issues because of the flexibility and simplicity of the model,

including high dimensional spaces, small datasets with a greater number of features, and

handling both linear and nonlinear data [79]. Detail SVM formulas may be found in [78]. The

C-Support Vector Classification Python module from the Scikit-learn packages was used to

train this model [79]. The kernel coefficient (𝑔𝑎𝑚𝑚𝑎⁡𝜖⁡[0.001, 1]) and the regularization

parameter (𝐶⁡𝜖⁡[0.001, 10]) were the two hyperparameters of SVM that were optimized in this

study. Other hyperparameters were set to their default values, with the decision function for

multi-class classification being one-vs-one and the kernel function being the Radial Basis

Function (RBF). The hand-written digits data from Scikit-learn was used to train the SVM in

this study, see Figure 4.8. The images in this dataset are 8x8 grayscale images labeled 0 - 9.

82

Model training (50%) and model evaluation (50%) were randomly selected from the total

sample 1797.

Figure 4.8 Hand-written digits dataset [79]

The digit classification numerical results of SVM's HPO are shown in Figure 4.9, along

with a box plot of the best solutions and a global convergence curve by computation time for

the 200 evaluation points that were included. TPE performs well initially because it converges

faster than other algorithms but finds it difficult to depart the local optima. Because they mostly

depend on random searches, other HPO algorithms perform similarly for the first 100 searches

(about 10 seconds). Most of these algorithms are stuck in local optima that resemble TPE after

this stage, except IDT-R, which consistently ascends to the global optimal point. Similar to

previous problems, the population-based algorithm (GA) performs relatively poorly, even

worse than RS, because it is prone to falling into local optimal points because of the small

population size and the insufficient number of generations.

The performance of IDT-E was comparable to that of other sequential-based algorithms

like TPE, GP-LCB, and RF-LCB because just two hyperparameters were optimized. SVM's

benchmark performance on this dataset was 96.89% [79], while 97.44% accuracy was attained

through the hyperparameter SVM optimization. IDT-R, on average, completed calculations in

18.3 seconds with a 97.42 percent accuracy. TPE performed at 97.36 percent with a training

time that was marginally faster (16.3s). The longest computation time was needed for GP-LCB

(104s), followed by RF-LCB (42.6s), and GA (32.5s). For roughly 21s, training was required

for GS, RS, and IDT-E. Because they were trained with fewer evaluated points than the

maximum number of searches (200), IDT-E and IDT-R had faster training times than other

model-based approaches. The regularization parameter (C = 3) and kernel coefficient (gamma

= 0.2) were the SVM's global optimal hyperparameters for the digit classification dataset.

83

Figure 4.9 Numerical results of SVM’s HPO for digit classification: (top) global convergence

curve and (bottom) Box plot of best results of HPO algorithms

Based on a large random sample, the hyperparameters, C and gamma, of the SVM have

feature importances of 80% and 20%, respectively. The average permutation importance and

feature importance of gamma from 20 trials of IDT-R with 200 evaluated points was 43.29 and

42.80 percent, respectively. Due to the relatively small sample size (200 samples) in comparison

to the prior section (400 samples), there is a notable deviation from the ideal values. The

interpretation of the IDT-R algorithm's feature importances should be based on a large enough

sample size.

4.4.3 HPO result of RF for car evaluation dataset

As explained in Chapter 3, Breiman's Random Forest (2011) is a potent machine-learning

technique that can handle highly dimensional data with minimal training data. RF is the average

(for regression) or majority vote (for classification) of hundreds of predictions made by a

decision tree using randomly chosen inputs or feature combinations. RF can handle the

84

overfitting of traditional decision trees for classification and regression issues as the bootstrap

aggregation (or bagging) of weak tree learners. The Random Forest Classifier Python module

from the Scikit-learn packages was used to train the random forest in this study [79]. Three

hyperparameters of RF, including the number of trees in the forest (𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠⁡𝜖⁡[1, 400]),

the maximum depth of the tree (max_𝑑𝑒𝑝𝑡ℎ⁡𝜖⁡[1, 20]), and the criterion function (Gini impurity

or entropy) was optimized in this section. RF's trees were constructed using bootstrap samples,

with a minimum of 2 samples needed for internal node splitting and 1 sample in each leaf node.

The square root of the total number of features was used to determine how many features should

be used for the optimal split.

Table 4.3 Car evaluation dataset [83]

Items Attributes

Evaluation classes Unacceptable, Acceptable, Good, Very Good

Buying price Low, Medium, High, Very High

Maintenance price Low, Medium, High, Very High

Number of doors Two, Three, Four, Five or more

Capacity as # persons Two, Four, More

Size of luggage boot Small, Medium, Big

Estimated safety of car Low, Medium, High

With the abovementioned settings, a random forest classifier was trained on a benchmark

dataset, car evaluation, as in Table 4.3 from the UCI machine learning repository [83]. Seven

elements and 1728 instances make up this dataset. Unacceptable, acceptable, good, and very

good are the four evaluation categories. The cost of purchasing and maintaining the car, the

number of doors, the number of people it can carry, the size of the luggage boot, and the

projected level of safety are the six categorical explanatory variables. The complete dataset was,

by default, randomly divided into two portions for model training (70%) and model evaluation

(30%).

Figure 4.10 depicts the numerical outcomes of hyperparameter tuning for car evaluation

by random forest classifier as the box plot of the best outcome for each HPO algorithm as well

as the global convergence curve by computational time. The performance of RF varies from

67.82 percent to 97.11 percent (the global optimal result) in this search boundary. As can be

seen, the majority of HPO algorithms, including TPE, GA, and RF-LCB, were stymied in two

local optima at 96.72 and 96.92 percent. All algorithms but GP-LCB and IDT-R fared better on

average than IDT-E. Although the performance of these two algorithms was comparable, IDT-

R found the ideal solution after about 150 searches (40s), whereas GP-LCB took 195 searches

to do so (170s). The optimum RF hyperparameters for the car evaluation dataset, for an accuracy

of 97.11 percent, were 77 for the number of trees in the forest, 11 for the maximum depth of the

tree, and the Gini impurity criteria.

85

Figure 4.10 Numerical results of RF’s HPO for car evaluation dataset: (top) global

convergence curve and (bottom) Box plot of best results of HPO algorithms

These HPO algorithms are ranked according to their computational times as follows: IDT-

E (41.6s), IDT-R (50s), GS (50.8s), RS (52s), GA (76.4s), TPE (76.5s), RF-LCB (86.25s), and

GP-LCB (173.7s). Because they did not require iteratively updating the surrogate function like

the sequential-based approaches or training the repetitive candidates (i.e., they evaluated less

than 200 points in some trials), IDT-E and IDT-R had shorter training times than algorithms,

similar to HPO of SVM. The three hyperparameters (number of trees, maximum depth, and

criterion) had real feature importances for this problem setting of 0.65 percent, 99.15 percent,

and 0.2 percent, respectively. These three hyperparameters had average impurity-based feature

importances from 20 HPO trials of 1.03 percent, 98.83 percent, and 0.14 percent, respectively.

The permutation importances were 1.09 percent, 98.72 percent, and 0.18 percent. As a result,

the performance of RF is substantially influenced by the hyperparameter, the maximum depth

of the tree.

86

4.4.4 HPO result of AE for MNIST dataset

The term "autoencoder" refers to a collection of unsupervised neural networks specifically

employed to extract the significant characteristics of data, possibly for dimensionality

reduction, anomaly detection, data denoising, information retrieval, image inpainting, and other

similar tasks. The input layer connects to one or more successively smaller layers (Encoder),

followed by successively bigger layers (Decoder), which connect to the output layer in AE. The

original data must pass through the middle layer, which acts as a bottleneck and stores the

compressed knowledge representation, in order to minimize the difference between the input

and output layers. Many different autoencoder models exist, including fully connected,

convolutional, sequence-to-sequence, and variational autoencoders.

Figure 4.11 Architecture of Autoencoder as dimensionality reduction for MNIST dataset

This research uses an easy, fully-connected architecture (see Figure 5.7) as the autoencoder,

similar to [37]. The input layer connected to the compacted layer required the flattening of the

original images. The output layer, which could be used to recreate the original image, received

the representative properties retrieved by the bottleneck layer before being transferred to it. This

fully connected autoencoder was trained using the MNIST dataset [84] with the MSE as the

loss function. 70,000 handwritten digits from 0 to 9 in 28x28 pixel images make up this dataset.

10,000 data were utilized to evaluate the model, while the remainder was used to train the AE

architecture. A Jupyter Notebook was used to run this architecture using Keras and TensorFlow

packages. The number of nodes and activation in the output layer, learning rate of the stochastic

gradient descent (SGD) optimizer, batch size, and activation of the encoding layer were the five

hyperparameters of AE optimized in this study. In order to minimize the data features by up to

50%, the Hidden Layer (HL) was searched between 4 and 400 nodes. ReLU (R), Sigmoid (S),

and Tanh (T) functions were taken into consideration as three activation functions for the HL

and Output Layer (OL). 0.001 to 0.99 and 64 to 1024, respectively, were chosen to search for

the optimal learning rate and batch size. The patience and min_delta values for the

EarlyStopping were 3 and 0, respectively, and there were 50 epochs. Mean Square Error (MSE)

was used as the AE's loss function, and the SGD optimizer's momentum was adjusted to zero.

87

As shown in Figure 4.5 and Figure 4.6 for the Styblinski-Tang function, IDT-E performed

poorly since it wasn't suited for optimizing the HPO with several hyperparameters. Therefore,

the five hyperparameters of the autoencoder (AE) were not optimized using IDT-E. Figure 4.12

displays the performance of the HPO algorithms (GS, RS, GP-LCB, RF-LCB, TPE, GA, and

IDT-R) comprising the feature importances, the global convergence curve by computational

time, and a box plot of the best results from HPO. The random search performed just slightly

better than the coarse grid of the hyperparameter space. The performance of GA, RF-LCB, and

RS was only somewhat superior to RS with the current AE settings. The GP-LCB, TPE, and

IDT-R performed comparably in this problem. TPE, on the other hand, converged more quickly

than other algorithms, around the 50th search (about 25 minutes), before sluggishly getting

closer to the overall optimal position. In contrast to earlier problems, AE was not entirely stable,

meaning that when we run the same configuration of AE multiple times, the outcomes

frequently differ. In light of the possibility that these two methods trained the same AE

configurations, certain GP-LCB and TPE trials had better validation loss than IDT-R trials.

Figure 4.12 Numerical results of Autoencoder’s HPO for MNIST dataset: (top) Global

convergence curve, (bottom-left) Box plot of best results of HPO algorithms, and (bottom-

right) Mean and STD of feature importances by IDT-R

88

The optimal hyperparameters were 400, Tanh, ReLU, 0.99, and 64 for Hidden Layer’s (HL)

number of nodes, HL’s activation, Output Layer’s (OL) activation, Learning Rate, and batch

size, respectively. This implies that the amount of information lost decreases with increasing

latent space (number of HL nodes). With the smallest batch size and greatest learning rate, AE

achieved the lowest validation loss under the constrained number of epochs. However, it took

more time to compute because of the smaller batch size. Because of this, TPE had the longest

computing time—124.19 minutes—for the 200 total assessed points, as it converged more

quickly than other methods, see Figure 4.12. For the 243 searches (3 coarse grids for each

hyperparameter) in total, GS was trained for 85.5 minutes. GP-LCB took an average of 111

minutes to train, followed by GA (110.9 minutes), IDT-R (102.7 minutes), RF-LCB (92.3

minutes), and RS (54.6 minutes). Even though parallel computing can be used to speed up the

computation of GA and IDT-R.

The feature and permutation importances are also shown in Figure 4.12. The impurity-

based feature importances demonstrate that batch size (53.6%) had a significant influence on

AE's performance, followed by learning rate (18.6%), HL’s number of nodes (13.9%), HL’s

activation (8.9%), and OL’s activation (6%), in that order. Contrarily, permutation-based feature

importances increased this metric for the other four hyperparameters, such as learning rate

(23.6%), HL’s number of nodes (17%), HL’s activation (16.4%), and OL’s activation (12.5%),

while decreasing the importance measure of batch size to 30.5 percent.

4.4.5 HPO result of CNNs for CIFAR-10 dataset

Convolutional neural networks (CNNs) are a popular variety of deep neural networks used

in many different applications, particularly image recognition and computer vision tasks.

Convolution and pooling are the two specific operations that makeup CNNs. As narrated in

[86], LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, and SENet are only a few examples of

the potent deep convolutional neural network architectures that exist.

Modern performance in face recognition and picture classification is achieved by the

straightforward deep convolutional neural network known as the Visual Geometry Group

(VGGNet). Four learnable layers in a straightforward VGGNet were explored in this study [86].

As shown in Figure 4.13, our VGGNet design comprises the following layers: the output layer,

two convolutional layers (CL), one max pooling layer, two dropout layers, and one fully

connected layer (FCL). Using the CIFAR-10 dataset [84], this classification architecture was

developed. 60,000 32x32 pixel color pictures of items from 10 classes make up this dataset,

50,000 for training and 10,000 for testing. The Keras and TensorFlow platforms were used to

build the model. The majority of the model's hyperparameters were trained using default values,

while 14 hyperparameters were optimized using the range depicted in Table 4.4. The Stochastic

Gradient Descent (SGD) optimizer was used to optimize the parameters of CNNs, while its two

parameters, momentum and learning rate, were tuned in the range as in Table 4.4. There were

50 epochs used, and categorical cross-entropy was the loss function.

89

Figure 4.13 Architecture of Convolutional Neural Networks (CNNs) for the CIFAR-10

dataset

Table 4.4 Hyperparameter range for convolutional neural networks (CNNs)

Hyperparameter Range Hyperparameter Range

Filter of CL1 8 - 128 Dropout rate 1 0 – 0.8

Kernel of CL1 2 - 10 Node in FCL 8 - 1024

Activation of CL1 R, S, T Activation of FLC R, S, T

Filter of CL2 8 - 128 Dropout rate 2 0 – 0.8

Kernel of CL2 2 - 10 Learning rate 0.001 – 0.99

Activation of CL2 R, S, T Momentum 0.001 – 0.99

Pooling size 2 - 10 Batch size 64 - 1024

The importance metrics for the hyperparameters of CNNs are shown in Figure 4.14, along

with the global convergence curve by training time. TPE converged quicker than other methods,

similar to Autoencoder's HPO, before progressively moving into a near-global optimal point.

At 73.95 percent and 78.98 percent accuracy, respectively, GS and RS remained stable. In this

case, TPE converged more quickly than other algorithms, but it also had an easy time entering

the local optima, with an average accuracy of 80.75% for the 300 total examined points. GP-

LCB, RF-LCB, GA, and IDT-R all had accuracy ratings of 79.75 percent, 80.10 percent, 79.95

percent, and 80.21 percent, respectively. Compared to the baseline setup, which had an accuracy

of just 67.07 percent [86], the optimized configuration of CNNs performed substantially better.

However, several other hyperparameters could be optimized to achieve even higher accuracy,

such as batch normalization, data augmentation, deeper configuration (including more VGG

blocks), etc.

The first convolutional layer of CNNs had the best filter, kernel, and activation settings of

89, 2, and ReLU, while the second convolutional layer had the best filter, kernel, and activation

settings of 118, 7, and Tanh. The fully connected layer of CNNs has the optimal nodes of 934

and Sigmoid as the activation function. Other ideal CNN hyperparameters included the batch

size of 113, learning rate of 0.107, momentum of 0.537, dropout rate_1 of 0.564, dropout rate_2

of 0.437, and pooling size of 7. Longer training time is needed for CNNs' optimal architecture

than for random architecture. Consequently, this TPE trial required 57.2 hours of training in

total, compared to 32.81 hours for the other four trials. Due to utilizing 243 coarse grid points

during training, GS required the least time—roughly 21.5 hours. The computation times for RS

and GA were 31.85 and 32.49 hours, respectively. The GP-LCB required an average training

duration of 36.55 hours, whereas the RF-LCB needed 36.28 hours. IDT- R's computation time

90

for the 300 total evaluated points is 33.10 hours, comparably less than other sequential-based

algorithms (GP-LCB, RF-LCB, and TPE).

Based on feature importance, it is clear that the parameters, learning rate, and momentum

of the SGD optimizer significantly impacted the performance of CNNs. These two

hyperparameters had permuted-based feature importances of 28.08 percent and 15.19 percent,

respectively, with FCL activation coming in third (12.94 percent). The number of FCL nodes

(5.47%), batch size (5.43%), activation of CL1 (5.81%), and dropout rate 2 (4.98%) were a few

additional relatively significant features. Other hyperparameters, such as the filter of CL2 (4.17

percent), pooling size (4.15 percent), filter of CL1 (3.90 percent), kernel of CL2 (2.96 percent),

dropout rate 1 (2.58 percent), kernel of CL1 (2.47 percent), and activation of CL2 were less

significant (1.87 percent).

Figure 4.14 Numerical results of CNNs’ HPO for CIFAR-10 dataset: (top) Global

convergence curve and (bottom) Mean and STD of feature importances of CNNs by IDT-R

4.4.6 HPO result of RF and GRUs for shared e-scooter demand prediction

This section employed IDT-R to optimize the hyperparameters of random forest (RF) and

gated recurrent units (GRUs) for the total hyperparameters of 4 and 10, respectively. To control

the overfitting of these two models, the objective function is the summation of the MSE of

evaluation data and the ratio of MSE of evaluation data and that of training data, i.e., 𝑀𝑆𝐸𝑒𝑣𝑎𝑙 +

𝑀𝑆𝐸𝑒𝑣𝑎𝑙/𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛. Both RF and GRUs were trained with multiple outputs and normalized

91

scale. The hyperparameters of these two models (RF and GRUs) were optimized for the total

evaluation points of 200. The number of running trials was 10 for IDT-R and 5 for other

benchmark algorithms.

Four hyperparameters of RF were optimized, such as lookback length [10, 170], sampling

rate [1, 24], number of trees in the forest [10, 400], and maximum depth of the tree [1, 10]. In

the case of GS, four grid points of these four hyperparameters were selected, resulting in 256

RF models being evaluated. On the other hand, the architecture of GRUs was the stack of the

input layer with GRU cell, first dropout layer, one hidden layer with GRU cell, second dropout

layer, and the output layer with conventional neurons and ReLU activation function. Therefore,

the ten hyperparameters of GRUs are lookback length [10, 170], sampling rate [1, 24], number

of nodes of input layer [10, 512], activation function of input layer (ReLU, Sigmoid, and Tanh),

dropout rate_1 [0, 0.8], number of nodes of hidden layer [10, 512], activation function of

hidden layer (ReLU, Sigmoid, and Tanh), dropout rate_2 [0, 0.8], learning rate [0.0001, 0.01],

and batch size [8, 512]. GRU GS of GRUs was trained for 216 combinations as some

hyperparameters were fixed, such as sampling rate as 1, dropout rate_1 as 0.1, activation

function of hidden layer as ReLU, and dropout rate_2 as 0.05. Other hyperparameters were

selected for 2 or 3 each, such as lookback length (36, 88, 140), number of nodes of input layer

and hidden layer (93, 259, 425), activation function of input layer (ReLU and Tanh), learning

rate [0.0026, 0.0076], and batch size [152, 392].

4.4.6.1 Thammasat TH dataset

Figure 4.15 shows the convergence curve of HPO results of RF and GRUs for hourly

shared e-scooter demand prediction using Thammasat TH dataset. In the case of RF, IDT-R

achieved the lowest objective value (30.51) at a reasonable computational time of 125 minutes.

TPE achieved a similar performance (30.78) but required the highest computational time of 232

minutes. In this case, RF-LCB performed better than GP-LCB in both performance (31.06 vs.

31.39) and training time (91 vs. 157 minutes). GA had a relatively short training time (66

minutes) while achieving the objective value of 31.63. GS and RS had the lowest training time,

28 and 32 minutes, respectively, but their performances are quite poor, i.e., 35.89 and 32.53,

respectively. With the setting architecture of GRUs mentioned above, RF achieved slightly

better performance compared to GRUs in both optimal objective value and computational time.

For an instant, the performance of GRUs optimized by TPE had the lowest objective value of

30.95 for the computational time of 149 minutes. IDT-R and RF found a similar optimal value

of 31.42 and 31.76, respectively, with a training time of 154 and 137 minutes. GA and GS had

a similar objective value of 33.67 and 33.54, respectively, but GA had a shorter training time of

only 72 minutes compared to 279 minutes by GS. RS had the shortest training time of 47

minutes but a poor objective value of 34.80. Interestingly, GP-LCB has the worst performance

for both training time (366 minutes) and objective value (35.79).

92

Figure 4.15 Numerical results of HPO of RF (left) and GRUs (right): Thammasat dataset

4.4.6.2 Minneapolis MN dataset

Figure 4.16 shows the convergence curve of HPO results of RF and GRUs for hourly

shared e-scooter demand prediction using Minneapolis MN dataset. Difference from

Thammasat, the performance of GRUs performed better than RF in both optimal objective value

and computational time. Similar to the previous problem, IDT-R achieved the lowest objective

value (64.89) with a computational time of 295 minutes. TPE and RF-LCB had similar objective

values, 66.86 and 66.08, respectively, but TPE had more than twice the training time compared

to RF-LCB, i.e., 670 vs. 258 minutes, respectively. RS, GP-LCB, and GA had comparable

performances of 69.52, 70.21, and 70.51, with a training time of 127, 769, and 213 minutes,

respectively. GS has the shortest training time, 89 minutes, but also had the worst performance

(81.33). In the case of GRUs, IDT-R also achieved the best objective value of 54.80 with a

training time of 198 minutes. TPE achieved a comparable objective value (55.50) which a

shorter computational time of 151 minutes. RF-LCB performs better than GP-LCB in both

objective values (57.40 vs. 63.32) and training time (186 vs. 251 minutes). GA had the shortest

training time, 58 minutes, with a fairly poor optimal objective value of 59.40. GS achieved a

relatively good objective value (55.64) but consumed the longest training time of 622 minutes.

RS had the worst objective value of 61.11, with a training time of only 93 minutes.

Figure 4.16 Numerical results of HPO of RF (left) and GRUs (right): Minneapolis dataset

93

4.4.6.3 Austin TX dataset

Figure 4.17 shows the convergence curve of HPO results of RF and GRUs for hourly

shared e-scooter demand prediction using Austin TX dataset. Similar to Minneapolis dataset,

GRUs provided better performance in both objective value and training time. This means that

RF is more susceptible to the number of data (inputs and outputs) than GRUs. On other words,

RF is not favorable for the prediction with multiple outputs, while the computational time

exponentially increases in function of the number of data. For HPO of RF, RF-LCB, IDT-R,

and TPE had the comparable optimal objective values (240.19, 241.33, and 241.60,

respectively), while their training time were 1279, 810, and 2531 minutes, respectively. These

three algorithms also had similar objective values (164.78, 162.32, and 158.28, respectively) in

optimizing the hyperparameters of GRUs for the training time of 309, 408, and 604 minutes,

respectively. RS, GP-LCB, and GA had similar objective values of around 257, but RS had a

shorter training time of approximately 815 minutes compared to 3264 and 2437 minutes for

GP-LCB and GA, respectively. The objective values of these algorithms for HPO of GRUs

were 179.01, 171.79, and 187.49, with the training time of 158, 793, and 191 minutes,

respectively. GS had the worst performance in optimizing the HPO of RF (objective value of

300.31) but had the best performance in optimizing the HPO of GRUs (objective value of

156.64). Contrary, the training time of GS was the shortest (495 minutes) for RF’s HPO but the

longest for GRUs’ HPO (1049 minutes).

Figure 4.17 Numerical results of HPO of RF (left) and GRUs (right): Austin dataset

4.5 Discussion and sensitivity analysis

The overall findings demonstrate that each HPO method has its own benefits and

drawbacks, which allows them to perform better than other algorithms in situations when

computational resources are limited, such as training time or the number of examined points.

As shown in Figure 4.18, TPE performs admirably when tuning deep learning architectures,

particularly CNNs, but it performs badly when tuning nonconvex functions and the two

machine learning models (SVM and RF). According to our numerical findings, RF-LCB

typically performs worse than GP-LCB. In addition, the proposed algorithm (IDT-R) performs

a little better than GP-LCB in most tasks. However, GA performs worse than the sequential-

based HPO algorithms when there are fewer points to evaluate. As demonstrated in the problem

of nonconvex functions, SVM, and RF, TPE converges more quickly than other methods but is

94

readily trapped in local optima. This suggests that while GP-LCB and IDT-R are probably

superior if there are enough examined points, TPE performs better than other algorithms in

limited numbers of searches. From the Pareto fronts in Figure 4.18, We can observe that IDT-

R consistently achieves Pareto superiority, demonstrating its efficiency in terms of objective

value and computing time.

Figure 4.18 Pareto fronts of the performance of HPO algorithms in benchmark problems (Y-

Objective value, X-Computational time)

Similarly, Figure 4.19 shows the performance of HPO algorithms in optimizing the

hyperparameters of RF and GRUs for shared e-scooter demand prediction. The proposed

algorithm, IDT-R, is always on the Pareto fonts, except for the HPO of GRUs for the

Thammasat dataset. RS shows consistent efficiency in computational time but limited

performance, especially HPO of deep learning models. For demand prediction problems, GP-

LCB offers poor performance in both optimal value and training time. On the other hand, RF-

LCB tends to have a shorter training time compared to IDT-R, but IDT-R achieves a better

objective value. TPE shows poor performance on the HPO of RF, specifically training time, but

it performs better on the HPO of GRUs. This performance of TPE is also similar to the results

from the benchmark problems above.

To better understand how IDT-R settings affect the objective value or how to balance the

exploration and exploitation of IDT-R, sensitivity analysis was investigated. Due to time

constraints, only three problems were subjected to sensitivity analysis: one deep learning model

(Autoencoder), one machine learning algorithm (Random Forest), and one nonconvex function

(Styblinski-Tang function). The three IDT-R parameters, comprising number of initial random

points (𝑁 ∈ [5, 150]), number of best-performed leaves (𝑇 ∈ [2, 10]), and the number of

random points in each leaf (𝑅 ∈ [1, 7]), were randomly chosen while each problem was trained

for 40 trials. These three parameters for the Styblinski-Tang Function were randomly chosen

from the range of up to 300, 15, and 10, respectively. Since the total number of searches was

chosen as the stopping criterion, the approximate number of iterations can be calculated as 𝐼 =

⁡(200 − 𝑁)/(𝑇 × 𝑅), where T is the product of the number of best-performed leaves, R is the

number of random points per leaf, and N is the total number of searches.

95

Figure 4.19 Pareto fronts of the performance of HPO algorithms for shared e-scooter demand

prediction models, RF and GRUs (Y-Objective value, X-Computational time)

Figure 4.20 Sensitivity analysis for parameters (number of initial points (N), number of best-

performed leaves (T), number of random points (R) in each leaf, and number of iterations (I))

of Iterative Decision Tree with Random (IDT-R) for the case of Styblinski-Tang function,

Random Forest, and Autoencoder.

The scatter plot of the best objective value (y-axis) vs. the parameters' maximum values

(x-axis) on a normalized scale is shown in Figure 4.20. The Styblinski-Tang function

demonstrates that as T and R increase, the performance of IDT-R decreases since these two

factors indicate the exploration. The relationship between the number of initial randoms (N)

and the number of iterations (I) demonstrates that IDT-R performs better for greater values of

N and I, but after a point, its performance degrades. Therefore, it is important to balance these

four parameters in order to achieve good performance with enough exploitation (number of

iterations). The number of best-performed leaves (T) and the number of random points per leaf

(R), for instance, should be set at a lower value if the initial random points (N) are quite high.

The pattern of each of the four IDT-R parameters in the context of Autoencoder's HPO closely

resembles that of the Styblinski-Tang problem. On the other hand, RF's HPO shares

characteristics with the Styblinski-Tang problem in terms of N and I, but performance is

probably improved by using greater values of T and R.

In summary, it is possible that the patterns of the IDT-R parameters vary from one problem

to another, but the patterns of initial random points (N) and iteration number (I) are usually very

clear-cut. The trade-off between IDT-R exploration and exploitation should therefore be based

96

on three factors: the number of initial random points (N), the number of best-performed leaves

(T), and the number of randoms in each leaf (R). This will allow for an adequate number of

exploitation iterations, around 30 - 50. The number of best-performed leaves (T) can be chosen

between [2, 4], while the number of randoms in each leaf (R) can range between [1, 3] for the

total evaluation points of 200. The proportion of initials random points (N) in the overall number

of searches could range from 20 to 50%.

4.6 Conclusion

This study evaluated the proposed HPO algorithms, Iterative Decision Tree (IDT) on

various problems, including benchmark problems shared e-scooter demand prediction by RF

and GRUs. This method used decision tree regression as a surrogate function, and in each

iteration, a number of new candidates were assessed as the extreme points (IDT-E) or the

random points (IDT-R) from several promising leaves. This property permits concurrent

training of IDT, which reduces training time. In contrast to sequential model-based techniques

that are already in use, IDT does not necessitate computing the acquisition function or

exhaustively updating the surrogate function. Since IDT does not train the repetitive candidates,

it can deal with the reproducibility problem of the existing algorithms and possibly terminates

the optimizing procedure before reaching the Maximum Iteration criterion (i.e., shorter training

time).

A benchmark set of cutting-edge algorithms were used, including Grid Search, Random

Search, Gaussian Process with Lower Confidence Bound, Random Forest with Lower

Confidence Bound, Tree-structured Parzen Estimator, and Genetic Algorithm to assess the

effectiveness of the proposed framework. The proposed approach is more successful than other

algorithms according to the numerical results (Figure 4.18 and Figure 4.19), and it is on par

with Bayesian Optimization or Tree-structured Parzen Estimator in terms of efficiency.

Additionally, IDT-R performs better than IDT-E, which is inappropriate for optimizing

problems with numerous hyperparameters (more than 3). Under a constrained set of evaluation

points, IDT-R outperforms the benchmark algorithms in most optimization problems with

acceptable computational time and result stability. For instance, TPE has good performance on

HPO of deep learning models but has relatively poor performance on HPO of machine learning

models and optimization of nonconvex functions.

Similarly, GP-LCB performs ineffectively in some problems, especially demand prediction

problems, and requires longer training time. RF-LCB also provides quite good performance

only on some problems. However, IDT-R performs well in most problems (i.e., model stability),

while other algorithms can sometimes give slightly better objective values. But if we account

for the training time as well, IDT-R performs efficiently as it mostly appears on the Pareto front

line (12 out of 13 problems) compared to RF-LCB (8/13), TPE (5/13), and GP-LCB (4/13).

Even IDT-R performs effectively in searching for a near-global solution, its parameters

need to be properly set to balance the exploration and exploitation. This trade-off can be done

between the number of iterations and the other three parameters, such as number of initial

points, number of best-performed leaves, and number of random points picked up from each

leaf. For example, if the number of initial points is high, the number of best-performed leaves

should be small and vice-versa, while the number of random points in each leaf should be just

97

one or two. This balance should be done in a way that there are enough iterations for

exploitation.

References

[1] F. Hutter, L. Kotthoff and J. Vanschoren, Automated Machine Learning: Methods, Systems,

Challenges. Cham, Switzerland: Springer Nature, 2019.

[2] R. Khalid and N. Javaid, "A survey on hyperparameters optimization algorithms of

forecasting models in smart grid," Sustainable Cities and Society, vol. 61, pp. 102275,

2020, doi: https://doi.org/10.1016/j.scs.2020.102275.

[3] L. Li et al., "A system for massively parallel hyperparameter tuning," in Proceedings of

Machine Learning and Systems 2, 2020, pp. 230-246.

[4] T. Yu and H. Zhu, "Hyper-parameter optimization: A review of algorithms and

applications," arXiv:2003.05689, Available: https://arxiv.org/abs/2003.05689

[5] D. Maclaurin, D. Duvenaud and R. Adams, "Gradient-based Hyperparameter Optimization

through Reversible Learning," in Proceedings of the 32nd International Conference on

Machine Learning, 2015, vol. 37, pp. 2113-2122.

[6] A. Brock, T. Lim, J. M. Ritchie and N. Weston, "Smash: one-shot model architecture search

through hypernetworks," arXiv:1708.05344, Available: https://arxiv.org/abs/1708.05344

[7] J. Lorraine and D. Duvenaud, "Stochastic hyperparameter optimization through

hypernetworks," arXiv:1802.09419, Available: https://arxiv.org/abs/1802.09419

[8] G. Kunapuli, K. P. Bennett, J. Hu and J.-S. Pang, "Classification model selection via bilevel

programming," Optimization Methods and Software, vol. 23, no. 4, pp. 475-489, 2008, doi:

https://doi.org/10.1080/10556780802102586.

[9] C. Lin et al., "Online hyper-parameter learning for auto-augmentation strategy," in

Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp.

6579-6588.

[10] L. Franceschi, P. Frasconi, S. Salzo, R. Grazzi and M. Pontil, "Bilevel Programming for

Hyperparameter Optimization and Meta-Learning," in Proceedings of the 35th

International Conference on Machine Learning, 2018, vol. 80, pp. 1568-1577.

[11] Y. Guo, J.-Y. Li and Z.-H. Zhan, "Efficient Hyperparameter Optimization for Convolution

Neural Networks in Deep Learning: A Distributed Particle Swarm Optimization

Approach," Cybernetics and Systems, vol. 52, no. 1, pp. 36-57, 2020, doi:

https://doi.org/10.1080/01969722.2020.1827797.

[12] C. Wang, Q. Wu, S. Huang and A. Saied, "Economic hyperparameter optimization with

blended search strategy," in International Conference on Learning Representations, 2020.

[13] G. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini and H. Samulowitz, "An effective algorithm

for hyperparameter optimization of neural networks," IBM Journal of Research and

Development, vol. 61, no. 4/5, pp. 9:1-9:11, 2017, doi:

https://doi.org/10.1147/JRD.2017.2709578.

[14] J. Bergstra, R. Bardenet, Y. Bengio and B. Kégl, "Algorithms for Hyper-Parameter

Optimization," in Advances in neural information processing systems, 2011, vol. 24, pp.

2546–2554.

https://doi.org/10.1016/j.scs.2020.102275
https://arxiv.org/abs/2003.05689
https://arxiv.org/abs/1708.05344
https://arxiv.org/abs/1802.09419
https://doi.org/10.1080/10556780802102586
https://doi.org/10.1080/01969722.2020.1827797
https://doi.org/10.1147/JRD.2017.2709578

98

[15] R. Andonie, "Hyperparameter optimization in learning systems," Journal of Membrane

Computing, vol. 1, no. 4, pp. 279-291, 2019, doi: 10.1007/s41965-019-00023-0.

[16] S. Kaur, H. Aggarwal and R. Rani, "Hyper-parameter optimization of deep learning model

for prediction of Parkinson’s disease," Machine Vision and Applications, vol. 31, no. 5, pp.

32, 2020, doi: https://doi.org/10.1007/s00138-020-01078-1.

[17] J. Bergstra and Y. Bengio, "Random search for hyper-parameter optimization," Journal of

Machine Learning Research, vol. 13, no. 2, 2012.

[18] A.-C. Florea and R. Andonie, "Weighted Random Search for Hyperparameter

Optimization," International Journal of Computers Communications & Control, vol. 14,

no. 2, pp. 154-169, 2019, doi: https://doi.org/10.15837/ijccc.2019.2.3514.

[19] Z. Karnin, T. Koren and O. Somekh, "Almost Optimal Exploration in Multi-Armed

Bandits," in Proceedings of the 30th International Conference on Machine Learning, 2013,

vol. 28, no. 3, pp. 1238-1246.

[20] K. Jamieson and A. Talwalkar, "Non-stochastic Best Arm Identification and

Hyperparameter Optimization," in Proceedings of the 19th International Conference on

Artificial Intelligence and Statistics, 2016, vol. 51, pp. 240-248.

[21] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, "Hyperband: A novel

bandit-based approach to hyperparameter optimization," The Journal of Machine Learning

Research, vol. 18, no. 1, pp. 6765-6816, 2017.

[22] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei and S.-H. Deng, "Hyperparameter

Optimization for Machine Learning Models Based on Bayesian Optimization," Journal of

Electronic Science and Technology, vol. 17, no. 1, pp. 26-40, 2019, doi:

https://doi.org/10.11989/JEST.1674-862X.80904120.

[23] H. Cho, Y. Kim, E. Lee, D. Choi, Y. Lee and W. Rhee, "Basic Enhancement Strategies

When Using Bayesian Optimization for Hyperparameter Tuning of Deep Neural

Networks," IEEE Access, vol. 8, pp. 52588-52608, 2020, doi:

https://doi.org/10.1109/ACCESS.2020.2981072.

[24] M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok and K. Roy, "Bayesian

Multi-objective Hyperparameter Optimization for Accurate, Fast, and Efficient Neural

Network Accelerator Design," Frontiers in Neuroscience, vol. 14, pp. 667, 2020, doi:

https://doi.org/10.3389/fnins.2020.00667.

[25] F. Hutter, H. H. Hoos and K. Leyton-Brown, "Sequential Model-Based Optimization for

General Algorithm Configuration," in International conference on learning and intelligent

optimization, 2011, pp. 507-523.

[26] Y. Ozaki, M. Yano and M. Onishi, "Effective hyperparameter optimization using Nelder-

Mead method in deep learning," IPSJ Transactions on Computer Vision and Applications,

vol. 9, no. 1, p. 20, 2017, doi: https://doi.org/10.1186/s41074-017-0030-7.

[27] K. Swersky, J. Snoek and R. P. Adams, "Freeze-Thaw Bayesian Optimization,"

arXiv:1406.3896, Available: https://arxiv.org/abs/1406.3896

[28] Z. Dai, H. Yu, B. K. H. Low and P. Jaillet, "Bayesian Optimization Meets Bayesian Optimal

Stopping," in Proceedings of the 36th International Conference on Machine Learning,

2019, vol. 97, pp. 1496-1506.

https://doi.org/10.1007/s00138-020-01078-1
https://doi.org/10.15837/ijccc.2019.2.3514
https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/10.1109/ACCESS.2020.2981072
https://doi.org/10.3389/fnins.2020.00667
https://doi.org/10.1186/s41074-017-0030-7
https://arxiv.org/abs/1406.3896

99

[29] S. Falkner, A. Klein and F. Hutter, "BOHB: Robust and Efficient Hyperparameter

Optimization at Scale," in Proceedings of the 35th International Conference on Machine

Learning, 2018, vol. 80, pp. 1437-1446.

[30] E. Contal, D. Buffoni, A. Robicquet and N. Vayatis, "Parallel Gaussian Process

Optimization with Upper Confidence Bound and Pure Exploration," in European

Conference on Machine Learning and Knowledge Discovery in Databases, 2013, pp. 225-

240.

[31] J. Wang, S. C. Clark, E. Liu and P. I. Frazier, "Parallel Bayesian Global Optimization of

Expensive Functions," Operations Research, vol. 68, no. 6, pp. 1850-1865, 2020, doi:

https://doi.org/10.1287/opre.2019.1966.

[32] J. Wu and P. Frazier, "The Parallel Knowledge Gradient Method for Batch Bayesian

Optimization," in Advances in Neural Information Processing Systems, 2016, vol. 29, pp.

3126-3134.

[33] S. R. Jino Ramson, K. Lova Raju, S. Vishnu and T. Anagnostopoulos, "Nature Inspired

Optimization Techniques for Image Processing—A Short Review," in Nature Inspired

Optimization Techniques for Image Processing Applications Cham, Switzerland: Springer,

2019, pp. 113-145.

[34] I. Loshchilov and F. Hutter, "CMA-ES for hyperparameter optimization of deep neural

networks," arXiv:1604.07269, Available: https://arxiv.org/abs/1604.07269

[35] C. Guo, L. Li, Y. Hu and J. Yan, "A Deep Learning Based Fault Diagnosis Method With

Hyperparameter Optimization by Using Parallel Computing," IEEE Access, vol. 8, pp.

131248-131256, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3009644.

[36] R. Jie, J. Gao, A. Vasnev and M. Tran, "HyperTube: A Framework for Population-Based

Online Hyperparameter Optimization with Resource Constraints," IEEE Access, vol. 8, pp.

69038-69057, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2986456.

[37] Y. Yoo, "Hyperparameter optimization of deep neural network using univariate dynamic

encoding algorithm for searches," Knowledge-Based Systems, vol. 178, pp. 74-83, Aug.

2019 2019, doi: https://doi.org/10.1016/j.knosys.2019.04.019.

[38] D. Srivastava, Y. Singh and A. Sahoo, "Auto Tuning of RNN Hyper-parameters using

Cuckoo Search Algorithm," in 2019 Twelfth International Conference on Contemporary

Computing (IC3), 2019, pp. 1-5, doi: 10.1109/IC3.2019.8844900.

[39] B. Nakisa, M. N. Rastgoo, A. Rakotonirainy, F. Maire and V. Chandran, "Long Short Term

Memory Hyperparameter Optimization for a Neural Network Based Emotion Recognition

Framework," IEEE Access, vol. 6, pp. 49325-49338, 2018, doi:

https://doi.org/10.1109/ACCESS.2018.2868361.

[40] C.-W. Tsai, C.-H. Hsia, S.-J. Yang, S.-J. Liu and Z.-Y. Fang, "Optimizing hyperparameters

of deep learning in predicting bus passengers based on simulated annealing," Applied Soft

Computing, vol. 88, p. 106068, 2020, doi: https://doi.org/10.1016/j.asoc.2020.106068.

[41] W.-Y. Lee, S.-M. Park and K.-B. Sim, "Optimal hyperparameter tuning of convolutional

neural networks based on the parameter-setting-free harmony search algorithm," Optik,

vol. 172, pp. 359-367, 2018, doi: https://doi.org/10.1016/j.ijleo.2018.07.044.

[42] B. Guo, J. Hu, W. Wu, Q. Peng and F. Wu, "The Tabu_Genetic Algorithm: A Novel Method

for Hyper-Parameter Optimization of Learning Algorithms," Electronics, vol. 8, no. 5, pp.

579, 2019.

https://doi.org/10.1287/opre.2019.1966
https://arxiv.org/abs/1604.07269
https://doi.org/10.1109/ACCESS.2020.3009644
https://doi.org/10.1109/ACCESS.2020.2986456
https://doi.org/10.1016/j.knosys.2019.04.019
https://doi.org/10.1109/ACCESS.2018.2868361
https://doi.org/10.1016/j.asoc.2020.106068
https://doi.org/10.1016/j.ijleo.2018.07.044

100

[43] V. Bibaeva, "Using Metaheuristics for Hyper-Parameter Optimization of Convolutional

Neural Networks," in 2018 IEEE 28th International Workshop on Machine Learning for

Signal Processing (MLSP), 2018, pp. 1-6, doi:

https://doi.org/10.1109/MLSP.2018.8516989.

[44] A. Martín, V. M. Vargas, P. A. Gutiérrez, D. Camacho and C. Hervás-Martínez, "Optimising

Convolutional Neural Networks using a Hybrid Statistically-driven Coral Reef

Optimisation algorithm," Applied Soft Computing, vol. 90, pp. 106144, 2020, doi:

https://doi.org/10.1016/j.asoc.2020.106144.

[45] D. L. Marino, K. Amarasinghe and M. Manic, "Building energy load forecasting using deep

neural networks," in IECON 2016-42nd Annual Conference of the IEEE Industrial

Electronics Society, 2016, pp. 7046-7051: IEEE.

[46] J. Fan, Q. Li, J. Hou, X. Feng, H. Karimian and S. Lin, "A spatiotemporal prediction

framework for air pollution based on deep RNN," ISPRS Annals of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, vol. 4, pp. 15, 2017.

[47] P. Chen, H. Hsieh, X. K. Sigalingging, Y. Chen and J. Leu, "Prediction of Station Level

Demand in a Bike Sharing System Using Recurrent Neural Networks," in 2017 IEEE 85th

Vehicular Technology Conference (VTC Spring), 2017, pp. 1-5, doi:

10.1109/VTCSpring.2017.8108575.

[48] C. Yin, Y. Zhu, J. Fei and X. He, "A Deep Learning Approach for Intrusion Detection Using

Recurrent Neural Networks," IEEE Access, vol. 5, pp. 21954-21961, 2017, doi:

https://doi.org/10.1109/ACCESS.2017.2762418.

[49] W. Kong, Z. Y. Dong, D. J. Hill, F. Luo and Y. Xu, "Short-term residential load forecasting

based on resident behaviour learning," IEEE Transactions on Power Systems, vol. 33, no.

1, pp. 1087-1088, 2017.

[50] Q. Wu, K. Ding and B. Huang, "Approach for fault prognosis using recurrent neural

network," Journal of Intelligent Manufacturing, vol. 31, no. 7, pp. 1621-1633, 2020, doi:

10.1007/s10845-018-1428-5.

[51] C. Xu, J. Ji and P. Liu, "The station-free sharing bike demand forecasting with a deep

learning approach and large-scale datasets," Transportation Research Part C: Emerging

Technologies, vol. 95, pp. 47-60, 2018, doi: https://doi.org/10.1016/j.trc.2018.07.013.

[52] B. Wang and I. Kim, "Short-term prediction for bike-sharing service using machine

learning," Transportation Research Procedia, vol. 34, pp. 171-178, 2018, doi:

https://doi.org/10.1016/j.trpro.2018.11.029.

[53] S. Kumar, L. Hussain, S. Banarjee and M. Reza, "Energy Load Forecasting using Deep

Learning Approach-LSTM and GRU in Spark Cluster," in 2018 Fifth International

Conference on Emerging Applications of Information Technology (EAIT), 2018, pp. 1-4,

doi: https://doi.org/10.1109/EAIT.2018.8470406.

[54] C.-J. Huang and P.-H. Kuo, "A deep cnn-lstm model for particulate matter (PM2. 5)

forecasting in smart cities," Sensors, vol. 18, no. 7, pp. 2220, 2018.

[55] M. Nabil, M. Ismail, M. Mahmoud, M. Shahin, K. Qaraqe and E. Serpedin, "Deep

Recurrent Electricity Theft Detection in AMI Networks with Random Tuning of Hyper-

parameters," in 2018 24th International Conference on Pattern Recognition (ICPR), 2018,

pp. 740-745, doi: 10.1109/ICPR.2018.8545748.

https://doi.org/10.1109/MLSP.2018.8516989
https://doi.org/10.1016/j.asoc.2020.106144
https://doi.org/10.1109/ACCESS.2017.2762418
https://doi.org/10.1016/j.trc.2018.07.013
https://doi.org/10.1016/j.trpro.2018.11.029
https://doi.org/10.1109/EAIT.2018.8470406

101

[56] N. F. Syed, M. Ge and Z. Baig, "Fog-cloud based intrusion detection system using

Recurrent Neural Networks and feature selection for IoT networks," Computer Networks,

vol. 225, pp. 109662, 2023, doi: https://doi.org/10.1016/j.comnet.2023.109662.

[57] X. Liu, A. Gherbi, W. Li and M. Cheriet, "Multi features and multi-time steps LSTM based

methodology for bike sharing availability prediction," Procedia Computer Science, vol.

155, pp. 394-401, 2019.

[58] Y. Pan, R. C. Zheng, J. Zhang and X. Yao, "Predicting bike sharing demand using recurrent

neural networks," Procedia Computer Science, vol. 147, pp. 562-566, 2019, doi:

https://doi.org/10.1016/j.procs.2019.01.217.

[59] T. Le Quy, W. Nejdl, M. Spiliopoulou and E. Ntoutsi, "A Neighborhood-Augmented LSTM

Model for Taxi-Passenger Demand Prediction," in International Workshop on Multiple-

Aspect Analysis of Semantic Trajectories, 2019, pp. 100-116: Springer.

[60] A. H. Uddin, D. Bapery and A. S. M. Arif, "Depression Analysis of Bangla Social Media

Data using Gated Recurrent Neural Network," in 2019 1st International Conference on

Advances in Science, Engineering and Robotics Technology (ICASERT), 2019, pp. 1-6:

IEEE.

[61] M. Husein and I.-Y. Chung, "Day-ahead solar irradiance forecasting for microgrids using

a long short-term memory recurrent neural network: A deep learning approach," Energies,

vol. 12, no. 10, pp. 1856, 2019.

[62] G. Peter and M. Matskevichus, "Hyperparameters Tuning for Machine Learning Models

for Time Series Forecasting," in 2019 Sixth International Conference on Social Networks

Analysis, Management and Security (SNAMS), 2019, pp. 328-332: IEEE.

[63] M. I. Khan and R. Maity, "Hybrid Deep Learning Approach for Multi-Step-Ahead Daily

Rainfall Prediction Using GCM Simulations," IEEE Access, vol. 8, pp. 52774-52784, 2020.

[64] A. Moghar and M. Hamiche, "Stock Market Prediction Using LSTM Recurrent Neural

Network," Procedia Computer Science, vol. 170, pp. 1168-1173, 2020, doi:

https://doi.org/10.1016/j.procs.2020.03.049.

[65] A. Kisvari, Z. Lin and X. Liu, "Wind power forecasting – A data-driven method along with

gated recurrent neural network," Renewable Energy, vol. 163, pp. 1895-1909, 2021, doi:

https://doi.org/10.1016/j.renene.2020.10.119.

[66] X. Wei, L. Zhang, H.-Q. Yang, L. Zhang and Y.-P. Yao, "Machine learning for pore-water

pressure time-series prediction: Application of recurrent neural networks," Geoscience

Frontiers, vol. 12, no. 1, pp. 453-467, 2021, doi: https://doi.org/10.1016/j.gsf.2020.04.011.

[67] H. L. Vu, K. T. W. Ng, A. Richter and C. An, "Analysis of input set characteristics and

variances on k-fold cross validation for a Recurrent Neural Network model on waste

disposal rate estimation," Journal of Environmental Management, vol. 311, pp. 114869,

2022, doi: https://doi.org/10.1016/j.jenvman.2022.114869.

[68] H. L. Vu, K. T. W. Ng, A. Richter and G. Kabir, "The use of a recurrent neural network

model with separated time-series and lagged daily inputs for waste disposal rates modeling

during COVID-19," Sustainable Cities and Society, vol. 75, pp. 103339, 2021, doi:

https://doi.org/10.1016/j.scs.2021.103339.

[69] J. Siłka, M. Wieczorek and M. Woźniak, "Recurrent neural network model for high-speed

train vibration prediction from time series," Neural Computing and Applications, vol. 34,

no. 16, pp. 13305-13318, 2022, doi: 10.1007/s00521-022-06949-4.

https://doi.org/10.1016/j.comnet.2023.109662
https://doi.org/10.1016/j.procs.2019.01.217
https://doi.org/10.1016/j.procs.2020.03.049
https://doi.org/10.1016/j.renene.2020.10.119
https://doi.org/10.1016/j.gsf.2020.04.011
https://doi.org/10.1016/j.jenvman.2022.114869
https://doi.org/10.1016/j.scs.2021.103339

102

[70] A. Zanfei, B. M. Brentan, A. Menapace, M. Righetti and M. Herrera, "Graph Convolutional

Recurrent Neural Networks for Water Demand Forecasting," Water Resources Research,

vol. 58, no. 7, pp. e2022WR032299, 2022, doi: https://doi.org/10.1029/2022WR032299.

[71] H. Song and H. Choi, "Forecasting Stock Market Indices Using the Recurrent Neural

Network Based Hybrid Models: CNN-LSTM, GRU-CNN, and Ensemble Models,"

Applied Sciences, vol. 13, no. 7, pp. 4644, 2023.

[72] E. Yahyaoui, "A Study of Hyperparameter Optimization Algorithms Applied to LSTM in

Financial Time Series Forecasting," Master, EWHA Womans University, 2019.

[73] W. Kong et al., "Effect of automatic hyperparameter tuning for residential load forecasting

via deep learning," in 2017 Australasian Universities Power Engineering Conference

(AUPEC), 2017, pp. 1-6: IEEE.

[74] A. Mashlakov, V. Tikka, L. Lensu, A. Romanenko and S. Honkapuro, "Hyper-parameter

optimization of multi-attention recurrent neural network for battery state-of-charge

forecasting," in EPIA Conference on Artificial Intelligence, 2019, pp. 482-494: Springer.

[75] N. A. Rashid, I. A. Aziz and M. H. B. Hasan, "Machine Failure Prediction Technique Using

Recurrent Neural Network Long Short-Term Memory-Particle Swarm Optimization

Algorithm," in Computer Science On-line Conference, 2019, pp. 243-252: Springer.

[76] S. Bouktif, A. Fiaz, A. Ouni and M. A. Serhani, "Multi-sequence LSTM-RNN deep

learning and metaheuristics for electric load forecasting," Energies, vol. 13, no. 2, pp. 391,

2020.

[77] X. Zhang, X. Chen, L. Yao, C. Ge and M. Dong, "Deep neural network hyperparameter

optimization with orthogonal array tuning," in International Conference on Neural

Information Processing, 2019, pp. 287-295: Springer.

[78] J. Friedman, T. Hastie and R. Tibshirani, The Elements of Statistical Learning (no. 10).

Springer series in statistics, New York, 2001.

[79] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal of Machine

Learning Research, vol. 12, pp. 2825-2830, 2011.

[80] H. Tim, K. Manoj, N. Holger, L. Gilles and S. Iaroslav, "Scikit-Optimize," Available:

https://scikit-optimize.github.io/

[81] T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, "Optuna: A Next-generation

Hyperparameter Optimization Framework," in Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, 2019, pp. 2623–2631,

doi: https://doi.org/10.1145/3292500.3330701.

[82] S. R. Mohammad, "geneticalgorithm," Available:

https://github.com/rmsolgi/geneticalgorithm

[83] D. Dua and C. Graff, "UCI Machine Learning Repository," Available:

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

[84] L. Yann, C. Corinna and C. J. C. Burges, "THE MNIST DATABASE of handwritten digits,"

Available: http://yann.lecun.com/exdb/mnist/

[85] K. Alex, "The CIFAR-10 dataset," Available: https://www.cs.toronto.edu/~kriz/index.html

[86] J. Brownlee, Deep learning for computer vision: image classification, object detection, and

face recognition in Python. Machine Learning Mastery, 2019.

https://doi.org/10.1029/2022WR032299
https://scikit-optimize.github.io/
https://doi.org/10.1145/3292500.3330701
https://github.com/rmsolgi/geneticalgorithm
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/index.html

103

CHAPTER 5

5. REBALANCING SHARD E-SCOOTERS UNDER DEMAND

UNCERTAINTY
5.1 Introduction

The first-and-last-mile is a prevalent transportation challenge witnessed across numerous

urban regions worldwide, stemming from inadequate public transit planning, financial

limitations, and the expansion of urban areas. The private sector has intervened to bridge this

transportation gap by introducing collaborative transportation modes, encompassing shared bikes,

shared electric bikes (e-bikes), and shared electric scooters (e-scooters), which are operated

through either dock-based or dockless systems. Dock-based systems are predominantly utilized

for shared bicycles, while users start and end their trips by bikes at designated stations. As the

station's capacity is determined by the number of docks, users of shared dock-based bicycles may

encounter situations wherein they are unable to end their journeys at the most convenient station

due to a lack of capacity. Consequently, they are compelled to terminate their trips at a less

convenient station that has the requisite capacity. In contrast, individuals utilizing dockless shared

bicycles or e-scooters have the flexibility to pick up or appropriately park such vehicles within

any public space within a designated operational zone. Nevertheless, despite the convenience of

this dockless shared mobility approach, these dockless bicycles or e-scooters at times impede

public access (for example, by obstructing sidewalks), exert adverse impacts on urban aesthetics,

or fall prey to acts of vandalism. To address these challenges, operators must promptly clear

excessive vehicles and establish proper parking zones.

Shared bicycles were initially introduced in Amsterdam in 1965 [1], whereas shared electric

scooters (e-scooters) made their debut in Singapore in 2016 and later in the United States in 2017

[2]. However, a notable development occurred in the United States in 2019, where the cumulative

ridership of shared e-scooter trips (amounting to 96 million trips) exceeded the combined

ridership of both dockless and dock-based shared bicycles (totaling 40 million trips). This shift

can be attributed to the widespread availability of e-scooter services in over 100 U.S. cities [3].

This phenomenon of shared micromobility has been extensively investigated in the scholarly

literature [2, 4, 5]. Furthermore, the topic of shared e-scooters has attracted significant scholarly

interest across various dimensions, including policy and regulatory aspects [6-12], spatiotemporal

patterns of trips [4, 13-18], life cycle assessments [19-22], and societal perceptions [23-26].

In the domain of short-term demand prediction, an innovative neural network structure

known as GCScoot, categorized as a spatiotemporal graph capsule neural network, has been

developed to anticipate the movement patterns of shared e-scooters by taking into account the

adjustments in deployment configurations [27, 28]. The evaluation of GCScoot against baseline

models was conducted using openly available datasets from four U.S. cities: Austin, Texas (TX);

Louisville, Kentucky; Minneapolis, Minnesota (MN); and Chicago, Illinois, and it displayed

superior performance, establishing a new benchmark. In the realm of hourly demand forecasting

for shared e-scooters, distinct methodologies have been explored. For instance, the seasonal

autoregressive integrated moving average (SARIMA) model was employed to predict the hourly

e-scooter demand at Thammasat University (Thailand), while the variance in this demand was

addressed using the generalized autoregressive conditional heteroskedasticity (GARCH) model

[29]. In a separate study by Ham et al. [30], an encoder-recurrent neural network-decoder

104

framework was utilized to predict latent temporal characteristics within a convolutional

autoencoder. This approach was applied to satisfied and unmet e-scooter demands in the

Gwangjin district of Seoul, South Korea. To address the challenge of demand scarcity, a masked

fully convolutional network, guided by a mask model or a region of interest, was devised. This

network was designed to concentrate solely on the active cells within Calgary, Canada [31].

Similarly, Xu et al. [32] introduced a spatiotemporal multi-graph transformer, leveraging various

graph types such as adjacency, functional similarity, demographic similarity, and transportation

supply similarity graphs. This novel approach based on graph convolutional networks was used

for predicting hourly shared e-scooter demand in Austin, TX, and Washington, District of

Columbia (DC). Further studies explored different predictive techniques. For instance, a long

short-term memory (LSTM) model was employed to forecast hourly shared e-scooter demand in

Seoul, South Korea, specifically in the Seocho and Gangnam districts [33]. Recently, Khan et al.

[34] proposed an ensemble model based on extreme gradient boosting (XGBoost), extra trees,

and random forests, employed to predict the clustered daily demand of shared e-scooters using

the k-means algorithm on Jeju Island, South Korea.

On the other hand, there exists a limited body of research pertaining to the operational

strategies of shared e-scooters, encompassing facets such as e-scooter recharging, fleet size

determination, e-scooter distribution and rebalancing strategies, and facility location planning.

Masoud et al. [35] addressed the challenge of recharging shared e-scooters by adapting a College

Admission algorithm to solve an Integer Linear Programming (ILP) formulation. This approach

aimed to ascertain the optimal allocation of freelance chargers required for the task. Similarly,

Ciociola et al. [36] leveraged Poisson processes to investigate the interaction between fleet size,

battery charging, and simulated demand patterns for shared e-scooters. The utilization of deep

learning models also came into play. The 3D-CLoST model was introduced to predict shared e-

scooter demand, subsequently integrating a pragmatic relocating strategy executed by workers

using a greedy approach [37]. Osorio et al. [38] introduced a mixed-integer program that

accounted for the possibility of e-scooter charging on rebalancing vehicles during overnight

periods. To address scalability concerns, a discrete-continuous hybrid model was developed,

combining line haul and local operational considerations. This hybrid model was assessed

through randomly generated demand scenarios based on normal distributions. Fathabad et al. [39]

formulated a two-stage stochastic program for the short- and long-term operational planning of

shared e-scooters. The primary stage aimed to minimize investment costs linked to charging

infrastructure, e-scooter fleet sizing, and relocation schedules, while the secondary stage focused

on optimizing short-term operational expenses encompassing relocation, charging, and unserved

demand penalties. Losapio et al. [40] devised a novel approach termed "E-Scooter Balancing-

Deep Q Network," which employed multi-agent deep reinforcement learning. This approach

aimed to minimize the need for rebalancing operations and battery swapping, encouraging

customers to retrieve e-scooters from nearby zones to mitigate imbalances. Another recent study,

a multi-criteria decision protocol underpinned by geographical information systems was proposed

by Altintasi and Yalcinkaya [41] to optimize the placement of charging stations for shared e-

scooters. The objective was to seamlessly integrate the shared e-scooter system with existing

public amenities, points of interest, and population densities, demonstrating a comprehensive

approach.

105

Shared electric scooters are predominantly employed for short journeys, typically spanning

around 1.5 kilometers in distance and lasting about 10 minutes. These rides are particularly

popular for tourist activities and recreational purposes [5, 29, 31, 42]. It's noteworthy that the

ridership patterns of shared e-scooters are more variable compared to shared bikes, which are

primarily utilized for daily commuting. Shared bike ridership exhibits two peaks in demand: one

during the morning rush hour and another during the evening rush hour. In contrast, shared e-

scooter ridership remains consistently high from morning until late evening. Within a dock-based

system, the pickup and drop-off demands conform to the constraints of the available docks or

station capacity. However, in a dockless system, demand is not bound by such limitations, leading

to greater demand fluctuations and increased demand volatility. Due to the nature of shared e-

scooter ridership and the absence of docking stations, shared e-scooters require more frequent

rebalancing efforts to meet their dynamically changing demand. Unlike shared bikes, which

might suffice with two rebalancing operations during peak demand periods (morning and evening

peaks), shared e-scooters necessitate a larger number of rebalancing actions and a shorter

planning horizon. Furthermore, shared e-scooters require intensive maintenance [16] and possess

a relatively short operational lifespan [20]. This is due to their design, focused on being

lightweight and user-friendly, requiring battery replacement or recharging as their battery levels

deplete. In contrast to the previous scenario, the latter situation aligns more seamlessly with the

rebalancing process and was, therefore, the central focus of the present study. In this context, e-

scooters with low battery levels are relocated to nearby charging facilities, with a particular

emphasis on charging stations powered by renewable energy sources such as solar power [43].

Limited prior research has delved into the aspect of short-term operational planning for

shared e-scooters, particularly focusing on daily planning involving hourly intervals, among

others. In this context, the queuing model employing a Poisson distribution to model demand has

found common usage in bike sharing applications. However, this approach is not without

drawbacks. Firstly, the queuing model introduces higher demand uncertainty than demand

prediction techniques, leading to escalated operational costs (as depicted in Figure 5.3).

Secondly, actual demand patterns in shared micromobility are considerably erratic and influenced

by various external factors, thereby diverging from the assumptions of a Poisson distribution (as

detailed in Section 5.4.1). Conversely, several studies have harnessed machine learning or deep

learning models to predict short-term demand for the purposes of rebalancing operations.

Nevertheless, the deployment of e-scooters solely based on predictions from these models yields

an undesirable service level due to the absence of consideration for prediction errors. Against this

backdrop, this study introduces an original data-driven framework tailored for short-term

rebalancing strategies for shared e-scooters, with an explicit incorporation of e-scooter and trip

attributes. The primary objective of this framework revolves around reallocating the constrained

e-scooters to locations projected to encounter the highest anticipated demand. Addressing the

uncertainty inherent in shared e-scooter demand primarily involves demand prediction, while the

residual uncertainty is managed by the SGARCH model. In this context, "Allocation" refers to

the temporal correlation between forecasted variance via SGARCH, current trends in demand

volatility, and the efficacy of demand prediction models. This stands in contrast to the

conventional approaches involving constant or periodic (daily or weekly) variance assumptions.

Our proposed framework aligns adeptly with the domain of static rebalancing planning, catering

to planning horizons spanning from a few hours to several hours. Nevertheless, the scope of the

106

outlined framework can be extended to encompass multiple planning horizons in forthcoming

research endeavors. The noteworthy contributions of this study are enumerated as follows:

• Monte Carlo simulation was utilized to model the uncertainty in shared e-scooter demand,

taking into account the trip gap projections derived from GB regression and the variance as

well as probability distribution forecasted through the seasonal generalized autoregressive

conditional heteroskedasticity (SGARCH).

• The static vehicle-based rebalancing planning was expressed as an Integer Linear

Programming (ILP) challenge, aiming to tackle demand uncertainty, relocation of faulty e-

scooters to the central depot for repairing, and collection of e-scooters with low battery levels

to neighboring charging stations. Two distinct ILP formulations were devised, one with

predetermined route sequences and the other with undisclosed sequences. To enhance practical

feasibility, modifications were introduced to the objective function and operational constraints.

This entailed incorporating penalties for specific unfulfilled demands, as opposed to deviations

in requests found in previous studies.

• The task of rebalancing optimization was addressed using both an Integer Linear Programming

solver (GLPK) and a novel hybrid algorithm, namely the ant colony optimization–ILP (ACO-

ILP) approach. These methods were applied to solve rebalancing optimizations posed by

demand scenarios simulated through the Monte Carlo technique. For empirical validation, a

real-world dataset encompassing dockless shared e-scooter operations in Minneapolis (MN)

was selected as the focal point of the case study.

5.2 Literature review

As outlined in the preceding section, the scope of research concerning the operational

strategies of shared e-scooters remains constrained. However, the knowledge base can be

enriched by drawing insights from analogous sharing services, particularly shared bikes, which

share a degree of resemblance with shared e-scooters. Shui and Szeto [44] conducted a

comprehensive survey of existing studies, revealing that these inquiries have centered around

diverse facets of shared-bike rebalancing. These aspects encompass a variety of elements such

as objective functions (e.g., distance, cost, and emissions optimization), constraints (e.g.,

budget, service duration, and inventory considerations), optimization algorithms (ranging from

precise to heuristic methodologies), deterministic or stochastic problem formulations, and

scenarios involving either static or dynamic considerations. In alignment with this context, the

present study is dedicated to addressing shared bike rebalancing challenges under the presence

of demand uncertainty and predicted demand scenarios.

Shared bicycles find predominant utilization in commuting, thus exhibiting pronounced

peak-demand periods during morning hours (6 am–10 am) and evening hours (4 pm–8 pm) [45,

46]. This characteristic, in tandem with the station capacities, results in a more stable demand

pattern for shared bikes in comparison to dockless shared e-scooters. Consequently,

conventional investigations have frequently operated under the assumption that bike-sharing

demand conforms to a Poisson distribution. For example, there has been a bias towards

representing dynamic shared-bike inventory levels using continuous-time Markov chains

(CTMCs), incorporating Poisson processes for pickups and drop-offs. This portrayal translates

into a double-ended queuing system model. Empirical validation of this modeling paradigm

107

was carried out utilizing a real-world dataset from Tel Aviv, Israel's bike-sharing system [47].

Likewise, the simulation approach by Monte Carlo and the approximation approach with

Skellam distribution derived from historical ridership of shared bikes were utilized to quantify

the unserved demand in reference [48]. Meanwhile, the CTMC framework was adapted for

addressing overnight rebalancing operations within New York City's Citi Bike system. Both

small- and large-scale problems were addressed through the employment of an ILP solver and

a greedy algorithm, respectively [49]. Several bike sharing datasets, from Boston,

Massachusetts, and Washington, were utilized as case studies evaluating the effectiveness of a

non-stationary queuing (Mt/Mt/1/K) model characterized by exponentially distributed pickups

and drop-offs [50]. In the pursuit of dynamic rebalancing, Seo [51] incorporated demand

uncertainty by adopting a Markov decision process reliant on a Poisson distribution, wherein

the mean demand was predicted through random forest regression. This approach was evaluated

through a case study centered around bike sharing in Seoul, South Korea. Nonetheless, a chi-

squared goodness-of-fit analysis unveiled that only 77% of the stations encompassed in the

study exhibited demand patterns adhering to a Poisson distribution. Meanwhile, Lu [52] utilized

the bike sharing dataset operated in New Taipei City, Taiwan, to examine the proposed robust

multi-period bike fleet allocation scheme preventing the worst-case scenario (i.e., maximum

demand).

Other academic literatures have addressed the challenge of demand uncertainty within

rebalancing contexts by integrating sample average approximation through Monte Carlo

sampling. For instance, the operational management of shared autonomous electric vehicles in

Shanghai, China, harnessed the Monte Carlo method to simulate daily demand, employing a

normal distribution derived from historical ridership [53]. In the domain of bike sharing, Monte

Carlo sampling emerged as a pivotal tool. It was leveraged to generate demand scenarios for

Bergamo, Italy, employing four distinct probability distributions (uniform, exponential, normal,

and log-normal) utilizing mean and standard deviation values drawn from historical ridership

[54]. Likewise, for New Taipei City, Taiwan, historical weekly ridership was employed to

simulate demand scenarios using a truncated normal distribution [55]. Contrary, Dell’Amico et

al. [56] employed historical daily ridership as individual scenarios and proceeded to resolve

stochastic programming models by a few methodologies, including branch-and-cut,

deterministic equivalent programs, L-shaped procedures, and heuristic algorithms. These

endeavors were executed utilizing a couple of open datasets.

Conversely, machine learning and deep learning models have demonstrated commendable

predictive capabilities, warranting their integration within rebalancing frameworks. For

instance, Regue and Recker [57] introduced a chance-constrained programming approach for

dynamic rebalancing of shared bikes, leveraging a normal distribution with the predicted

demand from GB regression and the variance from prediction model's residuals. In a distinct

application, RF was employed to predict station-level rental and return demands for bike

sharing in Nanjing, China. Subsequently, static rebalancing was formulated to fulfill the

predicted demand, conceptualizing the problem as a hub-first–route-second problem [58]. The

truck-based rebalancing in New York City was constructed with the integration of a

spatiotemporal graph neural network tailored to forecast city-wide bike demand [59]. Similarly,

the deterministic dynamic rebalancing approach for shared bikes in Beijing, China, was framed

within a data-driven framework fortified by a deep learning model [45]. Seoul, South Korea's

108

bike sharing operations were also subject to prediction-enhanced strategies by RF, adopted to

forecast forthcoming demand and inventory levels for the purpose of repositioning [60].

Presenting a fusion of methodologies, Yu et al. [61] devised the SARIMA-LSTM hybrid model.

This hybrid prediction model facilitated the prediction of pickup and drop-off demands, thereby

underpinning the rebalancing planning for bike sharing centered around rail transit stations

within Xicheng, Beijing.

To synthesize, the strategies employed for short-term operational planning within the

domain of bike sharing have predominantly accommodated demand uncertainty via Markov

chain models, often assuming a particular probability distribution, commonly the Poisson

distribution, to model demand behavior. Alternatively, operational rebalancing endeavors have

embraced the utilization of machine learning and deep learning models to predict demand.

While Regue and Recker [57] incorporated the error stemming from demand prediction models

into their bike-sharing rebalancing scheme, they did not comprehensively analyze the variance

and underlying probability distribution. Hence, this current study employs the SGARCH model

to systematically scrutinize the residuals generated by the demand prediction model. This

regression-based methodology serves to diminish the average demand uncertainty and

concurrently furnishes vital parameters, including probability distribution and temporal

variance—essential components for the subsequent Monte Carlo sampling process. Past

research has addressed the collection of malfunctioning bikes within their rebalancing problems

[45]. However, the topic of recharging, particularly concerning electric bikes (e-bikes), remains

largely unexplored. This disparity in attention might be attributed to the fact that despite their

similar cost profile to shared e-scooters, e-bikes are frequently introduced at lower fleets in

conjunction with traditional bicycles. Nonetheless, e-bikes are generally considered to be of

lesser allure. Consequently, this study strives to encompass all three e-scooter types: usable,

faulty, and low-battery e-scooters. Moreover, it endeavors to frame the rebalancing problem

against the backdrop of stochastic demand by adopting the Sample Average Approximation

(SAA) methodology. This approach offers the advantage of tailoring parameter settings to attain

a target service level. Notably, this strategy facilitates the formulation of the rebalancing

challenge as an Integer Linear Programming (ILP) problem, accommodating both known and

unknown route sequences, and thereby allowing the rebalancing optimization to be solvable

exact or heuristic algorithms. Furthermore, the proposed ACO-ILP algorithm boasts

compatibility with parallel computing, rendering it amenable to scalability and practical

implementation.

5.3 Methodology

5.3.1 Research framework

The standard protocol for dockless shared e-scooter journeys encompasses multiple stages:

identifying nearby e-scooters through visual observation or employing a mobile application,

proceeding to the designated e-scooter location on foot, activating the e-scooter lock

mechanism via a mobile application, utilizing the e-scooter to travel to the desired destination,

appropriately securing the e-scooter upon arrival, and ultimately ending the trip. While the

termination process for dockless mode trips is undeniably convenient, customers may opt

against initiating their e-scooter journey if the distance they must traverse to retrieve the e-

109

scooter is deemed excessively lengthy. To mitigate this concern, operators frequently divide

their operational zones into walkable regions (e.g., within a range of 200 to 500 meters) and

ensure that e-scooters are strategically positioned within these designated zones. A common

strategy employed by operators involves rebalancing or relocating e-scooters from zones

characterized by an excessive number of such e-scooters to zones where the number of scooters

is comparatively lower. Operators frequently evaluate the condition of each zone and engage in

rebalancing efforts to avoid instances of unsatisfied demand or zones experiencing scarcity,

particularly due to operational limitations such as the restricted availability of e-scooters. This

is done within the designated timeframe. To optimize operational efficiency, operators can

leverage pertinent information and historical trip data to predict future demands—quantities of

pickup and drop-off demands anticipated within specific time intervals for each zone. This

predictive insight subsequently forms the basis for refining the rebalancing strategy. This

involves determining the most optimal route path for the rebalancing vehicle and ascertaining

the appropriate number of e-scooters to be collected from or redistributed to each respective

zone.

Rebalancing operations can be classified into two primary categories: Static and Dynamic.

In the context of static rebalancing, the rebalancing operational strategy, often revolving around

vehicle-based rebalancing, is predicated upon several presumptions. These include scenarios

wherein no e-scooter usage takes place during the rebalancing procedure, or the dynamic

interaction between customers and the systems can be deemed negligible. Moreover, static

rebalancing might involve predetermined time intervals and an extended planning horizon. It

also assumes negligible influence from user activities, behaviors, or interventions, and

presupposes that the number of e-scooters at each station remains constant throughout the

rebalancing process. Contrastingly, dynamic rebalancing acknowledges the impact of users'

usage patterns while rebalancing is underway. This category also accounts for short planning

intervals, potentially extending to real-time planning, and leverages users' actions and behaviors

as crucial inputs. Dynamic rebalancing takes into consideration the continuous alterations

within the systems, particularly in instances where the systems are operational or in use. In this

scenario, the optimal time for implementing static rebalancing is during nighttime when the

system is inactive or experiencing minimal usage. If the planning horizon is relatively long and

significant information such as requests, distribution of e-scooters, weather, etc. remains

unchanged, rebalancing during daytime might be categorized as static rebalancing. In alignment

with the foundational assumptions, the proposed framework for periodic rebalancing of shared

e-scooters, as depicted in Figure 4.1, aligns itself more closely with the static rebalancing

variant. This categorization is justified by the shared assumptions outlined in Section 5.3.4.

However, it's noteworthy that the framework could be classified as dynamic rebalancing if the

planning horizon is as short as an hour or less. Nevertheless, hinging upon the primary

assumptions, our rebalancing framework is best classified within the static category, as

illustrated in Figure 4.1.

Figure 4.1 illustrates the schematic structure of the research framework, comprising three

key segments: (1) the process of collecting and manipulating data, (2) the prediction of trip gap

utilizing GB regression and variance prediction employing SGARCH, and (3) optimization of

the rebalancing process. Given that shared e-scooters serve as a form of transportation for short

distances, their immediate demand is influenced by various external factors, encompassing

110

weather conditions, seasonal patterns (both on a weekly and yearly basis), holidays, and special

events [4]. These influential factors were thus incorporated into the demand prediction models,

subject to manipulation. E-scooters represent a form of shared transportation that operates

without the need for designated docking stations. This allows users the flexibility to both

retrieve and return e-scooters at any location within a specified operational region, with the

exception of private properties or areas explicitly prohibited by governing bodies. The common

practice of grid-based spatial aggregation is often employed for handling spatial trips. However,

this approach falls short in encapsulating demand concentration or the congruity of trip intents.

For instance, spatial trips occurring within locales like shopping malls, parks, or schools might

be dispersed across couple grid cells if these sites are situated along the grid's periphery.

Furthermore, past research has explored aggregation methods based on postal codes or

administrative divisions like communities or wards. Nonetheless, these territorial units often

prove overly expansive for addressing the exigencies of short-term rebalancing operation to

shared e-scooters. Consequently, the present investigation leveraged a k-means clustering

algorithm to aggregate the spatial ridership patterns of shared e-scooters. This entailed

employing cluster range of 15, 30, and 60 to effectively categorize and consolidate spatial

ridership trends.

In order to address the inherent scarcity in trip flow data, this study undertook the prediction

of trip gap, denoting the net demand disparity between origin trips (referred to as trip generation

or pickup demand) and destination trips (referred to as trip arrival or drop-off demand). In

instances where the trip gap is positive, it signifies a prevalence of pickup trips over drop-off

trips. The hyperparameters of the gradient boosting regressor for predicting trip gap were

adjusted using an automated algorithm, namely Bayesian optimization (BO). Subsequently, the

SGARCH model was trained using the residuals extracted from the trip gap prediction. Then,

in light of the projected discrepancy and variability in trip demand, a Monte Carlo sampling

technique was employed to model the unpredictable nature of shared e-scooter demand for the

purpose of optimizing rebalancing operations.

The problem of rebalancing optimization is classified as NP-hard, indicating that the

computational time required to solve it grows exponentially as the number of clusters rises. As

a result, the presence of computational limitations posed challenges for exact algorithms in

generating either the globally optimal solutions or even the viable solutions. In order to address

this limitation, we investigated viable heuristic techniques in conjunction with the precise

Integer Linear Programming (ILP) solver "GLPK". The devised heuristic solutions involved

breaking down the overarching rebalancing issues into two distinct components: Routing

Problems and Pickup or Drop-off Problems. A suite of population-based algorithms, namely

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization

(ACO), were subjected to scrutiny to optimize the routing problem. In parallel, the ILP solver

and GA were enlisted to streamline the pickup and drop-off operations. Analyzing our

numerical findings, as encapsulated in Table 5.1, reveals that the combination of heuristic

algorithms for routing (GA, PSO, & ACO) and pickup/drop-off operations (GA) exhibited

suboptimal efficacy. In fact, this hybrid scheme often struggled to locate feasible solutions,

especially when grappling with expansive problem dimensions. This ineffectiveness was most

noticeable with GA's inability to yield a feasible pickup and drop-off outcome, primarily due

to violations of drop-off constraints. The occurrence of drop-off violations on small issue sizes

111

is initially minimal, but it increases exponentially as the number of nodes increases. Conversely,

when routing optimization was governed by a blend of heuristic algorithms (GA, PSO, and

ACO) and pick-up and drop-off operations were guided by the ILP solver, the ACO-ILP hybrid

outperformed its counterparts—GA-ILP and PSO-ILP—particularly in the context of larger

problem dimensions. Notably, ACO demonstrated a relatively longer computing time for

generating feasible route sequences compared to GA and PSO, albeit with a faster convergence

rate. In cases involving simple Traveling Salesman Problems, where the objective value (i.e.,

travel distance) entails computationally efficient evaluation, GA and PSO—with shorter

computing times—are capable of assessing a larger pool of candidates within a confined time

frame. Nevertheless, the computational cost associated with the objective value, namely the

pickup and drop-off operation optimized by the ILP solver, is relatively high. Consequently, the

total number of candidates (or route sequences) that can be assessed is constrained. In such

scenarios, ACO, with its swift convergence, stands out for attaining superior optimal objective

outcomes.

Table 5.1 Performance of several algorithms for Rebalancing Optimization

Number

of Nodes

Optimization Algorithms
Time

(min)
Routing Penalty

Objective

Value Routing Optimization
Pickup & Drop-off

Optimization

15

Stations

Integer Linear Programming (ILP) Solver 30.0 35.9 41.0 76.9

Genetic Algorithm

(GA)

ILP-Solver

31.3 40.2 41.0 81.2

Particle Swarm

Optimization (PSO)
31.8 41.0 41.4 82.4

Ant Colony

Optimization (ACO)
33.0 38.1 41.0 79.1

GA

GA

43.4 59.7 42.6 102.3

PSO 40.0 62.1 43.4 105.5

ACO 43.9 43.4 44.0 87.4

30

Stations

ILP-Solver 45.0 95.8 251.0 346.8

GA

ILP-Solver

44.2 142.1 249.5 391.6

PSO 46.4 158.8 233.5 392.3

ACO 42.6 73.3 293.0 366.3

GA

GA

57.3 208.3 394.0 602.3

PSO 54.4 199.3 401.5 600.8

ACO 40.2 100.2 494.5 594.7

60

Stations

ILP-Solver 60.0 279.4 2056.5 2335.9

GA

ILP-Solver

59.5 513.4 1815.7 2329.1

PSO 58.7 491.1 1841.1 2332.2

ACO 65.6 163.7 1908.9 2072.6

GA

GA

Not Converge since GA can't find a

feasible solution for pickup and drop-off

problem.

PSO

ACO

112

Consequently, the optimization problems outlined in the Figure 5.1 framework were

tackled using only an ILP solver and the hybrid approach merging ACO with ILP solver, ACO-

ILP. Traditionally, studies have often inferred the stochastic characteristics of shared-bike

demand from historical records, where each scenario has manifested as a seasonal snapshot, or

a sample generated through Monte Carlo simulation [54-56]. In order to mitigate any

unwarranted assumptions regarding the distribution of demand, which would not be practicable

when considering the demand for shared e-scooters, historical data pertaining to daily and

weekly patterns were chosen as the benchmarks for rebalancing planning. In the last step, a

comparison was made between the objective values of the rebalancing optimization problems,

including the results obtained from ILP solver and ACO-ILP approaches, for various types of

trip gaps, namely the actual trip gaps, historical daily and weekly trip gaps, and simulated trip

gaps. The examination of the comparison was conducted using a sample of 30 randomly

selected cases from the testing dataset, as described in Section 5.4.1. The objective of

conducting a comparison between the ILP solver and the proposed ACO-ILP algorithm is to

showcase the efficacy of these two algorithms in addressing varying issue sizes, hence

emphasizing their scalability. Furthermore, the objective of comparing the simulated demands

using the Monte Carlo approach with the baseline scenarios, specifically the historical daily and

weekly trip gaps, is to demonstrate the efficacy of reducing and distributing the uncertainty in

demand through the medium of demand and variance prediction.

Figure 5.1 Research framework

113

5.3.2 Demand prediction by GB

The short-term trip gap or net demand of shared e-scooters was forecasted using GB, a

machine-learning technique pioneered by Friedman [62], as seen in Figure 4.1. The GB model

is an ensemble of decision trees that operates on a boosting framework, effectively enhancing

prediction accuracy by progressively introducing new weak learners (decision trees) to

minimize residual errors stemming from the preceding learners, as depicted in Figure 5.2. Built

upon the foundation of classification and regression trees, GB possesses applicability in both

classification and regression tasks. The intricate formulation and algorithm underpinning GB

were elucidated by [62], while the iterative process (entailing the accumulation of decision

trees) within the GB regressor encompasses several pivotal stages: calculation of the negative

gradient (initializing the initial prediction with the mean value), adaptation of a regression tree

to prognosticate the negative gradient, determination of the gradient descent step size (or

learning rate), and refinement of the GB model or prediction efficacy. For the current

investigation, the GB model was trained employing a Python module housed within the Scikit-

Learn package, specifically the GradientBoostingRegressor [63].

Figure 5.2 Flowchart of gradient boosting (GB)

The performance of the GB regressor can be equivalent to that of deep learning models

[64], but it necessitates appropriate feature selection and hyperparameter tweaking. Several

methodologies exist for hyperparameter optimization, including manual search, grid search,

random search, sequential model-based approach, and population-based approach. The

sequential-based technique is frequently employed for optimizing hyperparameters in both

machine learning and deep learning domains due to its capacity to yield a near-globally optimal

solution in a relatively short amount of computational time. The aforementioned methodology

employs surrogate and acquisition functions in a sequential manner to propose a novel

candidate until the predetermined stopping criteria are met. Among the well-recognized

algorithms embracing this approach are Bayesian Optimization (BO) and tree-structured Parzen

estimator. The Bayesian optimization (BO) algorithm employs a Gaussian process to create a

surrogate function based on the assessed samples, which initially consist of randomly selected

114

data points. The selection of the new candidate is determined by maximizing the expected

performance, such as minimizing the mean squared error (MSE) on evaluation data. This is

achieved by utilizing acquisition functions such as the probability of improvement, expected

improvement, or lower confidence bound. Elaborative insights into the BO algorithm can be

sourced from existing literature [65]. The BO method was chosen in this study for its capacity

to effectively address local optima. This is attributed to the inclusion of a parameter, kappa,

which effectively balances the tradeoff between exploration and exploitation.

The current investigation utilized BO with the lower confidence bound to tune the

hyperparameters of the GB regressor in the Python package, Scikit-Optimize or skopt [66].

Predominantly, the default values were retained for most parameters of the BO algorithm, with

the exception of key parameters. Specifically, the number of initial random samples

(n_random_starts), the total number of evaluations (n_calls), and the coefficient of the lower

confidence bound (kappa) were configured to 50, 200, and 1.8, respectively. The objective of

BO optimization centered on minimizing the MSE of evaluation data and its proportion to that

of training data, denoted as MSE_eval + MSE_eval/MSE_train. The primary goal of this

objective function is to minimize overfitting and decrease the training time by discouraging the

recommendation of sophisticated models that result in substantial reductions in MSE_train and

only marginal reductions in MSE_eval. This BO algorithm configuration was implemented to

optimize five hyperparameters of the GB algorithm: number of boosting stages (n_estimators),

maximum depth of the decision tree (max_depth), learning rate (learning_rate), the lookback

length (l), and sampling rate (r). Notably, two parameters (l and r) were associated with the

selection of input variables (as shown in Figure 5.1), facilitating the GB regressor to

prognosticate the forthcoming trip gap (t + 1). To make hourly predictions, the input selection

was made by sampling from step t to step t − l − 1. One sample was chosen within each interval

of length r, ranging from t − l − 1 to t − r. All of the samples were selected from the range t − r

− 1 to t. As an illustration, given the values l = 24 and r = 3, the historical data list can be

represented as [t − 23, t − 20, t − 17, t − 14, t − 11, t − 8, − 5, t − 2, t − 1, t]. The values of l

and r were within the intervals [13, 170] and [1, 13], respectively. The duration of lookback

length encompassed the weekly trend in order to anticipate the hourly trip-gap. The remaining

three hyperparameters of GB, namely n_estimators, max_depth, and learning_rate, were tuned

within the specified ranges of [5, 400], [1, 20], and [0.01, 0.5], correspondingly. The remaining

settings of the GB technique were left at their default values. Specifically, the loss function was

specified as the squared error, the minimum number of samples required to perform a split was

set to 2, and the quality of a split was determined using the Friedman mean squared error.

5.3.3 Variance prediction by SGARCH

Despite the advanced performance achieved by machine learning algorithms, these models

still exhibit prediction errors, typically quantified using metrics like MSE, Root-Mean-Square

Error (RMSE), or Mean Absolute Error. Consequently, providing e-scooters based solely on the

predictions derived from these models (disregarding the error term) would lead to a Service

Level Type I, or a probability of encountering shortages, of only 50%. To elucidate, if e-scooters

are allocated to 100 locations in accordance with predicted demands, approximately 50 of these

locations (right-hand side of the residuals' histogram or probability distribution) may face

115

shortages. In essence, the predicted demand represents an expected value or mean around which

nearly 50% of the actual demand fluctuates above or below. In an effort to address this issue,

historical mean and variance have been utilized to simulate stochastic scenarios under an

assumed demand distribution. Nevertheless, the presumed distributions for both trip-starts and

trip-ends are impractical, particularly when it comes to shared e-scooters, as discussed in

Section 5.4.1, with elevated uncertainty translating into heightened operational costs. As seen

in Figure 5.3, two Gaussian trip-gap models exhibiting varying degrees of variability yield

distinct expected unmet demands—clearly, greater uncertainty corresponds to increased

expected unmet demand. Accordingly, we can optimize operational costs by diminishing

demand uncertainty through the utilization of demand forecast techniques and the selection of

suitable variation and distribution models.

Figure 5.3 Effect of demand uncertainty on expected unmet demand

Recently, a discovery was made that the residuals of a short-term demand prediction model

for shared e-scooters did not exhibit the characteristics of white noise [29]. As a result, this

study embarked on an investigation into the heteroskedastic nature of the residuals derived from

trip gap prediction. Given that prediction in this context entails a time-series approach, a

Lagrange multiplier test was conducted to ascertain whether the residuals from the previous

phase adhered to homoskedasticity; if they did, the variance would remain constant.

Conversely, if homoskedasticity was not observed, the conditional variance of these residuals

was estimated through the employment of the SGARCH model. An Autoregressive Conditional

Heteroskedasticity (ARCH) model can be employed to forecast future variance based on

conditional variance, distinguishing between high and low volatility periods. This model only

includes past residuals as independent variables. However, its generalized counterpart

(GARCH) incorporates not only prior residuals but also previously predicted variances [67]. To

accommodate the seasonal patterns inherent in the data, the SGARCH model was developed by

augmenting the GARCH model with seasonal residuals and predicted variances. A

comprehensive exposition of this model, along with its extensions, can be found in the reference

manual of the STATA software [67]. The fundamental expression of the SGARCH(p,q)(P,Q,S)

model is presented as follows:

116

𝑦𝑡+1 = 𝑿𝑡+1𝛽 + 𝜖𝑡+1 (5.1)

𝜎𝑡+1
2 = 𝑎0 + ∑ 𝑎𝑖𝜀𝑡+1−𝑖

2𝑝
𝑖=1 + ∑ 𝑏𝑖𝜎𝑡+1−𝑖

2𝑞
𝑖=1 + ∑ 𝑐𝑖𝜀𝑡+1−𝑖𝑆

2𝑃
𝑖=1 + ∑ 𝑑𝑖𝜎𝑡+1−𝑖𝑆

2𝑄
𝑖=1 (5.2)

In this context, 𝑦𝑡+1 represents the residuals originating from the demand prediction model,

GB. Consequently, 𝑿𝑡+1 = 𝟏, and 𝑦𝑡+1⁡is determined by the summation of a constant value (𝛽)

often in proximity to zero, and the disturbance term 𝜖𝑡+1. This model was constructed through

the maximum log-likelihood estimator, employing versatile distributions such as the normal

distribution 𝜖𝑡+1~𝑁(0, 𝜎𝑡+1
2), Student’s t distribution 𝜖𝑡+1~𝑡(0, 𝜎𝑡+1

2 , df), and a generalized

error distribution. For the purpose of forecasting the hourly conditional variance 𝜎𝑡+1
2 , the

SGARCH model encompassed parameters like 𝜎𝑡
2, 𝜎𝑡−1

2 , 𝜎𝑡−2
2 , 𝜎𝑡−23

2 , 𝜎𝑡−47
2 , 𝜀𝑡

2, 𝜀𝑡−1
2 ,

𝜀𝑡−2
2 , 𝜀𝑡−23

2 ⁡and⁡⁡𝜀𝑡−47
2 . Insignificant parameters (95% confidence level) were eliminated. This

signifies that the estimated variance at time t+1 is significantly influenced by the residuals and

predicted variances from recent time steps (t, t-1, t-2), along with the corresponding hours from

preceding days (t-23 and t-47). Such estimation of conditional variance effectively distributes

uncertainty across the day, yielding a lower variance during nighttime and a heightened variance

during daytime. Due to its emphasis on recent trends, the SGARCH model exhibits a greater

tolerance for extended-term fluctuations when contrasted with daily variance (i.e., variance at

the same hour of the day). Each cluster underwent independent SGARCH model training using

the STATA statistical software [67]. Both the normal and Student’s t distributions were

considered, with the choice of distribution being contingent on the one yielding the smallest

standard deviation. This chosen distribution, along with the projected variance, was

subsequently leveraged in the Monte Carlo simulation to generate demand uncertainty.

5.3.4 Description of rebalancing problem

Given the constraints imposed by data availability and the intricate operational dynamics

of shared micromobility encompassing bicycles, electric bikes (e-bikes), and electric scooters

(e-scooters), the formulation of operational planning often necessitates reliance on a range of

assumptions, which can diverge across different research endeavors. While certain assumptions

can be managed via parameter configuration, worst-case analyses, and similar approaches, this

study has established the subsequent assumptions.

• Assumption 1: The time distribution of both trip-starts (pickups) and trip-ends (drop-offs)

within a specific cluster is assumed to follow a uniform pattern across the time interval (∆𝑡).

This implies that all e-scooters from trip-ends can potentially be used for pickup trips,

particularly when the drop-off demand is less than the pickup demand (resulting in a positive

trip gap). To illustrate, consider an empty cluster with 15 trip-starts and 10 trip-ends, yielding a

trip gap of +5. Under ideal conditions and no other disruptions, this cluster would experience

only five unmet demands. However, if all trip-starts occur in the first half of the time interval

and all trip-ends are concentrated in the second half, the unmet demands could escalate to as

many as 15.

• Assumption 2: The demand within each cluster remains constant throughout the planning

and rebalancing process.

• Assumption 3: Due to the dockless sharing system, a user retrieves an e-scooter when it's

accessible within the same cluster, irrespective of walking distance; otherwise, the user opts out

117

of the system, leading to unmet demand.

• Assumption 4: Faulty or broken e-scooters are exclusively fixed at the depot, while e-

scooters with low-battery levels are either recharged at charging stations or brought back to the

depot.

• Assumption 5: A single rebalancing vehicle is available, and it is required to visit all

nodes, encompassing both the charging stations and demand clusters.

The process of minimizing demand uncertainty is primarily achieved through demand

prediction, which is evidenced by the lower Mean Squared Error (MSE) compared to historical

averages. With the inclusion of explanatory features in the demand prediction model (GB), the

residuals are expected to exhibit characteristics of white noise or a random walk. Nevertheless,

the residual uncertainty, represented by variance, can be further addressed through a variance

prediction model tailored for datasets characterized by heteroscedasticity. The key purpose of

variance prediction is to distribute uncertainty using the principle of conditional variance,

focusing on temporal variance. By utilizing the forecasted trip gaps and variances, the operator

can strategically relocate the limited e-scooters to areas where the potential profit is maximized.

This study focuses on the rebalancing problem inside a complete network 𝐺 = ⁡ (𝑁, 𝐴),

where 𝑁 represents the collection of all nodes, encompassing the depot, charging stations, and

demand clusters, while 𝐴 denotes the arcs connecting these nodes. Additional symbols

employed in this study can be found in Table 5.2. This study examines three distinct categories

of e-scooters: malfunctioning (or broken or faulty), low-battery, and operational (or usable) e-

scooters. Defective electric scooters are retrieved and transported to the designated facility for

necessary repairs, while e-scooters with depleted battery levels are either relocated to charging

stations or the depot to undergo the recharging process. "Faulty" in this context refers to e-

scooters exhibiting electronic or structural issues warranting attention from depot technicians,

a status usually communicated by users. The operator retains the prerogative to determine the

battery threshold that designates e-scooters as "low-battery" (e.g., a battery level sufficient for

an average trip duration or the entire planning period). Therefore, the operator's awareness of

these two e-scooter types is presumed at the planning phase. The depot and charging stations

are assumed to have zero demand, while Monte Carlo simulation was employed to generate the

predicted net demand 𝑔𝑖
𝜃⁡in scenario 𝜃 in each cluster 𝑖 for the total scenarios of Θ. Within this

framework, a single vehicle with a capacity of B is designated for relocating operational and

low-battery e-scooters, as well as for retrieving faulty e-scooters. The overarching operational

objective seeks to minimize the cumulative expense encompassing driving costs, pickup costs,

penalty costs stemming from unmet demand, and the lingering presence of faulty and low-

battery e-scooters within the system.

In this research, the net demand 𝑔𝑖
𝜃, generated b through Monte Carlo simulation via

normal or Student's t distribution, is rounded to either an integer value or zero decimal places.

A positive net demand signifies an excess of pickup demands compared to drop-off demands.

Conversely, a negative net demand indicates a surplus of drop-off trips relative to pickup trips.

Consequently, all variables and decision variables (outlined in Table 5.2) adopt nonnegative-

integer values, barring 𝑥𝑖𝑗 and 𝑎𝑖, as they pertain to the e-scooter unit or the e-scooter trip unit.

The rebalancing task investigated in this paper encompasses two primary categories of decision

variables: routing variables (𝑥𝑖𝑗 and 𝑎𝑖𝑗), and pickup and drop-off variables associated with

118

various types of e-scooters (𝑝𝑖
𝑓
, 𝑝𝑖
𝑙, 𝑑𝑖

𝑙, 𝑝𝑖
𝑢, and⁡𝑑𝑖

𝑢). In prior research, it was usual practice to

aggregate pickup and drop-off operations into a single decision variable. This approach

involved characterizing pickup activities as positive indicators and drop-off activities as

negative signs. In the present study, a clear distinction is made between the two activities, with

the requirement that all choice variables be strictly positive integers (nonnegative-integer).

Furthermore, the implementation of a penalty on pickup operations is proposed as a means to

reduce the occurrence of needless pickups and to attain a certain service level.

For usable e-scooters, the number of pickups (𝑝𝑖
𝑢) is allowed if there are more usable e-

scooters than the specific safety stock (𝐶𝑖), while the drop-offs (𝑑𝑖
𝑢) are constrained by the

availability on the rebalancing vehicle. There is only one activity whether to pick up (𝑝𝑖
𝑢 > 0)

or to drop off (𝑑𝑖
𝑢 > 0) usable e-scooters at each station i, otherwise there is no pickup or drop-

off activity 𝑝𝑖
𝑢 = 𝑑𝑖

𝑢 = 0. Therefore, these two decision variables are strictly positive integers

(non-integer). In each cluster 𝑖 and scenario 𝜃, unmet demand (𝑈𝑖
𝜃 > 0) occurs when the

available (𝑣𝑖
𝑢) and the drop-off amount (𝑝𝑖

𝑢) of usable e-scooters are less than the sum of the

positive net demand (𝑔𝑖
𝜃 > 0) and safety stock (𝐶𝑖). Consequently, the total inventory tends to

approach the upper bound value of the predicted net demand under the constraint of total usable

e-scooters. This approach leads to an improvement in the service level while reducing the

impact of potential demand. Additionally, this study introduces another parameter, the

minimum number of usable e-scooters (𝐶𝑖), also referred to as safety stock. This parameter

allows the operator to consider potential demand, especially when utilizing a demand prediction

model trained on historical ridership data, and address the limitations of assumptions (1)-(3)

and distribution regulations. As reviewed in the previous chapter, certain regulations mandate

that operators promptly remove excessive e-scooters that obstruct pedestrians or have an

adverse effect on the aesthetic environment. Therefore, this study incorporates an additional

penalty term, referred to as excess e-scooters (𝐸𝑖
𝜃), into the rebalancing objective function. The

inclusion of this term aims to prevent such unfavorable events from occurring. In this case, the

excess e-scooters (𝐸𝑖
𝜃) is strictly positive integer values (non-integer) as it represents the

number of e-scooters that surpass a specific threshold value, 𝐶𝑖̅.

Faulty e-scooters refer to those with electronic or frame issues that require repair by

technicians at the depot, and this status is commonly reported by customers. The operator has

the flexibility to define the threshold of battery level for categorizing e-scooters as low-battery

(e.g., the battery level required for an average trip duration or the entire planning horizon).

Therefore, the status of these two types of e-scooters is assumed to be known by the operator

during the planning stage. 𝑣𝑖
𝑓
 denotes the number of faulty e-scooters at each node i, and it is

strictly a positive integer. Therefore, the variable 𝑝𝑖
𝑓
 denoting the number of faulty e-scooters

picked up at node i, is also strictly positive integer. This decision variable 𝑝𝑖
𝑓
 is constrained by

the number of faulty e-scooters in each node, 𝑣𝑖
𝑓
. Low-battery e-scooters can be charged at any

charging station or the depot, while the number of low-battery e-scooters in each node are

denoted as 𝑣𝑖
𝑙. 𝑝𝑖

𝑙 denotes the number of low-battery e-scooters to be picked up at each node, so

this decision variable is strictly a positive integer. The pickup activity (𝑝𝑖
𝑙) of low battery e-

scooter may be required if there are low-battery e-scooters present in each demand cluster and

if there are more low-battery e-scooters than charging docks at each charging station. On the

119

other hand, 𝑑𝑖
𝑙 denotes the number of low-battery e-scooters that can be dropped off at each

node, hence this decision variable is also a strictly positive integer. The drop-off activity of low-

battery e-scooters is constrained by the number of low-battery e-scooters on the rebalancing

vehicle and only allowed if there are available charging docks.

As shown in Figure 5.1, the rebalancing optimization problem was formulated in two

approaches, which were solved by ILP and ACO-ILP. To make it easy to understand, we provide

a list of notations (see Table 5.2) for the rebalancing problem, while the formulation can be

found in the following sections.

Table 5.2 List of notations for rebalancing optimization

Notation Description

Set

𝑁 Set of nodes (depot, charging stations, and clusters), with component 𝑛

𝐴 Set of links in the network, with component (𝑖, 𝑗)

Θ Set of scenarios, with component 𝜃

Parameter

𝑣𝑖
𝑓
 Number of faulty e-scooters at node 𝑖

𝑣𝑖
𝑙 Number of low-battery e-scooters at node 𝑖

𝑣𝑖
𝑢 Number of usable e-scooters at node 𝑖

𝐷𝑖 Number of charging docks at node 𝑖

𝐶𝑖̅ Maximum number of e-scooters at node 𝑖

𝐶𝑖 Minimum number of usable e-scooters at node 𝑖

𝑔𝑖
𝜃 Trip gap in scenario 𝜃 and node 𝑖

𝐵 Capacity of vehicle

𝑐𝑖𝑗 Driving distance between nodes 𝑖 and 𝑗

𝛽0 Unit cost of driving distance

𝛽1, 𝛽2, 𝛽3,

𝛽4, 𝛽5

Unit costs of penalty functions of picking up e-scooters, remaining faulty

e-scooters, remaining low-battery e-scooters, unmet demand, and excess

e-scooters, respectively

Variable

𝑅𝑖
𝑓
 Nonnegative-integer: Remaining faulty e-scooters at node 𝑖

𝑅𝑖
𝑙 Nonnegative-integer: Remaining low-battery e-scooters at node 𝑖

ℎ𝑖
𝑓
 Nonnegative-integer: number of faulty e-scooters on the vehicle at node 𝑖

ℎ𝑖
𝑙 Nonnegative-integer: number of low-battery e-scooters on the vehicle at node 𝑖

ℎ𝑖
𝑢 Nonnegative-integer: number of usable e-scooters on the vehicle at node 𝑖

𝑈𝑖
𝜃 Nonnegative-integer: unmet demand in scenario 𝜃 and at node 𝑖

𝐸𝑖
𝜃 Nonnegative-integer: excess e-scooters in scenario 𝜃 and at node 𝑖

Decision

Variable

𝑥𝑖𝑗 Binary: 1 if the rebalancing vehicle passes the link (𝑖, 𝑗), 0 otherwise.

𝑎𝑖 Nonnegative-integer: auxiliary variable for subtour elimination

𝑝𝑖
𝑓
 Nonnegative-integer: number of faulty e-scooters picked up at node 𝑖

𝑝𝑖
𝑙 Nonnegative-integer: number of low-battery e-scooters picked up at node 𝑖

𝑑𝑖
𝑙 Nonnegative-integer: number of low-battery e-scooters dropped off at node 𝑖

𝑝𝑖
𝑢 Nonnegative-integer: number of usable e-scooters picked up at node 𝑖

𝑑𝑖
𝑢 Nonnegative-integer: number of usable e-scooters dropped off at node 𝑖

120

5.3.5 Rebalancing formulation by ILP solver

As elucidated in Section 5.2, prior research efforts have undertaken the formulation of

rebalancing quandaries, each characterized by diverse objective functions, with primary

emphasis on metrics like total driving distance [46] and generalized cost [45, 56, 58, 59, 68].

Within these generalized cost functions, there exists a shared pool of terms, including factors

such as driving distance or duration, and common constraints such as vehicle capacity, pickup

and drop-off requirements, and more. However, these generalized cost functions are also

marked by distinctive elements and constraints, tailored to the specific objectives of each study.

For example, Chang et al. [45] introduced deterministic rebalancing models pertinent to

dockless bike sharing, devising a generalized cost function that encompasses parameters such

as driving cost, pickup and drop-off expenses, and penalties for unattended zones harboring

pending requests. On the contrary, Dell’Amico et al. [56] designed stochastic rebalancing

strategies for station-based bike sharing, with their generalized cost function integrating driving

cost alongside penalized charges linked to the variance in supply (excess and shortage)

concerning stochastic requests.

In this investigation, we likewise embrace a generalized cost function to act as the

underlying objective for addressing the stochastic rebalancing task within the realm of dockless

shared e-scooters. The fundamental aim of our generalized cost function is the minimization of

costs tied to driving distances and the intricacies of pick-up procedures. Nonetheless, a

distinctive feature of our approach lies in the incorporation of penalties that are specifically

tailored to address instances of unfulfilled demand, surplus e-scooters, as well as the presence

of malfunctioning (i.e., damaged or broken) and low-battery e-scooters. The penalty attributed

to unmet demand, 𝑈𝑖
𝜃, encapsulates not only the simulated demand for each scenario, 𝑔𝑖

𝜃, but

also takes into consideration the parameter 𝐶𝑖, which pertains to the safety stock. In parallel,

the imposition of an excess e-scooter penalty becomes effective when the cumulative number

of e-scooters in a given zone crosses a predefined threshold, 𝐶𝑖̅. By virtue of these

enhancements, our objective function gains enhanced interpretability, particularly for

individuals who lack extensive expertise in the field, thereby facilitating pragmatic parameter

fine-tuning during the practical implementation phase. Additionally, our formulated objective

function conveniently facilitates a trade-off consideration encompassing the realms of driving

distances and the intricacies associated with pick-up and drop-off activities. This provides a

valuable avenue for striking an optimal balance between these facets, rather than solely

adhering to the strict confines dictated by request-based constraints.

As delineated in the research framework depicted in Figure 5.1, the technique of Monte

Carlo simulation was harnessed to engender the demand uncertainty, drawing upon the

projected trip gap information expounded upon in Section 5.3.2, alongside the envisaged

variance and associated distribution elaborated upon in Section 5.3.3. The simulation process

yielded randomized trip gap scenarios, with an equal and uniform likelihood distribution across

the spectrum. Consequently, the formulation of the transient rebalancing strategy for shared e-

scooters can be articulated as follows.

121

Minimize

𝛽0∑ 𝑐𝑖𝑗⁡𝑥𝑖𝑗(𝑖,𝑗)𝜖𝐴 + 𝛽1∑ (𝑝𝑖
𝑓
+⁡𝑝𝑖

𝑙 + 𝑝𝑖
𝑢)𝑖𝜖𝑁 + 𝛽2∑ 𝑅𝑖

𝑓
𝑖𝜖𝑁 +⁡𝛽3∑ 𝑅𝑖

𝑙
𝑖𝜖𝑁 +

𝛽4

Θ
∑ 𝑈𝑖

𝜃
𝑖𝜖𝑁;𝜃𝜖Θ +

𝛽5

Θ
∑ 𝐸𝑖

𝜃
𝑖𝜖𝑁;𝜃𝜖Θ ⁡⁡⁡ (5.3)

Subject to

∑ 𝑥𝑖𝑗𝑖𝜖𝑁 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁 (5.4)

∑ 𝑥𝑖𝑗𝑗𝜖𝑁 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁 (5.5)

𝑎𝑖 − 𝑎𝑗 + 𝑁𝑥𝑖𝑗 ≤ 𝑁 − 1⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴 − {1}, 𝑖 ≠ 𝑗 (5.6)

0 ≤ 𝑝𝑖
𝑓
≤ 𝑣𝑖

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁 (5.7)

0 ≤ 𝑝𝑖
𝑙 ≤ max⁡(0, 𝑣𝑖

𝑙 − 𝐷𝑖)⁡⁡⁡⁡∀𝑖𝜖𝑁 (5.8)

0 ≤ 𝑑𝑖
𝑙 ≤ max⁡(0, 𝐷𝑖 − 𝑣𝑖

𝑙)⁡⁡⁡⁡∀𝑖𝜖𝑁 (5.9)

0 ≤ 𝑝𝑖
𝑢 ≤ max⁡(0, 𝑣𝑖

𝑢 − 𝐶𝑖)⁡⁡⁡∀𝑖𝜖𝑁 (5.10)

ℎ𝑗
𝑓
− ℎ𝑖

𝑓
− 𝑝𝑗

𝑓
+𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴, 𝑗 ≥ 2 (5.11)

ℎ𝑖
𝑓
− ℎ𝑗

𝑓
+ 𝑝𝑗

𝑓
+𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴 (5.12)

𝑅𝑖
𝑓
= 𝑣𝑖

𝑓
− 𝑝𝑖

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁 (5.13)

ℎ𝑗
𝑙 − ℎ𝑖

𝑙 − 𝑝𝑗
𝑙 + 𝑑𝑗

𝑙 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴, 𝑗 ≥ 2 (5.14)

ℎ𝑖
𝑙 − ℎ𝑗

𝑙 + 𝑝𝑗
𝑙 − 𝑑𝑗

𝑙 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴 (5.15)

𝑅𝑖
𝑙 = max{𝑣𝑖

𝑙 −𝐷𝑖 , 0} − 𝑝𝑖
𝑙⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁 (5.16)

ℎ𝑗
𝑢 − ℎ𝑖

𝑢 − 𝑝𝑗
𝑢 + 𝑑𝑗

𝑢 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴, 𝑗 ≥ 2 (5.17)

ℎ𝑖
𝑢 − ℎ𝑗

𝑢 + 𝑝𝑗
𝑢 − 𝑑𝑗

𝑢 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴 (5.18)

𝐶𝑖 − 𝑣𝑖
𝑢 + 𝑝𝑖

𝑢 − 𝑑𝑖
𝑢 +max{𝑔𝑖

𝜃, 0} − 𝑈𝑖
𝜃 ≤ 0⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁, 𝜃𝜖Θ (5.19)

𝑅𝑖
𝑓
+ 𝑅𝑖

𝑙 + 𝑣𝑖
𝑢 − 𝑝𝑖

𝑢 + 𝑑𝑖
𝑢 − 𝑔𝑖

𝜃 − 𝐶𝑖̅ − 𝐸𝑖
𝜃 ≤ 0⁡⁡⁡∀𝑖𝜖𝑁, 𝜃𝜖Θ (5.20)

ℎ𝑖
𝑓
+ ℎ𝑖

𝑙 + ℎ𝑖
𝑢 ≤ 𝐵⁡⁡⁡∀𝑖𝜖𝑁 (5.21)

The primary objective of the transient rebalancing process, as articulated in Eq. 5.3, is to

minimize the amalgamated cost encompassing driving distance and a constellation of penalty

costs. These penalties pertain to pickup undertakings, the retention of faulty and low-battery e-

scooters within the system, unmet demands, and an undue accumulation of e-scooters. The

constraints delineated in Eq. 5.4–5.6 encapsulate routing-related stipulations that govern

arrivals and departures at all nodes while precluding the emergence of subtours. Eq. 5.7–5.10

are pickup and drop-off constraints for each type of e-scooters. Eq. 5.11 and Eq. 5.12

encapsulate loading rules for faulty e-scooters onto the rebalancing vehicle, while Eq. 5.13

ensures the equivalence between initial faulty e-scooters minus those picked up and the

remaining faulty e-scooters. Similarly, Eq. 5.14 and 5.15 embody loading and unloading

conservation for low-battery e-scooters, and the remaining is computed through Eq. 5.16. The

loading and unloading balance for usable e-scooters is enforced by Eq. 5.17 and 5.18. The

quantification of unmet demand ensues via Eq. 5.19, necessitating the tally of usable e-scooters

within each cluster to surpass a stipulated threshold (𝐶𝑖) following both the rebalancing

procedure and the end of the planning time frame. This threshold serves as a safety buffer,

accommodating the aforementioned assumptions, along with potential demands and regulatory

122

frameworks. The number of excessive e-scooters is quantified by Eq. 5.20, a measure that

forestalls overloading at particular locations and ensures swift intervention. Lastly, the vehicle

capacity is constrained by Eq. 5.21.

5.3.6 Rebalancing formulation by hybrid ACO-ILP algorithm

Solving NP-hard optimization problems with ILP solvers often presents challenges in

generating satisfactory solutions, let alone feasible ones, within imposed time constraints,

particularly in the realm of stochastic problems. Conversely, heuristic algorithms, although

incapable of ensuring exact solutions, frequently yield improved feasible outcomes within a

confined computational timeframe. Against this backdrop, this study proposes a hybrid heuristic

technique named the ACO–ILP algorithm. This approach combines ant colony optimization

(ACO) with an ILP solver to tackle the aforementioned rebalancing optimization predicaments.

A similar hybrid algorithm, denoted ACO–CP, was previously formulated for deterministic bike

sharing rebalancing [68]. Nonetheless, our approach diverges in its treatment of the rebalancing

vehicle's routing issue, viewing it as a variant of the traveling salesman problem. This facet can

be addressed using the ACO algorithm, which optimizes the driving distance cost and penalty

cost through input from the above-described ILP solver. The ACO algorithm, introduced in the

early 1990s, draws inspiration from the foraging conduct of ants, who employ pheromone trails

for indirect communication regarding the shortest path between their nest and food sources [69].

The ACO algorithm emulates this foraging behavior by deploying artificial ants to

progressively adjust the path based on transition probabilities, influenced by the concentration

of "pheromones" and a visibility function.

Algorithm 5.1 delineates the rebalancing optimization procedure through the utilization of

ACO. The initial steps (Lines 1–4) encompass the inputs required for ACO, encompassing a

graph delineated by a set of nodes 𝑁 and a set of links 𝐴, a distance function denoted as 𝑐 that

encapsulates the driving distance derived from Bing Maps (https://www.bing.com/maps), a

comprehensive cost function that amalgamates the driving distance cost and penalty costs, and

the pertinent ACO parameters. Within each iteration, a sequence of actions is undertaken,

including the computation of transition probabilities, the construction of route sequences for

individual ants based on the calculated probabilities, the assessment of the performance of each

ant, the retention of the best-found solution, and the updating of the pheromone trails. These

pheromone trails are initially set with uniform weights (values of 1). The intricate formulations

underpinning the ACO algorithm are enumerated in the following depiction.

𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]
𝛼
(𝜂𝑖𝑗)

𝛽

∑ [𝜏𝑖𝑙(𝑡)]
𝛼(𝜂𝑖𝑙)

𝛽
𝑙𝜖𝑁𝑖

𝑘
⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁𝑖

𝑘 (5.22)

𝜂𝑖𝑗 = 1/𝑐𝑖𝑗 (5.23)

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗(𝑡) (5.24)

Δ𝜏𝑖𝑗(𝑡) = ∑ Δ𝜏𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1 (5.25)

Δ𝜏𝑖𝑗
𝑘 (𝑡) = {

1

𝐿𝑘
,⁡⁡⁡The⁡k𝑡ℎ ⁡ant⁡passes⁡between⁡𝑖⁡and⁡𝑗

0,⁡⁡⁡⁡⁡Otherwise⁡⁡⁡
 (5.26)

https://www.bing.com/maps

123

Algorithm 5.1: the ACO algorithm for the rebalancing problem

1 Input:

2 complete non-directed graph: 𝐺 = (𝑁, 𝐴)

3 distance function: 𝑐

4 cost function: 𝐿

5 set all of the ACO parameters {𝛼, 𝛽, 𝜌, #𝑎𝑛𝑡𝑠, #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠}

6 initialize all of the pheromone trails 𝜏0

7 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 = [⁡]

8 for 𝑡 ← 1 to #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do

9 calculate the probability matrix: 𝑃𝑡 = [𝜏𝑡−1]
𝛼(1/𝑐)𝛽

10 for 𝑘 ← 1 to #𝑎𝑛𝑡𝑠 do

11 𝑟𝑜𝑢𝑡𝑒𝐴𝑛𝑡(𝑘)[0] ← 0

12 for 𝑖 ← 1 to 𝑁 − 1 do

13 list the nodes to be visited: 𝑁𝑖
𝑘

14 normalize the probability of the remaining nodes: 𝑃𝑡,𝑖
𝑘

15 randomly choose the next node according to the probability: 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒

16 𝑟𝑜𝑢𝑡𝑒𝐴𝑛𝑡(𝑘)[𝑖] ← 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒

17 evaluate the cost function of each ant: 𝐿𝑘

18 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡. add([min{𝐿𝑘} ; ⁡argmin{𝐿𝑘}])

19 update the pheromone trails: 𝜏𝑡 = (1 − 𝜌)𝜏𝑡−1 + Δ𝜏𝑡

In the presented equations, 𝑃𝑖𝑗
𝑘(𝑡) signifies the probability linked to ant 𝑘 moving from the

ongoing node 𝑖 to the subsequent node 𝑗 within the 𝑡 iteration. The ensemble 𝑁𝑖
𝑘 stands for the

collection of nodes that ant 𝑘 has yet to traverse. The visibility of node⁡𝑗 from node 𝑖, denotes

as 𝜂𝑖𝑗, is characterized as the reciprocal of the distance between these two nodes. The

parameters 𝛼 and 𝛽 denote the respective significance of the pheromone and visibility aspects

(with the pheromone undergoing updates as per Eq. 5.24). Meanwhile, 𝜌 and Δ𝜏𝑖𝑗(𝑡) symbolize

the coefficient for pheromone evaporation and the cumulative pheromone deposited by all ants

(amounting to m ants), correspondingly. Lastly, 𝐿𝑘 refers to the cost function, encompassing the

description of both driving distance and penalty costs, associated with ant 𝑘. In the course of

this investigation, the ACO algorithm was executed utilizing the Scikit-opt Python library [70].

Default values were assigned to 𝛼, 𝛽, and⁡𝜌, with their values set as 1, 2, and 0.1, respectively.

In this subsection, the objective function remains consistent with the one described in the

preceding section (Eq. 5.3), with the exception that the integration of the ACO algorithm and

ILP is employed to tackle the problem of routing for the rebalancing vehicle and the

corresponding pickup/drop-off activities. In this composite approach, the ILP solver handles

the optimization of pickups and drop-offs for a predetermined route sequence (… → 𝑖 → 𝑗 →

⋯, ∀𝑖, 𝑗𝜖𝑁) established by the ACO algorithm. Subsequently, the ACO algorithm fuses the

penalty cost with the driving distance cost to iteratively enhance the arrangement of the route

sequence. Consequently, the ILP formulation for rebalancing involving a pre-determined route

sequence is represented as follows:

124

Minimize

𝛽1∑(𝑝𝑗
𝑓
+⁡𝑝𝑗

𝑙 + 𝑝𝑗
𝑢)

𝑗𝜖𝑁

+ 𝛽2∑𝑅𝑗
𝑓

𝑗𝜖𝑁

+⁡𝛽3∑𝑅𝑗
𝑙

𝑗𝜖𝑁

+
𝛽4
Θ

∑ 𝑈𝑗
𝜃

𝑗𝜖𝑁;𝜃𝜖Θ

+
𝛽5
Θ

∑ 𝐸𝑗
𝜃

𝑗𝜖𝑁;𝜃𝜖Θ

(5.27)

Subject to

0 ≤ 𝑝𝑗
𝑓
≤ 𝑣𝑗

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁 (5.28)

0 ≤ 𝑝𝑗
𝑙 ≤ max⁡(0, 𝑣𝑗

𝑙 − 𝐷𝑗)⁡⁡⁡⁡∀𝑗𝜖𝑁 (5.29)

0 ≤ 𝑑𝑗
𝑙 ≤ max⁡(0, 𝐷𝑗 − 𝑣𝑗

𝑙)⁡⁡⁡⁡∀𝑗𝜖𝑁 (5.30)

0 ≤ 𝑝𝑗
𝑢 ≤ max⁡(0, 𝑣𝑗

𝑢 − 𝐶𝑗)⁡⁡⁡∀𝑗𝜖𝑁 (5.31)

ℎ𝑗
𝑓
= ℎ𝑖

𝑓
+ 𝑝𝑗

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗𝜖𝑁 (5.32)

𝑅𝑗
𝑓
= 𝑣𝑗

𝑓
− 𝑝𝑗

𝑓
⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁 (5.33)

ℎ𝑗
𝑙 = ℎ𝑖

𝑙 + 𝑝𝑗
𝑙 − 𝑑𝑗

𝑙⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗𝜖𝑁 (5.34)

𝑅𝑗
𝑙 = max⁡(0, 𝑣𝑗

𝑙 − 𝐷𝑗) − 𝑝𝑗
𝑙 ⁡⁡⁡⁡∀𝑗𝜖𝑁 (5.35)

ℎ𝑗
𝑢 = ℎ𝑖

𝑢 + 𝑝𝑗
𝑢 − 𝑑𝑗

𝑢⁡⁡∀𝑖, 𝑗𝜖𝑁 (5.36)

𝐶𝑗 − 𝑣𝑗
𝑢 + 𝑝𝑗

𝑢 − 𝑑𝑗
𝑢 +max{𝑔𝑗

𝜃, 0} − 𝑈𝑗
𝜃 ≤ 0⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁, 𝜃𝜖Θ (5.37)

𝑅𝑗
𝑓
+ 𝑅𝑗

𝑙 + 𝑣𝑗
𝑢 − 𝑝𝑗

𝑢 + 𝑑𝑗
𝑢 − 𝑔𝑗

𝜃 − 𝐶𝑗̅ − 𝐸𝑗
𝜃 ≤ 0⁡⁡⁡∀𝑖𝜖𝑁, 𝜃𝜖Θ (5.38)

ℎ𝑗
𝑓
+ ℎ𝑗

𝑙 + ℎ𝑗
𝑢 ≤ 𝐵⁡⁡⁡∀𝑗𝜖𝑁 (5.39)

In this context, Eq. 5.28–5.31 correspond to the pickup and drop-off constraints at the

present node 𝑗. Eq. 5.32, 5.34, and 5.36 provide the cumulative quantities of faulty, low-battery,

and usable e-scooters, respectively, situated on the rebalancing vehicle at the current node 𝑗.

These values are the summation of the quantities on the rebalancing vehicle at the preceding

node 𝑖 and the quantities that are either picked up or dropped off at the current node 𝑗.

Meanwhile, Eq. 5.33 and 5.35 furnish the remaining amounts of faulty and low-battery e-

scooters, respectively. Eq. 5.37 and 5.38 yield the unmet demands and surplus numbers of e-

scooters, respectively. Finally, Eq. 5.39 enforces the stipulation on the capacity of the

rebalancing vehicle. The commencement of the rebalancing vehicle's journey is mandated from

the depot, consequently necessitating that all decision variables pertaining to this specific node

are set to zero, except for the variables associated with the pickup of usable e-scooters 𝑝1
𝑢 and

the number of usable e-scooters on the rebalancing vehicle ℎ1
𝑢.

5.4 Application of demand and variance prediction

5.4.1 Data collection and description

Obtaining true demand information is crucial for effective operational planning. However,

this data is often challenging to access unless operators authorize its extraction from user

application interactions [30]. Given these data constraints, past ridership data is frequently

utilized to assess the viability of suggested models or systems, as in references [4, 28, 29, 33,

34, 61]. Likewise, in this research, historical data is employed as a case study, with potential

125

demand being managed via the safety stock parameter, denoted as the minimum number of

functional e-scooters (𝐶𝑖). In practical implementation, the proposed framework, particularly

the demand forecasting model, may necessitate training using true demand data that

encompasses unmet demand, as elaborated by Ham et al. [30].

The numerical examination was conducted utilizing an openly available dataset

representing shared e-scooter ridership in Minneapolis, Minnesota (accessible at

https://opendata.minneapolismn.gov). This dataset encompasses a total of 961,040 trips taken

during the timeframe spanning May 13 to November 25, 2019. Pertinent trip details include the

trip's ID, trip distance, trip duration, start/end date time, and start/end center line ID. To

determine geographical coordinates, the central point of the street where each trip was picked

up and dropped off was considered. During the process of data refinement, records with missing

values were excluded, while those fulfilling the criteria of having a trip distance ranging from

20 meters to 10 kilometers, a trip duration spanning 20 seconds to 2 hours, alignment with the

study period (from May 14 to November 24, 2019), and adherence to the study's geographical

boundary were included. Post-cleaning, a total of 813,970 trips remained in the dataset,

exhibiting an average duration of approximately 13 minutes, and covering an average distance

of about 1.72 kilometers. As previously discussed, the trips were subjected to clustering using

the k-means clustering algorithm with varying cluster counts of 15, 30, and 60 clusters, as

depicted in Figure 5.4. For the purpose of forecasting hourly net demand (Δt = 1 hour), a dataset

consisting of 4,680 samples was assembled. In the model development process, 80% of this

data was allocated for training the model, while the remaining 20% was designated for model

testing, as illustrated in Figure 5.5. To avert the risk of overfitting, a strategy of random

sampling was employed to divide the training dataset into segments, with 75% employed for

model construction and 25% reserved for model evaluation.

https://opendata.minneapolismn.gov/

126

Figure 5.4 Trip clustering generated by the k-means algorithm (red stars = depot and charging

stations; blue dots = centers of trip clusters; gray dots = street centers of pickup and drop-off

trips)

Figure 5.5 Hourly pickup and drop-off trips and the trip gap for shared e-scooters in

Minneapolis, MN

127

Research findings have demonstrated a meaningful correlation between the utilization of

shared e-scooters and various environmental variables such as weather conditions, public

holidays, recurring yearly festivities, and weekly usage trends. In light of this, weather-related

attributes encompassing temperature, precipitation, wind speed, humidity, wind gust, pressure,

and dew point were procured from Weather Underground (www.wunderground.com). In

instances where attribute data were absent, linear interpolation was employed to estimate these

values. Furthermore, the model devised for predicting gaps between trips accounted for official

public holidays, annual festivals, and noteworthy events such as open street events, a pride

festival parade, a state fair festival, a stone arch bridge festival, and an uptown art fair. Notably,

an exception was made for October 10, 2019, when the operation of shared e-scooters was

suspended due to the state visit of the President of the United States to Minneapolis. It is vital

to acknowledge that the demand for shared e-scooters is influenced by numerous factors. As

such, it is inappropriate to assume a specific distribution—like the Poisson distribution—to

represent the pickup and drop-off demand patterns, as indicated in Figure 5.6. This

characteristic was verified through a goodness-of-fit test conducted on both daily patterns (at

the same hour of the day) and weekly patterns (at the same hour of the day and day of the week).

Given this insight, it's evident that rebalancing methodologies grounded in such assumptions

(e.g., queue theory), which have commonly been applied to analyze shared bike services, may

not be well-suited for examining shared e-scooter services.

Figure 5.6 Histograms and Poisson distributions of the pickup and drop-off demands of

shared e-scooters

http://www.wunderground.com/

128

5.4.2 Result of demand prediction

As previously mentioned, the k-means algorithm was applied to cluster the trips into groups

of 15, 30, and 60. For enhanced predictive accuracy in trip gap estimations, the model was

trained with spatial independence. This was achieved by incorporating external features (as

outlined in Section 5.3.2), local historical data, and historical data sourced from four

neighboring clusters into the model's inputs. Displayed in Figure 5.7 (left), the convergence

curve of Gaussian Process Bayesian Optimization (BO) is depicted, illustrating the

hyperparameter tuning process for cluster 37 in the GB model. Hyperparameter tuning is a

customary practice aimed at minimizing a loss metric on the evaluation dataset (e.g.,

MSE_eval). However, such optimization can potentially lead to overfitting, particularly when

working with decision tree models. Figure 5.7 (right) showcases the assessed GB models

generated through BO, with the models arranged based on the sorted values of MSE_train. This

visualization indicates that the minimal MSE_eval occurs within a range where the divergence

between MSE_train and MSE_eval is notable. Beyond this point, MSE_eval deteriorates or

loses its generalization capability. Additionally, it's worth noting that the modeling process in

this region demands substantial inputs due to the inherent complexity of models, often

necessitating a greater number of deeper decision-tree regressors and a lengthier historical data

lookback. Hence, the objective function utilized for BO, encompassing the ratio of MSE_eval

to MSE_train, effectively reduces training duration and promotes the construction of a more

generalized GB model.

Figure 5.7 Hyperparameter optimization by Bayesian optimization for trip gap prediction

Figure 5.8 Trip gap predicted using the testing data for cluster 37

129

Figure 5.8 displays the trip gap projections generated by GB regressor for cluster 37. While

the GB model effectively captured the temporal patterns, it exhibited residual errors in its

predictions. Failing to address these discrepancies in the context of rebalancing planning could

result in diminished service levels or profits compared to strategies that account for such errors.

Table 5.3 provides a comparative overview of the GB model's predictions with those of two

benchmark models—the historical average model and the daily historical average model—

using the RMSE as the metric for accuracy assessment. Our numerical findings derived from

the training data showcase that the GB model yielded a significantly reduced RMSE,

approximately 26% and 16% lower than the baseline historical average and daily historical

average models, respectively. When evaluated against the testing dataset, the RMSE (indicative

of uncertainty) associated with the GB model was roughly 19% and 15% lower than the

corresponding RMSE values of the historical average model and the daily historical average

model, respectively.

Table 5.3 Results of trip gap prediction and variance prediction

Model 15 Clusters 30 Clusters 60 Clusters

Trip Gap

Prediction

Historical

Average

RMSE-train 7.13 4.97 3.46

RMSE-test 5.25 3.94 2.66

Daily Historical

Average

RMSE-train 6.00 4.47 3.17

RMSE-test 5.10 3.73 2.55

GB
RMSE-train 5.04 3.69 2.67

RMSE-test 4.14 3.16 2.24

Variance

Prediction

for GB

residuals

Constant

Variance

Mean-STD 4.01 3.02 2.30

Coverage 95.73% 96.15% 97.09%

Daily Variance
Mean-STD 3.44 2.57 1.93

Coverage 96.13% 95.65% 95.96%

SGARCH

Variance

Mean-STD 3.17 2.31 1.59

Coverage 93.46% 91.55% 94.40%

5.4.3 Result of variance prediction

The utilization of SGARCH for predicting variance furnishes two pivotal parameters that

find application in Monte Carlo simulation: the standard deviation (STD) and the distribution

of residuals. As elaborated upon in Section 5.3.3, a lower STD or diminished uncertainty leads

to a decrease in expected loss. Nonetheless, the STD must be minimized in a manner that doesn't

compromise coverage—signifying the percentage of residuals contained within confidence

bounds. For instance, the daily variance associated with GB residuals exhibited a Mean-STD

(average standard deviation) that was smaller than that of constant variance, all without

compromising coverage, as presented in Table 5.3. This outcome suggests that the variance

prediction model possesses the potential to influence rebalancing planning by further mitigating

uncertainty stemming from the demand prediction model. However, it's worth noting that the

daily variance derived from historical data was incapable of capturing prolonged fluctuations,

as evidenced by Figure 5.9. Notably, the SGARCH-derived variance exhibited heightened

flexibility over time, encompassing seasonal or annual patterns, owing to a greater weighting

130

assigned to recent residuals compared to earlier ones. On the whole, in comparison to the daily

variance, the SGARCH model yielded a marginally reduced Mean-STD; however, it also

brought about a minor reduction in coverage.

Figure 5.9 Variance prediction based on residuals of the GB model for cluster 37

5.5 Result of rebalancing optimization

5.5.1 Parameter settings

The accessible dataset includes trip information that doesn't encompass all the requisite

operational planning parameters. Consequently, these parameters were simulated by assigning

fixed and random values within designated ranges, as detailed in Table 5.4. The utilization of

k-means clustering facilitated the division of the coordinates associated with dockless shared e-

scooter trips. While augmenting the cluster count addressed Assumption 1, it simultaneously

led to a decrease in the performance of demand prediction models, characterized by sparsity

and random walk patterns. Additionally, this increment exponentially amplified the time

required for rebalancing optimization. For the scenarios under consideration, the cluster count

was established at 15, 30, and 60, yielding corresponding total node counts N (inclusive of the

depot and charging stations) of 18, 35, and 70. Earlier studies typically restrict computational

time to around 1 hour or 3600 seconds. Within this study, a maximum computational time of

approximately 1 minute (or 60 seconds) per node was established, and the ultimate rounding

time for the aforementioned scenarios was set at 20, 40, and 60 minutes, respectively. If

optimization were carried out under the universal constraint of 3600 seconds for all three

rebalancing problem instances, the performance of the ILP solver and ACO-ILP algorithm

would be on par. Hence, a comparison of these two algorithms hinged on their speed in

achieving optimal objective values. Alternatively, proportional allocation of computational time

across these scenarios would enable a comparison of the two algorithms based on their

respective optimal objective values. On the other hand, if the computational time for these three

cases were set proportionally, we could compare the performance of these two algorithms based

on their optimal objective values. The travel distance between nodes was acquired from Bing

Maps. The testing dataset encompassed approximately 39 days or roughly five weeks, and 30

instances were randomly extracted from the high-demand timeframe spanning 10 am to 8 pm

during the first (for the 15-cluster problem), second (for the 30-cluster problem), and third (for

the 60-cluster problem) three weeks. The rebalancing process was executed using a single

vehicle with a capacity of accommodating 35 e-scooters.

131

The total count of e-scooters was taken as 400, inclusive of 20 defective e-scooters (about

5%) and 60 e-scooters with low battery levels (approximately 15%). Consequently, the total

pool of operational e-scooters amounted to 320, roughly equivalent to half of the hourly pickup

demand during peak demand hours. These e-scooters classified as faulty, low-battery, and

usable were allocated randomly across the clusters. Based on the average usage expenditure of

shared e-scooters in Minneapolis, it was deduced that users typically spent around 3 USD per

trip. For the purposes of this study, the penalty cost per unit of unfulfilled demand was defined

as 2 USD, constituting approximately 67% of the revenue. The unit cost related to surplus e-

scooters stood at 1 USD, while penalty costs associated with the remaining defective and low-

battery e-scooters were determined as 5 and 3 USD, respectively. Travel distance expenses were

assessed at a rate of 1 USD per kilometer traveled. To ensure that the same e-scooter wasn't

both picked up and dropped off at the same location, a pickup cost of 0.1 USD was established.

This decision not only prevented such instances but also served to harmonize the service level.

This pickup cost represented approximately 5% of the unmet demand penalty, mirroring a

service level categorized as Type II, denoting a 95% fulfillment level (i.e., demands with a

probability below 5% didn't warrant incurring the pickup cost).

Table 5.4 Parameter settings for the rebalancing optimization

Parameter
15-

Cluster

30-

Cluster

60-

Cluster

Computational time (minutes) 20 40 60

Testing week
1st, 2nd,

3rd

2nd, 3rd,

4th

3rd, 4th,

5th

Number of scenarios 𝜃 100 100 100

Number of charging stations 2 4 9

Total e-scooters 400 400 400

Number of docks in each station (total of 100) 50 25 10–15

Maximum number of e-scooters in each cluster 𝐶𝑖̅

(total of 700)
30–50 15–30 10–15

Minimum number of e-scooters in each cluster 𝐶𝑖

(total of 80)
0–10 0–5 0–3

Number of faulty e-scooters in each cluster ℎ𝑖
𝑓
 (total

of 20)
0–3 0–2 0–2

Number of low-battery e-scooters in each cluster ℎ𝑖
𝑙

(total of 60)
0–10 0–5 0–3

Number of usable e-scooters in each cluster ℎ𝑖
𝑢 (total

of 320)
5–25 1–20 0–10

Vehicle capacity 𝐵 35 35 35

Unit cost of the driving distance 𝛽0 1 1 1

Unit cost of picking up e-scooters 𝛽1 0.1 0.1 0.1

Unit cost of remaining faulty e-scooters 𝛽2 5 5 5

Unit cost of remaining low-battery e-scooters 𝛽3 3 3 3

Unit cost of unmet demands 𝛽4 2 2 2

Unit cost of excess e-scooters 𝛽5 1 1 1

132

The optimization for rebalancing procedures was executed within the Spyder integrated

development environment utilizing Python. For solving the Integer Linear Programming (ILP)

rebalancing formulation, the ILP solver GLPK, integrated into the Pyomo Python library [71],

was employed, consistent with the approach outlined in Section 5.3.5. The same ILP solver was

also utilized for tackling the pickup and drop-off operations, as elaborated upon in Section

5.3.6. In parallel, the Ant Colony Optimization (ACO) algorithm was trained employing another

Python library called Scikit-opt [70]. All of these operations were conducted within a Windows

10 environment operating on a 64-bit system architecture. The underlying hardware consisted

of an Intel processor core i7-9750H CPU clocked at 2.60 GHz, complemented by 8.00 GB of

RAM.

5.5.2 Sensitivity of the number of scenarios

Monte Carlo simulation was employed to generate demand uncertainty based on the

predicted trip gap in Section 5.4.2 and predicted variance and the distribution from Section

5.4.3. The number of samples to be generated can impact the optimization result. Sensitivity

analysis was conducted to examine the impact of the number of simulated samples on optimal

objective value. As we know, more samples likely provide more stable outputs, but it also

increases the complexity of optimization problems. In other words, a higher number of

scenarios creates more optimization parameters and constraint equations, resulting in a longer

computational time to produce a feasible or global optimal solution. Figure 5.10 shows the

sensitivity analysis of the number of scenarios ranging from 50 to 1000, while three

optimization trials were performed for each problem, 15-, 30-, and 60-cluster problems. In this

case, the ILP solver could provide a feasible solution within the limited time (see Table 5.4) for

15- and 30-cluster problems, but this solver could produce a feasible solution only up to 500

scenarios for 60-cluster problems. Moreover, we observed a high variation of feasible solutions

for 60-cluster problems for scenarios 800, 900, and 1000. We could also observe that the

variation of optimal values is higher for a greater number of cluster problems. Overall, there is

no significant pattern for the number of scenarios more than 100. Therefore, Monte Carlo

simulation was conducted to generate 100 scenarios, whereas the benchmark cases using daily

or weekly historical trip data had approximately 180 and 26 scenarios, respectively.

Figure 5.10 Sensitivity analysis on the number of scenarios

133

5.5.3 15-cluster problem

As detailed in Table 5.4, the computational timeframe for the balancing optimization was

subject to constraints. Consequently, to strike a balance between exploration and exploitation

within the hybrid ACO–ILP algorithm, two parameters from the ACO framework were

employed: population size and the number of iterations. Notably, a larger population

necessitates fewer iterations compared to a smaller population to successfully accomplish an

optimization task within the designated computational limits. Illustrated in Figure 5.11, the left

portion of the graph portrays the interplay between population size and the number of iterations,

while the right segment showcases the convergence trajectory of the optimal trial (with

population size set at 65 and the number of iterations at 25) for the rebalancing challenge

pertaining to the 15-cluster problem. The benchmark instances, characterized by actual,

historical daily, and historical weekly net demand, featured varying number of scenarios.

Correspondingly, the population size was adjusted, either amplified or diminished, to

accommodate these distinct scenarios.

Figure 5.11 Exploration and exploitation tradeoff of ant colony optimization (left) and the

convergence curve (right) for 15-cluster problems

The optimal parameters derived from the ACO methodology were subsequently utilized to

optimize other instances of the 15-cluster rebalancing problem. Figure 5.12 portrays the

outcome of the optimal rebalancing process for one of the instances within the 15-cluster

problem. Given the substantial penalty costs associated with the remaining defective and low-

battery e-scooters, no remainder was left after the rebalancing operation. In this specific

scenario, the rebalancing vehicle traversed multiple demand clusters, collecting low-battery e-

scooters en route and subsequently depositing them at charging stations. During the initial

nodes, the rebalancing vehicle retrieved 13 operational e-scooters from the depot, proceeded to

collect 22 low-battery e-scooters, which were then delivered to charging station 2. Upon

reaching cluster 6, five operational e-scooters were dropped off—this step might have been

superfluous if demand uncertainty had been disregarded. Subsequently, the remainder (eight

operational e-scooters) along with an additional ten operational e-scooters picked up at cluster

13 were transported to cluster 2, characterized by significant trip-gap variation. At cluster 2, the

accumulated low-battery e-scooters were unloaded at charging station 1. Following this, nine

operational e-scooters were collected and redeployed to either cluster 9 (six e-scooters) or

cluster 5 (three e-scooters). Ultimately, from clusters 4 and 10, five and two operational e-

scooters, respectively, were relocated to cluster 1, presumably resulting in higher anticipated

134

revenue. Subsequently, the amassed defective and low-battery e-scooters on the vehicle up to

that point were returned to the depot for necessary repairs and recharging. This outcome

underscores that the strategy managed to minimize the projected unmet demand within the

confines of several constraints (such as vehicle capacity, driving distance, and the available

number of operational e-scooters). This was achieved by redistributing operational e-scooters

from locations characterized by an excess number of e-scooters or a low anticipated demand to

areas where the expected demand was higher.

Figure 5.12 (top) Optimal route sequence of an instance in the 15-cluster problem and

(bottom) its optimal pickup and drop-off results (CH: charging station, CL: cluster of trips)

#
 E

-S
co

o
te

rs
 &

 T
ri

p
 G

ap

Depot & Charging Station
Demand Cluster

135

In this scenario, the ILP solver demonstrated the capability to generate feasible solutions

across all 30 instances and four distinct problem types (Actual, Sampling, Daily, and Weekly)

within the 15-cluster problem. Depicted in Figure 5.14 (left), the average of the optimal

objective values from all 30 instances for the 15-cluster problem is presented. Given the

relatively modest scale of this problem, the ILP solver "GLPK" yielded superior optimal

objective values in contrast to the hybrid ACO-ILP approach. Analyzing the ILP numerical

results, it's evident that the average driving distance remains consistent across the four cases

(approximately 50 km); however, these cases exhibit variations in expected penalty costs.

Specifically, the average optimal objective values for the four scenarios—Actual, Sampling,

Daily, and Weekly—are recorded as 65 USD, 66.66 USD, 71.18 USD, and 68.85 USD,

respectively. In essence, having perfect information resulted in the lowest penalty costs, while

the sampling strategy demonstrated the ability to decrease penalty costs, along with introducing

advantages in terms of temporal flexibility, as compared to the baseline daily and weekly

scenarios. The sampling approach managed to lower penalty costs by approximately 6.35% and

3.18% when contrasted with the daily and weekly cases. The sampling approach could reduce

penalty costs by roughly 6.35% and 3.18% compared to daily and weekly cases. With respect

to penalty costs, excluding driving distance, the proposed methodology led to a reduction of

penalty costs by 19.87% and 9.93% in comparison to these two baseline scenarios.

5.5.4 30-cluster problem

Figure 5.13 (left) shows the tradeoff between exploring and exploiting ACO’s parameters,

population size, and number of iterations for the 30-cluster problem. The optimal values of

these two parameters were 90 and 19, respectively, while its convergence curve is shown in

Figure 5.13 (right). Similar to the problem above, the ILP solver can provide a feasible solution

for all instances within the limited computational time, and it achieves better optimal solutions

compared to the ACO-ILP algorithm. Based on optimal results from the ILP solver, as in Figure

5.14, the driving distance of the actual trip gaps is 80 km, while that of the other three cases is

around 92 km. Moreover, the average objective value of the actual case is relatively low

compared to the other three cases representing the necessity of perfect information or accurately

forecasted demand. In this case, the combination of prediction demand variance could reduce

the overall penalty costs by 8.25% and 2.75% compared to the implementation of historical

actual daily and weekly trip data. If we exclude the driving distance, the percentage of reduction

by sampling method is 22.28% and 13.55%, respectively.

Figure 5.13 Exploration and exploitation tradeoff of ant colony optimization (left) and the

convergence curve (right) for 30-cluster problems

136

Figure 5.14 Average objective value for 30 random instances for 15-, 30-, and 60-cluster

problems

5.5.5 60-cluster problem

Figure 5.15 (left) shows the balance of exploration and exploitation of ACO while the

optimal values of population size and number of iterations are 7 and 160, respectively. The

convergence curve of this case is shown in Figure 5.15 (right), whereas the optimal objective

value is 180.65. Unlike the previous two cases, ACO-ILP performs better than ILP solver, which

cannot provide a feasible solution for some instances of historical daily (70%) and historical

weekly (25%) trip gaps. There were approximately 200 and 28 scenarios for historical daily and

historical weekly trip gaps, respectively, whereas the Monte Carlo sampling had 100 scenarios.

Our result for Monte Carlo sampling showed that the ILP solver could provide a feasible

solution for as many as 500 scenarios within the limited computational time. Hence, the

distribution and variance of the trip gaps rather than just the number of scenarios contributed to

the complexity of the optimization problem, which prevented the ILP solver from reaching a

feasible solution. To obtain feasible results for all instances of historical daily and historical

weekly trip gaps, the computational time was iteratively increased by 30 and 15 minutes,

respectively. On average, the computational time required to reach a feasible solution in these

two cases was 120 and 72 minutes, respectively.

As shown in Figure 5.14, the pattern of the average optimal objective values is similar,

i.e., the Actual case has the lowest penalty costs, and the Sampling approach has lower penalty

costs compared to the other two baselines. The driving distances of 60-cluster problems are

around 123.88 km, 127.57 km, 127.27 km, and 126.24 km for Actual, Sampling, Daily, and

Weekly cases, respectively. As shown in Figure 6.11, the average penalty costs of these four

cases are 135.74 USD, 167.33 USD, 200.82 USD, and 192.94 USD, respectively. This means

the sampling approach based on the forecasted trip gap and variance can reduce the overall

penalty costs of 16.68% and 13.27% compared to the baselines. In other words, the reduction

excluding driving distance achieved by the Sampling approach is 47.95% and 41.77%,

respectively, compared to these two benchmark cases.

137

Figure 5.15 Exploration and exploitation tradeoff of ant colony optimization (left) and the

convergence curve (right) for 60-cluster problems

5.5.6 Discussion

Figure 5.14 illustrates the average objective values for all three types of clusters,

encompassing 30 random instances, while accounting for routing and penalty costs. This

graphical representation reveals that regardless of the number of clusters, the perfect

information (actual trip gap) corresponded to the lowest penalty cost. In contrast, the Sampling,

Daily, and Weekly cases incurred higher penalty costs, roughly 20%, 35%, and 29% higher than

the Actual case, respectively. This underscores the potential for further reduction in demand

uncertainty, particularly through enhancements in demand and variance predictions.

Furthermore, the graph indicates that for smaller-sized problems (15- and 30-cluster scenarios),

the ILP solver "GLPK" outperformed, whereas for larger-sized problems (60-cluster scenario),

the hybrid ACO-ILP algorithm exhibited better performance. It's noteworthy that Assumption

1 necessitates a higher quantity of clusters, which in turn results in elongated driving distances

for rebalancing vehicles and amplified penalty costs due to heightened demand uncertainty.

Moreover, while the ILP solver requires prolonged training times to generate feasible solutions

for larger-scale problems involving an increased number of clusters, our findings highlight that

the sampling approach utilizing the Monte Carlo method, founded on predicted demand and

variance, managed to curtail demand uncertainty. This in turn expedited the ILP solver's ability

to attain feasible solutions more swiftly than relying on historical daily and weekly net

demands.

During a pilot initiative conducted in 2019, the city of Minneapolis sanctioned the

deployment of up to 2,000 shared e-scooters distributed among various operators, including

Lime, Lyft, JUMP, and Spin. For this present study, the total count of e-scooters was established

at 400, a number roughly equivalent to those deployed by each individual operator. In a parallel

context involving dockless shared bikes, a study by Hua et al. [72] identified that by providing

merely 14.5% of the original fleet, it was possible to satisfy 96.8% of the trip demand. Adhering

to a constraint of 400 e-scooters (about 20% of the permissible fleet), we managed to achieve a

service level of approximately 96.6% through hourly rebalancing efforts. From an operational

perspective, this accomplishment signifies the potential to curtail the deployed fleet size,

especially if all operators collaboratively engaged in unified rebalancing planning or minimized

territorial overlap by incorporating geofences. Taking environmental factors into account,

frequent rebalancing actions, particularly when involving vehicles with internal combustion

138

engines, are ill-advised due to their substantial contribution to emissions (up to 50% according

to [19]). Given the challenges in achieving complete operational harmonization among

operators, a viable strategy involves judiciously segregating deployment zones, thereby

minimizing overlaps and optimizing intrazonal trips. In such a framework, rebalancing efforts

should be confined to a few instances daily, ideally conducted using electric rebalancing

vehicles, while also minimizing the number of clusters to be visited.

Based on the empirical findings discussed earlier, the calculated driving distances

approximately amount to 50 km, 90 km, and 120 km for the three distinct problem sizes: 15-

cluster, 30-cluster, and 60-cluster scenarios, respectively. This indicates that the rebalancing

vehicle would be unable to complete the entire rebalancing operation within the stipulated 1-

hour timeframe, as demonstrated in the case study. Given this context, the practicality of our

proposed framework might be better suited for extended rebalancing durations, such as 2 to 3

hours, or it may necessitate adjustments to meet specific objectives, including driving distance

reduction or service level enhancements. Among potential modifications, the initial option

involves enabling the rebalancing algorithm to bypass nodes that are deemed unnecessary or

have already been balanced. The second modification suggests augmenting the number of

rebalancing vehicles, particularly by implementing multiple smaller rebalancing vehicles.

However, the third option is particularly advisable. This involves eliminating balanced demand

clusters prior to the rebalancing optimization and execution phase. By doing so, both

computational time and driving distance can be curtailed, owing to the reduction in the overall

number of nodes. Within this framework, operators can concentrate their efforts solely on nodes

displaying significant deviations from the desired supply level—summing predicted trip gaps,

predicted trip gap variations with service level parameters, and safety stock considerations.

When the quantity of nodes is relatively modest (below 15 nodes), rebalancing optimization

can be executed efficiently through the employment of an ILP solver. For more extensive

optimization challenges, an ACO-ILP strategy, especially when supplemented with parallel

computing capabilities, becomes more apt. The viability of the proposed framework is further

accentuated if operators choose to segregate operational territories, generating smaller

rebalancing regions for streamlined management.

5.6 Conclusion

In summation, dockless shared e-scooters exhibit considerable potential as a solution for

enhancing compact urban mobility, especially in addressing the challenges of the first-mile-

last-mile dilemma, parking scarcities, and offering an alternative transportation mode.

However, the nuanced characteristics of trips, vehicles, and regulatory considerations render

the short-term operational planning for this mode notably more intricate compared to its closest

counterpart, shared bikes. Notably, the pickup and drop-off patterns of shared e-scooters deviate

from conventional Poisson distributions. This divergence implies that standard operational

planning strategies—often utilized under conditions of demand uncertainty for shared bikes,

such as the application of Markov chains or queue theory—might not be directly applicable to

shared e-scooters.

In light of these complexities, this study introduces a novel framework tailored for the

short-term rebalancing of shared e-scooters. This framework hinges on Monte Carlo simulation,

139

leveraging predicted demand and variance. Employing a GB model, the hourly trip gap of

shared e-scooters is forecasted, while the residuals of this model are refined via SGARCH. This

dual-model integration successfully mitigates demand uncertainty, as evidenced by the

reduction in RMSE and average STD.

Furthermore, a novel ILP rebalancing formulation is devised, encompassing demand

uncertainty, malfunctioning e-scooters, and low-battery instances. Given the NP-hard nature of

this problem, an ILP solver is deployed to tackle smaller-scale scenarios, while the solution to

larger-scale problems is achieved through a hybrid ACO–ILP algorithm. Numerical results,

derived from real-world data in the context of Minneapolis, MN, and focused on the 60-cluster

scenario, indicate that the application of our framework leads to a reduction of the operational

burden by 20.01% and 15.30% relative to benchmark practices relying on historical daily and

weekly demands, respectively. Moreover, while the ILP solver at times struggled to furnish a

feasible solution within computational time limits for these benchmark cases, this challenge

was circumvented by our simulated demand approach. Importantly, the ILP solver necessitated

a lengthier duration to yield feasible solutions for baseline problems compared to the efficiency

demonstrated by our Monte Carlo sampling strategy.

References

[1] T. Benarbia, K. Labadi, A. M. Darcherif, J. P. Barbot and A. Omari, "Real-time inventory

control and rebalancing in bike-sharing systems by using a stochastic Petri net model," in

3rd International Conference on Systems and Control, 2013, pp. 583-589, doi:

https://doi.org/10.1109/ICoSC.2013.6750920.

[2] N. Saum and M. Piantanakulchai, "A Review on an Emerging New Mode of Transport:

The Shared Dockless Electric Scooter," presented at the 13th International Conference of

the Eastern Asia Society for Transportation Studies (EASTS 2019), Colombo, 2019.

Available: http://www.easts.info/on-line/proceedings/vol.12/head.htm.

[3] NACTO. Shared Micromobility in the U.S.: 2019. Available: https://nacto.org/shared-

micromobility-2019/.

[4] A. Hosseinzadeh, A. Karimpour and R. Kluger, "Factors influencing shared micromobility

services: An analysis of e-scooters and bikeshare," Transportation Research Part D:

Transport and Environment, vol. 100, pp. 103047, 2021, doi:

https://doi.org/10.1016/j.trd.2021.103047.

[5] K. Wang, X. Qian, D. T. Fitch, Y. Lee, J. Malik and G. Circella, "What travel modes do

shared e-scooters displace? A review of recent research findings," Transport Reviews, pp.

1-27, 2022, doi: https://doi.org/10.1080/01441647.2021.2015639.

[6] W. Riggs, M. Kawashima and D. Batstone, "Exploring best practice for municipal e-scooter

policy in the United States," Transportation Research Part A: Policy and Practice, vol.

151, pp. 18-27, 2021, doi: https://doi.org/10.1016/j.tra.2021.06.025.

[7] A.-H. Kirstin, B. Brandon, O. N. Riley and S. Smith C, "Governing micro-mobility: A

nationwide assessment of electric scooter regulations," presented at the Transportation

Research Board 98th Annual Meeting, Washington D.C., 2019. doi:

https://trid.trb.org/view/1572811.

https://doi.org/10.1109/ICoSC.2013.6750920
http://www.easts.info/on-line/proceedings/vol.12/head.htm
https://nacto.org/shared-micromobility-2019/
https://nacto.org/shared-micromobility-2019/
https://doi.org/10.1016/j.trd.2021.103047
https://doi.org/10.1080/01441647.2021.2015639
https://doi.org/10.1016/j.tra.2021.06.025
https://trid.trb.org/view/1572811

140

[8] K. Button, H. Frye and D. Reaves, "Economic regulation and E-scooter networks in the

USA," Research in Transportation Economics, vol. 84, pp. 100973, 2020, doi:

https://doi.org/10.1016/j.retrec.2020.100973.

[9] A. Brown, "Micromobility, Macro Goals: Aligning scooter parking policy with broader city

objectives," Transportation Research Interdisciplinary Perspectives, vol. 12, pp. 100508,

2021, doi: https://doi.org/10.1016/j.trip.2021.100508.

[10] A. Pashkevich, T. E. Burghardt, S. Puławska-Obiedowska and M. Šucha, "Visual attention

and speeds of pedestrians, cyclists, and electric scooter riders when using shared road – a

field eye tracker experiment," Case Studies on Transport Policy, vol. 10, no. 1, pp. 549-

558, 2022, doi: https://doi.org/10.1016/j.cstp.2022.01.015.

[11] S. Sareen, D. Remme and H. Haarstad, "E-scooter regulation: The micro-politics of market-

making for micro-mobility in Bergen," Environmental Innovation and Societal Transitions,

vol. 40, pp. 461-473, 2021, doi: https://doi.org/10.1016/j.eist.2021.10.009.

[12] A. Brown, N. J. Klein, C. Thigpen and N. Williams, "Impeding access: The frequency and

characteristics of improper scooter, bike, and car parking," Transportation Research

Interdisciplinary Perspectives, vol. 4, pp. 100099, 2020, doi:

https://doi.org/10.1016/j.trip.2020.100099.

[13] H. Li, Z. Yuan, T. Novack, W. Huang and A. Zipf, "Understanding spatiotemporal trip

purposes of urban micro-mobility from the lens of dockless e-scooter sharing," Computers,

Environment and Urban Systems, vol. 96, pp. 101848, 2022, doi:

https://doi.org/10.1016/j.compenvurbsys.2022.101848.

[14] C. S. Smith and J. P. Schwieterman, "E-scooter scenarios: evaluating the potential mobility

benefits of shared dockless scooters in Chicago," Chaddick Institute for Metropolitan

Development, Depaul University. 2018.

[15] O. Caspi, M. J. Smart and R. B. Noland, "Spatial associations of dockless shared e-scooter

usage," Transportation Research Part D: Transport and Environment, vol. 86, pp. 102396,

2020, doi: https://doi.org/10.1016/j.trd.2020.102396.

[16] R. Zhu, X. Zhang, D. Kondor, P. Santi and C. Ratti, "Understanding spatio-temporal

heterogeneity of bike-sharing and scooter-sharing mobility," Computers, Environment and

Urban Systems, vol. 81, pp. 101483, 2020, doi:

https://doi.org/10.1016/j.compenvurbsys.2020.101483.

[17] H. Younes, Z. Zou, J. Wu and G. Baiocchi, "Comparing the Temporal Determinants of

Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation

Research Part A: Policy and Practice, vol. 134, pp. 308-320, 2020, doi:

https://doi.org/10.1016/j.tra.2020.02.021.

[18] G. McKenzie, "Urban mobility in the sharing economy: A spatiotemporal comparison of

shared mobility services," Computers, Environment and Urban Systems, vol. 79, pp.

101418, 2020, doi: https://doi.org/10.1016/j.compenvurbsys.2019.101418.

[19] A. de Bortoli and Z. Christoforou, "Consequential LCA for territorial and multimodal

transportation policies: method and application to the free-floating e-scooter disruption in

Paris," Journal of Cleaner Production, vol. 273, pp. 122898, 2020, doi:

https://doi.org/10.1016/j.jclepro.2020.122898.

[20] H. Moreau, L. de Jamblinne de Meux, V. Zeller, P. D’Ans, C. Ruwet and W. M. J. Achten,

"Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between

https://doi.org/10.1016/j.retrec.2020.100973
https://doi.org/10.1016/j.trip.2021.100508
https://doi.org/10.1016/j.cstp.2022.01.015
https://doi.org/10.1016/j.eist.2021.10.009
https://doi.org/10.1016/j.trip.2020.100099
https://doi.org/10.1016/j.compenvurbsys.2022.101848
https://doi.org/10.1016/j.trd.2020.102396
https://doi.org/10.1016/j.compenvurbsys.2020.101483
https://doi.org/10.1016/j.tra.2020.02.021
https://doi.org/10.1016/j.compenvurbsys.2019.101418
https://doi.org/10.1016/j.jclepro.2020.122898

141

Dockless E-Scooters, Displaced Transport, and Personal E-Scooters," Sustainability, vol.

12, no. 5, pp. 1803, 2020, doi: https://doi.org/doi:10.3390/su12051803.

[21] H. Peng, Y. Nishiyama and K. Sezaki, "Assessing environmental benefits from shared

micromobility systems using machine learning algorithms and Monte Carlo simulation,"

Sustainable Cities and Society, vol. 87, pp. 104207, 2022, doi:

https://doi.org/10.1016/j.scs.2022.104207.

[22] S. Severengiz, S. Finke, N. Schelte and N. Wendt, "Life Cycle Assessment on the Mobility

Service E-Scooter Sharing," presented at the 2020 IEEE European Technology and

Engineering Management Summit (E-TEMS), Dortmund, 2020. doi:

https://doi.org/10.1109/E-TEMS46250.2020.9111817.

[23] M. Javadinasr, S. Asgharpour, E. Rahimi, P. Choobchian, A. K. Mohammadian and J. Auld,

"Eliciting attitudinal factors affecting the continuance use of E-scooters: An empirical

study in Chicago," Transportation Research Part F: Traffic Psychology and Behaviour,

vol. 87, pp. 87-101, 2022, doi: https://doi.org/10.1016/j.trf.2022.03.019.

[24] R. G. Öztaş Karlı, H. Karlı and H. S. Çelikyay, "Investigating the acceptance of shared e-

scooters: Empirical evidence from Turkey," Case Studies on Transport Policy, vol. 10, no.

2, pp. 1058-1068, 2022, doi: https://doi.org/10.1016/j.cstp.2022.03.018.

[25] M. Abouelela, C. Al Haddad and C. Antoniou, "Are young users willing to shift from

carsharing to scooter–sharing?," Transportation Research Part D: Transport and

Environment, vol. 95, pp. 102821, 2021, doi: https://doi.org/10.1016/j.trd.2021.102821.

[26] H. Fitt and A. Curl, "The early days of shared micromobility: A social practices approach,"

Journal of Transport Geography, vol. 86, pp. 102779, 2020, doi:

https://doi.org/10.1016/j.jtrangeo.2020.102779.

[27] S. He and K. G. Shin, "Dynamic flow distribution prediction for urban dockless e-scooter

sharing reconfiguration," presented at the WWW '20: Proceedings of The Web Conference

2020, Taipei, 2020. doi: https://doi.org/10.1145/3366423.3380101.

[28] S. He and K. G. Shin, "Distribution Prediction for Reconfiguring Urban Dockless E-

Scooter Sharing Systems," IEEE Transactions on Knowledge and Data Engineering, vol.

34, no. 12, pp. 5722-5740, 2022, doi: https://doi.org/10.1109/TKDE.2021.3062074.

[29] N. Saum, S. Sugiura and M. Piantanakulchai, "Short-Term Demand and Volatility

Prediction of Shared Micro-Mobility: a case study of e-scooter in Thammasat University,"

presented at the 2020 Forum on Integrated and Sustainable Transportation Systems

(FISTS), Delft, 2020. doi: https://doi.org/10.1109/FISTS46898.2020.9264852.

[30] S. W. Ham, J.-H. Cho, S. Park and D.-K. Kim, "Spatiotemporal Demand Prediction Model

for E-Scooter Sharing Services with Latent Feature and Deep Learning," Transportation

Research Record, vol. 2675, no. 11, pp. 34-43, 2021, doi:

https://doi.org/10.1177/03611981211003896.

[31] S. Phithakkitnukooon, K. Patanukhom and M. G. Demissie, "Predicting Spatiotemporal

Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional

Network," ISPRS International Journal of Geo-Information, vol. 10, no. 11, pp. 773, 2021.

[32] Y. Xu, X. Zhao, X. Zhang and M. Paliwal, "Real-Time Forecasting of Dockless Scooter-

Sharing Demand: A Spatio-Temporal Multi-Graph Transformer Approach," 2021.

https://doi.org/doi:10.3390/su12051803
https://doi.org/10.1016/j.scs.2022.104207
https://doi.org/10.1109/E-TEMS46250.2020.9111817
https://doi.org/10.1016/j.trf.2022.03.019
https://doi.org/10.1016/j.cstp.2022.03.018
https://doi.org/10.1016/j.trd.2021.102821
https://doi.org/10.1016/j.jtrangeo.2020.102779
https://doi.org/10.1145/3366423.3380101
https://doi.org/10.1109/TKDE.2021.3062074
https://doi.org/10.1109/FISTS46898.2020.9264852
https://doi.org/10.1177/03611981211003896

142

[33] S. Kim, S. Choo, G. Lee and S. Kim, "Predicting Demand for Shared E-Scooter Using

Community Structure and Deep Learning Method," Sustainability, vol. 14, no. 5, pp. 2564,

2022.

[34] P. W. Khan, S.-J. Park, S.-J. Lee and Y.-C. Byun, "Electric Kickboard Demand Prediction

in Spatiotemporal Dimension Using Clustering-Aided Bagging Regressor," Journal of

Advanced Transportation, vol. 2022, pp. 8062932, 2022, doi:

https://doi.org/10.1155/2022/8062932.

[35] M. Masoud, M. Elhenawy, M. H. Almannaa, S. Q. Liu, S. Glaser and A. Rakotonirainy,

"Heuristic Approaches to Solve E-Scooter Assignment Problem," IEEE Access, vol. 7, pp.

175093-175105, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2957303.

[36] A. Ciociola, M. Cocca, D. Giordano, L. Vassio and M. Mellia, "E-Scooter Sharing:

Leveraging Open Data for System Design," in 2020 IEEE/ACM 24th International

Symposium on Distributed Simulation and Real Time Applications (DS-RT), 2020, pp. 1-8,

doi: 10.1109/DS-RT50469.2020.9213514.

[37] L. Tolomei, S. Fiorini, A. Ciociola, L. Vassio, D. Giordano and M. Mellia, "Benefits of

Relocation on E-scooter Sharing - a Data-Informed Approach," in 2021 IEEE International

Intelligent Transportation Systems Conference (ITSC), 2021, pp. 3170-3175, doi:

10.1109/ITSC48978.2021.9564809.

[38] J. Osorio, C. Lei and Y. Ouyang, "Optimal rebalancing and on-board charging of shared

electric scooters," Transportation Research Part B: Methodological, vol. 147, pp. 197-219,

2021, doi: https://doi.org/10.1016/j.trb.2021.03.009.

[39] A. M. Fathabad, X. Li, J. Cheng and Y.-J. Wu, "Data-Driven Optimization for E-Scooter

System Design," (in English), Tech Report 2022.

[40] G. Losapio, F. Minutoli, V. Mascardi and A. Ferrando, "Smart balancing of E-scooter

sharing systems via deep reinforcement learning," in 22nd Workshop "From Objects to

Agents", Bologna, Italy, 2022, vol. 2963, pp. 83–97: CEUR-WS.org.

[41] O. Altintasi and S. Yalcinkaya, "Siting charging stations and identifying safe and

convenient routes for environmentally sustainable e-scooter systems," Sustainable Cities

and Society, vol. 84, p. 104020, 2022, doi: https://doi.org/10.1016/j.scs.2022.104020.

[42] G. McKenzie, "Spatiotemporal comparative analysis of scooter-share and bike-share usage

patterns in Washington, D.C," Journal of Transport Geography, vol. 78, pp. 19-28, 2019,

doi: https://doi.org/10.1016/j.jtrangeo.2019.05.007.

[43] A. Martínez-Navarro, V. A. Cloquell-Ballester and S. Segui-Chilet, "Photovoltaic Electric

Scooter Charger Dock for the Development of Sustainable Mobility in Urban

Environments," IEEE Access, vol. 8, pp. 169486-169495, 2020, doi:

https://doi.org/10.1109/ACCESS.2020.3023881.

[44] C. S. Shui and W. Y. Szeto, "A review of bicycle-sharing service planning problems,"

Transportation Research Part C: Emerging Technologies, vol. 117, pp. 102648, 2020, doi:

https://doi.org/10.1016/j.trc.2020.102648.

[45] X. Chang, J. Wu, H. Sun, G. H. d. A. Correia and J. Chen, "Relocating operational and

damaged bikes in free-floating systems: A data-driven modeling framework for level of

service enhancement," Transportation Research Part A: Policy and Practice, vol. 153, pp.

235-260, 2021, doi: https://doi.org/10.1016/j.tra.2021.09.010.

https://doi.org/10.1155/2022/8062932
https://doi.org/10.1109/ACCESS.2019.2957303
https://doi.org/10.1016/j.trb.2021.03.009
https://doi.org/10.1016/j.scs.2022.104020
https://doi.org/10.1016/j.jtrangeo.2019.05.007
https://doi.org/10.1109/ACCESS.2020.3023881
https://doi.org/10.1016/j.trc.2020.102648
https://doi.org/10.1016/j.tra.2021.09.010

143

[46] M. Dell'Amico, E. Hadjicostantinou, M. Iori and S. Novellani, "The bike sharing

rebalancing problem: Mathematical formulations and benchmark instances," Omega, vol.

45, pp. 7-19, 2014, doi: https://doi.org/10.1016/j.omega.2013.12.001.

[47] T. Raviv and O. Kolka, "Optimal inventory management of a bike-sharing station," IIE

Transactions, vol. 45, no. 10, pp. 1077-1093, 2013, doi:

https://doi.org/10.1080/0740817X.2013.770186.

[48] R. Alvarez-Valdes et al., "Optimizing the level of service quality of a bike-sharing system,"

Omega, vol. 62, pp. 163-175, 2016, doi: https://doi.org/10.1016/j.omega.2015.09.007.

[49] E. O'Mahony, "Smarter Tools For (Citi)Bike Sharing," Computer Science, Cornell

University, Cornell University, 2015.

[50] J. Schuijbroek, R. C. Hampshire and W. J. van Hoeve, "Inventory rebalancing and vehicle

routing in bike sharing systems," European Journal of Operational Research, vol. 257, no.

3, pp. 992-1004, 2017, doi: https://doi.org/10.1016/j.ejor.2016.08.029.

[51] Y.-H. Seo, "A Dynamic Rebalancing Strategy in Public Bicycle Sharing Systems Based on

Real-Time Dynamic Programming and Reinforcement Learning," Doctoral dissertation,

Seoul National University, 2020.

[52] C.-C. Lu, "Robust Multi-period Fleet Allocation Models for Bike-Sharing Systems,"

Networks and Spatial Economics, vol. 16, no. 1, pp. 61-82, 2016, doi:

https://doi.org/10.1007/s11067-013-9203-9.

[53] Y. Chen and Y. Liu, "Integrated Optimization of Planning and Operations for Shared

Autonomous Electric Vehicle Systems," Transportation Science, 2022, doi:

https://doi.org/10.1287/trsc.2022.1156.

[54] F. Maggioni, M. Cagnolari, L. Bertazzi and S. W. Wallace, "Stochastic optimization models

for a bike-sharing problem with transshipment," European Journal of Operational

Research, vol. 276, no. 1, pp. 272-283, 2019, doi:

https://doi.org/10.1016/j.ejor.2018.12.031.

[55] S. Yan, C.-C. Lu and M.-H. Wang, "Stochastic fleet deployment models for public bicycle

rental systems," International Journal of Sustainable Transportation, vol. 12, no. 1, pp. 39-

52, 2018, doi: https://doi.org/10.1080/15568318.2017.1324586.

[56] M. Dell’Amico, M. Iori, S. Novellani and A. Subramanian, "The Bike sharing Rebalancing

Problem with Stochastic Demands," Transportation Research Part B: Methodological, vol.

118, pp. 362-380, 2018, doi: https://doi.org/10.1016/j.trb.2018.10.015.

[57] R. Regue and W. Recker, "Proactive vehicle routing with inferred demand to solve the

bikesharing rebalancing problem," Transportation Research Part E: Logistics and

Transportation Review, vol. 72, pp. 192-209, 2014, doi:

https://doi.org/10.1016/j.tre.2014.10.005.

[58] D. Huang, X. Chen, Z. Liu, C. Lyu, S. Wang and X. Chen, "A static bike repositioning

model in a hub-and-spoke network framework," Transportation Research Part E: Logistics

and Transportation Review, vol. 141, p. 102031, 2020.

[59] R. Guo et al., "BikeNet: Accurate Bike Demand Prediction Using Graph Neural Networks

for Station Rebalancing," presented at the 2019 IEEE SmartWorld, Ubiquitous Intelligence

& Computing, Advanced & Trusted Computing, Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of People and Smart City Innovation

https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1080/0740817X.2013.770186
https://doi.org/10.1016/j.omega.2015.09.007
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.1007/s11067-013-9203-9
https://doi.org/10.1287/trsc.2022.1156
https://doi.org/10.1016/j.ejor.2018.12.031
https://doi.org/10.1080/15568318.2017.1324586
https://doi.org/10.1016/j.trb.2018.10.015
https://doi.org/10.1016/j.tre.2014.10.005

144

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, 2019. doi:

https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00153.

[60] J.-H. Cho, Y.-H. Seo and D.-K. Kim, "Efficiency Comparison of Public Bike-Sharing

Repositioning Strategies Based on Predicted Demand Patterns," Transportation Research

Record, vol. 2675, no. 11, pp. 104-118, 2021, doi:

https://doi.org/10.1177/03611981211016859.

[61] L. Yu, T. Feng, T. Li and L. Cheng, "Demand Prediction and Optimal Allocation of Shared

Bikes Around Urban Rail Transit Stations," Urban Rail Transit, 2022, doi:

https://doi.org/10.1007/s40864-022-00183-w.

[62] J. H. Friedman, "Greedy function approximation: A gradient boosting machine," The

Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001, doi:

https://doi.org/10.1214/aos/1013203451.

[63] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal of Machine

Learning Research, vol. 12, pp. 2825-2830, 2011.

[64] A. Oyedele et al., "Deep learning and Boosted trees for injuries prediction in power

infrastructure projects," Applied Soft Computing, vol. 110, pp. 107587, 2021, doi:

https://doi.org/10.1016/j.asoc.2021.107587.

[65] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei and S.-H. Deng, "Hyperparameter

Optimization for Machine Learning Models Based on Bayesian Optimization," Journal of

Electronic Science and Technology, vol. 17, no. 1, pp. 26-40, 2019, doi:

https://doi.org/10.11989/JEST.1674-862X.80904120.

[66] T. Head, G. Louppe, H. Nahrstaedt, I. Shcherbatyi and M. Kumar, "Scikit-Optimize,"

Available: https://github.com/scikit-optimize

[67] StataCorp, Stata: Time-Series Reference Manual Release 17 (Statistical Software). TX:

StataCorp LLC: College Station, 2021.

[68] L. Di Gaspero, A. Rendl and T. Urli, "A Hybrid ACO+CP for Balancing Bicycle Sharing

Systems," in Hybrid Metaheuristics, Berlin, Heidelberg, 2013, pp. 198-212: Springer

Berlin Heidelberg.

[69] M. Dorigo, M. Birattari and T. Stutzle, "Ant colony optimization," IEEE Computational

Intelligence Magazine, vol. 1, no. 4, pp. 28-39, 2006, doi:

https://doi.org/10.1109/MCI.2006.329691.

[70] Guofei, Agrover, Ilikega, Zidong, Zhangxiao and e. al., "Scikit-opt," Available:

https://github.com/guofei9987/scikit-opt

[71] W. E. Hart, J.-P. Watson and D. L. Woodruff, "Pyomo: modeling and solving mathematical

programs in Python," Mathematical Programming Computation, vol. 3, no. 3, pp. 219,

2011, doi: https://doi.org/10.1007/s12532-011-0026-8.

[72] M. Hua, X. Chen, J. Chen and Y. Jiang, "Minimizing fleet size and improving vehicle

allocation of shared mobility under future uncertainty: A case study of bike sharing,"

Journal of Cleaner Production, vol. 370, pp. 133434, 2022, doi:

https://doi.org/10.1016/j.jclepro.2022.133434.

https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00153
https://doi.org/10.1177/03611981211016859
https://doi.org/10.1007/s40864-022-00183-w
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.asoc.2021.107587
https://doi.org/10.11989/JEST.1674-862X.80904120
https://github.com/scikit-optimize
https://doi.org/10.1109/MCI.2006.329691
https://github.com/guofei9987/scikit-opt
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1016/j.jclepro.2022.133434

145

CHAPTER 6

6. CONCLUSION AND RECOMMENDATIONS
6.1 Conclusion

Shared e-scooter is a new dockless sharing micromobility, expanding across the globe for

its exciting riding experience (ease of riding and parking), time- and cost-effectiveness for

short-range trips (dealing with first- and last-mile problems), and environmentally friendly.

However, this shared transportation mode faces many challenges in short-term operational

planning, such as high demand volatility, intensive maintenance, short-service life, emission

from rebalancing, and relevant regulations. Therefore, this study aims to explore historical

ridership data to improve the short-term management planning for this shared micromobility.

To achieve this objective, this study is divided into three main parts: supply planning design,

hyperparameter optimization, and rebalancing planning. The research findings and

recommendations from these three parts are summarized as follows.

6.1.1 Findings and recommendations from short-term supply planning

Several findings and recommendations can be drawn from the numerical results of short-

term supply planning design, such as:

➢ Box Cox transformation can improve the demand prediction accuracy, specifically MAE,

and remove the heteroscedasticity.

➢ Box Cox transformation is suitable for supply planning at a low service level (or lower

confidence bound), while a ceiling value for supply level is necessary for a higher service

level, especially when 𝜆 < 0 and 𝜆 → 0.

➢ Box Cox transformation can deal with outliers or data with insufficient explanatory

variables.

➢ Hyperparameter optimization is necessary for machine learning and deep learning models,

otherwise it might have worse performance than statistical regression models (ex.,

SARIMAX).

➢ The residuals of machine learning and deep learning models are not white noise but

heteroscedastic or conditional variance.

➢ Even deep learning models can have higher demand prediction accuracy, their supply level

models might be worse than SARIMAX if their residuals are not properly examined. In

other words, the demand uncertainty can be minimized by combining demand prediction

and variance analysis.

➢ Daily variance can be an efficient variance model for supply level estimation, but it is not

flexible for long-term trends, especially seasonal or annual trends.

➢ SGARCH is more temporally flexible than daily variance and is suitable for supply level

estimation at a high service level (or upper confidence bound).

➢ Mean Oversupply metric can be used to evaluate the efficiency of supply-level estimation

models, while previous studies used two or more metrics.

➢ Based on three real-world datasets, accounting for heteroscedasticity in supply planning

can reduce the oversupply by 26.22% at 95% served demand.

146

6.1.2 Findings and recommendations from hyperparameter optimization

Several findings and recommendations can be drawn from the empirical results of

hyperparameter optimization, such as:

➢ Compared with sequential-based algorithms (ex., TPE and BO), Iterative Decision Tree

(IDT) has several advantages such as ease of parallel computation, no acquisition model,

less intensive training of the surrogate model, better avoiding local optimal solutions, and

support for multiple objectives.

➢ Compared with population-based algorithms (ex., GA), IDT has several advantages, such

as keeping historical evaluated points, avoiding training repetitive candidates, providing

feature importance, and faster convergence.

➢ IDT-R performs better than IDT-E, which is unsuitable for optimizing problems with more

than three parameters.

➢ TPE easily falls into local optimal points, so it is not suitable for optimization problems

with multiple locally optimal solutions like optimization of nonconvex functions and HPO

of machine learning models. However, TPE performs well in optimizing the

hyperparameters of deep learning models.

➢ IDT-R has stable performance across optimization problems in searching for a near-global

optimal solution. Moreover, IDT-R has comparable performance with TPE for HPO of deep

learning models while outperforming it and other baseline algorithms in searching optimal

solutions for nonconvex functions and HPO of machine learning models.

➢ Random Forest (RF) can predict multiple output problems (ex., predict spatial demands),

but its performance reduces for a greater number of spatial demands, especially in

comparison with GRUs. Moreover, it requires more extended training than GRUs if the

number of data and outputs increases.

6.1.3 Findings and recommendations from rebalancing planning

The lesson learned from the two sections above was used to construct an efficient

framework for rebalancing shared e-scooters. In addition, from the numerical results evaluated

using ridership data in Minneapolis MN, we achieved several more findings and

recommendations as follows:

➢ As many external factors influence shared e-scooter ridership, the arrival and departure

trips do not follow the typical Poisson distribution, which is the most important assumption

for Markov Chain used for operational planning in previous studies (especially shared

bikes).

➢ Sample Average Approach (SAA) based on Monte Carlo method can be employed to

generate the demand uncertainty, which can be minimized through demand prediction by

robust machine or deep learning models and the estimation of variance and distribution by

SGARCH.

➢ Integer Linear Programming (ILP) solver “GLPK” is suitable for solving small-size

rebalancing optimization problems (ex., 15- and 30-cluster problems), but hybrid Ant

Colony Algorithm with ILP (ACO-ILP) is more suitable for large-size problems (ex., 60-

cluster problems).

147

➢ Besides the number of scenarios, the distribution and variance of the trip gaps also

contribute to the complexity of the optimization problem, which prevents the ILP solver

from reaching a feasible solution.

➢ A greater number of demand clusters requires longer computational time and increase the

demand uncertainty and driving distance of rebalancing vehicle.

➢ From the most practical case (60-cluster problems), the proposed framework (SAA with

predicted trip gaps and variances) reduces the operational burden by around 16.68% and

13.27% compared to historical daily and weekly demands.

➢ The proposed rebalancing planning is suitable for periodic rebalancing or distribution, so

it can be integrated with other strategies such as (1) real-time rebalancing to respond to the

instant demand spikes and (2) customer incentivizing to minimize the rebalancing

operation.

➢ From the emission viewpoint, there should be unified rebalancing planning among

operators or proper separation of e-scooter deployment zones (ex., minimize inter-zonal

trips).

6.2 Recommendations for future study

There are a couple of directions for future studies such as:

➢ SGARCH model is strongly susceptible to significant prediction errors, so future studies

may employ or adopt other variance prediction models that can deal with this limitation.

➢ Including the conditional variance in demand prediction models is also a promising

technique for future works as it possibly improves the prediction accuracy and promptly

provides the expected demand and variance.

➢ The performance of the proposed algorithm (IDT-R) can be compared in future works

under the constraint of computational time, especially in the case of parallelization and

multiple objectives.

➢ IDT-R can achieve higher efficiency if we combine it with the multi-fidelity approach, as

it could reduce the training time of some poor performance configurations of deep learning.

➢ IDT-R gives one additional piece of information, feature importance. Further research may

focus on applying this metric, ex., narrowing the search space.

➢ Another direction of the future study related to IDT-R is examining it on varied and

conditional search spaces.

➢ In terms of rebalancing planning, future studies could focus on dynamic rebalancing,

including rebalancing planning a few steps ahead or in real-time.

➢ Moreover, for more practical applications, future research could implement parallel

computing to reduce the computational time of the rebalancing optimization.

➢ Future studies could also focus on sensitivity analysis of the unit costs of the rebalancing

penalty terms (e.g., unmet demand) to assess its impact on operational costs, service level,

or driving distance.

➢ Future studies may consider the constraints of driving distance in the operational planning

optimization as discussed in Section 5.5.6, specifically the remedy recommendations such

as using multiple small vehicles, allowing the rebalancing vehicle to skip some nodes, and

removing the rebalanced clusters.

148

Appendix: Python Code

Import All Necessary Libraries

import pandas as pd

import numpy as np

import os

import xgboost as xgb

import tensorflow as tf

from keras.models import Sequential

from keras.layers import LSTM, Dense, Dropout, SimpleRNN, GRU, Flatten, LSTM

import sklearn

from sklearn.cluster import KMeans

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import PowerTransformer, MinMaxScaler

from sklearn.metrics import mean_absolute_error, mean_squared_error

from keras.callbacks import EarlyStopping, ModelCheckpoint

from sklearn.ensemble import RandomForestRegressor

from sklearn import datasets, svm, metrics

import skopt

from skopt import gp_minimize, forest_minimize

from skopt.space import Integer, Real, Categorical

import optuna

from sklearn import tree

from geneticalgorithm import geneticalgorithm as ga

from pyomo.environ import *

from pyomo.gdp import *

from pyomo.dae import *

import pyomo.environ as pyEnv

from sko.ACA import ACA_TSP # Ant Colony Algorithm

Data Transformation

sc = MinMaxScaler(feature_range=(0,1)) # Normalization to range of 0-1

data_norm = sc.fit_transform(data)

pt = PowerTransformer(standardize=False) # Box Cox transformation

data_bc = sc.fit_transform(data)

MaxDemand = np.array(data[Regions_].max())

Input Selection

def datasplit_(features, targets, lookback, sampling_rate, split_fraction):

 train_split = int(split_fraction*len(features))

 # Target split

 train_target = targets[lookback:train_split]

 test_target = targets[train_split:]

 # Feature preparation

 inputs_ = []

 for i in range(lookback, len(features)):

 candidate_ = features[i-lookback:i]

 inputs_.append(candidate_[np.arange(0,lookback,sampling_rate),:].ravel())

 train_input = inputs_[0:train_split-lookback]

 test_input = inputs_[train_split-lookback:]

 return train_input, test_input, train_target, test_target

Objective Function for Random Forest

def Objective_(params_):

 # Test and Train Split

 x_train, x_test, y_train, y_test = datasplit_(np.array(Variables), np.array(Trips),int(params_[0]),int(params_[1]),0.7018)

 x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test)

 # Training and Evaliation Split

 X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128)

 # Model Construction

 regr_rf = RandomForestRegressor(n_estimators=params_[2], max_depth=params_[3], random_state=128)

 regr_rf.fit(X_training, y_training)

 mse_train_ = np.round_(mean_squared_error(np.array(regr_rf.predict(X_training))*MaxDemand,

 np.array(y_training)*MaxDemand), decimals=6)

 mse_eval_ = np.round_(mean_squared_error(np.array(regr_rf.predict(X_validation))*MaxDemand,

 np.array(y_validation)*MaxDemand), decimals=6)

 mse_test_ = np.round_(mean_squared_error(np.array(regr_rf.predict(x_test))*MaxDemand,

 np.array(y_test)*MaxDemand), decimals=6)

 print(mse_train_, mse_eval_, mse_test_)

 return mse_eval_+mse_eval_/mse_train_

149

Grid Search

x0_ = np.arange(10+20, 170, 40)

x1_ = np.arange(1+3, 24, 6)

x2_ = np.arange(10+50, 400, 100)

x3_ = np.arange(1+1, 10, 2)

x0_, x1_, x2_, x3_ = np.meshgrid(x0_, x1_, x2_, x3_)

x0_, x1_, x2_, x3_ = np.ravel(x0_), np.ravel(x1_), np.ravel(x2_), np.ravel(x3_)

gridspace = np.vstack((x0_, x1_, x2_, x3_)).T

result = []

for i in range(len(gridspace)):

 print('Interation:', i+1)

 result.append(Objective_(gridspace[i]))

Random Search

x0_, x1_, x2_, x3_, result = [], [], [], [], []

for i in range(200):

 x0 = np.random.randint(10, 171)

 x1 = np.random.randint(1, 25)

 x2 = np.random.randint(10, 401)

 x3 = np.random.randint(1, 11)

 x0_.append(x0)

 x1_.append(x1)

 x2_.append(x2)

 x3_.append(x3)

 print('Interation:', i+1, [x0, x1, x2, x3])

 result.append(Objective_([x0, x1, x2, x3]))

Bayesian Optimization GP-LCB and RF-LCB

SPACE = [Integer(10, 170, name='x0_'),

 Integer(1, 24, name='x1_'),

 Integer(10, 400, name='x2_'),

 Integer(1, 10, name='x3_')]

res = gp_minimize(Objective_, SPACE,

 acq_func="LCB", n_calls=200,

 kappa= np.random.default_rng().uniform(1.0, 2.0),

 n_random_starts= np.random.randint(50, 150),

 random_state=1042578)

res = forest_minimize(Objective_, SPACE,

 acq_func="LCB", n_calls=200,

 kappa= np.random.default_rng().uniform(1.0, 2.0),

 n_random_starts= np.random.randint(50, 150),

 base_estimator='RF', random_state=1294571)

Tree-Structured Parzen Estimator

def Objective_(trial):

 # Variables Declaration

 x0_ = trial.suggest_int('x0_', 10, 170)

 x1_ = trial.suggest_int('x1_', 1, 24)

 x2_ = trial.suggest_int('x2_', 10, 400)

 x3_ = trial.suggest_int('x3_', 1, 10)

 # Test and Train Split

 x_train, x_test, y_train, y_test = datasplit_(np.array(Variables), np.array(Trips), x0_, x1_, 1.0)

 x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test)

 # Training and Evaliation Split

 X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128)

 # Model Construction

 regr_rf = RandomForestRegressor(n_estimators=x2_, max_depth=x3_, random_state=128)

 regr_rf.fit(X_training, y_training.ravel())

 mse_train_ = np.round_(mean_squared_error(regr_rf.predict(X_training)*115, 115*y_training), decimals=6) # 115 is max demand

 mse_eval_ = np.round_(mean_squared_error(regr_rf.predict(X_validation)*115, 115*y_validation), decimals=6) # 115 is max demand

 print(mse_train_)

 return mse_eval_+mse_eval_/mse_train_

study = optuna.create_study(direction="minimize",

 pruner=optuna.samplers.TPESampler(n_startup_trials=np.random.randint(50, 150),

 n_ei_candidates=np.random.randint(20, 50),

 multivariate=True, group=True, seed=1541278))

study.optimize(Objective_, n_trials=200)

150

Genetic Algorithm

np.random.seed(5672849)

varbound = np.array([[10, 170], [1, 24], [10, 400], [1, 10]])

vartype = np.array([['int'], ['int'], ['int'], ['int']])

population_ = np.random.randint(10, 30)

mutation_ = np.random.uniform(0.01, 0.5)

elit_ = np.random.uniform(0.0, 0.1)

crossover_ = np.random.uniform(0.2, 0.7)

parents_ = np.random.uniform(0.1, 0.5)

print('population_ %5.1f.' % population_,'mutation_ %5.4f.' % mutation_,'elit_ %5.4f.' % elit_,

 'crossover_ %5.4f.' % crossover_,'parents_ %5.4f.' % parents_)

algorithm_param = {'max_num_iteration': 16, # Change to make it at least 200 Trials

 'population_size': population_ ,

 'mutation_probability': mutation_,

 'elit_ratio': elit_,

 'crossover_probability': crossover_,

 'parents_portion': parents_,

 'crossover_type':'uniform',

 'max_iteration_without_improv':None}

model=ga(function=Objective_,dimension=4, variable_type_mixed=vartype,

 algorithm_parameters=algorithm_param,variable_boundaries=varbound,

 function_timeout = 30000)

model.run()

Objective Function for GRUs

def Objective_(params_): # Train with Categorical Variables

 # Test and Train Split

 x_train, x_test, y_train, y_test = datasplit_(np.array(Variables),np.array(Trips),int(params_[0]),int(params_[1]),0.7018)

 x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test)

 # Training and Evaliation Split

 X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128)

 # Model Construction

 model = keras.Sequential()

 model.add(layers.GRU(units=int(params_[2]), input_shape=(np.shape(X_training)[1], np.shape(X_training)[2]),

 activation= params_[3], kernel_initializer='glorot_uniform',return_sequences=True))

 model.add(layers.Dropout(rate = float(params_[4])))

 model.add(layers.GRU(units=int(params_[5]), activation= params_[6],

 kernel_initializer='glorot_uniform', return_sequences=False))

 model.add(layers.Dropout(rate = float(params_[7])))

 model.add(layers.Dense(units=30, activation='relu'))

 callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

 model.compile(optimizer=optimizers.Adam(learning_rate=float(params_[8])), loss='mse')

 history = model.fit(X_training, y_training, epochs=100, callbacks=[callback], verbose=0,

 validation_data=(X_validation, y_validation), batch_size=int(params_[9]))

 #print(np.round_(np.min(history.history["loss"]),decimals=6), np.round_(np.min(history.history["val_loss"]),decimals=6))

 mse_train_ = np.round_(mean_squared_error(np.array(model.predict(X_training))*MaxDemand,

 np.array(y_training)*MaxDemand), decimals=6)

 mse_eval_ = np.round_(mean_squared_error(np.array(model.predict(X_validation))*MaxDemand,

 np.array(y_validation)*MaxDemand), decimals=6)

 mse_test_ = np.round_(mean_squared_error(np.array(model.predict(x_test))*MaxDemand,

 np.array(y_test)*MaxDemand), decimals=6)

 print(mse_train_, mse_eval_, mse_test_, mse_eval_+mse_eval_/mse_train_)

 return mse_eval_+mse_eval_/mse_train_

Grid Search

x0_ = np.arange(10+26, 171, 52)

x1_ = 1

x2_ = np.arange(10+83, 513, 166)

x3_ = ['relu', 'tanh']

x4_ = 0.1

x5_ = np.arange(10+83, 513, 166)

x6_ = 'relu'

x7_ = 0.05

x8_ = np.arange(0.0001+0.0025, 0.0101, 0.005)

x9_ = np.arange(32+120, 513, 240)

x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_ = np.meshgrid(x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_)

x0_, x1_, x2_, x3_, x4_, = np.ravel(x0_), np.ravel(x1_), np.ravel(x2_), np.ravel(x3_), np.ravel(x4_)

x5_, x6_, x7_, x8_, x9_, = np.ravel(x5_), np.ravel(x6_), np.ravel(x7_), np.ravel(x8_), np.ravel(x9_)

gridspace = np.vstack((x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_)).T

result = []

151

for i in range(len(gridspace)):

 print('Interation:', i+1)

 result.append(Objective_(gridspace[i]))

Random Search

x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_, result = [], [], [], [], [], [], [], [], [], [], []

for i in range(200):

 x0 = np.random.randint(10, 171)

 x1 = np.random.randint(1, 25)

 x2 = np.random.randint(10, 513)

 x3 = np.random.choice(['relu', 'sigmoid', 'tanh'])

 x4 = np.random.choice(np.arange(0.0, 0.801, 0.001))

 x5 = np.random.randint(10, 513)

 x6 = np.random.choice(['relu', 'sigmoid', 'tanh'])

 x7 = np.random.choice(np.arange(0.0, 0.801, 0.001))

 x8 = np.random.choice(np.arange(0.0001, 0.0101, 0.0001))

 x9 = np.random.randint(8, 257)

 x0_.append(x0)

 x1_.append(x1)

 x2_.append(x2)

 x3_.append(x3)

 x4_.append(x4)

 x5_.append(x5)

 x6_.append(x6)

 x7_.append(x7)

 x8_.append(x8)

 x9_.append(x9)

 print('Interation:', i+1, [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9])

 result.append(Objective_([x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]))

Bayesian Optimization GP-LCB and RF-LCB

SPACE = [Integer(10, 170, name='x0_'),

 Integer(1, 24, name='x1_'),

 Integer(10, 512, name='x2_'),

 Categorical(['relu', 'sigmoid', 'tanh'], name='x3_'),

 Real(0.0, 0.8, name='x4_'),

 Integer(10, 512, name='x5_'),

 Categorical(['relu', 'sigmoid', 'tanh'], name='x6_'),

 Real(0.0, 0.8, name='x7_'),

 Real(0.0001, 0.01, name='x8_'),

 Integer(32, 512, name='x9_')]

res = gp_minimize(Objective_, SPACE,

 acq_func="LCB", n_calls=200,

 kappa= np.random.default_rng().uniform(1.0, 2.0),

 n_random_starts= np.random.randint(50, 150),

 random_state=3632457)

res = forest_minimize(Objective_, SPACE,

 acq_func="LCB", n_calls=200,

 kappa= np.random.default_rng().uniform(1.0, 2.0),

 n_random_starts= np.random.randint(50, 150),

 base_estimator='RF', random_state=3612458)

Tree-Structured Parzen Estimator

def Objective_(trial):

 # Variables Declaration

 x0_ = trial.suggest_int('x0_', 10, 170)

 x1_ = trial.suggest_int('x1_', 1, 24)

 x2_ = trial.suggest_int('x2_', 10, 512)

 x3_ = trial.suggest_categorical('x3_', ['relu', 'sigmoid', 'tanh'])

 x4_ = trial.suggest_uniform('x4_', 0.0, 0.8)

 x5_ = trial.suggest_int('x5_', 10, 512)

 x6_ = trial.suggest_categorical('x6_', ['relu', 'sigmoid', 'tanh'])

 x7_ = trial.suggest_uniform('x7_', 0.0, 0.8)

 x8_ = trial.suggest_uniform('x8_', 0.0001, 0.01)

 x9_ = trial.suggest_int('x9_', 32, 512)

 # Test and Train Split

 x_train, x_test, y_train, y_test = datasplit_(np.array(Variables), np.array(Trips), x0_, x1_, 0.7018)

 x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test)

 # Training and Evaliation Split

 X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128)

 # Model Construction

152

 model = keras.Sequential()

 model.add(layers.GRU(units= x2_, input_shape=(np.shape(X_training)[1], np.shape(X_training)[2]),

 activation= x3_, kernel_initializer='glorot_uniform',return_sequences=True))

 model.add(layers.Dropout(rate = x4_))

 model.add(layers.GRU(units= x5_, activation= x6_,

 kernel_initializer='glorot_uniform', return_sequences=False))

 model.add(layers.Dropout(rate = x7_))

 model.add(layers.Dense(units=30, activation='relu'))

 callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

 model.compile(optimizer=optimizers.Adam(learning_rate= x8_), loss='mse')

 history = model.fit(X_training, y_training, epochs=100, callbacks=[callback], verbose=0,

 validation_data=(X_validation, y_validation), batch_size=x9_)

 mse_train_ = np.round_(mean_squared_error(np.array(model.predict(X_training))*MaxDemand,

 np.array(y_training)*MaxDemand), decimals=6)

 mse_eval_ = np.round_(mean_squared_error(np.array(model.predict(X_validation))*MaxDemand,

 np.array(y_validation)*MaxDemand), decimals=6)

 mse_test_ = np.round_(mean_squared_error(np.array(model.predict(x_test))*MaxDemand,

 np.array(y_test)*MaxDemand), decimals=6)

 print(mse_train_, mse_eval_, mse_test_, mse_eval_+mse_eval_/mse_train_)

 return mse_eval_+mse_eval_/mse_train_

study = optuna.create_study(direction="minimize",

 pruner=optuna.samplers.TPESampler(n_startup_trials=np.random.randint(50, 150),

 n_ei_candidates=np.random.randint(20, 50),

 multivariate=True, group=True, seed=3612895))

study.optimize(Objective_, n_trials=200)

Genetic Algorithm

np.random.seed(1687493)

varbound = np.array([[10, 170], [1, 24], [10, 512], [0, 2], [0.0, 0.8],

 [10, 512], [0, 2], [0.0, 0.8], [0.0001, 0.01], [32, 512]])

vartype = np.array([['int'], ['int'], ['int'], ['int'], ['real'],

 ['int'], ['int'], ['real'], ['real'], ['int']])

population_ = np.random.randint(10, 30)

mutation_ = np.random.uniform(0.01, 0.5)

elit_ = np.random.uniform(0.0, 0.1)

crossover_ = np.random.uniform(0.2, 0.7)

parents_ = np.random.uniform(0.1, 0.5)

print('population_ %5.1f.' % population_,'mutation_ %5.4f.' % mutation_,'elit_ %5.4f.' % elit_,

 'crossover_ %5.4f.' % crossover_,'parents_ %5.4f.' % parents_)

algorithm_param = {'max_num_iteration': 21, # Change to make it at least 200 Trials

 'population_size': population_ ,

 'mutation_probability': mutation_,

 'elit_ratio': elit_,

 'crossover_probability': crossover_,

 'parents_portion': parents_,

 'crossover_type':'uniform',

 'max_iteration_without_improv':None}

model=ga(function=Objective_,

 dimension=10, variable_type_mixed=vartype,

 algorithm_parameters=algorithm_param,

 variable_boundaries=varbound,

 function_timeout = 30000)

model.run()

Optimization of Eggholder Function

def Eggholder_(x):

 return -(x[1]+47)*np.sin(np.sqrt(abs(0.5*x[0]+x[1]+47)))-x[0]*np.sin(np.sqrt(abs(x[0]-x[1]-47)))

Grid Search

x_ = np.arange(-486.4,512, 51.2)

y_ = np.arange(-486.4,512, 51.2)

x_, y_ = np.meshgrid(x_, y_)

x_, y_ = np.ravel(x_), np.ravel(y_)

gridspace = np.vstack((x_, y_,)).T

result = []

for i in range(len(gridspace)):

 result.append(Eggholder_(gridspace[i]))

153

Random Search

x_, y_,result = [], [], []

for i in range(400):

 x1_ = np.random.default_rng().uniform(-512.,512.)

 y1_ = np.random.default_rng().uniform(-512.,512.)

 x_.append(x1_)

 y_.append(y1_)

 result.append(Eggholder_([x1_ ,y1_]))

Bayesian Optimization

SPACE = [Real(-512., 512., name='x_'), Real(-512., 512., name='y_')]

res = gp_minimize(Eggholder_, SPACE,

 acq_func="LCB", n_calls=400,

 kappa= np.random.default_rng().uniform(0.0, 2.0),

 n_random_starts= np.random.randint(100, 300),

 random_state=666)

res = forest_minimize(Eggholder_, SPACE,

 acq_func="LCB", n_calls=400,

 kappa= np.random.default_rng().uniform(0.0, 2.0),

 n_random_starts= np.random.randint(100, 300),

 base_estimator='RF', random_state=10306524)

Genetic Algorithm

def Eggholder_(x):

 return -(x[1]+47)*np.sin(np.sqrt(abs(0.5*x[0]+x[1]+47)))-x[0]*np.sin(np.sqrt(abs(x[0]-x[1]-47)))

np.random.seed(1030216)

varbound=np.array([[-512, 512]]*2)

population_ = np.random.randint(5, 20)

mutation_ = np.random.uniform(0.01, 0.5)

elit_ = np.random.uniform(0.0, 0.1)

crossover_ = np.random.uniform(0.2, 0.7)

parents_ = np.random.uniform(0.1, 0.5)

print('population_ %5.1f.' % population_,

 'mutation_ %5.4f.' % mutation_,

 'elit_ %5.4f.' % elit_,

 'crossover_ %5.4f.' % crossover_,

 'parents_ %5.4f.' % parents_)

algorithm_param = {'max_num_iteration': 32, # Change to make it at least 400 Trials

 'population_size': population_ ,

 'mutation_probability': mutation_,

 'elit_ratio': elit_,

 'crossover_probability': crossover_,

 'parents_portion': parents_,

 'crossover_type':'uniform',

 'max_iteration_without_improv':None}

model=ga(function=Eggholder_,

 dimension=2,variable_type='real',

 algorithm_parameters=algorithm_param,

 variable_boundaries=varbound)

model.run()

SVM for Digit Data Classification

digits = datasets.load_digits()

n_samples = len(digits.images)

data = digits.images.reshape((n_samples, -1))

data = data/16.0 # Normalization

Split data into 50% train and 50% test subsets

X_train, X_test, y_train, y_test = train_test_split(

 data, digits.target, test_size=0.5, shuffle=False, random_state=1024)

def svm_digits(x):

 clf = svm.SVC(C= x[0], gamma=x[1], decision_function_shape='ovo')

 clf.fit(X_train, y_train)

 return -np.round_(metrics.accuracy_score(clf.predict(X_test), y_test)*100, decimals=4)

Grid Search

x_ = np.arange(0.001+0.36, 10, 0.71)

y_ = np.arange(0.001+0.036, 1, 0.071)

x_, y_ = np.meshgrid(x_, y_)

x_, y_ = np.ravel(x_), np.ravel(y_)

154

gridspace = np.vstack((x_, y_,)).T

result = []

for i in range(len(gridspace)):

 result.append(svm_digits(gridspace[i]))

Random Search

x_, y_, result = [], [], []

for i in range(200):

 x1_ = np.random.default_rng().uniform(0.001, 10.)

 y1_ = np.random.default_rng().uniform(0.001, 1.)

 x_.append(x1_)

 y_.append(y1_)

 result.append(svm_digits([x1_ , y1_]))

Bayesian Optimization GP-LCB and RF-LCB

SPACE = [Real(0.001, 10., name='x_'), Real(0.001, 1., name='y_')]

res = gp_minimize(svm_digits, SPACE,

 acq_func="LCB", n_calls=200,

 kappa= np.random.default_rng().uniform(0.0, 2.0),

 n_random_starts= np.random.randint(50, 150))

res = forest_minimize(svm_digits, SPACE,

 acq_func="LCB", n_calls=200,

 kappa= np.random.default_rng().uniform(0.0, 2.0),

 n_random_starts= np.random.randint(50, 150), base_estimator='RF')

Tree-Structured Parzen Estimator

def svm_digits(trial):

 x = trial.suggest_uniform('x', 0.001, 10.)

 y = trial.suggest_uniform('y', 0.001, 1.)

 clf = svm.SVC(C= x, gamma=y, decision_function_shape='ovo')

 clf.fit(X_train, y_train)

 return np.round_(metrics.accuracy_score(clf.predict(X_test), y_test)*100, decimals=4)

study = optuna.create_study(direction="maximize",

 pruner=optuna.samplers.TPESampler(n_startup_trials=np.random.randint(50, 150),

 n_ei_candidates=np.random.randint(20, 50),

 multivariate=True, group=True))

study.optimize(svm_digits, n_trials=200)

Genetic Algorithm

varbound = np.array([[0.001, 10.], [0.001, 1.]])

population_ = np.random.randint(5, 30)

mutation_ = np.random.uniform(0.01, 0.5)

elit_ = np.random.uniform(0.0, 0.1)

crossover_ = np.random.uniform(0.2, 0.7)

parents_ = np.random.uniform(0.1, 0.5)

print('population_ %5.1f.' % population_,'mutation_ %5.4f.' % mutation_,'elit_ %5.4f.' % elit_,

 'crossover_ %5.4f.' % crossover_,'parents_ %5.4f.' % parents_)

algorithm_param = {'max_num_iteration': 24, # Change to make it at least 200 Trials

 'population_size': population_ ,

 'mutation_probability': mutation_,

 'elit_ratio': elit_,

 'crossover_probability': crossover_,

 'parents_portion': parents_,

 'crossover_type':'uniform',

 'max_iteration_without_improv':None}

model=ga(function=svm_digits,

 dimension=2,variable_type='real',

 algorithm_parameters=algorithm_param,

 variable_boundaries=varbound)

model.run()

IDT-E

def initial_random(param1, param2, Numberinit_):

 y1_ = np.random.choice(np.ravel(param1), size=Numberinit_)

 y2_ = np.random.choice(np.ravel(param2), size=Numberinit_)

 initial_random = np.vstack((y1_, y2_)).T

 return initial_random

def decision_tree(var_list, num_initials, num_top_tree, max_iteration):

 var_names_ = list(var_list.keys());

 length_ = [len(list(var_list.items())[0][1]), len(list(var_list.items())[1][1])]

155

 param_initial = initial_random(list(var_list.items())[0][1], list(var_list.items())[1][1], num_initials)

 param_list = param_initial.copy();

 objective_list = [];

 for i in range(len(param_initial)):

 objective_list.append(svm_digits(param_initial[i]))

 for j in range(len(param_initial), 1000): # Total Number of Iteration

 result_ = pd.DataFrame(param_list, columns=var_names_)

 result_['Output_'] = objective_list

 result_ = result_.sort_values(by=['Output_'], ascending=True)

 tree_ = tree.DecisionTreeRegressor()

 tree_ = tree_.fit(np.array(result_[var_names_]), np.array(result_[['Output_']]))

 for k in range(num_top_tree): # Total Number of Top Tree to explore

 top_tree_k = result_[k:k+1]

 update_param = np.zeros((2, len(length_)))

 for l in range(len(length_)): # Optimize variable (l) One by One

 vars_l = np.zeros((length_[l], len(length_)))

 vars_l[:,0] = np.array(top_tree_k)[:,0]

 vars_l[:,1] = np.array(top_tree_k)[:,1]

 vars_l[:,l] = list(var_list.items())[l][1]

 result_var_l = pd.DataFrame(vars_l, columns=var_names_)

 result_var_l['tree_k'] = np.round_(tree_.predict(np.array(result_var_l)), decimals=5)

 vars_l_new = result_var_l[result_var_l['tree_k']==float(np.array(top_tree_k)[:,2])]

 update_param[:,l] = [np.array(vars_l_new)[:,l].min(), np.array(vars_l_new)[:,l].max()]

 leaf_0 = np.array(update_param)[:,0]

 leaf_1 = np.array(update_param)[:,1]

 leaf_0, leaf_1 = np.meshgrid(leaf_0, leaf_1)

 leaf_0, leaf_1 = np.ravel(leaf_0), np.ravel(leaf_1)

 update_paramnew = np.vstack((leaf_0, leaf_1)).T

 new_array = [tuple(row) for row in update_paramnew] # Remove redundant row

 update_paramnew = np.unique(new_array, axis=0)

 repeat_param = [];

 for m in range(len(update_paramnew)): # Remove the Repeated Candidate

 for n in range(len(param_list)):

 if np.array_equal(param_list[n], update_paramnew[m]) == True:

 repeat_param.append(m)

 candi_param = np.delete(update_paramnew, repeat_param, 0)

 if len(candi_param) == 0: break

 param_list = np.vstack([param_list, candi_param])

 for o in range(len(candi_param)):

 objective_list.append(svm_digits(candi_param[o]))

 if len(objective_list) > max_iteration : break

 if len(objective_list) > max_iteration : break

 return param_list, objective_list

np.random.seed(1036487);

var_list = {'x_0': np.arange(0.001, 10.001, 0.001),

 'x_1': np.arange(0.001, 1.001, 0.001)}

num_initials = np.random.randint(50, 150); # Number of Initials

num_top_tree = np.random.randint(2, 6); # Number of Top Tree to be minimized

max_iteration = 200;

X_, Y_ = decision_tree(var_list, num_initials, num_top_tree, max_iteration)

IDT-R

def initial_random(param0, param1, Numberinit_):

 b0_ = np.random.choice(np.ravel(param0), size=Numberinit_)

 b1_ = np.random.choice(np.ravel(param1), size=Numberinit_)

 initial_random = np.vstack((b0_, b1_)).T

 return initial_random

def decision_tree(var_list, num_initials, num_top_tree, random_in_tree, max_iteration):

 var_names_ = list(var_list.keys());

 length_ = [len(list(var_list.items())[0][1]), len(list(var_list.items())[1][1])]

 param_initial = initial_random(list(var_list.items())[0][1], list(var_list.items())[1][1], num_initials)

156

 param_list = param_initial.copy();

 objective_list = [];

 for i in range(len(param_initial)):

 objective_list.append(svm_digits(param_initial[i]))

 for j in range(len(param_initial), 1000): # Total Number of Iteration

 result_ = pd.DataFrame(param_list, columns=var_names_)

 result_['Output_'] = objective_list

 result_ = result_.sort_values(by=['Output_'], ascending=True)

 tree_ = tree.DecisionTreeRegressor()

 tree_ = tree_.fit(np.array(result_[var_names_]), np.array(result_[['Output_']]))

 for k in range(num_top_tree): # Total Number of Top Tree to explore

 top_tree_k = result_[k:k+1]

 update_param = np.zeros((random_in_tree, len(length_)))

 for l in range(len(length_)): # Optimize variable (l) One by One

 vars_l = np.zeros((length_[l], len(length_)))

 vars_l[:,0] = np.array(top_tree_k)[:,0]

 vars_l[:,1] = np.array(top_tree_k)[:,1]

 vars_l[:,l] = list(var_list.items())[l][1]

 result_var_l = pd.DataFrame(vars_l, columns=var_names_)

 result_var_l['tree_k'] = np.round_(tree_.predict(np.array(result_var_l)), decimals=4)

 vars_l_new = result_var_l[result_var_l['tree_k']==float(np.array(top_tree_k)[:,2])]

 update_param[:,l] = np.random.choice(np.ravel(vars_l_new[var_names_[l]]), size=random_in_tree)

 new_array = [tuple(row) for row in update_param] # Remove redundant row

 update_param = np.unique(new_array, axis=0)

 repeat_param = [];

 for m in range(len(update_param)): # Remove the Repeated Candidate

 for n in range(len(param_list)):

 if np.array_equal(param_list[n], update_param[m]) == True:

 repeat_param.append(m)

 candi_param = np.delete(update_param, repeat_param, 0)

 if len(candi_param) == 0: break

 param_list = np.vstack([param_list, candi_param])

 for o in range(len(candi_param)):

 objective_list.append(svm_digits(candi_param[o]))

 if len(objective_list) > max_iteration : break

 if len(objective_list) > max_iteration : break

 return param_list, objective_list

np.random.seed(7943158);

var_list = {'x_0': np.arange(0.001, 10.001, 0.001),

 'x_1': np.arange(0.001, 1.001, 0.001)}

num_initials = np.random.randint(50, 150); # Number of Initials

num_top_tree = np.random.randint(2, 5); # Number of Top Tree to be minimized

random_in_tree = np.random.randint(1, 3); # Number of Random Pickup from Optimal Tree

max_iteration = 200;

X_, Y_ = decision_tree(var_list, num_initials, num_top_tree, random_in_tree, max_iteration)

Rebalancing Optimization

cost_km = 1; # Transportation Cost per km

p_remainFE = 5; # Penalty cost of each remaining Faulty E-scooter

p_remainLBE = 3; # Penalty cost of each remaining Low Battery E-scooter

p_Unmet = 2; # Penalty cost of Unmet Demand

p_Excess = 1; # Penalty cost of Exessive Number of E-Scooter

v_capacity = 35; # Capacity of Vehicles

Sampling Approach

def sampling_tg(pred_tg, pred_std,first_zeros,num_scen):

 Trip_Gap = np.zeros((num_scen,first_zeros))

 for i in range(len(pred_tg)): # Generate for 10 Nodes

 sampling_i = np.random.normal(0, 1, num_scen)

 sampling_i[sampling_i > 2] = 2 # Set bound of Resampling to be within 2 to -2

 sampling_i[sampling_i < -2] = -2

 scenario_tg = pred_tg[i] + pred_std[i]*sampling_i

 scenario_tg = scenario_tg.round(0).reshape(-1,1)

 Trip_Gap = np.hstack((Trip_Gap, scenario_tg))

 Trip_Gap = np.array(Trip_Gap).astype(int)

 return Trip_Gap

157

Baseline as Daily and Weekly Historical Trip Gaps

def seasonal_ha(targ_date, all_df, first_zeros, seasonal):

 all_df_ = all_df.copy()

 sha_ = []

 sha_ = all_df_.drop(all_df_[all_df_.new_date >= targ_date].index)

 sha_ = np.array(sha_)

 sha_ = sha_[np.arange(len(sha_)%seasonal,len(sha_),seasonal), 1:]

 return np.hstack((np.zeros((len(sha_), first_zeros)), sha_)).astype(int)

Rebalancing Optimziation by ILP

while ii_i < 30:

 i_i = to_runs[ii_i] # List of Random Instance

 print('#######################')

 print(' Result of Group', i_i)

 ### Actual Data ###

 #Trip_Gap = np.array([list(Actual_trip[i_i])])

 ### TripGap Sampling ##

 np.random.seed(123)

 Trip_Gap = sampling_tg(predict_tg[i_i], predict_std[i_i], 3, 100)

 ### Trip Gas as Seasonal HA ## 24:Daily and 168:Weekly

 #np.random.seed(123)

 #Trip_Gap = seasonal_ha(my_date[i_i], b_b, 10, 24)

 n = len(dist_matrix)

 n_sce = len(Trip_Gap)

 # Boundary Construction

 Bound_FE,Bound_PLBE,Bound_DLBE,Bound_UE = [],[],[],[]

 for k in range(n):

 Bound_FE.append([0, Faulty_E[k]])

 Bound_PLBE.append([0, max(LowBat_E[k] - Num_Dock[k], 0)])

 Bound_DLBE.append([0, max(Num_Dock[k] - LowBat_E[k], 0)])

 Bound_UE.append([0, max(0, Usable_E[k] - Min_E[k])])

 # MILP Model

 model = pyEnv.ConcreteModel()

 model.node_ = pyEnv.RangeSet(0, n-1)

 model.node_1 = pyEnv.RangeSet(1, n-1)

 model.stoch = pyEnv.RangeSet(0, n_sce-1)

 # Decision Variables

 model.x = pyEnv.Var(model.node_, model.node_, within = pyEnv.Binary)

 model.u = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, n-1))

 model.pfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_FE) # Pickup FE

 model.vfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity)) # FE on Vehicle

 model.plbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_PLBE) # Pickup LBE

 model.dlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_DLBE) # DropOff LBE

 model.rlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_PLBE) # Remaining LBE

 model.vlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity)) # LBE on Vehicle

 model.pue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_UE) # Pickup UE

 model.due = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity)) # DropOff FE

 model.vue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity)) # UE on Vehicle

 model.ud = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers) # Unmet Demand

 model.ee = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers) # Excessive E-scooter

 # Objective Function

 def obj_func(model):

 sum_distance = 0

 remain_fe = 0

 remain_lbe = 0

 unmet_demand = 0

 excess_ = 0

 pickup_cost = 0

 for i in range(n):

 remain_fe = remain_fe + Faulty_E[i] - model.pfe[i]

 remain_lbe = remain_lbe + model.rlbe[i]

 pickup_cost = pickup_cost+ 0.1*(model.pfe[i]+model.plbe[i]+model.pue[i])

 for j in range(n):

 sum_distance = sum_distance + model.x[i,j] * dist_matrix[i,j]

 for k in range(n_sce):

 unmet_demand = unmet_demand + model.ud[i,k]

 excess_ = excess_ + model.ee[i,k]

 return sum_distance*cost_km +pickup_cost+ remain_fe*p_remainFE + remain_lbe*p_remainLBE + (1/n_sce)*(unmet_demand*p_Unmet

+ excess_*p_Excess)

 model.objective = pyEnv.Objective(rule = obj_func, sense = pyEnv.minimize)

158

 # Constraint of Node Leave and Arrive

 model.constNode = pyEnv.ConstraintList()

 for i in range(n):

 model.constNode.add(sum(model.x[j, i] for j in model.node_) == 1)

 model.constNode.add(sum(model.x[i, j] for j in model.node_) == 1)

 # Constraints Subtour Elimination

 model.constSub = pyEnv.ConstraintList()

 model.constSub.add(model.u[0] == 0)

 for i in range(1, n):

 for j in range(1, n):

 if i != j:

 model.constSub.add(model.u[i] - model.u[j] + model.x[i,j]*n <= n-1)

 else :

 model.constSub.add(model.u[i] - model.u[j] == 0)

 # Constraints Loading and Unloading FE

 model.constFE = pyEnv.ConstraintList()

 model.constFE.add(model.vfe[0] == 0)

 for i in range(n):

 for j in range(1, n):

 model.constFE.add(model.vfe[j] - model.vfe[i] - model.pfe[j] + 1000000*(1-model.x[i,j]) >= 0)

 for i in range(n):

 for j in range(n):

 model.constFE.add(model.vfe[i] - model.vfe[j] + model.pfe[j] + 1000000*(1-model.x[i,j]) >= 0)

 # Constraints Loading and Unloading LBE

 model.constLBE = pyEnv.ConstraintList()

 model.constLBE.add(model.vlbe[0] == 0)

 for i in range(n):

 for j in range(1, n):

 model.constLBE.add(model.vlbe[j] - model.vlbe[i] - model.plbe[j] + model.dlbe[j] + 1000000*(1-model.x[i,j]) >= 0)

 for i in range(n):

 for j in range(n):

 model.constLBE.add(model.vlbe[i] - model.vlbe[j] + model.plbe[j] - model.dlbe[j] + 1000000*(1-model.x[i,j]) >= 0)

 # Constraints Loading and Unloading UE

 model.constUE = pyEnv.ConstraintList()

 model.constUE.add(model.vue[0] == model.pue[0])

 for i in range(n):

 for j in range(1, n):

 model.constUE.add(model.vue[j] - model.vue[i] - model.pue[j] + model.due[j] + 1000000*(1-model.x[i,j]) >= 0)

 for i in range(n):

 for j in range(n):

 model.constUE.add(model.vue[i] - model.vue[j] + model.pue[j] - model.due[j] + 1000000*(1-model.x[i,j]) >= 0)

 # Constraints Remain LBE, Unmet Demand and Excessive

 model.constUDEE = pyEnv.ConstraintList()

 model.constUDEE.add(model.rlbe[0] == 0)

 for k in range(n_sce):

 model.constUDEE.add(model.ud[0,k] == 0)

 model.constUDEE.add(model.ee[0,k] == 0)

 for i in range(1, n):

 model.constUDEE.add(max(LowBat_E[i] - Num_Dock[i], 0) - model.plbe[i] - model.rlbe[i] == 0)

 for k in range(n_sce):

 model.constUDEE.add(Min_E[i]-Usable_E[i]+model.pue[i]-model.due[i]+max(0, Trip_Gap[k,i])-model.ud[i,k] <= 0)

 model.constUDEE.add(Faulty_E[i]-model.pfe[i]+model.rlbe[i]+Usable_E[i]-model.pue[i]+model.due[i]-Trip_Gap[k,i]-Max_E[i]-

model.ee[i,k] <= 0)

 # Constraints Vehicle Capacity

 model.constVall = pyEnv.ConstraintList()

 for i in range(1, n):

 model.constVall.add(model.vfe[i] + model.vlbe[i] + model.vue[i] <= v_capacity)

 # Model Sovler

 solver = pyEnv.SolverFactory("glpk") # glpk

 result = solver.solve(model,timelimit= 1200) # timelimit (15 nodes = 1200, 30 nodes = 2400, 60 nodes = 3600)

 try:

 print("Objective Value: ", pyEnv.value(model.objective))

 print("U-i: ", np.array(list(model.u.get_values().items()))[:,1].astype(int))

 print("Routing Result X-ij: ")

 #print(np.array(list(model.x.get_values().items()), dtype=object)[:,1].reshape(n,n).astype(int))

 print("PFE-i: ", np.array(list(model.pfe.get_values().items()))[:,1].astype(int))

 print("PLBE-i: ", np.array(list(model.plbe.get_values().items()))[:,1].astype(int))

 print("DLBE-i: ", np.array(list(model.dlbe.get_values().items()))[:,1].astype(int))

 print("PUE-i: ", np.array(list(model.pue.get_values().items()))[:,1].astype(int))

 print("DUE-i: ", np.array(list(model.due.get_values().items()))[:,1].astype(int))

159

 rout_seq = np.array(list(model.x.get_values().items()), dtype=object)[:,1].reshape(n,n).astype(int)

 x_seq = []

 for seq_ in range(len(rout_seq)):

 x_seq.append([seq_,np.argmax(rout_seq[seq_])])

 print(x_seq)

 except ValueError:

 print("No result Found! Please try again ...")

 ii_i += 1

Rebalancing Optimziation by ACO-ILP

def route_length(x):

 r_r = np.append(np.array(x), [0])

 sum_distance_ = 0

 for i in range(1, len(r_r)):

 sum_distance_ = sum_distance_+ dist_matrix[r_r[i-1],r_r[i]]

 return np.round_(sum_distance_*cost_km, decimals=3)

def get_penalty_cost(x):

 r = np.array(x).astype(int)

 n = len(dist_matrix)

 n_sce = len(Trip_Gap)

 # Model Constrution

 model = pyEnv.ConcreteModel()

 model.node_ = pyEnv.RangeSet(0, n-1)

 model.stoch = pyEnv.RangeSet(0, n_sce-1)

 # Decision Variables

 model.pfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # Pickup FE

 model.vfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # FE on Vehicle

 model.plbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # Pickup LBE

 model.dlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # DropOff LBE

 model.rlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # Remaining LBE

 model.vlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # LBE on Vehicle

 model.pue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # Pickup UE

 model.due = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # DropOff FE

 model.vue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # UE on Vehicle

 model.ud = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers) # Unmet Demand

 model.ee = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers) # Excessive E-scooter

 # Objective Function

 def obj_func(model):

 remain_fe = 0

 remain_lbe = 0

 unmet_demand = 0

 excess_ = 0

 pickup_cost = 0

 for i in range(n):

 remain_fe = remain_fe + Faulty_E[r[i]] - model.pfe[r[i]]

 remain_lbe = remain_lbe + model.rlbe[r[i]]

 pickup_cost = pickup_cost+ 0.1*(model.pfe[r[i]]+model.plbe[r[i]]+model.pue[r[i]])

 for k in range(n_sce):

 unmet_demand = unmet_demand + model.ud[r[i],k]

 excess_ = excess_ + model.ee[r[i],k]

 return pickup_cost+ remain_fe*p_remainFE + remain_lbe*p_remainLBE + (1/n_sce)*(unmet_demand*p_Unmet + excess_*p_Excess)

 model.objective = pyEnv.Objective(rule = obj_func, sense = pyEnv.minimize)

 # Constraints Loading and Unloading FE

 model.const = pyEnv.ConstraintList()

 model.const.add(model.pfe[0] == 0)

 model.const.add(model.vfe[0] == 0)

 model.const.add(model.plbe[0] == 0)

 model.const.add(model.dlbe[0] == 0)

 model.const.add(model.vlbe[0] == 0)

 model.const.add(model.rlbe[0] == 0)

 model.const.add(model.due[0] == 0)

 model.const.add(model.pue[0] <= Usable_E[0])

 model.const.add(model.pue[0] == model.vue[0])

 model.const.add(model.vue[0] <= v_capacity)

 for i in range(n_sce):

 model.const.add(model.ud[0, i] == 0)

 model.const.add(model.ee[0, i] == 0)

 for k in range(1,n):

 model.const.add(model.vfe[r[k]] == model.pfe[r[k]] + model.vfe[r[k-1]])

 model.const.add(model.pfe[r[k]] <= Faulty_E[r[k]])

160

 model.const.add(model.vlbe[r[k]] == model.plbe[r[k]] - model.dlbe[r[k]] + model.vlbe[r[k-1]])

 model.const.add(max(LowBat_E[r[k]] - Num_Dock[r[k]], 0) >= model.plbe[r[k]])

 #model.const.add(model.dlbe[r[k]] <= model.vlbe[r[k-1]])

 model.const.add(model.dlbe[r[k]] <= max(Num_Dock[r[k]] - LowBat_E[r[k]], 0))

 model.const.add(model.rlbe[r[k]] == max(LowBat_E[r[k]] - Num_Dock[r[k]], 0) - model.plbe[r[k]])

 model.const.add(model.vue[r[k]] == model.vue[r[k-1]] + model.pue[r[k]] - model.due[r[k]])

 model.const.add(model.pue[r[k]] <= max(Usable_E[r[k]] - Min_E[r[k]], 0))

 #model.const.add(model.due[r[k]] <= model.vue[r[k-1]])

 model.const.add(model.vfe[r[k]] + model.vlbe[r[k]] + model.vue[r[k]]<= v_capacity)

 for j in range(n_sce):

 model.const.add(Min_E[r[k]]-Usable_E[r[k]]+model.pue[r[k]]-model.due[r[k]]+max(0, Trip_Gap[j, r[k]])-model.ud[r[k], j] <= 0)

 model.const.add(Usable_E[r[k]]-model.pue[r[k]]+model.due[r[k]]-Trip_Gap[j, r[k]]-Max_E[r[k]]-model.ee[r[k], j] <= 0)

 solver = pyEnv.SolverFactory("glpk")

 solver.solve(model, timelimit= 300) # timelimit (15 nodes = 1200, 30 nodes = 2400, 60 nodes = 3600) tee = True,

 #print("PFE-i: ", np.array(list(model.pfe.get_values().items()))[:,1].astype(int))

 #print("PLBE-i: ", np.array(list(model.plbe.get_values().items()))[:,1].astype(int))

 #print("DLBE-i: ", np.array(list(model.dlbe.get_values().items()))[:,1].astype(int))

 #print("PUE-i: ", np.array(list(model.pue.get_values().items()))[:,1].astype(int))

 #print("DUE-i: ", np.array(list(model.due.get_values().items()))[:,1].astype(int))

 #print(np.array(list(model.ud.get_values().items()), dtype=object)[:,1].reshape(n,n_sce).astype(int))

 #service_level = np.array(list(model.ud.get_values().items()), dtype=object)[:,1].reshape(-1,1).astype(int)

 #print(len(service_level), len(service_level[service_level>0]))

 return np.round_(pyEnv.value(model.objective), decimals=5)

Combine Driving Distance Cost and Penalty Cost for ACO

def Routing_(x):

 x = np.array(x).astype(int)

 total_cost = route_length(x) + float(get_penalty_cost(x))

 #print(np.round_(total_cost, decimals=3))

 return np.round_(total_cost, decimals=3)

for i_i in range(0, 30):
 np.random.seed(123)

 print('#######################')

 print(' Result of Group', i_i)

 ### Actual Data ###

 #Trip_Gap = np.array([list(Actual_trip[i_i])])

 ### TripGap Sampling ##
 Trip_Gap = sampling_tg(predict_tg[i_i], predict_std[i_i], 5, 100)

 ### Trip Gas as Seasonal HA ## 24:Daily and 168:Weekly
 #Trip_Gap = seasonal_ha(my_date[i_i], b_b, 5, 168)

 aca = ACA_TSP(Routing_, n_dim=35, size_pop=90, max_iter=20, distance_matrix=dist_matrix)

 best_x, best_y = aca.run()
 print(' best_x:', best_x, '\n', 'best_y:', best_y)

 print(np.min(aca.generation_best_Y))

161

BIOGRAPHY

Name: Narith Saum

Date of Birth: October 05, 1992

Education: 2015: Bachelor of Engineering (Civil Engineering) Institute

of Technology of Cambodia.

 2017: Master of Engineering (Transportation Engineering)

Chulalongkorn University.

International Journal

Saum, N., Sugiura, S., & Piantanakulchai, M. (2022). Hyperparameter Optimization Using

Iterative Decision Tree (IDT), IEEE Access, vol. 10, pp. 106812-106827,

https://doi.org/10.1109/ACCESS.2022.3212387.

International Conference

Saum, N., Sugiura, S., & Piantanakulchai, M. (2020). Short-Term Demand and Volatility

Prediction of Shared Micro-Mobility: a case study of e-scooter in Thammasat University.

Proceedings of Forum on Integrated and Sustainable Transportation Systems (FORUM

ISTS 2020), November 3-5, 2020, Delft, The Netherlands.

https://doi.org/10.1109/FISTS46898.2020.9264852.

Saum, N., & Piantanakulchai, M. (2019). A Review on an Emerging New Mode of Transport:

The Shared Dockless Electric Scooter. Proceedings of 13th International Conference of

Eastern Asia Society for Transportation Studies (EASTS 2019), September 9-12, 2019,

Colombo, Sri Lanka.

Saum, N., & Rudjanakanoknad, J. (2017). How to Make Safer Commuting of Garment and

Footwear Workers in Phnom Penh based on Stakeholders’ Opinions. Proceedings of 12th

International Conference of Eastern Asia Society for Transportation Studies (EASTS 2017),

September 18-21, 2017, Ho Chi Minh City, Vietnam.

https://doi.org/10.1109/ACCESS.2022.3212387
https://doi.org/10.1109/FISTS46898.2020.9264852

