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ABSTRACT  

 

Shared mobility has proliferated in global cities as an innovative transportation mode 

enhancing urban mobility and as a potential solution to address first- and last-mile problems. 

Recently, a new emerging shared transportation, dockless electric scooters (e-scooters), has 

gained popularity worldwide for their specific advantages, including environmentally friendly, 

time and cost-saving mode, congestion, parking constraint, and satisfied riding experience. 

Besides these advantages, this shared mode has several disadvantages, including volatile 

demand, excessive or starving stations, short service life, costly maintenance, battery 

recharging, and distribution regulations. As a new transportation mode, there are limited studies 

about shared e-scooters, especially related to daily operations. Therefore, this study aims to 

develop an efficient framework for better managing this dockless shared service by taking 

advantage of open-source historical ridership data, machine learning, and deep learning 

methods. This study thus is separated into three main sections as follows.  

From the literature review, shared e-scooters are mainly used for recreational or tourism 

activities, which differs from shared bikes. These trip purposes with dockless policy led to high 

demand volatility while requiring a higher service level. To deal with the heteroscedasticity 

(i.e., non-constant variation) of the demand, both demand and variance prediction models are 

developed using deep learning (Recurrent Neural Networks) and Autoregressive Conditional 

Heteroskedasticity (ARCH), respectively. Moreover, Box Cox transformation was also 

employed to remove the heteroscedasticity. Based on numerical results from three real-world 

datasets (Austin TX, Minneapolis MN, and Thammasat TH), machine learning and deep 

learning achieved higher prediction accuracy than conventional regression models, SARIMAX. 

Box Cox transformation can improve the prediction accuracy, especially MAE by around 

5.36%, while the supply planning with this transformation is very efficient for lower service 

levels. Nevertheless, the application of this transformation technique in supply planning for 

higher service levels exhibits decreased efficiency due to its exponential conversion 

characteristic, thereby revealing a weakness of Box Cox transformation. In this case, the supply 

planning model with original data and predicted variance by SGARCH achieves lower 

oversupply. At 95% served demand, accounting for heteroscedasticity in supply planning could 

reduce the oversupply by 26.22%. 

Even machine learning and deep learning models can outperform conventional statistical 

models; their performance strongly depends on the choice of hyperparameters, while 

optimizing these hyperparameters is usually computationally expensive. To deal with this 

problem (i.e., Hyperparameter Optimization or HPO), this study proposed a novel algorithm, 

Iterative Decision Tree (IDT), which employs a Decision Tree regressor based on the 

Classification and Regression Tree (CART) algorithm as the surrogate function. Our algorithm 

suggests several new candidates per iteration as random or extreme points from a few best-

performed leaves. This characteristic allows IDT to be trained in parallel, which solves the main 

disadvantage of previous sequential model-based algorithms (ex., Bayesian Optimization). To 

evaluate the performance of IDT, it was employed to optimize several benchmark problems, 

including nonconvex functions and HPO of machine learning and deep learning models. As a 

result, IDT showed very effective performance for both computational time and objective value 

compared to benchmark algorithms.   
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Based on the above results, a new framework for short-term rebalancing planning was 

proposed for the unique characteristic of shared e-scooters, including volatile and 

heteroscedastic demand, recharging the battery, and faulty e-scooters. Monte Carlo simulation 

based on the predicted trip gaps and standard deviations was employed to generate the 

stochastic demand scenarios. The framework was examined based on e-scooter data from 

Minneapolis MN, while k-means clustering algorithm was employed to aggregate the trip 

generation and attraction for the total clusters of 15, 30, and 60. For this data-driven stochastic 

optimization problem, two separated formulations were constructed and solved by the Integer 

Linear Programming (ILP) and the Hybrid of Ant Colony Optimization with ILP (ACO-ILP). 

Under limited computational time, ILP solver is efficient for solving small-size problems (15 

and 30-cluster problems), but the Hybrid approach is more efficient for large-size problems (60-

cluster problems). Based on the numerical result of the most practical case (60-cluster 

problems), our data-driven framework for rebalancing planning for shared e-scooters could 

reduce the expected objective value by around 13.27% and 16.68% compared to historical 

weekly and daily data. 

In summary, dockless shared e-scooters require proper operational planning to minimize 

their negative impacts, so that this shared mode can become a potential solution for compacted 

urban mobility. This objective can be achieved through the proposed data-driven framework, 

which integrates machine learning and optimization techniques to minimize the demand 

uncertainty and driving distance for the rebalancing vehicle. For instance, start-of-art prediction 

models with hyperparameter optimization can effectively handle the volatile demand of shared 

e-scooters, while rebalancing optimization planning can be addressed through the exact 

approach (ILP solver) or the heuristic algorithm (ACO-ILP).  

 

Keywords: Autoregressive Conditional Heteroskedasticity, Deep Learning, Demand 

Uncertainty, Heuristic Optimization Algorithm, Hybrid Optimization Algorithm, 

Hyperparameter Optimization, Integer Linear Programming, Machine Learning, Shared 

Electric Scooters, and Shared Service Rebalancing. 
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CHAPTER 1 

1. INTRODUCTION 
1.1 Overview  

Interest in active and shared service transportation is growing as a result of urban 

congestion, technological advancement, and environmental concerns. Due to this, shared 

mobility has become increasingly popular in big cities worldwide as a cutting-edge mode of 

transportation that improves urban mobility and as a potential remedy for the issue of first- and 

last-mile connectivity with public transport [1]. Bike sharing, vehicle sharing, ride-sourcing, 

and, more recently, shared electric (e-) scooters are all examples of sharing service modes [2]. 

While fixed routes, driver availability, and vehicle scheduling frequently provide restrictions 

on public transportation, shared micromobility (bike, e-bike, and e-scooter) is a time- and 

money-efficient feeder. Bridging the existing transportation network gap can also expand the 

public transit service area. The idea of sharing services for transportation originates in economic 

models that date back to the 1990s and are based on peer-to-peer sharing or cooperative 

consumption of resources. The factors facilitating this sharing service among strangers include 

online social network platforms, online payment, and global positioning systems (GPS) enabled 

mobile technology.  
In Santa Monica, California, shared dockless e-scooters were first deployed in September 

2017 after Bird Rides Inc., a micromobility firm, scattered thousands of e-scooters throughout 

the city. Because of their affordability, comfort, and ease of use, these scooters quickly gained 

popularity among users [3]. The term “micromobility” refers to a short-range trip that is too far 

to walk and too short to drive, especially the first-/last-mile problems. A year later, this unicorn 

operator could reach 10 million rides with more than 2 million unique riders and operated in 

more than 100 cities. In 2018, the total number of dockless e-scooter trips in the US was 38.5 

million, while those of station-based and dockless bikes were 36.5 million and 9 million, 

respectively [4]. And shared scooter ridership doubled (86 million trips) in 2019 [5]. By May 

2019, more than 65 dockless e-scooter operators were providing services in more than 150 cities 

and 40 universities in more than 35 countries worldwide. The general steps for using shared e-

scooters are as follows: download a phone application and online registration, log in to find the 

nearby devices, scan the QR code to unlock the scooter, enjoy your trip by e-scooter, park the 

scooter at the appropriate parking place, scan QR code to finish the trip and online payment 

(see Figure 1.1). The trip fare is calculated as an unlock fee of 1 USD plus 0.15 USD/minute. 

 

 
Figure 1.1 General step of using shared dockless e-scooter 
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Most people (70%) viewed electric scooters positively, including expanding transportation 

options, a car-free lifestyle, convenience for short trips, complementing public transit, 

convenience for female users, and increasing vehicle equitability specifically for the low-

income community [6, 7]. Several aspects of trip satisfaction of dockless e-scooter were 

evaluated, such as trip satisfaction (88%), satisfaction with scooter availability (85%), ease of 

sign-up (85%), ease of parking (82%), cost satisfaction (81%), fun to ride (75%), and positive 

impact on the environment (66%) [8]. Moreover, the trip purposes of dockless e-scooter are 

joyriding (34%), running errands (23%), commuting (19%), visiting someone (13%), and work 

break/lunch (9%). Since the trip fare of shared e-scooters is relatively higher than shared bikes, 

people do not use e-scooter for commuting but for other leisure or tourism activities. Based on 

MOVO scooter, the e-scooter is powered by Lithium-Ion batteries, so it produces CO2 only 4.6g 

per person per kilometer compared to 190g and 120g for automobiles and motorcycles, 

respectively. 

On the other hand, there were also some negative impacts of shared dockless e-scooters, 

such as accidents, conflict with the pedestrian, littering on the sidewalk or public/private spaces, 

vandalism, thief, battery explosion, frame defect, and ineffective distribution leading to the 

crowded or starved area. However, stricter regulation and more effective training measures 

could improve some of these problems, accidents, and pedestrian conflicts. And new technology 

and design could reduce the risk of battery explosion and frame defects. Another important 

issue of shared e-scooters is the emission from operations, including distribution, rebalancing, 

and charging collection [9]. Three common strategies for recharging e-scooters are paying 

freelance chargers (e-scooter juicers), battery swapping, and collecting low-battery e-scooters 

to nearby charging stations. Some operators pay freelance chargers to collect, charge and 

redistribute the low-battery e-scooters, but this strategy struggles with ineffective collection 

methods (too many chargers, longer collection distance, polluted collecting vehicles) and 

explosion accidents (due to unqualified facilities and inexperienced chargers). The battery 

swapping seems to be a good choice, but replacing each scooter takes a long time, challenging 

to combine with rebalancing routing. The last strategy is more common in practice as the 

operators collect the low-battery e-scooters to charge at nearby stations before redistribution 

again.  

Unlike other transportation modes, shared e-scooters are preferable only for short-length 

trips, less than 3km, unless they will not be cost and time effective anymore. Moreover, the 

demand is highly volatile due to the nature of trip duration and the primary trip purposes, leisure 

and tourism activities. As a dockless mode, the spatiotemporal patterns are difficult to predict 

and cluster. This leads to the problem of high operational costs and complicated rebalancing 

with many criteria, including excessive or shortage, low battery, and defective e-scooters. 

Precise demand prediction and effective rebalancing are necessary to stay competitive among 

operators and reduce the negative impacts of this environmentally friendly mode. To address 

the operational challenges associated with shared dockless e-scooters, we examined various 

robust prediction models and employed them to forecast the spatiotemporal demand and supply 

level of these shared e-scooters. Chapter 2 and Chapter 3 of this study reviewed numerous 

machine learning and deep learning models proposed or utilized to predict challenging time 

series problems, such as the stock market, electricity demand, traffic demand, etc. It is important 

to note that deep learning is a subset of machine learning. However, these terms are commonly 
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(as well as in this study) utilized to refer to different groups of prediction models. For instance, 

deep learning encompasses prediction models with artificial neurons, such as ANNs, AE, 

CNNs, GNNs, RNNs, and others. On the other hand, machine learning models typically refer 

to different prediction algorithms, such as DT, K-Nearest Neighbors (KNN), RF, SVM, 

XGBoost, etc. In general, deep learning exhibits high configurational adaptability owing to its 

architecture, consisting of multiple layers, with each layer comprising a varying number of 

nodes or computational mechanisms aimed at extracting relevant features from the data. 

Consequently, deep learning often outperforms machine learning models in several aspects due 

to its inherent capacity to automatically learn hierarchical representations from data. These 

advantages include superior feature extraction, the ability to handle high-dimensional and 

complex data, capture non-linear correlations, support end-to-end learning, and demonstrate 

scalability. Furthermore, we reviewed and utilized several optimization algorithms to address 

the rebalancing challenges in e-scooter sharing, aiming to reduce operational costs, unsatisfied 

demands, and emissions associated with the rebalancing process. 

 

1.2 Research gaps 

This study aims to improve the short-term operational planning for shared e-scooters, 

which have several challenging characteristics such as trip characteristics (short-range trips), 

trip purposes, physical characteristics (short-service life and recharging the battery), 

regulations, and emissions from rebalancing and distribution. The general characteristics of 

shared e-scooters are reviewed in Chapter 2, which covers the history of e-scooter evolution, 

the adoption of e-scooters in sharing services, social perception towards this shared 

micromobility, impacts on urban mobility, accidents, policy regulations, environmental life 

cycle assessments, and operational planning. Understanding these characteristics enables 

effective management of the operational planning of shared e-scooters, minimizing negative 

impacts and maximizing positive ones. Furthermore, subsequent chapters examine operational 

planning approaches in similar shared services, including demand prediction models, 

rebalancing optimization planning, and optimization algorithms. Then several research gaps 

were discovered as follows:  

• Many robust prediction models have been proposed to forecast transportation demand, 

specifically for shared bikes and e-scooters. However, most of these models have primarily 

focused on accuracy performance, neglecting the presence of heteroscedasticity (or non-

constant variation) in transportation demand. As a result, the valuable information in 

historical data has not been effectively utilized. This research gap has raised two key 

questions: "Which approaches can be employed to address the issue of heteroscedasticity in 

shared e-scooter demand?" and "How can accounting for heteroscedasticity benefit 

operational planning?"  

• The optimization of hyperparameters highly influences the performance of machine learning 

and deep learning models. Sequential-based algorithms, such as Bayesian Optimization 

(BO) and Tree of Parzen Estimators (TPE), are well-suited for expensive problems like 

hyperparameter optimization (HPO) of deep learning models. However, their 

implementation in parallel computing can be challenging. On the other hand, population-

based algorithms are suitable for inexpensive problems. They can be trained in parallel but 
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cannot retain the historical evaluation points and only communicate within the current 

population. Therefore, there is a need for algorithms that bridge the gap between these two 

approaches, the sequential-based and population-based approaches. These algorithms should 

be well-suited for optimizing problems that fall into neither cheap nor expensive categories, 

such as HPO problems. 

• Although machine learning and deep learning models can achieve state-of-the-art prediction 

performance, the distribution or rebalancing based solely on these predicted demand values 

often leads to a service level of only 50%. Conversely, some prior studies have addressed 

demand uncertainty by assuming that the demand follows specific distributions, such as the 

Poisson distribution. Consequently, there is a need for rebalancing frameworks designed 

explicitly for shared e-scooters that effectively minimize and account for the demand 

uncertainty. 

 

1.3 Research objectives 

Based on the above operational challenges for shared dockless e-scooters and the research 

gaps, this thesis aims to review their general background and to improve the operational 

management of this new transportation mode using historical ridership data and other related 

information. Therefore, the objectives of this study could be summarized as follows:  

• Review the general characteristics of dockless e-scooter, including the history of the scooter, 

history of shared dockless e-scooter, regulations, environmental impact, and impacts on 

urban mobility.  

• Propose and evaluate the framework for supply planning for shared e-scooters based on 

forecasted spatiotemporal demand and variance using deep learning and autoregressive 

conditional heteroscedasticity, respectively.  

• Propose and evaluate a new hyperparameter tuning algorithm, Iterative Decision Tree (IDT), 

which is suitable for hyperparameter optimization of machine learning and deep learning 

models.  

• Propose and evaluate the data-driven framework for short-term (ex., a few hours) 

rebalancing planning for shared e-scooters with new mathematical formulations combining 

three important characteristics of this sharing service: demand uncertainty, low battery, and 

faulty e-scooters. 

 

1.4 Main contributions 

The findings from this research, in response to the aforementioned research gaps and 

objectives, contribute to practical and academic implications. Firstly, this study 

comprehensively reviews shared e-scooters, including their development history, adoption in 

shared services, social perception, trip characteristics, accidents, policy regulations, 

environmental life cycle assessments, and operational planning challenges. These insightful 

perspectives enable decision-makers, regulators, and operators to formulate appropriate 

strategic policies to minimize negative impacts and maximize positive impacts. 

Secondly, this study proposes several approaches to address heteroscedasticity in 

transportation demand, particularly in shared e-scooter demand. By employing machine 

learning models for demand prediction and utilizing data transformation techniques such as 
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Box Cox and variance prediction using ARCH, efficient estimation for supply planning at low 

and high service levels is achieved. The effectiveness of these approaches was evaluated using 

three different real-world datasets based on the proposed oversupply metric.  

Thirdly, the proposed algorithms, IDT, demonstrate their effectiveness in searching for 

near-global optimal solutions within limited computational time. In practical applications, IDT 

reduces training time compared to sequential-based algorithms by parallel training. Moreover, 

the historically evaluated points are still utilized to update its surrogate function, decision tree 

regression, ensuring no loss of information like population-based algorithms.  

Lastly, the optimization of static rebalancing planning was conducted on stochastic demand 

generated through Monte Carlo simulation with predicted demand and variance. To enhance 

practicality, this rebalancing optimization problem can be solved using either an exact algorithm 

(ILP GLPK solver) or a hybrid algorithm (ILP-ACO), depending on computational time 

constraints. Based on numerical results, our approach effectively reduces demand uncertainty 

through demand and variance prediction, resulting in shorter driving distances for the 

rebalancing vehicle and lower operational costs compared to baseline approaches that rely on 

historical daily or weekly data. The proposed framework is applicable and customizable for 

specific practical cases, ex., preferred service level and adjustable safety stock.  

Some parts of this thesis were already published in international conferences, while others 

were (and will be) published in international journals. Those international conferences and 

journals are as follows:  

• Saum, N., & Piantanakulchai, M. (2019). A Review on an Emerging New Mode of Transport: 

The Shared Dockless Electric Scooter. In Proceedings of 13th International Conference of 

Eastern Asia Society for Transportation Studies (EASTS 2019), 9-12 September 2019, 

Colombo, Sri Lanka.  

• Saum, N., Sugiura, S., & Piantanakulchai, M. (2020). Short-Term Demand and Volatility 

Prediction of Shared Micro-Mobility: a case study of e-scooter in Thammasat University. In 

Proceedings of Forum on Integrated and Sustainable Transportation Systems (FORUM ISTS 

2020), 3-5 November 2020, Delft, The Netherlands.  

https://doi.org/10.1109/FISTS46898.2020.9264852.  

• Saum, N., Sugiura, S., & Piantanakulchai, M. (2022). Hyperparameter Optimization Using 

Iterative Decision Tree (IDT), IEEE Access, vol. 10, pp. 106812-106827,  

https://doi.org/10.1109/ACCESS.2022.3212387.  

• Saum, N., Piantanakulchai, M., & Sugiura, S., “Supply Level Planning for Shared E-

Scooters Considering Spatiotemporal Heteroscedastic Demand”, Transportation Research 

Interdisciplinary Perspectives. (Under Review).  

• Saum, N., Sugiura, S., & Piantanakulchai, M., “Optimizing Shared E-Scooter Operations 

under Demand Uncertainty: A Framework integrating Machine Learning and Optimization 

Techniques”, IEEE Access. (Under Review).  

 

1.5 Thesis outline  

To accomplish the research objectives outlined above, the thesis was divided into four main 

chapters, with an additional chapter dedicated to summarizing all findings, recommendations, 

and suggestions for future studies. Figure 1.2 illustrates the interconnection between these four 

https://doi:10.1109/FISTS46898.2020.9264852
https://doi:10.1109/FISTS46898.2020.9264852
https://doi:10.1109/ACCESS.2022.3212387
https://doi:10.1109/ACCESS.2022.3212387
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main chapters of the thesis. Chapter 2 delves into the history and previous studies of shared 

dockless e-scooters, highlighting several significant research gaps, operational challenges, and 

relevant characteristics in the short-term operational planning of shared e-scooters. One 

research gap identified in Chapter 2 pertains to supply level estimation, particularly for 

heteroscedastic datasets. Chapter 3 builds upon this by extensively reviewing demand and 

variation prediction models and exploring various approaches to determine the most efficient 

supply level estimation models. Our investigation into demand prediction models in Chapter 

3 revealed that the choice of hyperparameters significantly influences the performance of 

machine learning and deep learning models. Consequently, in Chapter 4, we expanded our 

literature review on hyperparameter optimization (HPO) algorithms and proposed two novel 

algorithms, IDT-E and IDT-R. The insights gleaned from Chapters 2, 3, and 4 were then 

applied to enhance the efficiency of rebalancing planning for shared dockless e-scooters in 

Chapter 5. The details in each chapter of this thesis are summarized in short as follows:  

• Chapter 1: provides a general overview of the research, including the emergence of shared 

dockless e-scooter, its related operational problems, research gaps, research objectives, 

research contributions, and thesis organization.  

• Chapter 2: provides a comprehensive review of the history and previous studies related to 

shared dockless e-scooters. This review chapter is structured into eight sections, including 

the history of electric scooters, the introduction of dockless shared e-scooters, social 

perception of shared e-scooters, trip characteristics and their impacts on urban mobility, 

accidents, policy regulations, environmental life cycle assessments, and short-term 

operational planning.  

• Chapter 3: presents a detailed description of the proposed framework for designing short-

term supply planning for shared e-scooters. The chapter begins with a general introduction 

and proceeds with a literature review of different approaches employed in supply planning 

management, such as demand prediction models, variance prediction models, and data 

transformation techniques. Subsequently, the supply planning framework and relevant 

formulations are developed. The effectiveness of this framework is evaluated using three 

different real-world datasets of shared e-scooter operating in Austin TX, Minneapolis MN, 

and Thammasat University TH. Finally, the discussions and conclusions are made based on 

the numerical results.  

• Chapter 4: offers a general background on hyperparameter optimization problems and 

provides a comprehensive review of various techniques used to optimize hyperparameters. 

The hyperparameter optimization for recurrent neural network architectures (i.e., RNNs, 

LSTM NNs, and GRUs) is also present in this chapter. Additionally, we introduce the 

proposed algorithm, Iterative Decision Tree (IDT), and present numerical results comparing 

IDT to several baseline hyperparameter optimization (HPO) algorithms, namely Grid Search 

(GS), Random Search (RS), Tree-structured Parzen Estimator (TPE), Genetic Algorithm 

(GA), Bayesian Optimization (BO) with Gaussian process, and BO with Random Forest. 

The comparison is based on several benchmark problems, including nonconvex functions, 

HPO of machine learning models, HPO of deep learning models, and HPO of shared e-

scooter demand prediction by RF and GRUs.  
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• Chapter 5: discusses the relevant challenges associated with the operational management 

of shared e-scooters. Additionally, we present a literature review of various approaches used 

in the operational planning of sharing services, explicitly focusing on bike sharing. Drawing 

from the insights gained from the previous chapters and the literature review in this section, 

a data-driven framework is developed for the short-term static rebalancing of shared e-

scooters. The rebalancing problems, considering demand uncertainty, are formulated as 

integer linear programming, whereas an ILP solver “GLPK” and a hybrid algorithm “ACO-

ILP” are employed to optimize 30 random instances for each cluster scenario (15, 30, and 

60) grouping by the k-means algorithm. The effectiveness of the proposed framework is 

evaluated using the open data from Minneapolis MN. 

• Chapter 6: the conclusions and discussions of the research findings are given. Based on 

these findings, several directions for future study are suggested. 

 

 
Figure 1.2 Relationship between thesis chapters  

 

References  

[1] S. Shaheen and N. Chan, "Mobility and the sharing economy: Potential to facilitate the 

first-and last-mile public transit connections," Built Environment, vol. 42, no. 4, pp. 573-

588, 2016, doi: https://doi.org/10.7922/G2862DN3. 

[2] C. S. Smith and J. P. Schwieterman, "E-scooter scenarios: evaluating the potential mobility 

benefits of shared dockless scooters in Chicago," Chaddick Institute for Metropolitan 

Development, Depaul University. Dec 2018. 

[3] T. K. Trivedi et al., "Injuries associated with standing electric scooter use," JAMA network 

open, vol. 2, no. 1, pp. e187381-e187381, 2019. 

[4] NACTO. Shared Micromobility in the U.S.: 2018. Available: https://nacto.org/shared-

micromobility-

2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%2

0in%202018. 

[5] NACTO. Shared Micromobility in the U.S.: 2019. Available: https://nacto.org/shared-

micromobility-2019/ 

https://doi.org/10.7922/G2862DN3
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2018/#:~:text=In%202018%2C%20people%20took%2036.5,handful%20of%20cities%20in%202018
https://nacto.org/shared-micromobility-2019/
https://nacto.org/shared-micromobility-2019/


8 
 

[6] R. Clewlow, F. Foti and T. Shepard-Ohta, "Measuring Equitable Access to New Mobility: 

A Case Study of Shared Bikes and Electric Scooters," POPULUS 2018, Available: 

https://trid.trb.org/view/1576769. 

[7] R. R. Clewlow, "The Micro-Mobility Revolution: The Introduction and Adoption of 

Electric Scooters in the United States," POPULUS 2018, Available: 

https://trid.trb.org/view/1528426. 

[8] M. Toll. (2018). The results are in and Americans are loving electric scooter share 

programs. Available: https://electrek.co/2018/08/14/americans-love-electric-scooter-

shares/ 

[9] M. Chester, "The Electric Scooter Fallacy: Just Because They’re Electric Doesn’t Mean 

They’re Green," ed, 2018. 

 

https://trid.trb.org/view/1576769
https://trid.trb.org/view/1528426
https://electrek.co/2018/08/14/americans-love-electric-scooter-shares/
https://electrek.co/2018/08/14/americans-love-electric-scooter-shares/


9 
 

CHAPTER 2 

2. A REVIEW OF SHARED E-SCOOTERS 
2.1 History of electric scooter 

Scooter, derived from “scoot” which means fast movement, represents an entertainment 

product sliding on land, water, ice, and children’s toy skateboard car [1]. Like other 

transportation modes, electrification was also adapted to the scooter, called electric or e- 

scooter, as soon as 1991 by Honda intending to replace gasoline-powered scooters rooted from 

1902. Currently, the word “Scooter” is given to various transportation modes such as self-

balance, motorized, motor scooters, and mobility scooters (see Figure 2.1). 

 

 
Figure 2.1 Types of electric scooters 

 

A motor scooter is a sort of motorcycle with a step-through chassis and a platform for the 

rider's feet; well-known models include Vespa and Lambretta. A motorized scooter is a powered 

stand-up scooter employing a small utility gas or electric engine. Due to their low or zero 

emissions, motor scooters are becoming increasingly popular in China, Taiwan, and Europe [2]. 

In this instance, countries in the Asia-Pacific area with a large motorbike population, such as 

Taiwan, China, Vietnam, Indonesia, and Thailand, anticipate burgeoning demand for electric 

motor scooters. Electric self-balancing scooters are becoming increasingly popular because of 

their affordability, lightweight, fashionable appearance, and off-road potential. Additionally, 

since the development of dockless sharing services in the past several years, standing electric 

scooters (such as Segways and motorized scooters) have been highly sought-after. Mobility e-

scooters are another mode that has helped older people live better lives by allowing them to 

participate in social activities like shopping, running errands, or going to the doctor [3]. Last 

but not least, motorized scooters have been increasingly popular in recent years thanks to 

dockless services. They first became popular for short trips in densely populated urban areas in 

the 2000s.  
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At the moment, shared services provide three different types of scooters: Segways, motor 

scooters, and motorized scooters. Since the motorized or electric kick scooter is the newest 

growing mode and has a high acceptance rate, we concentrated on it following the thesis's 

purview. Figure 2.2 only depicts the most significant developments in the electric scooter (e-

scooter), which resembles the motorized scooters used today for shared transportation. The first 

scooters were simple children's toys made from a soapbox, some scraps of board, and an old 

pair of roller skates. Then it evolved into a commercial product and was made available for 

kid's sports. For miniskirt riders like Autoped, ABC Skootomota, and Austro Motorette, the 

powered scooter was created specifically for them between the 1910s and 1920s [4, 5]. Such a 

scooter was later converted into a motor scooter, most notably the iconic Japanese Rabbit and 

Italian Vespa [1]. The "Kick-n-Go," a scooter powered by a pedal on a lever, was created by the 

Honda Corporation in 1974. Although it still needed as much work as a standard scooter, kids 

loved this inventive scooter. Before the rise of bicycles, kids may benefit from using steel 

scooters with two little bicycle wheels, which were popular among dog scooters. In 1996, Wim 

Ouboter, the inventor of the micromobility system that addresses the first-/last-mile problem 

(i.e., the distance is too short to drive but too far to walk), created a stylish foldable aluminum 

scooter that was a very portable and lightweight mode of transportation. In 1999, this design 

was sold to Razor and unveiled in Tokyo, where it quickly caught on as a fashion trend. With 

the Go-Ped brand, one of the first and most well-known producers of motorized scooters, 

Patmont Motor Werks began operations in 1985 and debuted its gasoline and electric scooters 

in 2001 and 2003, respectively [6].  

 

 
Figure 2.2 Evolution of motorized or electric kick scooters (e-scooters) 

 

Electric vehicles' propulsion systems can be divided into four categories: fuel-cell electric 

vehicles, plug-in hybrid electric vehicles, hybrid electric vehicles, and battery electric vehicles 

(FCEVs). HEVs have both a gasoline engine and a battery, but the gasoline engine or 

regenerative braking generates the battery energy and cannot be replenished by the electrical 

grid. A BEV relies solely on its battery for power, but a PHEV uses both its battery and an 

internal combustion engine. Another form of electric vehicle is an FCEV, which runs on 

hydrogen and oxygen. Even though it is still under development, it is regarded as the most 

environmentally friendly electric car because it only emits water [7]. However, the e-scooter 

used for shared mobility only has a built-in or swappable battery that the power grid can 
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recharge. The top 5 brands of motorized scooters now on the market are Razor, Segway-

Ninebot, Xiaomi, Swagtron, and EcoReco. As shown in Figure 2.1, the power, speed, and 

charging range of the contemporary electric kick scooter are 200–1300 W, 20–60 km/h, and 

10–120 km, respectively. According to information on the item on the Alibaba website, the 

battery is mostly made of lithium, while some producers also use LG or Samsung batteries. 

Additionally, these batteries have a warranty of one to two years and charge for three to eight 

hours. They also have a recharging cycle of about 300 (in some cases, more than 900). The 

majority of the scooter's frame is made of carbon fiber, aluminum alloy, or steel. Depending on 

the battery, frame type, and brand, a motorized scooter can cost between 50 to 700 USD. 

 

2.2 Introduction of shared dockless e-scooters 

In recent years, the growth of micromobility enterprises has been extensively reported. 

Customers can choose from easy first-mile/last-mile transportation options thanks to businesses 

in China like Ofo and Mobike, and in the US like Citi Bike and Jump Bike. The shared dockless 

e-scooters developed by Lime and Bird in the US in 2018 re-energized the micromobility trend. 

Compared to shared bikes at 13 percent in 8 years and shared vehicles at 16 percent in 18 years, 

the adoption rate of shared e-scooters in major US cities reached 3.6 percent in less than a year 

[8]. In the first seven months and the first 14 months, respectively, one million and six million 

e-scooter rides were completed, according to Lime data [9]. The demand for e-scooters has 

increased as e-scooter-sharing services become more widely used in nations like the US, France, 

Germany, Spain, Singapore, and Thailand. Electric scooters are purchased by companies like 

Bird, Lime, Spin, Jump, Razors, and Neuron, which provide these sharing services, primarily 

from well-known manufacturers.  

Figure 2.3 displays the month and year of the initial rollout of shared scooters across all 

operators and nations. To address the last-mile issue in smart cities, university campuses, and 

other major workplaces, Samocat's founders developed the smart payment platform for station-

based kick-scooter sharing. For this innovative concept, Samocat earned numerous national and 

international awards. In August 2015, they began testing their rental kick scooter in Russia 

before quickly expanding to other European nations. However, this startup company could not 

garner much social attention because of the inconvenience of station-based mode and kicking 

weariness. The first dockless e-scooter sharing service from Telepod was introduced in August 

2016 following several months of testing in Singapore. However, the rigorous regulations, 

constrained permitted space, high prices, graffiti, and thieves prevented this new enterprise 

from becoming more well-known. A year later, two more operators, named Neuron and 

Popscoot, joined this sharing service. It wasn't until September 2017 that a large dockless e-

scooter company, Bird, received approval to deploy their e-scooters in California. After that, 

dockless scooters gained popularity and spread to other places. After Bird's success, many 

months later, another major dockless e-scooter supplier, Lime, followed by Spin, Skip, 

BlueDuk, and Goat, began rolling out their e-scooters across numerous US states. 
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Figure 2.3 Deployment month and year of shared scooters by countries and operators with the 

capital raised and number of phone app installations (Source: operator’s Facebook & 

Instagram, Crunchbase website, and Google play store) 

 

The local operators like Troty, Grin, and Voi have introduced shared e-scooters to certain 

European nations (France and Spain), Brazil, and Mexico, in addition to the US-based operators 

Bird and Lime. After the shared e-scooters' outstanding success for the whole year, many 

additional nations started to acknowledge this mode's influence on urban mobility and started 

testing it. Many unicorn businesses, like Lyft, Grab, and Bolt-Taxify, entered the dockless e-

scooter era after spotting the potential opportunity. Due to the significant demand in Asian 

nations, Neuron Mobility expanded its operations outside of Singapore to Thailand in October 

2018, Malaysia in the early months of 2019, and Australia in the following few months. 

Kickgoing scooter made the first e-scooter deployment in South Korea in September 2018, and 

four additional operators (Gbility, GogoSsingcity, Ryde, and elecle) may begin making e-

scooter deployments in the first few months of 2019. By the end of May 2019, more than 150 

cities and 40 institutions were served by the dockless e-scooter fleets provided by about 60 

companies. 

According to Table 2.1, European users pay the highest rate of $6.27 for a 30-minute trip, 

followed by users in Israel, the United States, and Mexico, who pay $5.6, $5.5, and $5.2, 

respectively. A 30-minute e-scooter trip in ASEAN nations costs between $3 and $3.52. While 

the price for a Lime E-Bike and E-Scooter is the same, it is slightly more expensive than the 

prices for shared bikes (conventional bikes), such as the Jump-Bike ($2 for 30 minutes) and 

Ford Gobike ($3 for 30 minutes). Dockless electric scooters have a recharge range of 24 to 60 

kilometers and can travel at a top speed of 23 to 48 kilometers per hour. It is recommended to 

use e-scooters with faster speeds since the fee is determined by the amount of time used [10]. 
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For a 3.5 km trip, traveling at an average speed of 10 and 15 km/h saves 7 minutes and $1, 

respectively. 

 

Table 2.1 Standard fee of dockless shared e-scooters in each region 

Region 

(e-scooter operator) 

Standard Fee USD Equivalent 

Unlock Fee Riding Fee Unlock Fee Riding Fee 

US (Bird) $1 0.15 $/min $1.00 0.150 $/min 

Europe (Lime) €1 0.15 €/min $1.14 0.171 $/min 

Mexico (Lime) MEX $10 MEX 3 $/min $0.52 0.156 $/min 

Israel (Bird) NIS 5 0.5 NIS/min $1.40 0.140 $/min 

Singapore (Neuron) SGD 1 SGD 0.12 $/min $0.74 0.089 $/min 

Thailand (Neuron) ฿20 3 ฿/min $0.64 0.096 $/min 

Malaysia (Neuron) RM 3 0.3 RM/min $0.75 0.075 $/min 

Note: exchange rate based on April 2019 

 

2.3 Social perception on shared e-scooters 

Two early studies by the research team in POPULUS published in 2018 discussed the 

potential of shared dockless e-scooters. The first report, published in July 2018, surveyed over 

7,000 people in major US cities [8]. Their results found that more than 70% of respondents 

view this mode positively, including expanding transportation options, car-free lift style, 

convenient replacement for personal vehicles or ride-hailing, and a complement of public 

transit. Moreover, it could reduce the active transportation gender gap, and improve vehicle 

equitability, especially for low-income communities [8, 11]. Another questionnaire survey in 

2018 by Qualtrics based on 500 adults across the US showed that dockless shared e-scooter was 

agreed to be a lasting innovation transportation mode (55%), particularly the experienced riders 

for 72% [12]. The majority of riders showed high satisfaction with this mode, including trip 

satisfaction (88%), satisfaction with scooter availability (85%), ease of sign-up (85%), ease of 

parking (82%), cost satisfaction (81%), fun to ride (75%), and positive impact on the 

environment (66%). Shared e-scooters were used for the purposes of joyriding 34%, running 

errands 23%, commuting 19%, visiting someone 13%, and work break/lunch 9%. For this 

reason, 19% of respondents still prefer using e-scooters even if they cost more than other modes, 

while 13% chose not to use e-scooter again as it is either unsafe or inconvenient. This survey 

also found that 75% agreed with the positive impact on air pollution by more e-scooter usage, 

but only 17% believed that this mode could deal with congestion. 

In addition, Fitt and Curl (2019) conducted a questionnaire survey to understand the 

perception of users and non-users in several cities in New Zealand. 71% of the respondents 

experienced shared e-scooters, while 75% used them more than once. The main reason for 

trying e-scooters for the first time is to try e-scooters and have fun. And they, mostly younger 

people, men, and full-time employers, will likely use it again for commuting, social 

engagement, and the supermarket. With the availability of e-scooter, 58% of the trips come 

from active mode, 23% come from private or shared vehicles, and 11%  would not be made 

without e-scooters [13]. Another study by the author employed a social practice approach based 

on an online qualitative survey in four large cities in New Zealand [14]. This study aimed to 



14 
 

explore the early changes in the materials, competencies, and meanings associated with urban 

mobility and the disruptive potential of these changes for urban transport and broader social 

relations. Sixty online surveys from the student at the University of Minnesota were done to 

assess the correlation between e-scooter usage and five prominent personalities [15]. And they 

found that students with higher extraversion scores were significantly more likely to use e-

scooters than those with lower scores.  

Furthermore, the mode choice model was developed based on a stated preference survey 

to understand the factors and potential shift from carsharing to e-scooter sharing of young users 

in Munich [16]. The Technology Acceptance Model was extended to identify the factors that 

affect the intention to continue using e-scooters based on survey data in Chicago [17]. Two 

important salient factors determining users’ decisions are perceived usefulness and perceived 

reliability (i.e., availability in time and space, particularly for mandatory trips). At the same 

time, other critical drivers are social influence, perceived ease of use, variety seeking, and 

perceived enjoyment. In Turkey, an Online questionnaire was conducted to understand the 

predictors influencing behavioral intention toward shared e-scooter [18]. As a result, behavioral 

intention is significantly affected by social influence, effort expectancy, performance 

expectancy, and price sensitivity, but environmental awareness and hedonic motivation. 

 

2.4 Trip characteristics and impacts on urban mobility 

One of the most popular topics about shared e-scooters is the spatiotemporal trip 

characteristics and their impacts on urban mobility. Smith and Schwieterman (2018) evaluated 

the potential of shared dockless e-scooters on urban mobility based on several scenarios. They 

found that dockless e-scooters could be time- and cost-effective for short-range trips, less than 

3 km, compared to the private automobile. Therefore, this mode could increase the non-auto 

trip options from 45% to 75% and increase job reachability by 16% [10]. And the new results 

based on multimodal transportation accessibility analysis in Chicago, US, found that dockless 

e-scooter possibly reduces travel time by 24% - 29% compared to walking and public transit 

(around 3 to 5 minutes) and increases job reachability by 12.3% and over 20% for 30-minutes 

and 60-minutes public transit commuting trip respectively [19]. McKenzie published two 

papers comparing the spatiotemporal usage pattern of e-scooter to dock-based bikes and ride-

hailing [20, 21]. Based on the traffic condition in Washington, the author found that e-scooters 

are faster than ride-hailing during rush hour & traffic congestion. His results also show a clear 

difference in both temporal and spatial patterns between dockless e-scooters and capital bikes. 

Some temporal similarity was found between e-scooter and casual bike usage, but still 

significantly different spatial distribution. The station-based shared bikes are mainly used for 

commuting, while the shared e-scooters (casual bike users) are used for other purposes such as 

leisure, recreation, or tourism. Likewise, Younes, Zou, Wu, and Baiocchi (2020) employed 

negative binomial regression to compare the temporal characteristics of dockless e-scooter and 

station-based bikes in Washington. They also confirmed the dissimilarity between dockless e-

scooter and member capital bike users [22]. They also found that member bike-sharing tends to 

be the least sensitive to changing weather conditions due to habitual travel behavior, the less 

expensive pricing structure, or not having an alternative mode. In addition, dockless e-scooters 
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are not statistically sensitive to precipitation, probably because of the ease of trip ending. Lastly, 

all micromobility users are susceptible to changing gas prices, especially dockless e-scooters.  

In Singapore, Zhu, Zhang, Kondor, Santi, and Ratti (2020) also compared the 

spatiotemporal pattern between dockless e-scooters and bike-sharing. E-scooters have spatially 

compact and quantitatively denser distribution, while their high demand is associated with 

attractive places such as metros and dormitories. In addition, scooter sharing has a better 

performance than bike-sharing in terms of the increased sharing frequency and decreased fleet 

size, but dockless e-scooter requires high maintenance cost for rebalancing and charging. 

Rainfall and high temperatures at noon suppress the usage but non-conclusively [23]. Dockless 

e-scooters and e-bikes were compared using the Austin (TX) data from December 2018 to May 

2019 [24]. E-bikes (3.23 m/s) are faster than e-scooters (2.49 m/s). However, both modes were 

ridden slower for recreational purposes than for commuting. The riding speed of these two 

modes was similar over days of the week but different over hours of the day. 

Furthermore, Jiao and Bai (2020) employed spatial analysis and negative binomial 

regression to examine the spatial pattern based on the open-sourced data in Austin, Texas. 

Higher e-scooter trips are associated with high population density, higher education, compact 

landuse, closer distance to the city center, better connectivity, and transit station. However, 

ridership surprisingly negatively correlates with the proportion of the young population [25]. 

Comparably, the e-scooter departure and arrival trips in Austin are positively associated with 

the proportion of residential, commercial, education, and industrial area [26]. And based on the 

Spatial Durbin model, the morning departures are associated with residential landuse but not 

educational landuse, and vice-versa. Positive correlations were also found with bike facilities, 

bus stops, and employment density, but the parameter of median income. Once again, Bai and 

Jiao (2020) used the data from Austin (TX), and Minneapolis (MN) to examine the spatial usage 

pattern against urban environment [27]. They found different usage patterns in the Minneapolis 

dataset based on spatial analysis and negative binomial regression.  Ridership of dockless e-

scooter in Minneapolis had a positive correlation with household income but negative 

correlations with the industrial area, open space and parks, and transportation facilities. The 

temporal pattern in these two cities is also different, i.e., afternoon and weekend preference for 

Austin, but evening preference for Minneapolis. In addition to factors found in previous studies, 

holidays and special events was found to be significantly increased the e-scooter but not bike 

sharing [28]. H. Li, Yuan, Novack, Huang, and Zipf [29] uncovered 100 proxy trip purposes of 

shared e-scooter in Washington, D.C., by spatiotemporal topic modeling method based on OD 

data, POI, landuse, and landcover. 

 

2.5 Related accidents  

There were many reports regarding shared e-scooter-related accidents, attracting more 

research interest. The reasons of these accidents could be:  

• Insufficient regulations (ex., helmet) and training, especially for new riders. 

• Small wheels, lightweight, and standing characteristics make it susceptible to hazardous road 

surfaces, especially during nighttime, including potholes, speed bumps, curb ramps, uphill 

and downhill streets, etc.  
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• Unreliable or unstandardized materials cause battery explosions, malfunctions, defects of 

frame and handlebar, brake failure, etc.  

Based on 324 posts, just 6.17 percent included a person wearing protective gear, and 6.79 

percent featured protective gear in some other way [30]. In Southern California, 249 e-scooter-

related patients from two metropolitan emergency rooms were gathered in order to study the 

injury features and typical usage patterns of dockless e-scooters [31]. 228 riders and 21 non-

rider pedestrians made up the data that was gathered between September 2017 and August 2018. 

These patients are, on average, 34 years old, and 58 percent are men. Falls (80%), collisions 

with objects (11%), and being struck by moving vehicles (9%) are the most frequent incidents. 

The accident rates were highest from 3 pm to 11 pm (57%) and from 7 am to 3 pm (26%) and 

11 pm to 7 am (17%), respectively. In addition, three risky behaviors—not wearing a helmet 

(95 percent), tandem riding (8 percent), and disobeying traffic laws (9 percent)—were noted. 

Despite the fact that the leasing agreement required them to be at least 18 years old, the 

investigation also discovered that about 11% of the patients were under 18. Although it is 

forbidden to ride on the sidewalk, 26% of them did so, nonetheless. Only 4.4 percent of riders 

reported wearing a helmet, even though it is mandatory by law in California. As a result, head 

injuries—which account for 40% of cases—are the most frequent, followed by fractures/cuts 

and sprains/bruises, which account for 32% and 28% of cases, respectively. 30 percent of the 

149 patients had to stay in the hospital for more than 4 hours, and two had to be admitted to 

intensive care units.  

The electronic medical records from two emergency rooms in Utah, the US, are used by 

Badeau et al. (2019) to quantify and describe the injuries caused by dockless e-scooters. Fifty 

data points from June 15 to November 15 of 2018, were used in this analysis, as opposed to 8 

data points from June 15 to November 15 of 2017. They divided the injuries into three 

categories based on the data from 2018: major head injury (8%), major musculoskeletal injury 

(36%), and minor injury (56%) [32]. A research team from California and New York also 

constructed the anatomic distribution of e-scooter injuries using the motorized scooter-related 

injuries from the US National Electric Injury Surveillance System (NEISS) [33]. Between 2013 

and 2017, data on 32,400 injuries were obtained, and between 2016 and 2017, the number of 

injuries rose by 77%. On the other hand, Bresler et al. (2019) also studied craniofacial injuries 

using motorized scooter-related injuries from NEISS. They received 990 cases between 2008 

and 2017, with the most common injuries being to the head (62%), face (24%), mouth (7%), 

neck (6%), air (1%), and eye (1%) [34].  

Medical records of 90 patients related to e-scooter from the emergency department in 

Dallas (TX) were used to investigate craniofacial injuries [35]. The results found that 62% were 

male, 58% of craniofacial injuries were severed, and 18% were related to alcohol. 13 electronic 

medical records of The George Washington University Hospital revealed the increasing number 

of Severe injuries of skull fracture, central cord syndrome, and vertebral compression fracture, 

raising the awareness on the issues of safety and public health related to e-scooter [36]. 

Similarly, 169 e-scooter crashes in news reports across the US from 2017 to 2019 were collected 

to construct a crash dataset [37]. Overall, there was a growing trend for the reported e-scooter-

involved crashes, while 73% and 50% of victims are male and 18 to 40 years old, respectively. 

50% of the cases happened at night, and the three main locations of crashes are street/arterials 

(50%), intersections (25%), and sidewalks (15%). The collision types are hit-vehicle (65%) and 
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fall-off (25%), resulting in fatalities (30%) and severe injuries (40%). A detailed study of the 

collision between pedestrians and e-scooters was used to highlight the safety risks and the 

incidence to help shape public policy to ensure the safety of both riders and pedestrians [38]. 

In New Zealand, two pieces of research used accident records from the emergency department 

[39, 40]. The result from Mayhew and Bergin (2019) showed that 57% of victims are male, 

primarily European ethnics (57%), and between 20 to 40 years old (65%). Moreover, 25% of 

cases need surgery for extremities (84%) and head/face (44%). Several recent studies are related 

to e-scooter accidents in Sweden [41], factors contributing to the number of e-scooter injury 

accidents in Austin TX [42], early fatalities associated with shared e-scooters in the US [43], 

and association of scooter-related injury and hospitalization in the US [44]. 

 

2.6 Policy regulations 

As a new vehicle introduced to the shared service, the regulations for this mode may vary 

from one country to another or even city, and from time to time. Therefore, the regulations could 

be split into: regulations for e-scooter applying to personal or shared vehicles and regulations 

for shared service providers. The regulations for e-scooter are vehicle size (width, length, 

height, and weight), power capacity, fire safety, speed, helmet, driving license or certificate, 

rider age, license plate, riding path (footpath is allowed or not), etc. For operators, the 

regulations include a business license, vehicle registration, distribution plan, response plan to 

abandoned/damaged/improper parking, educating rider, commercial general liability insurance, 

clean-hand certificate, etc. The violations could be fined, the vehicle seized, or jailed.  

Anderson-Hall, Bordenkircher, O’Neil, and Scott (2019) assessed the operators’ inventory, 

device specification, and regulation in many important cities in the US. Their results could be 

used to draw the lesson learned from trial and error of this mode and regulation changes in these 

cities  [45]. Similarly, regulation, equity policy, guidelines, and pilot programs from 61 

municipalities in the US were used to explore the best practice municipal e-scooter policy [46] 

or the later version [47]. They found that 59% of these cities have either fleet or operator caps, 

and the pilot program was implemented in only 54% of the studied cities, so the majority (70%) 

have an equity policy. In Rosslyn of Virginia (US), 181 surveys of riders and non-riders were 

used to analyze the safety perception of pedestrians towards the presence of e-scooters and the 

experience of sidewalks blocked by e-scooters [48]. On average, around half of them feel 

uncomfortable with e-scooters, especially non-users (76% for unsafe and very unsafe, and 75% 

for often and always-frequency of sidewalk blocked). However, only 16% of 606 observed e-

scooters were not appropriately parked, and 6% blocked pedestrian right-of-way. Moreover,  

3666 parking practices in 5 cities in the US were used to analyze the parking violation frequency 

of bikes, e-scooters, and motor vehicles [49]. However, they found that motor vehicles, 

especially ride-hailing and food delivery services, impede access far more (24.7%) than bikes 

(0.3%) and e-scooters (1.7%).  

In Sweden, Gössling (2020) used the content analysis of 173 reports from local media, 

including printed media, radio websites, and TV, to assess the concerns before and after the 

introduction of shared e-scooters. As a result, they suggest the urban planner propose several 

necessary regulations regarding this mode, such as maximum speed, mandatory bicycle 

infrastructure use, dedicated parking, and the number of operators [50]. In Vienna (Austria), 
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weekly data from six operation geofences and no-parking zones were recorded to examine the 

spatial analyses [51]. They discovered that the geofence of each operator is dynamically 

changed to maximize the ridership under the fleet size regulation. Moreover, they recommend 

that the public sector establish incentives to ensure outlying and/or transit-poor neighborhoods, 

increase the fleet cap if the operator expands their geofence, and reach the goals of the city’s 

pilot regarding safety, equity, and the sustainability of the scheme. In France, ethnomethodology 

and multimodal conversation analysis were employed to examine the conflict with pedestrians 

based on the video record from three e-scooter riders on Paris’s street [52]. Several recent 

studies on policy regulation are economic regulation of e-scooter in the US [53], parking 

regulations across 37 cities in the US [54], municipal guidelines among e-scooter use from 150+ 

cities in the US [55], e-scooter regulations in Bergen, Norway [56], and visual attention on the 

shared road between pedestrian, cyclist, and e-scooter [57]. 

 

2.7 Environmental life cycle assessment 

Since dockless e-scooters are powered by battery recharging from the electric grid, it is 

considered a sustainable transportation mode, just like walking and cycling. The question is, 

“Is this dockless sharing mode really green?”. Energy analyst Matt Chester wrote an essay about 

the emissions from dockless e-scooters (2018) in Washington, DC. Based on three popular e-

scooter models (Ecoreco S5, Ninebot, and Swagtron), their relative CO2 emissions per 

kilometer are 5.6, 4.7, and 2.5 grams (using DC electric grid emission rates of 0.622 grams per 

watt-hour). Only 1% to 2% of the CO2 emissions from driving a typical US automobile at the 

same distance are attributed to riding an e-scooter. Additionally, he considered three scenarios 

for the emission from shared e-scooters while carrying them to and from places where they may 

be charged (20 caped by Bird, and competitive between charging contractor limit to fewer). 

3.22 km, 8.1 km, and 16.1 km were employed in the analysis because there was no information 

on the distance of collecting e-scooters. The most effective scenario for recharging journeys is 

an e-scooter making five trips per day at a distance of 2.4 kilometers, which results in only 2 

percent of car emissions, whereas the least efficient case accounts for 28% of the car emissions 

and the medium-efficient case accounts for 8% of them. Shared e-scooters produce more overall 

CO2 emissions than vehicles in the least-efficient scenario, which occurs if less than 28% of 

scooter journeys displaced car trips [58].  

Moreau et al. (2020) conducted the life cycle assessment of electric scooters under the 

modal split of Brussels (Belgium) and life span sensitivity. At the base case of 7.5 months life 

cycle, dockless e-scooter produces CO2 of 131g per person per kilometer, but this could be 

reduced to 91g, 51g, and 40g for one year, 2.5 years and five years life cycle, respectively, 

compared to 110g for the modal share replaced by dockless e-scooter [59]. However, personal 

e-scooters produce only 67g per person per kilometer, which is better than dockless e-scooters 

because of their shorter life span, improper usage, vandalism, and rebalancing. In this case, 

shared e-scooters require 9.5 months lifespan to become green mobility in the current situation. 

In Germany, scenario analysis about the emission of shared e-scooters was examined based on 

the condition of Berlin and Bochum. In Berlin, the authors analyze the life cycle assessment 

considering several conditions, including longer lifespan, swappable battery, solar power, and 

the possibility of transporting from the manufacturer by plane. For the base case (2 years 
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lifespan, swappable battery, and battery swapping and broken devices collection by diesel-van), 

dockless e-scooters emit CO2 of 73 g per person per kilometer, and the emission could be up to 

235 g if the lifespan is just six months [60]. These authors also used the modal share scenarios 

to evaluate the potential emission, parking space, and traffic space demand of dockless e-scooter 

in Bochum. The results show that dockless e-scooters could improve urban mobility and 

emission if they could replace individual motorized transport and especially become intermodal 

mobility services with public transit [61]. 

In addition, the Consequential LCA (CLCA) was proposed to assess the environmental 

impacts of urban mobility disruption by free-floating e-scooter in Paris  [62]. The result found 

that shared e-scooter generated an extra 13 ktCO2eq in one year under the assumption of one 

million users mainly shifting from lower-emitting modes (active mode, metro, and mass rapid 

transit). From scenario analysis, the suggestions for improving the carbon footprint from this 

mode are the increased lifetime mileage and choice of servicing (collecting e-scooters for 

recharging or battery swapping). Moreover, de Bortoli [63] later employed an integrated modal 

LCA to assess Paris's three private and shared micromobility vehicles, including bikes, second-

generation e-scooters, and e-mopeds. The highlights of this study found that the ownership does 

not contribute to the emission but the vehicle lifetime mileage, while the emission ranking of 

this shared micromobility is between the personal ICE modes and the active modes (including 

the public railing system). Similarly, using Minneapolis as the case study, Peng, Nishiyama, 

and Sezaki [64] assessed the emission reduction from shared micromobility (shared bike and 

scooter). The Monte Carlo simulation showed that 60% of shared micromobility trips likely 

came from personal vehicle and public transit trips resulting in GHG emission reduction of 

126.4 to 151.3 tons (about 0.012% of the total on-road emission). 

 

2.8 Short-term operational planning 

Regarding operational-related research, we can separate the previous studies into two main 

parts, short-term demand prediction and operational planning optimization. Several demand 

prediction models, including statistical models, machine learning, and deep learning, were 

proposed or employed to predict the spatiotemporal demand for shared e-scooters. On the other 

hand, previous studies examined the operational planning for shared e-scooter, including fleet 

size optimization, deterministic or stochastic rebalancing, collecting e-scooter for recharging, 

charging station design, and facility planning.  

He and Shin [65] proposed a novel spatiotemporal graph capsule neural network called 

GCScoot, to predict the spatiotemporal shared e-scooters’ trip flow in three different cities 

Austin TX, Louisville KY, and Minneapolis MN. The improved architecture, GCScoot2, was 

later proposed and evaluated on one additional dataset in Chicago IL [66]. As a result, they got 

huge accuracy improvement compared to baseline models, but it also requires lots of 

topological information along with long training time. Recurrent Neural Network (RNN) was 

employed to predict the temporal latent features from Convolutional Autoencoder, called 

encoder-recurrent neural network–decoder (ERD) framework [67]. The Convolutional 

Autoencoder works as dimensional reduction, especially the sparse data. This ERD framework 

showed enhanced performance compared to the baseline Long Short-Term Memory (LSTM) 

Neural Network based on shared e-scooter data operating in Gwangjin district, Seoul, South 
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Korea. On the other hand, Phithakkitnukooon, Patanukhom, and Demissie [68] dealt with 

demand sparsity of the grid e-scooter ridership in Calgary (Canada) by using a mask model or 

region of interest (ROI) to guide the fully convolutional network, called Masked Fully 

Convolutional Network (MFCN). Spatio-Temporal Multi-Graph Transformer (STMGT) is a 

graph convolutional network based on adjacency, functional similarity, demographic similarity, 

and transportation supply similarity graphs was proposed to forecast the hourly shared e-scooter 

demand in Austin TX and Washington DC [69]. Kim Sujae, Choo, Lee, and Kim Sanghun [70] 

employed LSTM model to predict the hourly demand in the grids grouped into several clusters 

by community structure method. This framework was evaluated on one-month data of e-scooter 

operating in Seocho and Gangnam districts of Seoul, South Korea. Moreover, the bagging 

ensemble approach based on XGBoost, RF, and Extra Tree (ET) was employed to predict the 

clustered daily demands of shared e-scooter deploying on Jeju Island, South Korea [71].  

On the other hand, there were several studies about the operational planning for dockless 

shared e-scooter. Masoud et al. [72] constructed the mathematical formulation to minimize total 

charging collection distance and solved it by several optimization algorithms in allocating 

freelance e-scooter-chargers. The simulated assignment problems were solved by the adaptive 

College Admission Algorithm (ACA) in comparison to the MILP solver and Black Hole 

Optimizer (BHO) algorithm. The open data in Minneapolis MN, and Louisville was employed 

to construct the data-driven demand model based on Poisson processes (temporal) and Kernel 

Density Estimation (spatial) for comparison of different electric scooter sharing design options, 

including the impact of fleet size and the cost of managing their charging [73]. Tolomei et al. 

[74] employed a deep learning model called 3D-CLoST to forecast the shared e-scooter 

demand, then greedily assigned workers to relocate the surplus and shortage using data from 

Austin TX, and Louisville KY, as the case study. Osorio, Lei, and Ouyang [75] formulated the 

overnight rebalancing of shared e-scooter accounting for the possibility of charging on the 

vehicle as the MIP and solved the large instance by the discrete-continuous hybrid model for 

integrating the line-haul and local operations. This proposed framework was evaluated based 

on simulated demand following the normal distribution. Two-stage stochastic programming 

was proposed for long-term planning (i.e., investment cost on charging facilities, fleet size, and 

relocation schedule) and short-term planning (i.e., minimizing relocation cost, charging cost 

and penalty of unserved demand) [76]. Multi-agent deep reinforcement learning, called ESB-

DQN, was proposed to optimize the rebalancing operation and battery swap by encouraging 

customers (incentive) to pick up the e-scooter in the nearby regions [77]. Finally, Altintasi and 

Yalcinkaya [78] employed GIS-based multi-criteria to optimize charging station locations to 

integrate this mode with the existing public facilities, points of interest, and population density. 

The proposed model was examined based on the data in Karsiyaka, Izmir, Turkey. 
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Figure 2.4 Summary of previous studies about shared dockless e-scooters 

 

2.9 Discussion and conclusion 

Even though the primary sources of the energy grid continue to be emission sources like 

coal and natural gas, electrification is now one of the best ways to reduce emissions from vehicle 

traffic. The use of shared micromobility, particularly e-scooters and e-bikes, has been crucial in 

addressing urban transportation problems like congestion, mobility, emissions, and parking 

shortages. These shared services aim to address the first- and last-mile issues in densely 

populated urban regions. In this situation, dockless e-scooters are gaining popularity and have 

been embraced in many cities across the globe. Lime and Bird are the two most well-known 

companies that offer shared e-scooters, and their markets are worth up to a billion dollars. 

Because they are time and money efficient for short-distance trips between 0.8 and 3.5 km, 

shared e-scooters are becoming increasingly popular. The simplicity of finding/parking, the lack 

of restrictions, the adaptability of the routes, and the enjoyable experience are further appealing 

elements. The unlock cost ($0.52 - $1.40) and the riding price (0.075 - 0.17 $/minute) for shared 

e-scooters vary from region to region. As mentioned above, dockless e-scooters have many 

impacts on urban mobility, such as vehicle equitability, job reachability, reduced vehicle trips, 

safe and convenience for females, and extended public transit catchment area. Additionally, 

most customers (88 percent) are happy with the trip, and more than 70% think this mode has a 

good impact on congestion and the environment.  

With the rise in popularity of dockless e-scooters, many problems are also becoming more 

prevalent, including safety concerns, conflicts with pedestrians, street littering, and theft. The 

number of e-scooter incidents has also increased public awareness of scooter use or the 

introduction of dockless e-scooters in various locations, particularly in Europe. Numerous 

things, including unsafe riding practices, battery explosions, scooter flaws, and inadequate road 

infrastructure, contribute to these accidents. Furthermore, service providers cannot address the 

violations and instruct users on how to use e-scooters properly. As a result, ever-stricter laws 

and norms are put into place. These restrictions include speed limit,  riding lane or area, parking 

infrastructure, helmet, improved phone application, payment method, and device requirements 

(weight, size, and fire safety standards).  
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In conclusion, dockless shared e-scooters present both advantages and disadvantages. 

Thus, it is essential for all stakeholders, including authorities, operators, and users, to 

collaborate and cooperate in order to minimize negative impacts and maximize positive 

impacts. As a newly emerging shared transportation mode, there is still limited research on the 

short-term operational planning of dockless shared e-scooters, which is the primary focus of 

this study. However, valuable insights can be gained from other sharing services, particularly 

bike sharing, which shares similarities with e-scooter sharing. As discussed earlier, shared e-

scooters encounter more operational planning challenges compared to other sharing services, 

such as fluctuating demand due to short-range trips and unusual trip purposes, emissions 

resulting from inefficient rebalancing planning, and high maintenance costs due to vandalism, 

property vulnerability, and battery charging. Unlike most shared transportation modes that 

experience two peak demand periods during morning and evening rush hours, shared e-scooters 

face high demand throughout the day and evening, necessitating more frequent rebalancing 

efforts. Moreover, their operational planning must consider tasks like relocating low-battery e-

scooters to charging stations and collecting broken e-scooters for repairs. The rebalancing 

planning for shared e-scooters should also take into account significant regulatory factors, 

including distribution regulations, registration fees per e-scooter, limitations on the number of 

e-scooters, and timely response to flooded areas with an excessive presence of e-scooters. 
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CHAPTER 3 

3. SHORT-TERM SUPPLY LEVEL PLANNING FOR SHARED E-

SCOOTERS 
3.1 Introduction 

Supply level planning plays a crucial role in operational management, as it is influenced 

by various factors such as operating costs, resource constraints, customer satisfaction, and 

environmental emissions. As discussed in the previous chapters, dockless shared e-scooters 

encounter several operational challenges, including volatile demand, high operating costs, 

unforeseen trip purposes, emissions, and regulations. As a dockless mode, operators must 

strategically allocate their limited e-scooters to the right place and time, utilizing several 

strategies such as overnight distribution, regular or real-time rebalancing or relocation, and 

customer incentives. Addressing these issues requires effective estimation of the supply level 

for this emerging shared micromobility. In this study, the term "short-term supply level 

planning" refers to the estimation of the total supply of shared e-scooters within a planning 

horizon of one day (e.g., hourly intervals). Various prediction models have been employed and 

proposed to forecast spatial and temporal demand, including statistical models, machine 

learning, and deep learning, to improve the effectiveness of supply level planning of shared 

transportation modes. 

In time-series analysis, the Autoregressive Integrated Moving Average (ARIMA) model, 

along with its seasonal variant known as Seasonal-ARIMA (SARIMA), holds prominence. 

Moreover, reference [1] provides insights into additional advancements in this domain. 

Implementing the ARIMA model mandates the assurance of both normality and stationarity. 

Notably, the challenge of normality can be effectively addressed using the Box-Cox 

transformation method, as expounded in [2]. Among machine learning models, Random Forest 

regression (RF) stands out for its remarkable predictive accuracy. Remarkably, this model's 

performance could be on par with certain deep learning architectures [3]. Following a similar 

conceptual framework as RF, XGBoost undertakes data fitting via gradient-boosted decision 

trees, thereby effectively reducing the computational time [4].  

Machine learning models show their effective performance compared to conventional 

statistical models and even have comparable results with deep learning models [3, 5]. Another 

advantage of machine learning is interpretability which is the main limitation of deep learning 

models. Decision Tree (DT) algorithm is one of the most powerful models and has several 

extensions to improve the prediction performance and generalization, such as random forest or 

RF, extra tree or ET, gradient boosting or GB [6], extreme gradient boosting or XGBoost [7], 

etc. For instance, RF showed huge prediction improvement compared to DT and Naïve Bayes 

in predicting the usage frequency of shared e-scooters at the University of Malaya [8]. Support 

Vector Machine (SVM) was employed to predict the daily and hourly bike-sharing demand [9]. 

In predicting the daily demand of station-based bike sharing in Seoul, k-nearest neighbors 

(KNN) had better prediction performance than linear regression, but it is still lots worse than 

RF and SVM [10].  

Over the recent decades, deep learning has garnered significant attention due to its 

auspicious performance surpassing traditional methodologies. In managing sequential data, 

Recurrent Neural Networks (RNNs) exhibit superior efficacy compared to conventional neural 
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network architectures. This advantage stems from their incorporation of a recurrent cell (tanh 

or sigma cell), enabling the retention of prior memory. The evolution of RNNs led to the 

conception of Long-Short Term Memory Neural Networks (LSTM NNs), a progression 

achieved by introducing specialized gates (forget gate, input gate, and output gate) into the 

recurrent cell. These gates work synergistically to adeptly manage long-term dependencies [11]. 

Moreover, LSTM NNs effectively circumvent the shortcomings of RNNs, such as the 

predicaments of vanishing and exploding gradients [12, 13]. Subsequently, to streamline the 

architecture and reduce trainable parameters, the amalgamation of the forget gate and input gate 

into a singular update gate resulted in the inception of the Gated Recurrent Unit (GRU) [14]. 

Unlike LSTM, the GRU comprises only two gates: the update gate and the reset gate. 

Additionally, a variety of other extensions of LSTM NNs are explored in comprehensive 

surveys of RNNs [12].  

Even though the family of RNNs successfully improves the performance of sequential or 

temporal prediction, these architectures were considered to have a limited performance for 

spatiotemporal datasets. This is because RNNs are usually trained spatially independently or 

based on only local information. To account for the spatial pattern for traffic flow, 

Convolutional Neural Networks (CNNs) and RNNs were combined using CNNs to extract the 

spatial pattern while RNNs to learn the temporal patterns [15]. Similarly, 3-Dimensional CNNs 

with LSTM NNs were employed to forecast PM2.5 concentration in China [16]. To deal with 

non-Euclidean spatial pattern extraction of CNNs, Graph Neural Networks (GNNs) are recently 

developed and extended, as reviewed by [17]. For GNNs, the non-Euclidean features are used 

as information filters to control the parameter-sharing between nodes. For instance, the link 

connection is used as the adjacency matrix for Hybrid GNNs for road traffic prediction [18]. 

Furthermore, three non-Euclidean features (neighborhood, functional similarity, and 

transportation connectivity) were used to construct the spatial dependency for GNNs to predict 

ride-hailing demand [19].  

Conversely, the exploration of volatility or variance analysis has been predominantly 

concentrated within the field of econometrics, wherein it holds the potential to furnish 

invaluable insights to bolster decision-making endeavors. The Autoregressive Conditional 

Heteroscedasticity (ARCH) model emerges as a statistical regression framework tailored for 

prognosticating forthcoming variance or volatility [1]. This paradigm encompasses two distinct 

formulations: ARCH in variance and ARCH in mean (ARCH-M). ARCH solely incorporates 

the squared residuals from preceding lags as independent variables, while the Generalized 

ARCH (GARCH) model encompasses historically predicted variances as well. The GARCH 

model has spurred numerous extensions, including but not limited to Power ARCH, Threshold 

ARCH, and Exponential ARCH. Notably, several ARCH models were employed to predict the 

return rate of daily closing prices for the Shanghai and Shenzhen 300 Index [20]. Likewise, in 

a similar vein, ARMA-GARCH and ARMA-TARCH were utilized to anticipate volatility in 

both traditional and sustainable stock indices within the FTSE4Good index series family by Ti 

et al. [21]. In addition, diverse adaptations, including ARMA-GARCH, SARIMA-GARCH, and 

SARIMA-SGARCH, were trained to forecast the precipitation index [22], daily peak electricity 

demand [23], and internet traffic [24], respectively. While ARCH-M exhibits incremental 

enhancements in predictive accuracy over ARIMA, it may grapple with convergence criteria 

and protracted training durations. Recently, there has been a confluence of GARCH and deep 
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learning models to foresee price volatility across pivotal metals such as Gold, Silver, and 

Copper [25, 26]. 

In this case, several prediction models have been employed and adapted to predict the 

spatiotemporal demand of dockless shared e-scooters such as spatiotemporal graph capsule 

neural network (GCScoot [27] and GCScoot2 [28]), encoder-recurrent neural network–decoder 

(ERD) [29], Masked Fully Convolutional Network (MFCN) [30], Spatio-Temporal Multi-

Graph Transformer (STMGT) [31], LSTM NNs [32], and bagging ensemble approach of 

XGBoost, RF, and Extra Tree (ET) [33]. To encapsulate, many formidable prediction models 

have been advanced for anticipating transportation demand, specifically for shared bicycles and 

e-scooters. However, the preponderance of these models primarily centers on enhancing 

accuracy metrics. Consequently, the inherent heteroscedasticity observed in transportation 

demand is often overlooked, resulting in an underutilization of historical data insights. 

Moreover, the variance associated with heteroscedastic datasets is not constant, necessitating 

its incorporation in supply strategizing. Articulated differently, the determination of inventory 

or supply levels is intrinsically linked to both the residuals emanating from the demand 

forecasting model and the dataset's heteroscedastic nature. Hence, a comprehensive variance 

analysis emerges as imperative for crafting a refined supply level estimation model. Achieving 

this nuanced approach can be facilitated through the formulation of conditional variance 

models, exemplified by constructs like SGARCH, or by adopting data transformation 

methodologies such as the Box Cox transformation.  

This study furnished prospective contributions to the domain of shared e-scooters and 

supply level strategizing. Initially, the study unveiled spatiotemporal trends in shared e-scooter 

demand through the analysis of three distinct datasets from Thammasat University (Thailand), 

Minneapolis (Minnesota), and Austin (Texas). Secondly, the study addressed the 

heteroscedastic nature inherent in shared e-scooter demand when shaping supply level 

strategies. This was manifested by the introduction of the Mean Oversupply (MO) metric, 

designed to facilitate the assessment of efficiency at specific proportions of served demand. 

Lastly, the inquiry illuminated the merits and demerits associated with the application of the 

Box Cox transformation, encompassing its repercussions on demand prediction precision and 

supply-level strategizing.  

 

3.2 Methodology  

3.2.1 Research framework 

Based on the literature review in the previous section, we could see that many methods 

were proposed to deal with spatiotemporal demand prediction, including statistical regression 

models, machine learning algorithms, and shallow or deep learning approaches. Even though 

these regression models could achieve state-of-art performance, there are still prediction errors 

or residuals commonly presenting in the form of mean squared error (MSE), Root MSE 

(RMSE), mean absolute error (MAE), etc. Reducing these metrics leads to lower demand 

uncertainty resulting in higher planning efficiency. Since the inventory or supply level planning 

party depends on the variation of demand prediction models, variance analysis is necessary to 

further reduce the uncertainty, particularly for a heteroscedastic dataset. Therefore, this section 
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aims to answer the second objective by combining the demand and variance predictions to 

design an efficient supply planning model. 

To realize this aim, the methodology (see Figure 3.1) employed in this section was 

delineated into five core segments: data preprocessing, data manipulation, demand projection, 

variance projection, and supply level estimation. The initial phase encompassed the collection, 

encoding, and incorporation of diverse attributes, encompassing shared e-scooter data, 

meteorological variables, annual events, public holidays, days of the week, and temporal 

intervals. Drawing upon insights from the literature review, a prevalent practice was the 

normalization of data within the range of 0 to 1, aligning them for compatibility with specific 

activation functions; however, instances of training on the original scale were also identified. 

Recognizing the potential enhancements in prediction accuracy and mitigation of 

heteroscedastic effects attributed to the Box Cox transformation [34], the subsequent stage 

incorporated this transformation as an additional option for data manipulation. 

In the subsequent phase, an array of machine learning and deep learning models were 

conceived to undertake the prediction of shared e-scooter demand on an hourly basis. 

Concurrently, Grid Search (GS) and Bayesian Optimization (BO) were utilized to tune the 

hyperparameters of the prediction models, including Seasonal Autoregressive Integrated 

Moving Average with exogenous variables (SARIMAX), RF, XGBoost, Fully Connected 

Neural Networks (FCNNs), RNNs, and GRUs. The primary objective underpinning the 

comparative performance assessment of Box Cox-transformed data against original/normalized 

data aimed to highlight a distinct contrast: while the residuals stemming from prediction models 

employing Box Cox-transformed data exhibited an absence of heteroscedasticity, such effects 

were discernible in the case of models using original or normalized data. In this stage, several 

variation models (constant, daily, and SGARCH variances) were employed to forecast the 

residuals of these demand prediction models. Under its capacity in mitigating heteroscedastic 

tendencies [2, 34], the Box Cox transformation ensured a constant variance in the transformed 

data.  

Then again, within the scope of accuracy evaluation, the optimal models among original 

and normalized data were selected. The residuals of these models were subsequently subjected 

to variance analysis across three distinct scenarios: constant variance, daily variance, and 

variance prediction through the employment of SGARCH. Consequently, the transformed Box 

Cox data exhibited singular variance modeling (Constant Variance), while the original or 

normalized data were subjected to three variance models (constant, daily, and SGARCH 

variances). In the pursuit of variance analysis and the formulation of supply level estimation, 

exclusive scrutiny was devoted to three models—SARIMAX, XGBoost, and GRUs. The 

exclusion of XGBoost and RF stemmed from their analogous predictive performance, while 

GRUs were chosen based on their parity with the performance levels observed in FCNNs and 

RNNs. Subsequently, the anticipated demand (step 3) and the projected variance (step 4) were 

synergistically leveraged in devising the Supply Level framework of step 5. In this phase, a 

novel metric, the Mean Oversupply (MO), was introduced to facilitate a comparative 

assessment of the efficacy of the four supply-level models across a specified spectrum of served 

demand, ranging from 70% to 98%. 
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Figure 3.1 Framework for supply level planning 

 

3.2.2 Data transformation 

Data transformation could impact prediction performance and conform the data to 

assumptions specifically for statistical models. From previous studies, the demand prediction 

models, especially machine learning and deep learning models commonly trained with original 

or normalized scale. Two popular normalization techniques aim to convert the data to have the 

same distribution (mean and z-score normalization) or the same scale (min-max normalization 

or 0-1 scale). Min-max normalization in Eq. 3.1 was considered in this study as it is suitable 

for some activations of deep learning models (ex., ReLU). Alternatively, the Box Cox 

transformation stands as a widely adopted power transformation methodology grounded in a 

likelihood maximization estimator. Its principal objectives encompass the stabilization of 

variance, the reduction of skewness, and the alignment of data with a normal distribution. Box 

Cox transformation supports only the positive value, so Yeo and Jonhson [35] extended the 

formulation in Eq. 3.2 to support both positive and negative values while improving the 

normality and symmetry. The formulation of these two transformations is as follows: 

 

𝑥𝑡
𝑛𝑜𝑟𝑚 = 𝑥𝑡 −min⁡(𝑥𝑡)/(max(𝑥𝑡) − min⁡(𝑥𝑡))     (3.1) 
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𝑥𝑡,𝑟
𝐵𝐶 =

{
 
 

 
 𝜆𝑟

−1 [(𝑥𝑡,𝑟 + 1)
𝜆𝑟
− 1] ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ if 𝜆𝑟 ≠ 0, 𝑥𝑡,𝑟 ≥ 0

ln(𝑥𝑡,𝑟 + 1)                                       ⁡⁡⁡⁡⁡⁡  if 𝜆𝑟 = 0, 𝑥𝑡,𝑟 ≥ 0

− [(−𝑥𝑡,𝑟 + 1)
2−𝜆𝑟

− 1] /(2 − 𝜆𝑟)⁡⁡⁡⁡⁡if 𝜆𝑟 ≠ 2, 𝑥𝑡,𝑟 < 0

−ln(−𝑥𝑡,𝑟 + 1)                                ⁡⁡⁡⁡⁡⁡⁡ if 𝜆𝑟 = 2, 𝑥𝑡,𝑟 < 0

  (3.2) 

 

Where 𝑥𝑡
𝑛𝑜𝑟𝑚 is the normalized scale of the variable 𝑥𝑡, while 𝑥𝑡,𝑟

𝐵𝐶  is the Box Cox scale of 

e-scooter demand 𝑥𝑡,𝑟 at time 𝑡 and region 𝑟. 𝜆𝑟 is Box Cox transformation’s parameter for 

region 𝑟. Since e-scooter demand is a nonnegative variable, the change was the first case of Eq. 

3.2, but it has the maximum requirement. In other words, the predicted transformed demand 

𝑥̂𝑡,𝑟
𝐵𝐶 , including the supply level, must be less than −1/𝜆, specifically when 𝜆 < 0. 

 

3.2.3 Demand prediction 

3.2.3.1 Autoregressive integrated moving average (ARIMA) 

ARIMA or Box-Jenkins model is a popular time series model applying differencing to 

make data stationary (Integrated) while the disturbances follow a linear autoregressive moving 

average (ARMA) specification. To remove the seasonal patterns, ARIMA was extended by 

deseasonalizing and including the seasonal ARMA, called SARIMA. Occasionally, the 

independent variables of these two models also include the exogenous variables, called 

ARIMAX or SARIMAX. The general formulation of SARIMA(p,d,q)(P,D,Q,S) [1] are as 

follows:  

 

𝜌(𝐿𝑝)𝜌𝑆(𝐿
𝑃)∆𝑑∆𝑆

𝐷𝒚𝒕 = α + 𝜃(𝐿
𝑝)𝜃𝑆(𝐿

𝑃)𝜖𝑡    (3.3) 

 

Where: 

𝜌𝑆(𝐿
𝑃) = 1 − 𝜌𝑆,1(𝐿

𝑆) − 𝜌𝑆,2(𝐿
2𝑆) − ⋯− 𝜌𝑆,𝑃(𝐿

𝑃𝑆)   

𝜃𝑆(𝐿
𝑃) = 1 + 𝜃𝑆,1(𝐿

𝑆) + 𝜃𝑆,2(𝐿
2𝑆) + ⋯+ 𝜃𝑆,𝑃(𝐿

𝑃𝑆)  

𝐿 is lag operator (𝐿𝑗𝑦𝑡 = 𝑦𝑡−𝑗) 

α is constant term 

∆𝑑 is differencing by ∆ operator 𝑑 times (0 – 2) 

∆𝑆
𝐷 is deseasonalizing by ∆ operator between seasonal lag 𝑆 

𝜖~𝑖. 𝑖. 𝑑. 𝑁(0, 𝜎2)  is white noise disturbance  

 

3.2.3.2 Random forest (RF) 

Random Forest (RF) is a powerful machine learning algorithm dealing with high 

dimensional data while requiring just a small amount of data and training time, introduced by 

Breiman [36]. RF leverages the results from many random decision trees’ predictions (see 

Section 4.2.1), while large numbers of trees are built from randomly selected inputs or 

combinations of inputs (bootstrapping or bootstrap sampling), see Figure 3.2. In this case, 

hundreds of bootstrapping samples (i.e., randomly resampling with replacement) were drawn, 

while decision tree regression was built for each sample (called week learners). For regression 
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problems, RF is simply the average prediction results from each regression tree, while majority-

voting was employed for classification problems. This bootstrap aggregating (or bagging) 

technique could improve the prediction performance of DT as it has high-variance and low-bias 

procedures. This study trained the RF model using a Python module, RandomForestRegressor 

of scikit-learn. Several parameters of RF were examined, such as number of trees in the forest, 

criterion, and depth of regression tree. 

 
Figure 3.2 Flowchart of Random Forest (RF): average all predictions for regression problem 

and majority-voting for classification problem 

 

3.2.3.3 Extreme gradient boosting (XGBoost) 

Extreme Gradient Booting (XGBoost) is an efficient, scalable, and distributed gradient 

booting regressor, started as a research project in the Distributed (Deep) Machine Learning 

Community (DMLC) group [4]. Unlike other gradient boosting algorithms, XGBoost has clever 

penalization of base estimators, a proportional shrinking of terminal nodes, Newton Boosting, 

extra randomization parameters, automatic feature selection, and parallel computing. Moreover, 

it also accepts sparse input and the input types as a dense matrix, sparse matrix, data file, or 

their own class xgb.DMatrix. XGBoost can quickly optimize the loss function as it considers 

both the first-order gradient 𝑔̂𝑚(𝑥) = [
𝜕𝐿(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)
]
𝐹(𝑥)−𝐹𝑛−1(𝑥)

 and the second order gradient 

ℎ̂𝑚(𝑥) = − [
𝜕𝐿2(𝑦,𝐹(𝑥))

𝜕𝐹(𝑥)2
]
𝐹(𝑥)−𝐹𝑛−1(𝑥)

. Instead of residuals, the base learner of XGBoost was 

trained on the negative ratio of these two gradient functions, (−𝑔̂𝑚(𝑥)/ℎ̂𝑚(𝑥)). In this case, 

the python package of XGBoost was used, while two parameters were tuned including depth of 

the trees and the number of gradient-boosted trees. 
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3.2.3.4 Recurrent neural networks (RNN, LSTM, GRU) 

Figure 3.3 shows the three popular cells of RNNs used in transportation demand 

prediction, i.e., simple RNNs cell (a), LSTM cell (b), and GRU cell (c). There are four common 

architectures of RNNs based on the number of inputs and outputs: one-to-one, one-to-many, 

many-to-one, and many-to-many. In the previous studies, most of the RNNs were employed as 

many-to-one architecture based on the local information, while several spatial features were 

included, such as POI, employment density, population density, etc. Therefore, the architecture 

could be trained spatially combined or spatially independent. Since the spatial features are 

static, separate models could provide better prediction performance, but this technique is time-

consuming for many spatial data. On the other hand, many-to-many architecture RNNs could 

be another option as historical data of all spatial demands and external features were combined 

as the input to predict all the future spatial demands. Since this study did not process the exterior 

spatial features, the demand prediction was examined for both spatially independent and 

spatially combined cases, while the best prediction models were selected.  

 

 
Figure 3.3 Schematic illustrations of (a) recurrent neural networks, (b) long short-term 

memory neural networks, and (c) gated recurrent unit 

 

The simple RNNs have sigma (sigmoid function) or tanh cells working as memory cells 

which fuse the current input with previous states. These cells enable RNNs to perform better 

than conventional neural networks. The formula of RNNs cell could be written as:  

 

𝑦𝑡 = ℎ𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏)  (3.4) 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) = 1/(1 + 𝑒𝑥)  (3.5) 

 

Where  𝑥𝑡⁡, ℎ𝑡 and  𝑦𝑡⁡denote the cell's inputs, recurrent information, and output at the time 

t. And  𝑊ℎ⁡⁡,𝑊𝑥, and b are training weights and biases. 

The standard LSTM NNs have three gates: Forget Gate, Input Gate, and Output Gate. 

Forget Gate could be removed from the LSTM cell, but its performance was poor [12]. 

Therefore, the mathematical expressions of LSTM NNs are: 

 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑥𝑥𝑡 + 𝑏𝑓)  (3.6) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑥𝑥𝑡 + 𝑏𝑖)  (3.7) 

𝐶𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊𝐶ℎℎ𝑡−1 +𝑊𝐶𝑥𝑥𝑡 + 𝑏𝐶)  (3.8) 
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𝑡𝑎𝑛ℎ(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥)  (3.9) 

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ 𝐶𝑡
′  (3.10) 

𝑂𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑂ℎℎ𝑡−1 +𝑊𝑂𝑥𝑥𝑡 + 𝑏𝑂)   (3.11) 

ℎ𝑡 = 𝑂𝑡 ∘ 𝑡𝑎𝑛ℎ(𝐶𝑡)  (3.12) 

 

Where ∘ denotes the pointwise multiplication of two matrices called Hadamard product. W 

and b are training weight matrices and bias vectors, respectively. 𝑓𝑡 is forget gate, 𝑖𝑡 is the input 

gate and 𝐶𝑡
′ is current memory. 𝐶𝑡 is the combination of current memory 𝐶𝑡

′ and long-term 

memory 𝐶𝑡−1. Finally, the output gate 𝑂𝑡 controls the temporal information for the output ℎ𝑡. 

GRU has only two gates, reset gate and update gate, so it requires shorter training time than 

LSTM NNs [3] with comparable performance [37]. For this reason, GRU is more suitable for 

hyperparameter tuning than LSTM NNs. The training process of GRU could be expressed as 

follows:  

 

𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑟ℎℎ𝑡−1 +𝑊𝑟𝑥𝑥𝑡 + 𝑏𝑟)  (3.13) 

𝑧𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑧ℎℎ𝑡−1 +𝑊𝑧𝑥𝑥𝑡 + 𝑏𝑧)  (3.14) 

ℎ𝑡̃ = 𝑡𝑎𝑛ℎ(𝑊ℎ̃ℎ(𝑟𝑡 ∘ ℎ𝑡−1) +𝑊ℎ̃𝑥𝑥𝑡 + 𝑏ℎ̃)  (3.15) 

ℎ𝑡 = (1 − 𝑧𝑡) ∘ ℎ𝑡−1 + 𝑧𝑡 ∘ ℎ𝑡̃⁡  (3.16) 

 

Likewise, W and b denote the matrices of training weights and vectors of bias, respectively. 

𝑟𝑡  denotes the reset gate, while 𝑧𝑡 denotes the update gate. Within this context, the GRUs’ 

output ℎ𝑡 at a given time instance t is realized as a linear combination of the previous output 

ℎ𝑡−1 and the projected output ℎ𝑡̃. The sequential layers of GRU in this study are the input layer 

with GRU cell, dropout layer, n number of hidden layers with GRU cell, and dense layer as the 

output layer. 

 

3.2.4 Variance prediction 

As acknowledged, it is understood that the true data cannot be precisely forecasted (i.e., 

𝑦 = ⁡ 𝑦̂ + 𝜎(𝑋)𝜀), given the assumption of an absence of associated errors in the observed data. 

In this particular context, 𝑦̂ = ⁡Ε(𝑦|𝑋), Ε(𝜀|𝑋) = 0, Var(𝜀|𝑋) = Ε(𝜀2|𝑋) − Ε2(𝜀|𝑋) = 1,

Var(𝑦|𝑋) = 𝜎2(X) > 0, and 𝑋 and 𝜀 are independent. Homoscedasticity pertains to the 

circumstance where variance remains consistent, whereas heteroscedasticity indicates variable 

variance. For models grounded in probabilistic principles, such as those predicated on 

assumptions of stationary data, data distribution, and homoscedasticity, diagnostic assessments 

hold significance. Regrettably, this facet has been frequently overlooked within the context of 

machine learning and deep learning. In situations featuring heteroscedastic data, the variance 

can be constructed as a function of the random variables 𝑋. In the domain of time-series 

analysis, the assessment of heteroscedasticity of residuals is typically conducted through the 

examination of autocorrelation in squared residuals and the employment of the Lagrange 

Multiplier (ARCH-LM) test. Typically, the formulation of variance involves the utilization of 

the previous variances and squared residuals. This conception of conditional variance is rooted 

in the notion that periods marked by high and low variance are clustered together [1]. At this 

juncture, two distinct alternatives emerge: the incorporation or exclusion of the conditional 
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variance in influencing the conditional mean. The simultaneous prediction approach, which 

entails integrating the conditional variance within the conditional mean, can yield a nonconvex 

objective function, thereby leading to heightened computational demands. This is primarily due 

to the augmented parameter set that necessitates estimation, particularly during hyperparameter 

tuning. Given these considerations, the present study has opted to pursue the avenue of 

disjointly predicting the anticipated mean and the conditional variance. This decision entails 

disregarding the influence of the conditional variance on the expected mean. This approach 

offers several merits, notably a streamlined model formulation through univariate variance 

modeling, alongside simplified hyperparameter tuning for both demand and variance 

prediction. However, a drawback lies in the potential foregone accuracy enhancement 

achievable by encompassing the conditional variance in the demand prediction model. For 

example, in a similar vein, ARIMA and GARCH were employed to predict the demand and 

variance, respectively, for safety stock estimation by Trapero et al. [38]. In this study, resulting 

from the demand prediction process detailed in Section 3.2.3 were employed to train the 

variance models. This yielded the formulation of three distinct variance models: constant 

variance as described in Eq. 3.17, daily seasonal variance as articulated in Eq. 3.18, and 

forecasted variance achieved via SGARCH as delineated in Eq. 3.19, as presented below: 

 

𝜎𝑐𝑜𝑛
2 (𝑟) =

1

𝑇
∑ 𝜀(𝑡,𝑟)

2𝑇
𝑡=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.17) 

𝜎𝑠𝑒𝑎𝑠
2 (𝑡, 𝑟) =

1

𝑁
(𝜀(𝑡−24,𝑟)

2 + 𝜀(𝑡−2∗24,𝑟)
2 +⋯+ 𝜀(𝑡−𝑁∗24,𝑟)

2 )⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.18) 

𝜎𝑆𝐺𝐴𝑅𝐶𝐻
2 (𝑡, 𝑟) = 𝑎0 + 𝑎1𝜀(𝑡−1,𝑟)

2 + 𝑎2𝜀(𝑡−2,𝑟)
2 + 𝑎3𝜀(𝑡−24,𝑟)

2 + 𝑏1𝜎(𝑡−1,𝑟)
2 + 𝑏2𝜎(𝑡−2,𝑟)

2 + 𝑏3𝜎(𝑡−24,𝑟)
2   (3.19) 

 

In Eq. 3.17, the constant variance of the region 𝑟, denoted as 𝜎𝑐𝑜𝑛
2 (𝑟), manifests as the 

average of squared residuals stemming from the projected demand within that specific region. 

Correspondingly, Eq. 3.18 presents the formulation of the seasonal daily variance, 𝜎𝑠𝑒𝑎𝑠
2 (𝑡, 𝑟), 

which signifies the average of squared residuals pertaining to the anticipated demand during 

the identical hour of each day. Here, 𝑁 denotes the total number of days. Although the 

theoretical equivalence of the seasonal variance on average to the constant variance is expected, 

the former usually exhibits a marginal diminution due to the propensity for evaluation residuals' 

mean to deviate from zero. Formally, 𝜎𝑐𝑜𝑛
2 (𝑟) =

1

24
∑ 𝜎𝑠𝑒𝑎𝑠

2 (𝑡, 𝑟)24
𝑡=1 +

1

24
∑ (𝐸[𝜀𝑠𝑒𝑎𝑠(𝑡, 𝑟)] −
24
𝑡=1

𝐸[𝜀(𝑟)])
2
. Notably, the computation of the constant and daily seasonal variances is grounded in 

the training dataset. Lastly, Eq. 3.19 presents the predicted variance by SGARCH, 

𝜎𝑆𝐺𝐴𝑅𝐶𝐻
2 (𝑡, 𝑟), which was trained separately for each region 𝑟. The SGARCH model's training 

leveraged maximum log-likelihood estimation [1]. In this context, a daily seasonal pattern (S = 

24) was chosen, and insignificant parameters (at the 95% confidence level) in this equation 

would be discarded. 

 

3.2.5 Supply level planning 

As depicted in Figure 3.1, the conceptual framework introduced in this research endeavors 

to facilitate periodic rebalancing operations by adeptly harnessing insights from historical data. 

This strategic framework endeavors to forecast forthcoming demand and variance, thereby 

facilitating the design of well-informed supply levels or inventory levels. Within this 
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investigation, the term "supply level" is defined as the aggregate of supplies stemming from 

operator-initiated rebalancing, drop-offs, and available e-scooters within the vicinity. Notably, 

operators tasked with rebalancing e-scooters must meticulously factor in fluctuations in drop-

off demand, inventory levels, and lead time, all of which can be approximated through the 

models outlined in this study. In accordance with our approach, the estimation of total supply 

is grounded in the demand side, precisely pick-up demand. The study's focal point revolves 

around the anticipation of comprehensive demand before the initiation of rebalancing actions. 

As a result, the aggregate supply level is inferred from the demand side, specifically employing 

solely the pick-up data. To elaborate further, the term "supply level" within this context—

pertaining to inventory or order-up-to levels—adheres to the same formulation as the 

confidence interval, which represents the summation of the projected pick-up demand (as 

detailed in Section 3.2.3) and the safety stock (hinged on the predicted variance outlined in 

Section 3.2.4). The comparative examination of various supply level models was conducted to 

elucidate the efficacy of considering the heteroscedastic nature inherent in shared e-scooter 

demand, thereby informing operational planning with heightened precision. 

Safety stock signifies the inventory allocation aimed at averting stockouts, a consequence 

of demand fluctuations, inaccuracies in forecasts, and supply lead time [39]. In the context of 

station-based shared bicycles, supply levels are devised in alignment with the target service 

level, denoting the likelihood of encountering a shortage event for both pick-up and drop-off 

demands [39, 40]. However, in the scenario of dockless shared e-scooters, users possess the 

flexibility to terminate their trips at any locations, thus permitting the disregard of service levels 

for drop-off trips. Given the variance across supply level models in terms of service levels and 

backorder levels, the typical approach involves juxtaposing the deviations from the target cycle 

service level and backorder level (scaled by safety stock), often illustrated through curves. This 

facilitates the comparative assessment of inventory or supply level models [38]. Notably, this 

study took a distinct approach by evaluating supply level models at equivalent percentages of 

served demand (as depicted in Figure 3.4). This methodology consequently permits a 

comparison through a singular metric, denoted as the Mean Oversupply. The definitions of key 

expressions—Supply Level (𝑆(𝑡,𝑟)), Served Demand (𝑆𝐷𝑡,𝑟), Percentage of Served Demand (𝑃), 

Oversupply (𝑂𝑡,𝑟) and Mean Oversupply (𝑀𝑂) —are delineated below: 

 

𝑆(𝑡,𝑟) = 𝐷̂(𝑡,𝑟) + 𝑑 ∗ 𝜎(𝑡,𝑟)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.20) 

𝑆𝐷(𝑡,𝑟) = min{⁡𝐷(𝑡,𝑟)⁡,⁡⁡⁡𝑆(𝑡,𝑟)}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.21) 

𝑃 = ⁡∑ ∑ 𝑆𝐷(𝑡,𝑟)
𝑇
𝑡=1

𝑅
𝑟=1 ∑ ∑ 𝐷(𝑡,𝑟)

𝑇
𝑡=1

𝑅
𝑟=1⁄   (3.22) 

𝑂𝑡,𝑟 = ⁡max{S(𝑡,𝑟) − 𝐷(𝑡,𝑟)⁡; 0}⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.23) 

𝑀𝑂 =⁡
1

𝑅𝑇
∑ ∑ 𝑂𝑡,𝑟

𝑇
𝑡=1

𝑅
𝑟=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡  (3.24) 

 

Eq. 3.20 illustrates the Supply Level, denoted as S(𝑡,𝑟), as the sum of the forecasted hourly 

demand 𝐷̂(𝑡,𝑟) and the forecasted safety stock within the time interval 𝑡 of region 𝑟. In this 

equation, safety stock is represented as the outcome of multiplying the predicted standard 

deviation 𝜎(𝑡,𝑟) and safety stock parameter 𝑑, which is contingent upon the function involving 

the target service level 𝑍𝑠𝑐𝑜𝑟𝑒, lead time, and time increment [38, 39, 41]. The forecasted 
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standard deviations 𝜎(𝑡,𝑟), as detailed in Section 3.2.4, is the square root of the predicted 

variance—potentially emanating from the constant variance, daily seasonal variance, or 

conditional variance computed by SGARCH. Lead time and time increment are influenced by 

the rebalancing frequency, thereby remaining consistent across various supply level models. As 

a consequence, these parameters are held constant at a unit value. In this specific context, 𝑑 and 

𝑍𝑠𝑐𝑜𝑟𝑒 exhibit equivalence; nevertheless, the safety stock parameter(𝑑) is deliberately adjusted 

to attain the targeted percentage of served demand (refer to Figure 3.4).  

 

 
Figure 3.4 Flowchart of supply level models comparison 
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The served demand in Eq. 3.21 signifies the lesser value between the actual demand 𝐷(𝑡,𝑟) 

and the supply level 𝑆(𝑡,𝑟). In cases where the supply level falls below the actual demand, a 

portion of the demand remains unmet (i.e., 𝑆𝐷(𝑡,𝑟) = 𝑆(𝑡,𝑟)). Conversely, if the supply level 

surpasses the actual demand, a surplus of supply—outlined in Eq. 3.23 (i.e., 𝑆𝐷(𝑡,𝑟) = 𝐷(𝑡,𝑟) 

and 𝑂(𝑡,𝑟) = 𝑆(𝑡,𝑟) − 𝐷(𝑡,𝑟) ≥ 0)—is incurred. In Eq. 3.22, the percentage of served demand 

signifies the ratio of the total projected served demand to the overall actual demand. Given that 

the total actual demand constitutes the summation of both served and unserved demand, the 

percentage of unserved demand corresponds to one minus the percentage of served demand 

(1 − 𝑃). Consequently, an efficient supply level model is characterized by the smallest mean 

oversupply, as detailed in Eq. 3.24, while concurrently preserving an equivalent percentage of 

served (or unserved) demand. It's noteworthy that at a particular percentage of served demand, 

distinct supply level models may exhibit varying safety stock parameter values, as depicted in 

Figure 3.4. Here, 𝑅 represents the total count of regions, while 𝑇 a signifies the total count of 

time intervals.  

 

3.3 Data collection and featuring  

In this study, an exploration was undertaken encompassing three distinct datasets. Initially, 

data was procured from Neuron Mobility, the operator overseeing shared e-scooters within 

Thammasat University's Rangsit Campus in Thailand. The additional datasets were sourced 

from publicly accessible platforms relating to Austin, Texas, and Minneapolis, Minnesota, 

within the United States. In the instance of Austin, a preprocessing step was employed wherein 

trips during the initial months of introduction were excluded, primarily due to concentrated 

operations within the downtown region. The identification and removal of anomalous trips were 

conducted through a series of criteria, including criteria based on trip duration (below 30 

seconds or exceeding two hours), trip distance (below 20 meters or beyond 10 kilometers), and 

date (falling outside the final date boundary). Referring to the concluding date in Table 3.1, the 

cumulative samples for Thammasat, Minneapolis, and Austin were established as 2,352 (24 

hours multiplied by 98 days), 4,704 (24 hours multiplied by 196 days), and 13,680 (24 hours 

multiplied by 570 days), respectively. 

 

Table 3.1 Dataset’s information 

Description Thammasat (TH) Minneapolis (MN) Austin (TX) 

Start Date 23-Jan-19 14-May-19 1-Aug-18 

End Date 30-Apr-19 25-Nov-19 21-Feb-20 

# Days 98 196 570 

# Trips 29,132 913,781 8,689,720 

# Time Intervals (T) 2,352 4,704 13,680 

# Regions (R) 1 15 30 

Trip Distance (km) 1.3 1.7 1.5 

Trip Duration (min) 11.6 12.7 10.4 

 

In this experimental context, the term "demand" pertains to the collective count of pick-up 

trips occurring within a specific time interval (1 hour) and region. For the Thammasat Rangsit 
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Campus, which spans approximately 3.21 square kilometers, our focus encompassed generating 

demand predictions for the comprehensive area. Concerning the Austin dataset, trips were 

categorized based on census tracts, each averaging an area of 2.05 square kilometers. While 

shared e-scooter operations extended across more than 50 census tracts within the Austin 

metropolitan zone, our analysis exclusively targeted the top 30 censuses characterized by an 

average hourly demand exceeding one trip. A substantial discrepancy in demand was observed 

between the downtown census and other censuses, with average hourly demands measuring 

around 208 and 10, respectively (refer to Figure 3.5). In the Minneapolis dataset, trip locations 

were recorded in terms of street names, thereby necessitating the utilization of street centers as 

trip coordinates. To introduce diversity in spatial clustering, the k-means algorithm was 

implemented for trip grouping in Minneapolis. By adhering to the Elbow method, the optimal 

number of spatial clusters was determined as 15. Consequently, the average area of these 

clusters approximated 10 square kilometers, albeit the inner clusters—characterized by denser 

trip activity—were proportionately smaller than the outer regions.  

 

 
Figure 3.5 Average hourly e-scooter demand by census in Austin, Texas 

 

Much like the impact of weather conditions on shared bicycles, the utilization of e-scooters 

is similarly influenced. Weather Underground, a worldwide meteorological network, furnishes 
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an array of weather-related variables at hourly intervals (www.wunderground.com). Notably, 

this historical weather data was exclusively gathered from international airports, thereby 

occasionally engendering significant geographic disparity from the area of study's center. Seven 

pertinent weather attributes were sourced from Wunderground for training purposes, 

encompassing temperature, precipitation, wind speed, humidity, wind gust, atmospheric 

pressure, and dew point. In instances of missing values, this research adopted the approach of 

linear interpolation to ensure data completeness.  

Figure 3.6 illustrates anomalous trends in shared e-scooter demand. Upon closer 

examination, these heightened demand instances were discernibly associated with specific 

annual festivals or gatherings. In the context of Austin, notable annual events included the 

Annual SXSW, Pecan Street Festival, H-E-B Austin Symphony, and City Limits Music Festival. 

Similarly, in Minneapolis, peak ridership aligned with events such as OpenStreets, Pride 

Festival Parade, Stone Arch Bridge Festival, Uptown Art Fair, and State Fair Festival. Notably, 

at Thammasat University, an upsurge in demand was evident during the two-day "Season 

Market" promotional event. The influence of public holidays was also noteworthy, particularly 

in the Thammasat dataset, where a marked decline in ridership was observed owing to reduced 

student presence on campus during such holidays.  

 

 
Figure 3.6 Hourly demand of shared e-scooters in Austin TX (top), Thammasat University 

(bottom-right), and Minneapolis MN (bottom-left) 

 

http://www.wunderground.com/
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Figure 3.7 Average hourly demand of shared e-scooters by day of the week, public holiday, 

and annual events (festival or fair) 

 

 
Figure 3.8 Lag-wise Pearson correlation of weather’s attributes on shared e-scooter demand 

 

Beyond the recurring daily and weekly patterns, the usage trends of shared e-scooters 

exhibited marked seasonality. This was evident through the pronounced surge in demand during 

summer, juxtaposed with a relative decline during winter. Notably, the operators in Minneapolis 

were compelled to suspend operations during the winter season due to safety concerns, a trend 

characterized by a gradual decline in ridership leading up to the onset of snowy conditions. 

Furthermore, shared e-scooter operators adhered to advisory measures, such as postponing 

operations during significant events like the state visit of the US president to Minneapolis on 

October 10, 2019. Consequently, these characteristics were recorded as binary attributes, 

encompassing factors such as annual events or fairs, public holidays, time of day, day of the 

week, day of the month, and temporary suspensions (specifically in Minneapolis). From a short-

trip perspective, the average journey distance for Thammasat, Austin, and Minneapolis stood at 

approximately 1.3, 1.5, and 1.7 kilometers, respectively. Additionally, riders spent an average 

of about 11.6, 10.4, and 12.7 minutes on the e-scooter. By considering the average fare [42], 

the revenue generated per trip in these respective cities amounted to around 1.75, 2.56, and 2.91 

US dollars. At this pricing structure, the cost per e-scooter trip was relatively higher compared 

to shared bikes, a likely factor contributing to the limited popularity of shared e-scooters for 

commuting purposes. 

As shown in Figure 3.7 for Minneapolis, the ridership patterns manifest a notable 

resemblance from Monday to Thursday, while the ridership on Friday is relatively higher that 

other weekdays, specifically during the evening. The ridership in this city on Saturday is 

marginally high during the afternoon, but this ridership is lower than that on Friday during the 

evening. This phenomenon can be attributed to individuals opting for e-scooters to engage in 

leisurely pursuits following an exhaustive workweek, especially Friday evening and night. On 

Sunday, the ridership on this day in Minneapolis exhibits a pattern akin to weekdays, but with 

a relatively diminished nighttime demand compared to the rest of the week. For the Austin 
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dataset, the ridership patterns on weekdays closely resemble those observed in Minneapolis. 

However, demand in Austin experiences a significant increase on Saturdays in contrast to other 

weekdays, while Sunday's ridership mirrors that of typical weekdays, except for a slightly 

heightened demand in the afternoon. From these two datasets, a discernible divergence between 

weekdays and weekends is noticeable, featuring a minor morning peak. This indicates the 

utilization of shared e-scooters for commuting purposes, albeit at a relatively modest ratio. 

During public holidays, Austin witnesses subdued demand in comparison to regular days, yet 

still surpassing the majority of weekdays during the afternoon, while the demand trend in 

Minneapolis echoes that of Sundays. Notably, both cities experience a substantial surge in 

demand during annual festival days, with Austin's demand reaching nearly double that of 

regular days.  

At Thammasat University, weekend demand exhibits a relatively diminished trend 

compared to weekdays, with Friday afternoons registering lower demand compared to other 

weekdays. This pattern underscores the interrelation between e-scooter demand and the 

presence of students and faculty on the campus. Typically, demand peaks on Tuesdays, 

surpassing other weekdays. Furthermore, ridership also corresponds to student activities—

demand rises from early morning until the afternoon but notably declines around 7 am, 

coinciding with students being primarily engaged in class. Analogous to the preceding datasets, 

Thammasat's ridership experiences significant surges during annual events.  

Figure 3.8. illustrates the Pearson correlation between the prevailing ridership and lagged 

weather attributes. In this context, both Austin and Minneapolis exhibit a congruent trend 

wherein the current demand displays a robust correlation with weather attributes, notably 

temperature and humidity. The correlation coefficients adopt a contrasting pattern that reflects 

the daily cycle. Conversely, Thammasat's current demand manifests a weak correlation with 

contemporaneous weather conditions, yet a strong correlation with past or future weather 

conditions. This discrepancy can be attributed to distinct peak demand periods for e-scooters 

around midday, as opposed to the temperature's peak occurring at approximately 3 pm. 

Consequently, historical weather attribute data were also incorporated into the demand 

prediction models, with a specific focus on machine learning and deep learning models.  

The demand patterns delineated earlier influenced the selection of inputs for the demand 

prediction models, as succinctly outlined in Table 3.2. Given the presence of both daily and 

weekly seasonal fluctuations, the temporal scope for demand prediction encompassed a span of 

24 to 168 hours (equivalent to 24 times 7 days). Notably, as delineated in Table 3.2, the 

application of Box Cox transformation (# Trips BC) demonstrated a marked reduction in the 

volatility of hourly demand in comparison to the original scale (# Trips). Three input 

components—historical average of overall demand (encompassing weekly, holiday, and event 

patterns) —are particularly pivotal for the SARIMAX model, given its inherent limitation in 

accommodating the binary values of these exogenous variables. Furthermore, the temporary 

ban was imposed only in Minneapolis, this attribute was incorporated into the prediction models 

as a binary variable.  
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Table 3.2 Description of inputs for demand prediction models 

Inputs Thammasat (TH) Minneapolis (MN) Austin (TX) 

# Trips 11.59 ± 11.65 12.50 ± 22.39 16.91 ± 59.98 

# Trips BC 2.72 ± 1.55 1.65 ± 1.73 1.88 ± 2.56 

Temperature 30.46 ± 3.31 15.96 ± 9.33 19.70 ± 9.37 

Dew point 23.48 ± 2.89 9.29 ± 8.81 13.24 ± 8.84 

Humidity 68.28 ± 16.05 66.89 ± 16.22 69.96 ± 20.27 

Wind speed 12.15 ± 5.00 14.26 ± 7.78 13.01 ± 9.23 

Wind gust 0.06 ± 2.19 7.66 ± 16.82 4.95 ± 13.46 

Pressure 1010.24 ± 2.78 983.87 ± 6.31 996.93 ± 13.38 

Precipitation 0.12 ± 0.46 0.16 ± 1.09 0.10 ± 1.03 

HAO weekly 11.88 ± 8.78 192 ± 159.68 527.44 ± 369.44 

HAO holiday 11.63 ± 7.68 157.98 ± 141.91 409.31 ± 282.48 

HAO event 25.38 ± 18.14 253.53 ± 220.21 1082.10 ± 793.52 

Hour of day 0 - 1 0 - 1 0 - 1 

Day of week 0 - 1 0 - 1 0 - 1 

Day of month 1 - 31 1 - 31 1 - 31 

Holiday 0 - 1 0 - 1 0 - 1 

Event 0 - 1 0 - 1 0 - 1 

Ban - 0 - 1 - 

Note: HAO: Historical Average of Overall demand, & BC: Box Cox scale 

 

To ensure the generalizability of the models, the whole datasets were partitioned into two 

segments: the training subset (in-sample) and the testing subset (out-of-sample). The initial 75% 

of the dataset was allocated for training the models, while the remaining 25% was reserved for 

evaluation purposes (refer to Figure 3.6). From Figure 3.7, volatility remains low during 

periods of steady demand but escalates proportionally with heightened demand levels. 

Similarly, numerous leisurely events, festivals, and fairs take place during the summer, resulting 

in increased and fluctuating demand for shared e-scooters. Consequently, 75% of the training 

subset was randomly designated for model training, and the remaining 25% was set aside for 

model assessment. This random partitioning approach was chosen due to its significantly 

reduced computational times in comparison to techniques like K-Folding, particularly during 

hyperparameter optimization. Furthermore, it allows the models to learn explanatory variables 

(such as events, holidays, and bans) that pertain to specific dates, which might be omitted if 

employing conventional time-series splitting. However, due to the relatively modest size of the 

Thammasat Dataset, all available data were utilized for both model training and evaluation 

purposes.  

 

3.4 Demand and variance prediction  

3.4.1 Demand prediction results  

Aligned with the research framework depicted in Figure 3.1, six predictive models were 

employed to forecast the hourly ridership of shared e-scooters. These models comprised 

SARIMAX, RF, XGBoost, FCNNs, RNNs, and GRUs. The deep learning models (FCNNs, 
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RNNs, and GRUs) were implemented using Keras and TensorFlow, Python libraries, within the 

Jupyter Notebook environment. Subsequently, Random Forest and XGBoost were trained 

utilizing the Scikit-learn and XGBoost libraries, respectively. Lastly, SARIMAX was trained 

using the STATA statistical software as it facilitated the out-of-bag evaluation process.  

The description of the GRU cell formulation was presented in Section 3.2.3.4. The 

architectural configuration of GRUs is illustrated in Figure 3.9, encompassing the input layer 

with GRU nodes, a single dropout layer, a cluster of hidden layers with GRU nodes, and the 

output layer with conventional neurons. In Figure 3.9, input sequences are sequentially 

arranged before entering the input layer, and the outputs from this layer are subject to dropout 

at a specific rate to enhance learning efficacy with smoother learning curves. Uniform activation 

functions and node counts were applied across the hidden layers. Within this architecture, the 

output layer may consist of one or multiple neurons, permitting training of temporal demand 

either spatially independently or spatially combined, respectively. Both spatially independent 

and spatially integrated configurations were explored, with the optimal outcome chosen. These 

two training methodologies each possess merits and drawbacks. Spatially independent training 

enables models to attain optimal learning curves unhindered, albeit at the cost of disregarding 

valuable information from neighboring regions. Conversely, the model featuring multiple 

spatial outputs capitalizes on shared correlated information across regions to enhance prediction 

performance, albeit necessitating careful optimization for best results.  

 

 
Figure 3.9 The proposed architecture of GRUs model 

 

While deep learning models can surpass traditional probabilistic models and machine 

learning algorithms in performance, they also necessitate labor-intensive hyperparameter 

optimization. Hyperparameter Optimization (HPO) involves fine-tuning aspects such as the 

number of GRU nodes within the input layer, dropout rate, and the number of hidden layers, 

among others. Various strategies were employed during this phase, encompassing grid search, 

random search, and automatic optimization techniques like Bayesian Optimization, Tree-

structured Parzen Estimator, and genetic algorithms, among others. Bayesian Optimization 

(BO) holds prominence as a sequential optimization methodology well-suited for resource-

intensive problems, particularly those inherent to deep learning. BO relies on two crucial 

components: a surrogate function employing Gaussian Processes, and an acquisition function 

using Upper Confidence Bound to balance exploration and exploitation. To optimize the GRU 

configurations, Keras Tuner [43], a Python package for Bayesian optimization-based HPO, was 
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employed. This process was executed within the Keras and TensorFlow frameworks, operating 

through Jupyter Notebook. Default settings were employed for all Bayesian Optimization 

parameters, with the validation loss serving as the objective function. The initial points were 

set to 10, and the maximum iterations were capped at 80. Furthermore, the number of epochs 

was adjusted through early stopping criteria, incorporating a patience value of 10 and a 

maximum epoch limit of 150.  

In this research, Bayesian Optimization (BO) was applied to fine-tune nine pivotal 

hyperparameters of the Gated Recurrent Units (GRUs), encompassing aspects such as the 

lookback length, input layer’s activation function and number of GRU nodes, dropout rate, 

number of hidden layers, hidden layers’ activation function and number of GRU nodes, output 

layer’s activation function, and batch size (as outlined in Table 3.3). The HPO procedure was 

carried out in a series of sequential steps due to several factors (refer to Figure 3.10): prolonged 

training time stemming from the lookback length and number of hidden layers, challenges 

related to local optima, iterations failing to converge, and instances of exploding iterations 

where the loss function attains an infinite value. Initially, deep learning models with a solitary 

hidden layer were independently optimized for diverse lookback lengths (24, 48, …, 168) to 

identify the most optimal lookback length. Subsequently, for each designated lookback length, 

the BO algorithm, employing the aforementioned configuration, sought to minimize the 

validation loss by manipulating factors such as the number of nodes per layer, dropout rate, 

activation function of each layer, and batch size. Following the determination of the optimal 

lookback length, the configuration of deep learning models underwent re-optimization to 

account for a higher number of hidden layers. Within this optimization, three activation 

functions—ReLU, Tanh, and Sigmoid—were considered, alongside dropout rates ranging from 

0.00 to 0.40 in increments of 0.01. The number of nodes per layer was confined between 10 

and 500 with an interval of 10. The batch size was examined within the range of 4 to 1000. The 

remaining parameters of the GRUs retained their default values, encompassing the optimizer 

(Adam), learning rate (0.001), and the employment of Mean Squared Error (MSE) as the loss 

function.  

The predictive efficacy of the Gated Recurrent Units (GRUs) was juxtaposed against five 

additional benchmark models, namely SARIMAX, RF, XGBoost, FCNNs, and RNNs. 

Moreover, the influence of Box Cox transformation on Root Mean Squared Error (RMSE) and 

Mean Absolute Error (MAE) was demonstrated by incorporating the Historical Average (HA) 

model. The other five models for demand prediction underwent optimization using BO for 

FCNNs and RNNs, and grid search for SARIMAX, RF, and XGBoost. This optimization 

process is outlined in Table 3.3. Notably, SARIMAX, RF, and XGBoost models were trained 

individually for each distinct region, while FCNNs and RNNs shared the same configurations 

as GRUs. To mitigate overfitting issues, especially prevalent in RF and XGBoost, the difference 

between training and validation loss was maintained at approximately 15%. A brief overview 

of these five baseline models is presented below: 

• SARIMAX: As evidenced in Figure 3.7, a distinct daily and weekly pattern is observed. 

Hence, SARIMAX was structured to incorporate a daily seasonality (i.e., S=24). This 

involved integrating three exogenous variables within the SARIMAX model, namely the 

hourly average demand categorized by day of the week, public holidays, and events. To 

facilitate the out-of-bag evaluation, SARIMAX was trained using a statistical program, 
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STATA. As outlined in Table 3.3, a grid search was executed to optimize six parameters of 

SARIMAX. These encompassed the degree of differencing (d), deseasonalizing degree (D), 

seasonal (P) and non-seasonal (p) autoregressive lag polynomial, and seasonal (Q) and non-

seasonal (q) moving average lag polynomial. Importantly, all parameters, including the 

exogenous variables, needed to be statistically significant at a 95% confidence level. 

Ultimately, the model exhibiting the smallest Root Mean Squared Error (RMSE) was 

selected.  

• RF: This model was trained in a spatially independent manner for each spatial (i.e., region) 

demand, where historical ridership and other relevant features were flattened prior to model 

training. The tuning of RF involved a grid search for three key hyperparameters: the 

lookback length (ranging from 24 to 168), the number of trees in the forest (ranging from 10 

to 500), and the maximum depth of the trees (ranging from 0 to 15).  

• XGBoost: This model underwent a training process similar to that of RF. 

• FCNNs: The architecture of FCNNs closely resembled that of GRUs (refer to Figure 3.9), 

employing simple neurons in each node. As a reference model, FCNNs were configured with 

a maximum of 2 hidden layers and up to 100 nodes per layer, adhering to the conventional 

architecture [3, 44]. Other hyperparameters of FCNNs were optimized using BO, as outlined 

in Table 3.3. In this context, FCNNs were trained both spatially independently and in a 

combined manner, with the selection of the optimal models.  

• RNNs: The training process for RNNs resembled that of FCNNs, except that a simple RNN 

cell was used in each node.  

 

Table 3.3 Description of hyperparameter optimization for demand prediction models 

Model Parameters Value Range Tuning 

GRUs 

RNNs 

FCNNs 

Lookback length (LL) 24, 48, …, 168 

Bayesian  

Optimization 

Activation input layer Relu, Tanh, Sigmoid 

# Nodes input layer 10, 20, 30, …, 500 

Dropout rate 0.0 - 0.40 

# Hidden layer (#HL) 1 - 5 

Activation of hidden layer Relu, Tanh, Sigmoid 

# Nodes in hidden layer 10, 20, 30, …, 500 

Activation output layer Relu, Tanh, Sigmoid 

Batch size 4 - 1000 

XGBoost 

Lookback length 24, 48, …, 168 
Grid 

Search 
# Gradient-boosted trees 10, 15, 20, …, 500 

Max-depth of tree 0, 1, 2, …, 10 

Random 

Forest 

Lookback length 24, 48, 72, …, 168 
Grid 

Search 
# Trees in the forest 10, 15, 20, …, 300 

Max-depth of tree 0, 1, 2, …, 15 

SARIMAX 

(p, d, q) * 

(P, D, Q, 24) 

p 0 - 5 

Grid 

Search 

d 0 - 2 

q 0 - 5 

P 0 - 2 

D 0 - 2 

Q 0 - 2 
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Based on our analysis, it was evident that the sigmoid activation function required nearly 

twice the number of epochs compared to the Tanh or ReLU functions, although it exhibited a 

smoother learning curve. Furthermore, the Austin dataset necessitated spatially independent 

training, while the Minneapolis dataset was trained with multiple spatial outputs. The outcomes 

of hyperparameter optimization for GRUs using the original scale, guided by BO, are depicted 

in Figure 3.10, specifically for the Downtown Census in Austin, TX. The optimal lookback 

length was determined to be 120, and three hidden layers demonstrated superior prediction 

performance. Notably, training GRUs with original data resulted in improved outcomes 

compared to their normalized counterparts, particularly with respect to model generalization. 

This observation was underpinned by the fact that the optimal architectures for normalized data 

frequently employed Tanh or Sigmoid activation functions, leading to effective learning of the 

training data and susceptibility to overfitting issues, especially when contrasted with benchmark 

models. These findings aligned with prior research [34], where it was demonstrated that Box 

Cox transformation facilitated simpler models in comparison to the original scale. This was 

evident in SARIMAX models, where many exogenous variables turned out to be insignificant. 

Additionally, the optimal GRUs model for Austin data featured two hidden layers for the 

original scale, as opposed to only one for data transformed with Box Cox. Consequently, Box 

Cox transformation proves to be advantageous for deep learning applications, as it can curtail 

training times, especially during hyperparameter tuning. 

 

 

 
Figure 3.10 Hyperparameter optimization of GRUs by BO for Downtown Census in Austin, 

TX 
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Table 3.4 presents a comprehensive comparison of performance between Box Cox 

transformed data and the original or normalized counterparts (excluding the Thammasat Dataset 

due to a lack of testing data). For both original and normalized data, deep learning models 

exhibited enhancements in prediction performance, as reflected in the RMSE and MAE metrics. 

Notably, these improvements were significantly influenced by the number of tuned 

hyperparameters. Box Cox transformation showcased similar trends in the Austin and 

Thammasat datasets, whereas its impact differed in the Minneapolis dataset. Functioning as a 

generalized logarithmic transformation, Box Cox effectively compressed the atypical demand 

outliers towards the mean, thereby fostering model simplification and an increase in accuracy, 

particularly with the MAE metric. This phenomenon is evident in Table 3.2, which highlights 

that the ratio of demand's mean to standard deviation between the original and Box Cox scales 

stood at approximately 7 and 15, respectively. Furthermore, Table 3.4 underscores that while 

the RMSE of the Historical Average (HA) in the original scale was lower than that in the Box 

Cox scale, the converse was true for the MAE metric. The impact of Box Cox transformation 

on demand volatility is the rationale behind the relatively inferior performance of deep learning 

models for the Minneapolis dataset compared to SARIMAX. This is attributed to the fact that 

Box Cox transformation rendered temporal information from neighboring regions less 

pertinent. Consequently, it is evident that Box Cox transformed data from Minneapolis should 

be trained spatially independently. In essence, Box Cox transformation is particularly 

advantageous when dealing with datasets characterized by high irregularity or a limited number 

of exogenous variables. In summary, across all datasets, Box Cox transformation yielded 

reductions of 0.14% and 5.36% in the RMSE and MAE metrics, respectively.  

 

Table 3.4 Performance comparison based on RMSE and MAE 

Dataset Models 

Original or Normalized Data Box Cox Transformed Data 

RMSE-

Eval. 

RMSE-

Test 

MAE-

Eval. 

MAE-

Test 

RMSE-

Eval. 

RMSE-

Test 

MAE-

Eval. 

MAE-

Test 

Thammasat 

Thailand 

GRUs 5.27 - 3.41 - 5.18 - 3.37 - 

RNNs 5.52 - 3.75 - 4.91 - 3.40 - 

FCNNs 5.52 - 3.76 - 5.00 - 3.46 - 

XGBoost 5.21 - 3.64 - 5.17 - 3.46 - 

RF 5.30 - 3.72 - 5.31 - 3.56 - 

SARIMAX 5.47  3.82  5.26  3.62  

HA 11.65 - 8.69 - 12.24 - 8.32 - 

Minneapolis 

Minnesota 

GRUs 6.96 6.34 3.58 2.89 7.18 6.92 3.67 2.99 

RNNs 7.07 6.25 3.49 2.85 7.75 6.82 3.80 2.95 

FCNNs 7.53 6.48 4.06 3.08 8.38 7.30 3.83 3.33 

XGBoost 7.44 6.44 4.04 3.37 7.16 6.04 3.66 2.73 

RF 7.34 6.39 3.85 3.21 7.35 6.20 3.76 2.81 

SARIMAX 7.79 6.24 4.08 3.07 7.72 6.03 3.85 2.64 

HA 21.21 16.83 12.97 11.08 23.80 17.39 12.28 8.55 

Austin 

Texas 

GRUs 11.24 11.28 4.15 3.70 11.20 11.01 4.00 3.54 

RNNs 11.34 11.58 4.21 3.73 11.52 11.96 4.10 3.60 

FCNNs 11.47 11.22 4.16 3.67 12.50 11.86 4.21 3.72 

XGBoost 11.29 11.83 4.29 3.89 13.06 11.75 4.29 3.70 

RF 12.18 12.00 4.31 3.92 12.54 12.21 4.26 3.77 

SARIMAX 12.30 11.13 4.58 3.83 12.60 11.23 4.40 3.54 

HA 50.49 36.44 14.82 12.53 53.95 37.30 14.34 10.90 
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Figure 3.11 Demand prediction by GRUs with original and Box Cox scale for Downtown 

Census in Austin, TX 

 

SARIMAX exhibited superior predictive accuracy on the testing dataset compared to other 

models due to the testing data aligning with a period of low demand. Nonetheless, this 

regression model demonstrated limitations during high-demand periods, such as summer, while 

GRUs achieved robust performance across both training and testing datasets. Figure 3.11 

visually illustrates a comparison of e-scooter demand predictions using GRUs, considering both 

the original and Box Cox scales, specifically for the Downtown census in Austin, Texas. Both 

models demonstrated adeptness in capturing the hourly demand patterns of shared e-scooters. 

Although variations in prediction results exist between the two models, particularly during peak 

demand periods, their overall predictive performance remains commendable. Notably, both 

models accurately predict low-demand periods during the nighttime, yet exhibit diminished 

performance during the afternoon and evening when demand and volatility are high, as depicted 

in Figure 3.12. 

 

3.4.2 Variance prediction results  

Capturing valuable insights from historical data plays a pivotal role in formulating effective 

operational strategies for dockless shared e-scooters, enabling efficient resource management 

and cost minimization. While advanced demand prediction models have demonstrated 

remarkable capabilities in forecasting future demand, inherent uncertainties remain, particularly 

associated with the residuals of these demand prediction models. Illustrated in Figure 3.1, 

safety stock serves as a customary approach to accommodate these uncertainties, contingent 

upon the fluctuations in demand. This underscores the importance of variance analysis in 

crafting an optimized supply level. Two crucial attributes of residuals wield significance in the 

design of supply levels: their distribution and heteroscedastic nature. Residuals stemming from 

forecasting models typically adhere to either a Normal or Student's t-distribution. This attribute 

bears relevance in the selection of the confidence level value (𝑍𝑠𝑐𝑜𝑟𝑒) or the cover rate (the 

proportion of data residing within the confines of the confidence interval). As expounded in 

Section 3.4, the concept of heteroscedasticity pertains to the temporal pattern exhibited by 

residuals, necessitating that inventory design aligns proportionally with this observed pattern.  
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Figure 3.12 illustrates the scatter plot and histogram of daily residuals for GRUs in both 

the original and Box Cox scales. In the case of the original scale, the distribution displayed 

heavier tails compared to the normal distribution, thereby suggesting the suitability of the 

student's t-distribution for these residuals. On the other hand, for GRUs using the Box Cox 

scale, the residuals exhibited somewhat thicker tails, albeit to a practically negligible extent. 

Observing the daily scatter plot, a distinct daily pattern emerged in the residuals for the original 

scale, whereas this pattern remained nearly constant for the Box Cox scale. To validate the 

presence of heteroscedasticity in the residuals, an ARCH-LM test was conducted. The outcome 

revealed the rejection of the null hypothesis (indicating no ARCH effects), given the p-value 

falling below the 5% threshold for both the original and Box Cox scales. It's worth noting, 

however, that the coefficients of the SGARCH model in the Box Cox scale were relatively 

minute, thereby allowing for the statistical disregard of ARCH effects [1, 34]. 

 

     
Figure 3.12 Daily scatter plot and histogram of GRUs’ residuals for Downtown Census in 

Austin, TX: (top) original data and (bottom) Box Cox transformed data 
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In the context of GRUs using the original scale, as depicted in Figure 3.12 (top), the 97.5% 

upper Confidence Interval (CI) maintained a consistent standard deviation and yielded a cover 

rate (Service Level Type I) of 96.79%. The subtle variation was not the primary concern; rather, 

it was the distribution of residuals surpassing the upper CI. In the initial half (0-11), merely 

0.56% of residuals exceeded the upper CI, while in the latter half (12-23), this proportion 

escalated to 2.65%. This disparity indicated that while the upper CI with a constant standard 

deviation performed admirably in the first half, its effectiveness waned in the subsequent half. 

Conversely, the 97.5% upper CI considering the daily standard deviation achieved an overall 

cover rate of 96.8%, accompanied by outlier residuals (laying above the upper CI) of 1.65% 

and 1.55% for the first and second halves, respectively. With this cover rate, the percentage of 

served demand (Service Level Type II) amounted to 99.24% and 99.36% for the upper CI 

employing constant and daily standard deviation, respectively. Furthermore, the upper CI with 

a constant standard deviation translated to a supply ratio (the ratio of total supply to total actual 

demand) of 145%, whereas that of the upper CI considering daily standard deviation was 

139.4%. In essence, despite sharing the same cover rate, the upper CI (or supply level) based 

on the daily standard deviation demonstrated lower inventory (resulting in reduced operational 

costs) while concurrently exhibiting a higher percentage of served demand (yielding increased 

trip revenue) compared to the upper CI dependent on a constant standard deviation.  

Depicted in Figure 3.12, the residuals associated with the original scale persisted in 

displaying a seasonal pattern, which was corroborated by the ARCH-LM test that established 

the existence of ARCH effects. To delve further into the variance patterns, the SGARCH model 

in Eq. 3.19 was introduced for analysis. The comparison of variance prediction models, namely 

Constant, Daily Seasonal, and SGARCH, is presented in Figure 3.13, focusing on the residuals 

of GRUs employing the original scale within the Downtown Census of Austin, Texas. This 

graphical representation elucidates the limitations of constant variance or mean squared error, 

given their incapacity to capture conditional variance. While the daily seasonal variance does 

to some extent incorporate the diurnal volatility pattern, it proves insufficiently adaptable to 

long-term demand fluctuations. Conversely, the predicted variance derived from the SGARCH 

model exhibits notable flexibility in tracking conditional variance. However, this approach does 

possess a key drawback: substantial errors are propagated to the subsequent seasonal step. The 

comparison of four supply-level models of GRUs at a 98% served demand is showcased in 

Figure 3.14. Supply levels characterized by constant variance exhibit excessive oversupply 

during nighttime demand but fall short of meeting afternoon demand requirements. Conversely, 

the supply level predicated on Box Cox variance demonstrates commendable performance, 

albeit with certain peak points stemming from the logarithmic inversion effect. Supply levels 

grounded in daily and SGARCH variance share a comparable pattern, yet the latter, 

underpinned by SGARCH variance, more effectively allocates uncertainty across long-term 

demand fluctuations.  

In essence, variance analysis proved essential for the original or normalized datasets, 

whereas the Box Cox transformed data necessitated only constant variance consideration. 

Within the context of original or normalized data, three distinct variances were scrutinized: 

constant, daily, and forecasted variances as determined by the SGARCH model. The study 

encompassed a comparison of four distinct supply level models for each demand prediction 

model. Among these, three pertained to the demand prediction model employing the original or 
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normalized scale, incorporating diverse variance models (constant, daily, and SGARCH-

predicted variances). The fourth supply level model corresponded to the demand prediction 

model utilizing the Box Cox transformed scale in conjunction with constant variance. The 

supply level designs underwent assessment across three distinct demand prediction models: 

SARIMAX, XGBoost, and GRUs. These prediction models represent established 

methodologies in the realms of statistical-based, machine-learning, and deep-learning 

modeling, respectively.  

 

 
Figure 3.13 Variance prediction for residuals of GRUs with original scale data of Downtown 

Census in Austin, TX 

 

 
Figure 3.14 Comparison of supply level models of GRUs at 98% served demand (cover rate 

of around 90%) of Downtown Census in Austin, TX 
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3.5 Supply planning design  

As indicated earlier, confidence intervals prove inadequate for guiding daily operational 

planning due to their failure to incorporate the magnitude of residuals, particularly in the case 

of heteroscedastic datasets. Furthermore, different CI models tend to yield varying inventory 

levels (operational cost) and anticipated served demand (trip revenue), even when maintaining 

the same cover rate. Hence, this study opted to evaluate supply level models based on an equal 

percentage of served demand (equivalent number of served or unserved demands) to facilitate 

a comparison of oversupplies (referred to as MO). To achieve uniform percentages of served 

demand, the safety stock parameter (d) was individually adjusted for each supply level model, 

adhering to the guidelines outlined in the flowchart presented in Figure 3.4. In practical 

applications, this parameter should be configured according to the desired service level 

(consistent with 𝑍𝑠𝑐𝑜𝑟𝑒) or iteratively tuned until the supply level attains the maximum number 

of e-scooters.  

The comparison of mean oversupply (MO) in Table 3.5 was conducted using the training 

data for the Thammasat dataset, while the remaining two datasets were assessed using the 

testing dataset. Based on the outcomes observed in the Thammasat dataset, Box Cox 

transformation exhibited effectiveness in supply level determination, yielding the lowest mean 

oversupply across models, with the exception of XGBoost. Additionally, the SARIMAX model 

utilizing Box Cox transformed data demonstrated comparable MO values when compared to 

the worst-case scenario of GRUs with constant variance. Interestingly, the SARIMAX model 

even outperformed GRUs in terms of mean oversupply at higher percentages of served demand 

(95% and above). Overall, GRUs exhibited smaller MO values in comparison to SARIMAX, 

underscoring the significance of accurate demand prediction. The disparity between the least 

favorable and most favorable cases of GRUs' supply level models exhibited a noteworthy 

increase as the percentage of served demand rose, peaking at 98% served demand. To elaborate, 

operators aiming to achieve a 98% served demand using the supply level model with constant 

variance encountered an average hourly oversupply of 8 e-scooters. In contrast, adopting the 

supply level model with Box Cox variance allowed for a reduction in oversupply to 

approximately seven e-scooters per hour. By implementing this reduction strategy, operators 

could potentially save up to 30 e-scooters during a 3-hour rebalancing cycle for ten spatial 

regions, thereby eliminating the need to relocate these redundant 30 e-scooters.  

In this comparative analysis of the Minneapolis dataset, the trend of the MO metric 

mirrored that of the accuracy performance. Specifically, SARIMAX and XGBoost 

demonstrated good performance with Box Cox transformation, whereas GRUs exhibited lower 

MO with the original scale. The variation in MO was subtle at lower percentages of served 

demand (or 𝑑 < 0), but it became notably pronounced at higher percentages. This dataset also 

underscored the limitations of Box Cox transformation, as it led to elevated MO values at 98% 

served demand. This outcome could be attributed to the impact of the exponential 

transformation, especially when the lambda (𝜆) value approaches -1, which amplifies the 

discrepancy between the Box Cox scale and the conversion scale (as illustrated in Figure 3.15). 

Hence, it becomes imperative to cautiously restrict the maximum value of the designed supply 

level, denoted as 𝑆(𝑡,𝑟), for Box Cox transformed data. Despite SARIMAX achieving the lowest 

MO in this dataset due to its superior demand prediction on the testing dataset, it is conceivable 
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that GRUs would excel in both demand prediction accuracy and mean oversupply during 

periods of heightened demand, such as the summer season.   

The application of Box Cox transformation yielded minimal MO values in the Austin 

dataset for served demands up to 90%. However, akin to the Minneapolis scenario, this 

technique encountered challenges at higher served demand percentages. Nevertheless, the 

performance of the predicted variance was commendable. At a served demand of 95%, GRUs 

exhibited a reduction of approximately one MO unit between constant variance and predicted 

variance models. This indicates that operators could potentially save around 30 e-scooters per 

hour (equivalent to 720 e-scooters in daily rebalancing operations). This gain could be 

substantially magnified with an increase in the number of regions or a longer rebalancing 

interval; for instance, a reduction of up to 50 e-scooters per hour for 50 regions or approximately  

 

Table 3.5 Mean oversupply comparison for four supply level models 

Dataset 

Supply Level 

Model 
Mean Oversupply by Percentage of Served Demand 

Demand Model Variance Model 70% 75% 80% 85% 90% 95% 98% 

Thammasat 

Thailand 

GRUs 

Constant Variance 0.615 0.835 1.179 1.710 2.707 4.880 8.069 

Daily Variance 0.586 0.816 1.160 1.704 2.629 4.490 7.130 

SGARCH Variance 0.591 0.815 1.181 1.704 2.605 4.458 7.259 

Box Cox Variance 0.465 0.695 1.069 1.631 2.557 4.330 7.091 

XGBoost 

Constant Variance 0.546 0.774 1.106 1.667 2.754 4.928 8.184 

Daily Variance 0.546 0.793 1.138 1.670 2.601 4.441 7.075 

SGARCH Variance 0.577 0.814 1.147 1.668 2.566 4.313 6.909 

Box Cox Variance 0.527 0.773 1.132 1.672 2.572 4.385 6.951 

SARIMAX 

Constant Variance 0.745 1.029 1.414 2.029 3.063 5.304 8.974 

Daily Variance 0.772 1.046 1.418 2.021 2.941 4.779 7.563 

SGARCH Variance 0.721 0.992 1.401 2.030 3.022 5.022 7.831 

Box Cox Variance 0.631 0.897 1.282 1.875 2.813 4.603 7.304 

Minneapolis 

Minnesota 

GRUs 

Constant Variance 0.582 0.803 1.142 1.980 3.562 6.894 11.845 

Daily Variance 0.597 0.821 1.155 1.676 2.700 4.916 8.202 

SGARCH Variance 0.594 0.829 1.155 1.653 2.516 4.412 7.504 

Box Cox Variance 0.573 0.815 1.200 1.823 2.948 5.868 11.484 

XGBoost 

Constant Variance 0.538 0.785 1.185 1.849 3.428 6.892 12.078 

Daily Variance 0.589 0.855 1.242 1.891 3.024 5.379 8.844 

SGARCH Variance 0.704 0.976 1.351 1.918 2.907 4.912 8.212 

Box Cox Variance 0.439 0.639 0.942 1.437 2.364 4.682 8.880 

SARIMAX 

Constant Variance 0.538 0.778 1.129 1.695 2.994 5.977 10.696 

Daily Variance 0.571 0.806 1.149 1.706 2.629 4.702 7.844 

SGARCH Variance 0.618 0.857 1.203 1.717 2.529 4.210 6.957 

Box Cox Variance 0.414 0.602 0.891 1.371 2.254 4.333 8.407 

Austin 

Texas 

GRUs 

Constant Variance 0.528 0.740 1.054 1.538 2.577 5.457 11.131 

Daily Variance 0.484 0.686 1.000 1.520 2.538 5.003 9.784 

SGARCH Variance 0.492 0.709 1.030 1.537 2.485 4.683 8.380 

Box Cox Variance 0.305 0.502 0.822 1.356 2.329 4.699 9.094 

XGBoost 

Constant Variance 0.533 0.769 1.124 1.665 2.682 5.608 11.766 

Daily Variance 0.495 0.720 1.065 1.629 2.679 5.241 10.259 

SGARCH Variance 0.540 0.786 1.144 1.681 2.642 4.958 8.886 

Box Cox Variance 0.349 0.573 0.932 1.523 2.627 5.081 9.521 

SARIMAX 

Constant Variance 0.546 0.771 1.105 1.623 2.616 5.305 10.768 

Daily Variance 0.543 0.765 1.097 1.623 2.563 4.780 9.038 

SGARCH Variance 0.496 0.728 1.077 1.619 2.548 4.583 7.992 

Box Cox Variance 0.330 0.530 0.849 1.382 2.338 4.469 8.375 
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Figure 3.15 Impact of exponential conversion on supply level estimation with Box Cox 

transformed data 

100 e-scooters for the same spatial coverage with a 2-hour rebalancing cycle. Similar to the 

Minneapolis case, the MO of SARIMAX was inferior to that of GRUs and XGBoost due to the 

seasonal demand pattern. In summation, across all datasets, incorporating conditional variance 

in supply level design resulted in a potential reduction of oversupply by approximately 26.22% 

at a 95% served demand level (equivalent to a shortage reduction of 5%). 

 

3.6 Discussion and conclusion 

This study presents a pragmatic framework aimed at devising an efficient supply planning 

strategy for addressing the heteroscedastic demand encountered in shared dockless e-scooter 

systems. The investigation involves the application of a range of prominent deep learning and 

machine learning models to predict hourly demand, followed by an analysis of the residuals' 

variance. The efficacy of this proposed methodology is evaluated across three distinct datasets 

pertaining to dockless shared e-scooter operations in Austin, TX, Minneapolis, MN, and 

Thammasat, TH.  

The process entails meticulous hyperparameter tuning for both machine learning and deep 

learning models. The empirical findings indicate that demand prediction models, particularly 

those based on deep learning, exhibit remarkable performance levels. However, the residuals 

do not conform to the characteristics of white noise. This realization underscores the necessity 

of devising supply strategies tailored to the peculiarities of heteroscedastic demand. Such 

strategies involve the employment of variance-stabilizing transformations, exemplified by the 

Box Cox transformation, or the adoption of variance analysis, encompassing options such as 

daily seasonal variance or predicted variance through SGARCH.  

While seasonal variance effectively curtails oversupply, its effectiveness diminishes when 

confronted with more protracted temporal residuals, notably those associated with yearly 

patterns. However, the introduction of a conditional variance model like SGARCH can 

surmount this limitation. An equally intriguing avenue is the utilization of the Box Cox 

transformation, a variance-stabilizing transformation. This approach not only enhances the 

performance of demand prediction models, particularly in terms of Mean Absolute Error 

(MAE), but also facilitates judicious supply-level planning, particularly at lower percentages 
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of served demand. It is imperative, though, to set an appropriate upper limit for supply-level 

planning when employing the Box Cox transformation to address higher percentages of served 

demand. 

At a 95% served demand level, incorporating the consideration of heteroscedastic demand 

into supply level planning can yield a significant reduction in oversupply, quantified at 26.22%. 

In summation, this study underscores the insufficiency of demand prediction, even when 

leveraging deep learning, for short-term operational planning of shared e-scooter systems. 

These systems are characterized by high maintenance costs, short service life, erratic demand 

patterns, and stringent regulations. From a policy standpoint, operators stand to benefit from 

adopting our framework to mitigate demand uncertainties in their daily operations. This 

framework can be complemented by other strategies, such as customer incentives and a hybrid 

approach encompassing real-time and periodic rebalancing mechanisms. 
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CHAPTER 4 

4. HYPERPARAMETER OPTIMIZATION BY ITERATIVE DECISION 

TREE (IDT) 
4.1 Introduction 

There has been considerable focus from both the academic and corporate sectors on the 

implementation of machine learning (ML) and deep learning (DL) techniques, influenced by 

various factors [1], [2], [3], and [4]. Initially, the utilization of conventional statistical models 

becomes problematic when dealing with the ever-expanding volumes of high-dimensional data. 

Additionally, the advanced algorithms derived from ML and DL have demonstrated impressive 

predictive capabilities, significantly influencing the demanding business landscape. Lastly, the 

recent advent of high-performance computing resources enables the rapid training of intricate 

models encompassing millions of trainable parameters, especially when executed in parallel.  

However, these ML and DL models need a lot of computational work, particularly when it 

comes to fine-tuning the hyperparameters (outer variables) and optimizing the trainable or 

ordinary parameters (inner variables). Trainable or ordinary parameters denote the weight 

matrix or bias vector associated with a specific model, and they are automatically optimized or 

learned during the model training phase. On the other hand, hyperparameters relate to parameter 

sets that users frequently set. The hyperparameters for straightforward artificial neural networks 

(ANNs) can include batch size, learning rate, activation function, number of layers, and neurons 

per layer, among others. The training dataset is used to optimize ordinary parameters, which are 

primarily continuous variables (inner optimization). Conversely, hyperparameters can take on 

continuous, integer, binary, or categorical values, resulting in objective functions that are 

typically non-differentiable. And these objective functions are optimized using the validation 

dataset (known as outer optimization). Additionally, certain studies have aimed to optimize both 

the ordinary parameters and hyperparameters expeditiously, either by treating them as a unified 

objective function [5], [6], [7] or by considering multiple objective functions [8], [9], [10]. 

Hyperparameter Optimization (HPO) can be addressed through the utilization of meta-learning, 

employing either a single learning algorithm (homogeneous meta-learning) or multiple learning 

algorithms (heterogeneous meta-learning). This approach enables the simultaneous 

optimization of both the configuration of the learners and the learning algorithms themselves. 

A thorough examination of heterogeneous meta-learning can be found in [1], while popular 

frameworks such as Auto-WEKA, Hyperopt-sklearn, Auto-sklearn, Auto-Net, etc., have been 

developed. In conclusion, there has been a lot of prior research on automatic machine learning 

(AutoML) to reduce human intervention and bias, making it more approachable for laypeople.  

This study exclusively centers on Hyperparameter Optimization (HPO), assuming the 

objective function to be black-box, computationally intensive, and non-differentiable. As 

discussed in [1] and [4], the origins of the HPO problem can be traced back to the early 1990s 

when researchers began comparing the predictive performance of a single model with varying 

configurations. The primary objective of HPO is to identify the optimal combination of 

hyperparameters that yield the highest or lowest prediction performance on the validation dataset, 

depending on whether it involves maximization or minimization. The maximization variant of 

the HPO problem is typically formulated as follows:  
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𝑥∗ = argmax
𝑥

{𝑓(𝑥): 𝑥 ∈ 𝑋} (4.1) 

 

The objective function 𝑓(𝑥) in HPO represents the quantity to be maximized, which could 

be metrics such as accuracy or the negative Mean Squared Error (MSE). However, in HPO, this 

function lacks an explicit expression as its value corresponds to the evaluated performance of 

the model on the evaluation dataset or a specific objective function, such as a weighted average 

MSE computed from the training and validation datasets. The optimal set of hyperparameters 

𝑥∗ represents the combination that yields the highest value of the objective function, while 𝑥 

represents a potential hyperparameter combination drawn from the search space 𝑋.  

A significant body of literature on Hyperparameter Optimization (HPO) exists, which can be 

classified into distinct categories: manual search, model-free approach, model-based approach, 

population-based approach, and optimization-based approach.  

Manual Search (MS), also referred to as “Trial and Error,” “Babysitting,” or “Grad Student 

Descent,” is an HPO technique that relies on human expertise to determine the adjustments to 

be made to hyperparameters in each iteration. It involves a series of trial-and-error experiments, 

guided by the practitioner's knowledge and historical experience until either time constraints 

are reached or a stopping criterion is met [11]. As a result, MS often relies on "rule of thumb" 

or default settings, relying on prior knowledge and personal preferences. This approach is time-

consuming and computationally expensive [12], often leading to locally optimal results [13], 

[14], and limited reproducibility [1]. However, MS provides valuable insights into the impact 

of individual hyperparameters and does not require significant computational resources [15]. 

Therefore, MS is well-suited for addressing HPO challenges associated with simple learning 

algorithms with few hyperparameters. 

Model-Free Approach encompasses those automatic HPO techniques that rely on trial-and-

error or random-walk exploration of the hyperparameter space. This approach primarily includes 

two main techniques: Grid Search (GS) and Random Search (RS). GS is a fundamental method 

in HPO that involves evaluating all possible combinations of hyperparameters. However, GS is 

highly sensitive to the number of hyperparameters, as the number of potential configurations 

increases exponentially. To mitigate this challenge, GS is often conducted on a coarse grid, ex., 

step sizes of 100 or powers of 2. Alternatively, certain hyperparameters may be varied while 

keeping others fixed to estimate the model's performance [16]. RS involves evaluating learning 

algorithm configurations randomly sampled within each hyperparameter's lower and upper 

bounds until the allocated budget is depleted. Given that each hyperparameter affects the 

objective function differently, RS is theoretically more effective than GS when working with a 

tight budget or in high-dimensional spaces [17]. Floria and Andonie [18] introduced an extension 

to Random Search (RS) known as Weighted Random Search (WRS), where each hyperparameter 

is assigned a distinct probability of change. Additionally, the Multi-fidelity approach has been 

applied to RS for HPO. This approach allocates low-fidelity (early stopping) and high-fidelity 

evaluations to underperforming and potentially promising configurations. Bandit-based 

algorithms, such as successive halving [19], [20], [3], and Hyperband [21], divide the total budget 

(e.g., 100 epochs) into several rungs (e.g., 10 epochs per rung). All configurations are compared 

within each rung, and half of the configurations with unfavorable performance are eliminated. 
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One advantage of these model-free approaches is that the configurations can be trained 

independently, making it straightforward to implement model parallelism [1], [3], [4].  

Model-Based Approach, also known as sequential model-based optimization (SMBO), 

utilizes a surrogate regression model 𝑓(𝑋) to understand the impact of hyperparameters 𝑋 on the 

given black-box function 𝑓(𝑥). The surrogate function is trained using a limited number of initial 

random configurations, and subsequently, an acquisition function is employed to propose a new 

candidate configuration. Subsequently, the performance of this new configuration is evaluated, 

and the surrogate function is updated accordingly. This sequential process continues iteratively 

until the stopping criteria are met. Within the Model-Based Approach, numerous algorithms have 

been proposed, each utilizing distinct surrogate models and strategies for selecting new 

hyperparameters. These algorithms include Bayesian Optimization (BO) [22], [23], [24], 

Sequential Model-based Algorithm Configuration (SMAC) employing random forest [25], Tree-

structured Parzen Estimator (TPE) [14], Nelder-Mead [26], and several others. In order to reduce 

the training time of sequential HPO algorithms, several multi-fidelity approaches have been 

combined with Bayesian Optimization (BO). Examples of such combinations include Freeze-

thaw BO [27], BO with Bayesian Optimal Stopping (BO-BOS) [28], and BO with HyperBand 

(BOBH) [29]. Most algorithms within this approach suggest only a single new candidate per 

iteration, which makes parallelization challenging. However, there have been efforts to enable 

parallel computing in Sequential Model-Based Optimization (SMBO) approaches, including 

BOBH [29], BO with Pure Exploration (GP-UCB-PE) [30], BO with multi-points Expected 

Improvement (BO-q-EI) [31], and Batch BO with parallel knowledge gradient [32]. 

Population-Based or Nature-Inspired Approach refers to optimization techniques that draw 

inspiration from biological evolution, involving concepts such as reproduction, mutation, 

selection, and the interaction of agents [33]. Within this approach, numerous algorithms have 

been proposed to solve optimization problems across various fields, and recently, some popular 

algorithms have been applied to Hyperparameter Optimization (HPO). For instance, the 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has been utilized for the parallel 

optimization of Convolutional Neural Networks (CNNs) architectures [34]. The Genetic 

Algorithm (GA), known as one of the most popular evolutionary algorithms, has been employed 

for parallel search in various configurations, including CNNs [13], Deep Belief Networks (DBN) 

[35], Lenet-5 CNNs, and convolutional autoencoder [36]. Additionally, other population-based 

algorithms have been applied in Hyperparameter Optimization (HPO), such as Particle Swarm 

Optimization (PSO) [11], Univariate Dynamic Encoding Algorithm for Searches (uDEAS) [37], 

Cuckoo Search [38], Differential Evolution (DE) [39], Simulated Annealing (SA) [40], and 

Harmony Search [41]. These nature-inspired algorithms have also been extended to enhance their 

searching performance, for example, the combination of GA and Tabu Search (Tabu_Genetic 

Algorithm) [42], GA with Local Search (Memetic Algorithm) [43], and the Statistically-driven 

Coral Reef Optimization algorithm with Hybridisation (HSCRO) [44]. 

In the optimization-based or gradient-based approach, several studies have made efforts to 

estimate the gradients of validation performance with respect to all hyperparameters. For 

example, Maclaurin et al. [5] employed backpropagation of stochastic gradient descent with 

momentum to compute the exact gradients of continuous hyperparameters in a neural network 

architecture. Brock et al. [6] introduced One-Shot Model Architecture Search through 

HyperNetworks (SMASH) to approximate architecture weights using HyperNet. Likewise, 
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Lorraine and Duvenaud [7] extended SMASH, known as Hyper-Training, by applying the chain 

rule to jointly optimize deep learning's weights and hyperparameters through stochastic 

optimization. Furthermore, the bilevel optimization framework has been utilized to 

simultaneously optimize the validation loss (outer objective) and training loss (inner objective) 

for tasks such as data augmentation strategy [9] and the integration of gradient-based HPO and 

meta-learning [10]. 

In summary, extensive research has been conducted on HPO algorithms, with a focus on 

assisting automated machine learning. Two prominent approaches in this field are the sequential 

and population-based approaches. The sequential-based approach is well-suited for scenarios 

involving expensive objective functions. However, it has a limitation in that it suggests only one 

new candidate in each iteration, making it challenging to implement in parallel computing. On 

the other hand, the population-based approach is more suitable for situations with inexpensive 

objective functions, as it can suggest dozens to hundreds of new candidates per generation, 

enabling easy parallel computation. A significant disparity exists between the sequential-based 

and population-based approaches in terms of the number of candidates suggested per iteration. 

Additionally, reproducibility, particularly for deep learning models, is a concern, as many HPO 

algorithms tend to retrain repetitive candidates, leading to variations in results. This study 

proposes a novel HPO algorithm called Iterative Decision Tree (IDT) to address these limitations. 

IDT is a sequential-based algorithm that utilizes Decision Tree (DT) regression as the surrogate 

function. In other words, a DT regressor is employed to partition the search space based on the 

evaluated points, ensuring that all possible candidates within each region yield the same expected 

result. Unlike traditional approaches, IDT does not rely on an acquisition function. Instead, it 

suggests new candidates by selecting extreme or random points from the best-performed region 

(exploitation). To enhance exploration capabilities, the algorithm suggests new candidates from 

a few up to a dozen of the best-performed regions, thereby increasing the diversity of the search. 

By offering flexibility in selecting the number of new candidates per iteration and emphasizing 

reproducibility, IDT aims to overcome the limitations of existing HPO algorithms. 

The following is a summary of the study's contributions:  

• Introduce a novel algorithm for hyperparameter optimization (HPO) called Iterative Decision 

Tree (IDT), which utilizes Decision Tree regression as the surrogate function. This approach 

addresses certain limitations observed in existing algorithms. The proposed IDT algorithm 

consists of two variants: IDT-E, which selects extreme points as new candidates, and IDT-R, 

which employs random selections.  

• Conduct a comparative analysis of the proposed algorithms (IDT-E and IDT-R) against several 

widely-used state-of-the-art algorithms, namely Grid Search, Random Search, Bayesian 

Optimization, Random Forest, Tree-structured Parzen Estimator, and Genetic Algorithm.  

• Assess the efficacy of the IDT algorithm by evaluating its performance on diverse optimization 

problems, including benchmark nonconvex functions and hyperparameters of Support Vector 

Machine (SVM), Random Forest (RF), Auto-Encoder (AE), and Convolutional Neural 

Networks (CNNs). The evaluation of hyperparameter optimization involves employing 

benchmark datasets such as digits classification, car evaluation classification, MNIST, and 

CIFAR-10 for the respective models. 
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4.2 Literature review 

Even machine learning (ML) and deep learning (DL) models could outperform the 

statistical approaches, but they need to be traded off between accuracy against training cost and 

model complexity. Therefore, hyperparameter optimization (HPO) or hyperparameter tuning is 

necessary to control DL models' reproducibility, accuracy, and overfitting. As a result from 

Chapter 3, some configurations or hyperparameters of machine learning and deep learning 

models could perform worse than statistical models. Under computational time constraints, the 

HPO approaches presented above were employed to optimize only some important 

hyperparameters, while other hyperparameters might be fixed or use default values.  

Most RNNs were trained with default parameters or standard architecture to reduce the 

training time during hyperparameter tuning. LSTM-based Sequence to Sequence (S2S) 

architecture was used to predict the household loading based on 60 sequence length and Adam 

optimizer, and tuning two parameters, number of hidden layers and nodes per layer [45]. The 

combination of feedforward NNs and LSTM NNs was employed to predict the PM2.5 

Concentration in Jingjinji area, China [46]. The authors constructed the model by combining 2 

FNN layers with one or two LSTM NNs layers with a sequence length of 48, 3 neighborhoods, 

100 epochs, 256 batch size, 0.1 dropout rate, and RMSprop optimizer. The architecture, 1-

Shared Feedforward NNs + 2-Bi-directional RNNs + Soft Attention Mechanism, was proposed 

to predict bike sharing (Citi Bike) in New York [47]. The authors trained this architecture to 

predict the real value using Relu activation and 50 epochs. RNNs were used for intrusion 

detection with only two tuned parameters, learning rate and number of nodes per layer [48]. To 

deal with the volatility of residential’s loading, LSTM NNs were used to predict the loading of 

household appliances by tuning only one parameter, the sequence length [49]. The combination 

of LSTM NNs and Gaussian Mixture Model (GMM) was proposed to predict the health status 

of aircraft turbofan engines [50]. This model’s configuration comprises one LSTM layer with 

64 nodes, 10% dropout rate, batch size of 10, Adam optimizer with learning rate (0.0001) and 

gradient clipping (1.0), and 5-component GMM.  

C. Xu, Ji, and Liu (2018) used LSTM NNs to predict dockless shared bike demand in 

Nanjing (Jiangsu), China. Grid search on four parameters (number of epochs, batch size, 

number of nodes, and dropout rate) of LSTM NNs was examined [51]. Wang and Kim (2018) 

employed Random Forest, LSTM NNs, and GRU to predict station-level bike availability in 

Suzhou (China), and these models yielded almost the same performance. This study set the 

parameters for GRU NNs and LSTM NNs as: 2 hidden layers, 100 nodes in each hidden layer, 

and 25 epochs [52]. Kumar, Hussain, Banarjee, and Reza (2018) employed RNNs, LSTM NNs, 

and GRU to predict electricity load by tuning only two parameters, number of hidden layers 

and number of nodes per layer. Their results showed that the performance of these three models 

could be ranked from worst to best as RNNs, LSTM NNs, and GRU, respectively [53]. Huang 

and Kuo (2018) combine 1-Dimensional Convolutional Neural Networks and LSTM NNs to 

predict the hourly PM2.5 Concentration in Beijing [54]. This architecture comprises three layers 

of CNN1D with SELU activation connecting to one-layer LSTM NNs and a dense output layer 

with sigmoid activation. The data were transformed with normalization before inputting into 

the architecture, while the best model was selected using early stoppage criteria. Random 

Search algorithm was proposed to tune the configuration of GRU in detecting the electricity 
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cyber-attack [55]. This algorithm was used to find the optimal values of 4 parameters such as 

number of layers, number of nodes per layer, activation function, and optimizer. On the other 

hand, Manual Search was performed to find optimal hyperparameters (ex., hidden layers, 

number of nodes, dropout rate, learning rate, number of epochs, batch size and lookback length) 

of Bi-LSTM NNs in fog-cloud-based intrusion detection [56]. 

This architecture was also the baseline for multistep shared bike availability [57]. Similarly, 

LSTM NNs were used to predict City Bike demand in New York by fixing the number of hidden 

layers to 2 with 1000 nodes each [58]. To improve the performance of LSTM NNs, the authors 

added demand data from the nearby regions, called Neighborhood-Augmented LSTM NNs, to 

predict taxi-passenger demand in Porto, Portugal [59]. The authors performed grid search for 

many parameters, such as number of neighborhoods, window size, number of hidden layers, 

number of nodes per layer, batch size, epochs, and dropout rate. Uddin, Bapery, and Arif (2019) 

used GRU model to predict depression statements on Bangla social media. This study used 

hyperparameter tuning for four parameters: number of GRU layers, layer size, batch size, and 

number of epochs [60].  

Grid Search was employed to tune the parameters (Transformation, number of hidden 

layers, number of nodes per layer, dropout rate, epoch, learning rate, optimizer) of LST NNs 

for Solar Irradiance Forecasting [61]. LSTM NNs were used to predict the time series datasets 

on Kaggle by randomly tuning two parameters, including the number of hidden layers and 

nodes per layer [62]. The combination of CNN1D with ANNs was used to predict the daily 

rainfall in Maharashtra [63]. To ascertain the best configuration of the model, the authors try 

some random searches for several parameters, including activation function, epoch, number of 

hidden layers, number of nodes per layer, batch size, learning rate, dropout rate, number of 

filters, kernel size, pooling size, and loss function, while fixing other three parameters such as 

data normalization, five lookback lags, and Adam optimizer. LSTM architecture with 4 dropout 

layers and 4 hidden LSTM layers was employed to predict daily open prices of GOOGL and 

NKE, while 4 cases of epochs (12, 25, 50, 100) were examined [64]. LSTM NNs and GRUs 

were employed to forecast wind power, while several hyperparameters were optimized by 

manual search (ex., number of hidden layers, and number of nodes per layer) and grid search 

(ex., batch size, epochs, optimizer, activation function, and kernel initializer) [65]. Similarly, 

grid search was also employed to optimize the hyperparameters (ex., number of nodes per layer, 

batch size, dropout rate, activation function, lookback length, and epochs) of LSTM NNs and 

GRUs in pore pressure prediction [66]. Several recent studies employed grid search to optimize, 

RNN models for waste disposal rate prediction [67, 68], RNN models for high-speed train 

vibration prediction [69], graph convolutional recurrent neural networks (GCRNNs) for water 

demand forecasting [70], and RNN-based hybrid and ensembles for stock market prediction 

[71]. 

Yahyaoui (2019) employed three optimizations, Bayesian optimization with Gaussian 

Process (BO-GP), Tree-structured Parzen Estimator (TPE), and Covariance Matrix Adaptation 

Evolutionary Strategy (CMAES), to tune the configuration of LSTM NNs in financial time 

series forecasting. These three algorithms were employed to find the best parameter of LSTM 

NNs’ parameters: Sequence Length, Number of Hidden Layers, Number of Nodes per layer, 

Dropout Rate, Learning Rate, and Activation Function of Hidden Layers. His result shows that 

TPE could achieve the overall highest performance for in-sample and out-of-sample metrics, 
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speed, and low trial-to-trial variability [72]. Wu et al. (2019) employed Bayesian Optimization 

(BO) algorithm to find the optimal parameters for RF, CNNs, and RNNs. This BO algorithm 

cannot tune sequential decision parameters such as the number of layers, number of nodes per 

layer, and filter size. In this case, they employed BO algorithm to optimize only the learning 

rate and batch size for RNNs [22]. TPE was used to tune LSTM NNs in household appliances' 

load consumption by tuning four parameters, including sequence length, number of hidden 

layers, number of nodes per layer, and optimizer optimization [73]. In addition, TPE 

optimization was applied for hyperparameter tuning of Multi-Attention Recurrent Neural 

Networks and compared with the random and manual search [74]. In this research, the authors 

tuned several parameters such as activation function, attention length, number of nodes per 

layer, dropout rate, and learning rate, while other parameters were fixed as sequence length 

(24), batch size (128), epoch (10), Adam optimizer, and Normalization.  

Swarm optimizations were also popular for hyperparameter tuning for deep learning. For 

instance, Rashid, Aziz, and Hasan (2019) employed Particle Swarm Optimization (PSO) 

algorithm for tuning the parameters of RNNs in machine failure prediction. However, PSO is 

feasible for only the linear parameters, so this algorithm could cope with only the learning rate 

[75]. Harmony Search Algorithm was employed to tune the CNNs models to predict the MNIST 

and Cifar-10 datasets [41]. Four critical parameters of CNNs were tuned by this algorithm, 

including kernel size, pooling size, number of channels, and strides. [38]. Five public datasets 

were used to evaluate the efficiency of the Cuckoo Search Algorithm in tuning the parameters 

of LSTM NNs, including the number of hidden layers, number of nodes per layer, and 

optimizers [38]. On the other hand, Bouktif, Fiaz, Ouni, and Serhani (2020) combined PSO and 

Genetic Algorithm (GA) to find the optimal parameters for LSTM NNs for electric load 

forecasting. Their methodology was used to find the optimal parameter one by one, including 

the number of sequences, sequence length, starting point, number of nodes, batch size, 

activation function, and optimizer [76].  

Differential evolution was used to tune two variables (number of nodes per layer and batch 

size) of LSTM NNs for motion classification [39]. The sequence length is fixed to be 25 and 8 

for EEG and BVP, respectively, while the number of epochs and learning rate are 10 and 0.0025. 

The authors compare the performance with other algorithms at three different levels of 

interactions, such as 50, 100, and 300. Yoo (2019) proposed an automatic parameter 

optimization for deep neural networks using Univariate Dynamic Encoding Algorithms for 

Searches (uDEAS). As a result, this algorithm could converge to the optimal solution using 402 

and 802 searches compared to 218 and 224 possibilities of grid search for three parameters, 

learning rate, number of hidden layers, and batch size [37]. Lastly, two deep learning models 

(RNNs and CNNs) and three datasets (human intension recognition EEG, activity recognition 

by wearable sensors IMU, and activity recognition by pervasive sensors RFID) were employed 

to evaluate the performance of Orthogonal Array Tuning Method (OATM) [77]. For RNNs, the 

authors tuned several parameters, such as the learning rate, the regularization coefficient, the 

number of hidden layers, and the number of nodes in each hidden layer. On the other hand, 

some parameters of CNNs were tuned, including the learning rate, the filter size, the number of 

convolutional and pooling layers, and the number of nodes in the second fully connected layer. 

In summary, this study also evaluates the effectiveness of the proposed HPO algorithm, 

Iterative Decision Tree (IDT), in predicting the spatiotemporal demand of shared e-scooters. 
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Due to time limitations, we selected only two models, Random Forest (RF) and Gated Recurrent 

Units (GRUs), as the case study. The evaluations were performed on three datasets, as 

mentioned in the previous chapter, namely Thammasat (TH), Minneapolis (MN), and Austin 

(TC). Based on the literature reviewed above, it is commonly observed that several 

hyperparameters of recurrent neural network architectures need to be optimized to achieve 

desirable prediction results. These hyperparameters include the lookback length, number of 

layers, number of nodes per layer, activation function, dropout rate, learning rate, and batch 

size. Therefore, in this study, we also optimized these hyperparameters for GRUs to predict the 

spatiotemporal demand of shared e-scooters. In this section, RF was employed to predict the 

spatiotemporal demand of shared e-scooters while optimizing several hyperparameters, 

including the lookback length, sampling rate, number of trees in the forest, and maximum depth 

of the tree. 

 

Table 4.1 Summary of hyperparameter tuning methods of deep learning models 

# Authors Year 
Deep Learning 

Models 

Hyperparameter 
Tuning Method 

Hyperparameters 

Fixed Varied 

1 Marino et al. 2016 

LSTM NNs 

Sequence2- 

Sequence 

Grid Search 
60 Lookback Length,  

Adam 

No. HLayers,  

No. Nodes/layer 

2 Fan et al. 2017 
FNN + LSTM 

NNs 
No 

48 Lookback Length, 2 

FNNs+1/2 LSTM NNs, 3 

Neighborhoods, 100 Epoch 256 

Batch Size, 10% Dropout Rate, 

RMSProp 

- 

3 P. Chen et al. 2017 
SFNNs+ Bi-

RNNs + SAM 
No 

Real-Value, 2 HLayers Relu 

Activation, 12 Nodes/layer, 50 

Epochs 

- 

4 Yin et al. 2017 RNNs Grid Search 
Normalization,  

100 Epochs 

Learning Rate &  

No. Nodes/layer 

5 Kong et al. 2017 LSTM NNs Grid Search 

Linear Activation, Adam, 2 

HLayers + 1Dense Layer, 512 

Nodes/layer 

Lookback Length 

6 Kong et al. 2017 LSTM NNs 
Tree-structured 

Parzen Estimator 
- 

Lookback Length, No. HLayers,  

No. Nodes/layer, Optimizer 

7 C. Xu et al. 2018 LSTM NNs Grid Search 
5 Neighborhoods, Adam, 

Standardization 

Batch Size, Dropout Rate,  

No. of Nodes & Epoch 

8 
B. Wang & 

Kim 
2018 

LSTM NNs 

& GRU 
Grid Search 

2 HLayers, 25 Epochs, 

100 Nodes/layer 
Lookback Length 

9 Kumar et al. 2018 
RNNs, LSTM 

NNs, GRU 
Grid Search 24 Lookback Length 

No. of HLayers & 

No. of Nodes/layer 

10 Huang & Kuo 2018 
CNN1D + 

LSTM NNs 
No 

Normalization, SELU/ Sigmoid, 

24 Lookback Length, 3 CNN1D 

layers + 1 LSTM NNs layer, 

Early Stoppage 

- 

11 Nabil et al. 2018 GRU Random Search 
10 Epochs, 350 Batch Size, 

20% Dropout Rate 

No. Layers, No. Nodes/layer, 

Optimizer & Activation 

12 Lee et al. 2018 CNN 
Harmony Search 

Algorithm 
2 Conv layers + 2 ANN layer 

Kernel Size, Pooling Size, Stride, 

Padding 

13 Nakisa et al. 2018 LSTM NNs 
Differential 

Evolution 

25/8 Lookback Length 

10 Epochs 

0.0025 Learning Rate 

No. Nodes/layer, Batch Size 

14 Liu et al. 2019 LSTM NNs No 
20 Lookback Length, 2 

HLayers, 100 Nodes/layer 
- 

15 Y. Pan et al. 2019 LSTM NNs No 

 

24 Lookback Length, 2 

HLayers, 1000 Nodes/layer 

 

- 
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# Authors Year 
Deep Learning 

Models 

Hyperparameter 
Tuning Method 

Hyperparameters 

Fixed Varied 

16 Le Quy et al. 2019 LSTM NNs Grid Search 
Normalization, Adam, 

Tanh Activation 

Lookback Length, Batch Size, No. 

of Neighborhoods, Epochs, 

HLayers, Nodes per Layer & 

Dropout Rate 

17 Uddin et al. 2019 GRU Grid Search 0.0001 Learning Rate 
No. of HLayers, Epochs, 

Nodes/layer, Batch Size 

18 
Husein & 

Chung 
2019 LSTM NNs Grid Search - 

Transformation, No. HLayers, 

No. Nodes/layer, Dropout Rate, 

Epoch, Learning Rate, Optimizer 

19 
Peter &  

Matskevichus 
2019 LSTM NNs Random Search - No. Layers, No. Nodes/layer 

20 Yahyaoui 2019 LSTM NNs 

BO-GP, TPE 

Covariance 

Matrix 

Adaptation 

Evolutionary 

Strategy 

Adam, Early Stoppage (1000), 

32 Batch Size, Linear Activation 

for Output Layer 

Lookback Length, No. HLayers, 

No. Nodes/layer, Dropout Rate, 

Learning Rate, Activation Function 

of HLayers 

21 J. Wu et al. 2019 

Random Forest, 

CNNs, RNNs, 

Cascade Forest 

Bayesian 

Optimization 

1 HLayers,  

28 Lookback Length, 

128 Nodes/layer 

Batch Size, Learning Rate 

22 
Mashlakov et 

al. 
2019 

Multi-Attention 

RNNs 

Tree-structured 

Parzen Estimator 

24 Lookback Length, 128 Batch 

Size, 10 Epochs, Adam, 

Normalization 

Activation Function, No. layer of 

Attention, No. Nodes/layer, 

Dropout Rate, Learning Rate 

23 Rashid et al. 2019 LSTM NNs 
Particle Swarm 

Optimization 

100/500/1000 Epochs 

2/4/6 Nodes/layer 
Learning Rate 

24 
Srivastava et 

al. 
2019 LSTM NNs 

Cuckoo Search 

Algorithm 
400 Epochs 

No. HLayers, No. of Node/layer 

Optimizer 

25 Yoo 2019 
Autoencoder 

CNN 

Univariate 

Dynamic 

Encoding 

Algorithm 

1 HLayer, 20 Epochs 

2 CNN Layers, 20 Epochs, 3 

Filter Size 

Learning Rate, No. Nodes, Batch 

Size, Conv L1 & L2 

26 
X. Zhang et 

al. 
2019 

CNNs  

RNNs 

Orthogonal 

Array 

Tuning Method 

Adam 

Learning Rate, Filter Size, No. 

Conv. &Pool Layers, No. Nodes 

ANN layers 

Learning Rate, No. Hlayers+2 

LSTM, No. Nodes/layer, 

Regularization Coef. 

27 
M. I. Khan & 

Maity 
2020 

CNN1D + 

ANNs 
Random Search 

5 Lookback Length, Adam, 

Normalization 

Activation Function, Epoch,  

No. HLayers, No. Nodes/layer, 

Batch Size, Learning Rate, 

Dropout Rate, No. of Filter, Kernel 

Size, Pooling Size, Loss Function 

28 Boukif et al. 2020 
LSTM NNs + 

ANNs 

Genetic 

Algorithm + 

Particle Swarm 

Algorithm 

1 LSTM + 3 ANN layers, Early 

Stoppage, Dropout Rate,  

No. Nodes/ANNs layer 

No. of Sequence, Lookback 

Length, Starting Points, Activation 

Function, No. LSTM, Batch Size, 

Optimizer 

29 
Moghar &  

Hamiche 
2020 LSTM NNs Grid Search 

5 LSTM Layers + 4 Dropout 

Layers, 

50 Lookback Length, 96 

Nodes/layer 

Epoch 

30 Q. Wu et al. 2020 

LSTM NNs + 

Gaussian 

Mixture Model 

No 

64 Nodes, 10 Batch Size, Adam 

Optimizer, 0.0001 Learning 

Rate, 1.0 Gradient Clipping, 

10% Dropout Rate, Data 

Augmentation 

- 

31 Ham et al. 2021 
ERD or  

CNNs +RNNs 
Grid Search 

5 Lookback Length, 5 RNNs 

layers 

Learning rate, Activation Function 

GRU or LSTM cell, Input features 

32 Kisvari et al. 2021 
LSTM NNs & 

GRUs 

Grid Search 

Manual Search 
- 

Batch Size, Epochs, Optimizer, 

Activation Function, Kernel 

Initializer, No. Nodes/layer, No. 

HLayers 
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# Authors Year 
Deep Learning 

Models 

Hyperparameter 

Tuning Method 

Hyperparameters 

Fixed Varied 

33 Wei et al. 2021 
LSTM NNs & 

GRUs 
Grid Search - 

No. Nodes/layer, Batch Size, 

Dropout Rate, Epochs, Activation 

Function, Lookback Length 

34 
Y. Huang et 

al. 
2021 SpAttRNN No 

0.01 Learning Rate, 30 Epochs, 

128 LSTM nodes, 10 Spatio-

Attention Outputs 

- 

35 Vu et al. 2021 
LSTM NNs & 

RNNs 
Grid Search 

1 HLayer with 128 Nodes 

2 HLayer with 600 Nodes 
Lookback Length 

36 Vu et al. 2022 
LSTM NNs & 

RNNs 
No 

1 Input Layer + 1 HLayer, 

128 Nodes/layer 
- 

37 Siłka et al. 2022 LSTM NNs Grid Search 

8 LSTM Layers + 2 ANN 

Layers, ReLU output Activation 

Function 

Optimizer, Lookback Length, Error 

Margin 

38 Zanfei et al. 2022 GCRNNs Grid Search 

3 GCN Layers + 2 LSTM 

Layers 

100 Epochs, 24 Batch Size 

No. Nodes and Edges 

39 Syed et al. 2023 
RNNs & Bi-

LSTM NNs 
Manual Search 10% Dropout Rate, Adam 

No. HLayers, No. Nodes/layer, 

Learning Rate, Epochs, Batch Size, 

Lookback Length 

40 Song & Choi 2023 

CNNs + LSTM 

NNs 

GRUs-CNNs 

Ensembles 

Grid Search 

10 Early Stopping Patience, 

1D-Conv with 32 Filters, 3 Size 

& 1 Stride 

Lookback Length, Dropout Rate, 

Epochs, Learning Rate, No. 

HLayers, No. Nodes/layer, Batch 

Size 

 

4.3 Methodology  

Decision Tree (DT) is a powerful non-parametric supervised learning technique that builds 

the classification or regression models as a tree structure. As shown in Figure 4.1, DT composes 

of three main elements: root node (parent node), decision node (child node or interior node), 

and terminal node (leaf node). The root node is the initial node covering the entire sample and 

may get split into decision nodes or leaf nodes. The decision node represents the decision rule 

using data features to get two or more branches, while the leaf node represents the outcome. 

There are several popular algorithms proposed for a decision tree from a dataset, such as 

Iterative Dichotomiser 3 (ID3), ID3’s extensions (C4.5 and C5.0), and Classification and 

Regression Tree (CART). 
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Figure 4.1 Example of DT regressor with CART algorithm: top tree corresponding to the 

partition of the bottom left panel and the perspective plot of the prediction surface is on the 

bottom right panel [78] 

 

The decision tree regressor (or regression tree) was built based on the CART algorithm 

using a Python module, DecisionTreeRegressor, of scikit-learn [79]. The detailed formulation 

of this algorithm can be found in their documentation or in [78]. The formulation of DT with 

MSE as the loss function for a given training vectors xi ∈ R
n, i = 1,… , Iand the label vector  

y ∈ Rlspliting on node  m with feature j and threshold tm (i.e., splitting candidate θ = (j, tm)) 

is as follows: 

 

Qm
left(θ) = {(x, y)|xj ≤ tm}   (4.2) 

Qm
right(θ) = {(x, y)|xj > tm}   (4.3) 

G(Qm, θ) =
nm
left

nm
H(Qm

left(θ)) +
nm
right

nm
H(Qm

right(θ))  (4.4) 

H(Qm) =
1

nm
∑ (y − y̅m)

2
y∈Qm   (4.5) 

 

Where Qm
left(θ) and Qm

right(θ)⁡are the subsets of data partitioned on node m to the left and 

right nodes, respectively. The quality of a candidate split G(Qm, θ) is minimized and grown 

until the maximum allowable depth θ∗ = argminθG(Qm, θ). The split quality is simply the 

weighted average of loss function H(Qm) as MSE of that node (i.e., the prediction of the node 

y̅m is the average value). In case of a classification problem with targe class values of (0, 1,…, 

K-1), the criterion or loss function could be the Gini impurity H(Qm) = ∑ pmk(1 − pmk)k  or 

Entropy H(Qm) = −∑ pmk log(pmk)k , where pmk =
1

nm
∑ I(y = k)y∈Qm . 

Our proposed method, the Iterative Decision Tree (IDT), is a sequential model-based 

optimization (SMBO) technique that uses decision tree regression as the surrogate function. DT 

regressor is suitable for learning the correlation between hyperparameters and the black-box 
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objective function, often referred to the loss function in machine learning. It provides short 

training time, the ability to handle categorical and conditional variables, small datasets with 

multiple features, and nonlinear relationships. From the parameter setting of CART, as 

mentioned above, DT is employed to partition the overall search space based on the evaluated 

points. In this case, the DT regressor works as the surrogate function so that the new candidates, 

as extreme or random points, can be drawn from the promising regions (terminal nodes). In 

other words, the DT regressor is used to predict the expected objective value of all the 

combinations of hyperparameters. After that, the new candidates were selected from the 

combinations given the highest expected objective (i.e., the highest promising region). For other 

promising regions following the sorted evaluated points, the new candidates were selected from 

each region independently. 

Figure 4.2 shows the Iterative Decision Tree algorithms with the new candidates as 

extreme points (IDT-E) or random points (IDT-R). IDT starts with some initial candidates (𝑁) 

as grid or random, then the objective values of these candidates are evaluated.  The decision 

tree regressor is trained with the input as the initial candidates and the output as objective values. 

In this algorithm, DT is trained using the CART algorithm with MSE as the loss function while 

the tree is grown until the terminal node is pure (i.e., the terminal nodes have only one sample 

or many samples with the same objective values). In each iteration, the 𝑇 best performed leaves 

or terminal nodes are selected, while the new candidates are chosen as 𝑅 random points or all 

extreme points from each leaf. The repetitive candidates are removed before evaluating the 

objective function. This iterative loop (training DT, selecting 𝑇 best performed leaves, selecting 

new candidates, removing the redundant candidates, and evaluating the new candidates) are 

performed until reaching the maximum iterations, or there are no new candidates. If the 

termination criteria are met, the best solution is chosen, and the algorithm is ended. It is worth 

noting that IDT algorithm can not secure the global optimal solution but a near-global solution. 

Therefore, IDT is suitable for HPO, where the objective functions are not too expensive or too 

cheap. 
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Figure 4.2 Iterative Decision Tree with new candidates as extreme points (left: IDT-E) and as 

random points (right: IDT-R) 

 

To better understand the concept of our proposed methodology, two examples were 

provided using Equations (4.6) and (4.7). As shown in Figure 4.3, IDT started with six initial 

random points, and four new candidates were suggested from the extreme points of two top 

leaves. After evaluating these four new candidates, DT was retrained and suggested three new 

candidates (one repetitive candidate). This sequential loop was performed until reaching the 

stopping criteria. From one to another iteration, the newly recommended candidates were closer 

and closer to the global optimal location. After the fourth iteration, we got the optimal result as 

0.7626 (objective of -6.00522), while the actual global result is 0.7573 (objective of -6.02074). 

We will get closer to the actual global result if we do several more iterations.  

 

𝑓(𝑥) = (6𝑥 − 2)2 sin(12𝑥 − 4) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ∈ [0, 1]  (4.6) 

𝑓(𝑥, 𝑦) = −𝑥 sin (√|𝑥|) − 𝑦 sin(√|𝑦|) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥, 𝑦 ∈ [−500, 500]  (4.7) 



76 
 

 
Figure 4.3 Optimization procedure for (4.6) by Iterative Decision Tree with Extreme points 

(IDT-E) with the parameters of 2 best-performed leaves and eight initial random points  

 

Figure 4.4 shows the five iterations of the optimization procedure of the Schwefel function 

(4.7) by IDT-R with the parameters of 5 best-performed leaves, two random points in each leaf, 

and 100 initial random points. In this example, 100 random initial points were selected to train 

the DT regressor. The CART algorithm split the overall search space into 100 regions 

(representing 100 terminal nodes). 2 points were randomly drawn from 5 best-performed leaves 

scattering in many local optimal regions. Similarly, the new candidates were suggested in 

several regions, which represent the exploration capability of IDT-R. In the third iteration, IDT-

R searched in only two regions, while IDT-R searched only in the global optimal region in the 
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4th and 5th iterations, i.e., exploitation. In just five iterations with total searches of 150, the new 

candidates were almost on the top of the global optimal solution.  

 

 

 

 
Figure 4.4 Optimization procedure for Schwefel function (4.7) by Iterative Decision Tree 

with Random points (IDT-R) with the parameters of 5 best-performed leaves, two random 

points in each leaf, and 100 initial random points 

To reveal the effectiveness of the proposed approach, we will compare them with several 

benchmark algorithms, including Grid Search or GS, Random Search or RS, Bayesian 

Optimization based on Gaussian Processes with Lower Confidence Bound or GP-LCB, 

Bayesian Optimization based on Random Forest regressor with Lower Confidence Bound or 

RF-LCB [80], Tree-Structured Parzen Estimator or TPE [81], and Genetic Algorithm or GA 

[82], see Table 4.2. The comparison was examined both on the benchmark problems and the 

demand prediction of shared e-scooter. The benchmark problem included the optimization of 

nonconvex functions (Cross-in-tray, Eggholder and Styblinski-Tang functions), machine 

learning models (Support Vector Machine or SVM and Random Forest or RF), and deep 

learning models (Autoencoder or AE and Convolutional Neural Networks or CNNs). The HPO 
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of these models was examined using the benchmark datasets such as hand-written digits dataset 

[79], car evaluation dataset [83], MNIST [84], and CIFAR-10 [85]. For demand prediction of 

shared e-scooter, two models (RF and GRUs) were examined.  

 

Table 4.2 Parameter settings for hyperparameter optimization algorithms  

Algorithm Parameter 

Value Range 

SVM, RF, AE, 

CNNs, GRUs 

Nonconvex 

Function 

GP-LCB 
Number of initial random points 50 - 150 100 - 300 

Kappa 0.0 - 2.0 0.0 - 2.0 

RF-LCB 
Number of initial random points 50 - 150 100 - 300 

Kappa 0.0 - 2.0 0.0 - 2.0 

TPE 
Number of initial random points 50 - 150 100 - 300 

Number of candidates for EI 20 - 50 20 - 50 

GA 

Population size 5 - 30 10 - 50 

Mutation probability 0.01 - 0.5 0.01 - 0.5 

Elite ratio 0.0 - 0.1 0.0 - 0.1 

Crossover probability 0.2 - 0.7 0.2 - 0.7 

Parent portion 0.1 - 0.5 0.1 - 0.5 

IDT-E 

& 

IDT-R 

Number of initial random points 50 - 150 100 - 300 

Number of best-performed leaves 2 - 5 2 - 10 

Number of randoms in each leaf 1 - 3 2 - 5 

 

The proposed algorithms (IDT-E and IDT-R) seek near-global optimization under 

constrained computational resources and offer the feature importance metric to better 

understand the effect of hyperparameters on the objective function. Additionally, these 

important metrics can be used to create an effective search space, for example, by designating 

a coarse grid to less significant hyperparameters and a wider range to those that are more 

important. Impurity-based feature importance, also known as Gini importance, is calculated as 

the normalized total decrease of the impurity criterion (for example, R2-score) [79]. In contrast 

to binary or categorical features, this metric tends to be quite biased and favors high cardinality 

features. Therefore, the relation between the factors and the response is primarily interpreted 

using the non-biased permutation-based feature importance. The difference in impurity score 

between the original data and the randomly reordered (permuted) data for each feature is used 

to calculate the permutation-based feature importance. Both feature importance based on 
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impurities and feature importance based on permutations is compared in this study, with 100 

permutations. 

 

4.4 Numerical results  

4.4.1 Optimization result of nonconvex functions  

Since the global optimal values of nonconvex functions are known, optimizing these 

functions has frequently been used to assess the efficiency of optimization techniques. Problems 

involving the optimization of nonconvex functions occur when any of the constraints or the 

objective functions are nonconvex. Several viable regions, locally optimal points, flat regions, 

and saddle points are characteristics of nonconvex functions. Most optimization algorithms can 

only offer a near-global optimal solution when working within a constrained computing budget 

since the global optimal point of a loss function is unknown in the real world. Three benchmark 

nonconvex functions were tentatively chosen based on the difficulty of the problems, which 

ranged from easy to challenging. Although the mathematical expression for the cross-in-tray 

function is complex, the fact that it only has two parameters, and four global solutions makes it 

a simple task. Conversely, the Eggholder function is a difficult problem because there is only 

one global solution, and the range of values for its two parameters is quite large. As it only has 

one global solution with n parameters, the Styblinski-Tang function was chosen to make the 

problem more complex. The ranges of objective value for these three functions also vary. The 

expression of Cross-in-tray function (Eq. 4.8), Eggholder function (Eq. 4.9), and Styblinski-

Tang function (Eq. 4.10) are: 

 

𝑓(𝑥, 𝑦) = −0.0001 [|sin 𝑥 sin 𝑦 exp(|100 −
√𝑥2 + 𝑦2

𝜋
|)| + 1]

0.1

 (4.8) 

𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin√|
𝑥

2
+ (𝑦 + 47)| − 𝑥 sin√|𝑥 − (𝑦 + 47)| (4.9) 

𝑓(𝑥𝑖) =
1

2
∑𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

𝑛

𝑖=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (4.10) 

 

Where the search domain of (Eq. 4.8), (Eq. 4.9), and (Eq. 4.10) is between [−10, 10], 

[−512, 512], and [−5, 5], respectively. The Styblinski-Tang function's n value was set to 5, 

meaning that five parameters were optimized (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5). 

The global minimum values of the benchmark nonconvex functions Cross-in-tray, 

Eggholder, and Styblinski-Tang are, respectively, -2.06261, -959.6407, and -195.8308. Except 

for the cross-in-tray function, which has four symmetric optimal points, all functions have a 

single global optimal point. Due to limited computational resources, the HPO algorithms cannot 

guarantee the global optimal solution for our parameters, just a close to global one. The average 

of each nonconvex function calculation trial for the 400 total searches represents the global 

convergence curve in Figure 4.5. IDT-E and IDT-R produce comparable outcomes when 

starting with an initial set of 200 random points on average, but IDT-R reaches the optimal 

region more quickly. Because IDT-R only generates roughly 15 new candidates per iteration 

compared to IDT-E's 20 (2x2x5) candidates for Cross-in-tray and Eggholder and 50 (5x2x5) 
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candidates for Styblinski-Tang. In other words, when solving problems with several decision 

variables, IDT-E engages in more exploration than exploitation. After a few iterations 

(inadequate exploitation) for the Styblinski-Tang function, IDT-E meets the stopping condition 

(maximum number of examined points). As a result, RS is just marginally superior. 

 

 

Figure 4.5 Global convergence curve (average value) of HPO algorithms for the nonconvex 

functions: Cross-in-tray, Eggholder, and Styblinski-Tang 

 

 

Figure 4.6 Box plot of best results of HPO algorithms for the nonconvex functions: Cross-in-

tray, Eggholder, and Styblinski-Tang 

 

The best outcome of HPO algorithms for nonconvex functions is shown in a box plot in 

Figure 4.6. The majority of HPO algorithms might easily reach one of the optimal solutions for 

the Cross-in-Tray function. Four algorithms—GP-LCB, RF-LCB, IDT-E, and IDT-R—

achieved the best result in this case, with IDT-R having the greatest average value and the lowest 

variance (i.e., high stability). With regard to the Eggholder function, the best results from all 

algorithms had a comparatively high standard deviation, presumably due to local optima or 

insufficient exploitation. GA performed similarly to RS, although with a larger variance. Due 

to the small population size in some trials, GA may have achieved favorable outcomes but also 

fell into local optima. IDT-R performed better than other algorithms overall in terms of mean 

and standard deviation. Although IDT-R had the best performance, the Styblinski-Tang function 

was similar to the first two functions in terms of how GP-LCB, RF-LCB, and IDT-R performed. 

The following algorithms have the shortest average computation times: GS (0.01s), RS (0.06s), 

GA (0.56s), IDT-E (0.66s), IDT-R (1.01s), TPE (2.74s), RF-LBC (59.72s), and GP-LCB 

(817.67s).  
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Figure 4.7 Mean and STD of feature importance metrics by IDT-R for each parameter of the 

nonconvex functions: Cross-in-tray, Eggholder, and Styblinski-Tang 

 

The feature importances of the functions with 2 and 5 were 50% and 20%, respectively, 

based on a large number of random points in the search space. The importances of the features 

based on impurity and permutation were equal in this instance. Figure 4.7 illustrates how 

permutation importances are much closer to the ideal value and have a lower variation than 

feature importances (i.e., impurity-based feature importances). As a result, the permutation 

importances should be used as the foundation for this metric's interpretation. 

 

4.4.2 HPO result of SVM for hand-written digits dataset 

Suitable for both classification and regression, Support Vector Machine (SVM) is a reliable 

supervised learning technique. SVM is based on the idea of decision planes, which use decision 

boundaries or hyperplanes to best divide the data into various categories. SVM can handle 

various classification or regression issues because of the flexibility and simplicity of the model, 

including high dimensional spaces, small datasets with a greater number of features, and 

handling both linear and nonlinear data [79]. Detail SVM formulas may be found in [78]. The 

C-Support Vector Classification Python module from the Scikit-learn packages was used to 

train this model [79]. The kernel coefficient (𝑔𝑎𝑚𝑚𝑎⁡𝜖⁡[0.001, 1]) and the regularization 

parameter (𝐶⁡𝜖⁡[0.001, 10]) were the two hyperparameters of SVM that were optimized in this 

study. Other hyperparameters were set to their default values, with the decision function for 

multi-class classification being one-vs-one and the kernel function being the Radial Basis 

Function (RBF). The hand-written digits data from Scikit-learn was used to train the SVM in 

this study, see Figure 4.8. The images in this dataset are 8x8 grayscale images labeled 0 - 9. 
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Model training (50%) and model evaluation (50%) were randomly selected from the total 

sample 1797.  

 

 
Figure 4.8 Hand-written digits dataset [79] 

 

The digit classification numerical results of SVM's HPO are shown in Figure 4.9, along 

with a box plot of the best solutions and a global convergence curve by computation time for 

the 200 evaluation points that were included. TPE performs well initially because it converges 

faster than other algorithms but finds it difficult to depart the local optima. Because they mostly 

depend on random searches, other HPO algorithms perform similarly for the first 100 searches 

(about 10 seconds). Most of these algorithms are stuck in local optima that resemble TPE after 

this stage, except IDT-R, which consistently ascends to the global optimal point. Similar to 

previous problems, the population-based algorithm (GA) performs relatively poorly, even 

worse than RS, because it is prone to falling into local optimal points because of the small 

population size and the insufficient number of generations.  

The performance of IDT-E was comparable to that of other sequential-based algorithms 

like TPE, GP-LCB, and RF-LCB because just two hyperparameters were optimized. SVM's 

benchmark performance on this dataset was 96.89% [79], while 97.44% accuracy was attained 

through the hyperparameter SVM optimization. IDT-R, on average, completed calculations in 

18.3 seconds with a 97.42 percent accuracy. TPE performed at 97.36 percent with a training 

time that was marginally faster (16.3s). The longest computation time was needed for GP-LCB 

(104s), followed by RF-LCB (42.6s), and GA (32.5s). For roughly 21s, training was required 

for GS, RS, and IDT-E. Because they were trained with fewer evaluated points than the 

maximum number of searches (200), IDT-E and IDT-R had faster training times than other 

model-based approaches. The regularization parameter (C = 3) and kernel coefficient (gamma 

= 0.2) were the SVM's global optimal hyperparameters for the digit classification dataset. 



83 
 

 

 
Figure 4.9 Numerical results of SVM’s HPO for digit classification: (top) global convergence 

curve and (bottom) Box plot of best results of HPO algorithms 

 

Based on a large random sample, the hyperparameters, C and gamma, of the SVM have 

feature importances of 80% and 20%, respectively. The average permutation importance and 

feature importance of gamma from 20 trials of IDT-R with 200 evaluated points was 43.29 and 

42.80 percent, respectively. Due to the relatively small sample size (200 samples) in comparison 

to the prior section (400 samples), there is a notable deviation from the ideal values. The 

interpretation of the IDT-R algorithm's feature importances should be based on a large enough 

sample size. 

 

4.4.3 HPO result of RF for car evaluation dataset 

As explained in Chapter 3, Breiman's Random Forest (2011) is a potent machine-learning 

technique that can handle highly dimensional data with minimal training data. RF is the average 

(for regression) or majority vote (for classification) of hundreds of predictions made by a 

decision tree using randomly chosen inputs or feature combinations. RF can handle the 
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overfitting of traditional decision trees for classification and regression issues as the bootstrap 

aggregation (or bagging) of weak tree learners. The Random Forest Classifier Python module 

from the Scikit-learn packages was used to train the random forest in this study [79]. Three 

hyperparameters of RF, including the number of trees in the forest (𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠⁡𝜖⁡[1, 400]), 

the maximum depth of the tree (max_𝑑𝑒𝑝𝑡ℎ⁡𝜖⁡[1, 20]), and the criterion function (Gini impurity 

or entropy) was optimized in this section. RF's trees were constructed using bootstrap samples, 

with a minimum of 2 samples needed for internal node splitting and 1 sample in each leaf node. 

The square root of the total number of features was used to determine how many features should 

be used for the optimal split. 

 

Table 4.3 Car evaluation dataset [83] 

Items Attributes 

Evaluation classes Unacceptable, Acceptable, Good, Very Good 

Buying price Low, Medium, High, Very High 

Maintenance price Low, Medium, High, Very High 

Number of doors Two, Three, Four, Five or more 

Capacity as # persons Two, Four, More 

Size of luggage boot Small, Medium, Big 

Estimated safety of car Low, Medium, High 

 

With the abovementioned settings, a random forest classifier was trained on a benchmark 

dataset, car evaluation, as in Table 4.3 from the UCI machine learning repository [83]. Seven 

elements and 1728 instances make up this dataset. Unacceptable, acceptable, good, and very 

good are the four evaluation categories. The cost of purchasing and maintaining the car, the 

number of doors, the number of people it can carry, the size of the luggage boot, and the 

projected level of safety are the six categorical explanatory variables. The complete dataset was, 

by default, randomly divided into two portions for model training (70%) and model evaluation 

(30%).  

Figure 4.10 depicts the numerical outcomes of hyperparameter tuning for car evaluation 

by random forest classifier as the box plot of the best outcome for each HPO algorithm as well 

as the global convergence curve by computational time. The performance of RF varies from 

67.82 percent to 97.11 percent (the global optimal result) in this search boundary. As can be 

seen, the majority of HPO algorithms, including TPE, GA, and RF-LCB, were stymied in two 

local optima at 96.72 and 96.92 percent. All algorithms but GP-LCB and IDT-R fared better on 

average than IDT-E. Although the performance of these two algorithms was comparable, IDT-

R found the ideal solution after about 150 searches (40s), whereas GP-LCB took 195 searches 

to do so (170s). The optimum RF hyperparameters for the car evaluation dataset, for an accuracy 

of 97.11 percent, were 77 for the number of trees in the forest, 11 for the maximum depth of the 

tree, and the Gini impurity criteria. 
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Figure 4.10 Numerical results of RF’s HPO for car evaluation dataset: (top) global 

convergence curve and (bottom) Box plot of best results of HPO algorithms 

 

These HPO algorithms are ranked according to their computational times as follows: IDT-

E (41.6s), IDT-R (50s), GS (50.8s), RS (52s), GA (76.4s), TPE (76.5s), RF-LCB (86.25s), and 

GP-LCB (173.7s). Because they did not require iteratively updating the surrogate function like 

the sequential-based approaches or training the repetitive candidates (i.e., they evaluated less 

than 200 points in some trials), IDT-E and IDT-R had shorter training times than algorithms, 

similar to HPO of SVM. The three hyperparameters (number of trees, maximum depth, and 

criterion) had real feature importances for this problem setting of 0.65 percent, 99.15 percent, 

and 0.2 percent, respectively. These three hyperparameters had average impurity-based feature 

importances from 20 HPO trials of 1.03 percent, 98.83 percent, and 0.14 percent, respectively. 

The permutation importances were 1.09 percent, 98.72 percent, and 0.18 percent. As a result, 

the performance of RF is substantially influenced by the hyperparameter, the maximum depth 

of the tree. 
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4.4.4 HPO result of AE for MNIST dataset  

The term "autoencoder" refers to a collection of unsupervised neural networks specifically 

employed to extract the significant characteristics of data, possibly for dimensionality 

reduction, anomaly detection, data denoising, information retrieval, image inpainting, and other 

similar tasks. The input layer connects to one or more successively smaller layers (Encoder), 

followed by successively bigger layers (Decoder), which connect to the output layer in AE. The 

original data must pass through the middle layer, which acts as a bottleneck and stores the 

compressed knowledge representation, in order to minimize the difference between the input 

and output layers. Many different autoencoder models exist, including fully connected, 

convolutional, sequence-to-sequence, and variational autoencoders.  

 

 
Figure 4.11 Architecture of Autoencoder as dimensionality reduction for MNIST dataset 

 

This research uses an easy, fully-connected architecture (see Figure 5.7) as the autoencoder, 

similar to [37]. The input layer connected to the compacted layer required the flattening of the 

original images. The output layer, which could be used to recreate the original image, received 

the representative properties retrieved by the bottleneck layer before being transferred to it. This 

fully connected autoencoder was trained using the MNIST dataset [84] with the MSE as the 

loss function. 70,000 handwritten digits from 0 to 9 in 28x28 pixel images make up this dataset. 

10,000 data were utilized to evaluate the model, while the remainder was used to train the AE 

architecture. A Jupyter Notebook was used to run this architecture using Keras and TensorFlow 

packages. The number of nodes and activation in the output layer, learning rate of the stochastic 

gradient descent (SGD) optimizer, batch size, and activation of the encoding layer were the five 

hyperparameters of AE optimized in this study. In order to minimize the data features by up to 

50%, the Hidden Layer (HL) was searched between 4 and 400 nodes. ReLU (R), Sigmoid (S), 

and Tanh (T) functions were taken into consideration as three activation functions for the HL 

and Output Layer (OL). 0.001 to 0.99 and 64 to 1024, respectively, were chosen to search for 

the optimal learning rate and batch size. The patience and min_delta values for the 

EarlyStopping were 3 and 0, respectively, and there were 50 epochs. Mean Square Error (MSE) 

was used as the AE's loss function, and the SGD optimizer's momentum was adjusted to zero.  
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As shown in Figure 4.5 and Figure 4.6 for the Styblinski-Tang function, IDT-E performed 

poorly since it wasn't suited for optimizing the HPO with several hyperparameters. Therefore, 

the five hyperparameters of the autoencoder (AE) were not optimized using IDT-E. Figure 4.12 

displays the performance of the HPO algorithms (GS, RS, GP-LCB, RF-LCB, TPE, GA, and 

IDT-R) comprising the feature importances, the global convergence curve by computational 

time, and a box plot of the best results from HPO. The random search performed just slightly 

better than the coarse grid of the hyperparameter space. The performance of GA, RF-LCB, and 

RS was only somewhat superior to RS with the current AE settings. The GP-LCB, TPE, and 

IDT-R performed comparably in this problem. TPE, on the other hand, converged more quickly 

than other algorithms, around the 50th search (about 25 minutes), before sluggishly getting 

closer to the overall optimal position. In contrast to earlier problems, AE was not entirely stable, 

meaning that when we run the same configuration of AE multiple times, the outcomes 

frequently differ. In light of the possibility that these two methods trained the same AE 

configurations, certain GP-LCB and TPE trials had better validation loss than IDT-R trials. 

 

 

 
Figure 4.12 Numerical results of Autoencoder’s HPO for MNIST dataset: (top) Global 

convergence curve, (bottom-left) Box plot of best results of HPO algorithms, and (bottom-

right) Mean and STD of feature importances by IDT-R 
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The optimal hyperparameters were 400, Tanh, ReLU, 0.99, and 64 for Hidden Layer’s (HL) 

number of nodes, HL’s activation, Output Layer’s (OL) activation, Learning Rate, and batch 

size, respectively. This implies that the amount of information lost decreases with increasing 

latent space (number of HL nodes). With the smallest batch size and greatest learning rate, AE 

achieved the lowest validation loss under the constrained number of epochs. However, it took 

more time to compute because of the smaller batch size. Because of this, TPE had the longest 

computing time—124.19 minutes—for the 200 total assessed points, as it converged more 

quickly than other methods, see Figure 4.12. For the 243 searches (3 coarse grids for each 

hyperparameter) in total, GS was trained for 85.5 minutes. GP-LCB took an average of 111 

minutes to train, followed by GA (110.9 minutes), IDT-R (102.7 minutes), RF-LCB (92.3 

minutes), and RS (54.6 minutes). Even though parallel computing can be used to speed up the 

computation of GA and IDT-R.  

The feature and permutation importances are also shown in Figure 4.12. The impurity-

based feature importances demonstrate that batch size (53.6%) had a significant influence on 

AE's performance, followed by learning rate (18.6%), HL’s number of nodes (13.9%), HL’s 

activation (8.9%), and OL’s activation (6%), in that order. Contrarily, permutation-based feature 

importances increased this metric for the other four hyperparameters, such as learning rate 

(23.6%), HL’s number of nodes (17%), HL’s activation (16.4%), and OL’s activation (12.5%), 

while decreasing the importance measure of batch size to 30.5 percent. 

 

4.4.5 HPO result of CNNs for CIFAR-10 dataset  

Convolutional neural networks (CNNs) are a popular variety of deep neural networks used 

in many different applications, particularly image recognition and computer vision tasks. 

Convolution and pooling are the two specific operations that makeup CNNs. As narrated in 

[86], LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, and SENet are only a few examples of 

the potent deep convolutional neural network architectures that exist.  

Modern performance in face recognition and picture classification is achieved by the 

straightforward deep convolutional neural network known as the Visual Geometry Group 

(VGGNet). Four learnable layers in a straightforward VGGNet were explored in this study [86]. 

As shown in Figure 4.13, our VGGNet design comprises the following layers: the output layer, 

two convolutional layers (CL), one max pooling layer, two dropout layers, and one fully 

connected layer (FCL). Using the CIFAR-10 dataset [84], this classification architecture was 

developed. 60,000 32x32 pixel color pictures of items from 10 classes make up this dataset, 

50,000 for training and 10,000 for testing. The Keras and TensorFlow platforms were used to 

build the model. The majority of the model's hyperparameters were trained using default values, 

while 14 hyperparameters were optimized using the range depicted in Table 4.4. The Stochastic 

Gradient Descent (SGD) optimizer was used to optimize the parameters of CNNs, while its two 

parameters, momentum and learning rate, were tuned in the range as in Table 4.4. There were 

50 epochs used, and categorical cross-entropy was the loss function. 
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Figure 4.13 Architecture of Convolutional Neural Networks (CNNs) for the CIFAR-10 

dataset 

 

Table 4.4 Hyperparameter range for convolutional neural networks (CNNs) 

Hyperparameter Range Hyperparameter Range 

Filter of CL1 8 - 128 Dropout rate 1 0 – 0.8 

Kernel of CL1 2 - 10 Node in FCL 8 - 1024 

Activation of CL1 R, S, T Activation of FLC R, S, T 

Filter of CL2 8 - 128 Dropout rate 2 0 – 0.8 

Kernel of CL2 2 - 10 Learning rate 0.001 – 0.99 

Activation of CL2 R, S, T Momentum  0.001 – 0.99 

Pooling size 2 - 10 Batch size  64 - 1024 

 

The importance metrics for the hyperparameters of CNNs are shown in Figure 4.14, along 

with the global convergence curve by training time. TPE converged quicker than other methods, 

similar to Autoencoder's HPO, before progressively moving into a near-global optimal point. 

At 73.95 percent and 78.98 percent accuracy, respectively, GS and RS remained stable. In this 

case, TPE converged more quickly than other algorithms, but it also had an easy time entering 

the local optima, with an average accuracy of 80.75% for the 300 total examined points. GP-

LCB, RF-LCB, GA, and IDT-R all had accuracy ratings of 79.75 percent, 80.10 percent, 79.95 

percent, and 80.21 percent, respectively. Compared to the baseline setup, which had an accuracy 

of just 67.07 percent [86], the optimized configuration of CNNs performed substantially better. 

However, several other hyperparameters could be optimized to achieve even higher accuracy, 

such as batch normalization, data augmentation, deeper configuration (including more VGG 

blocks), etc. 

The first convolutional layer of CNNs had the best filter, kernel, and activation settings of 

89, 2, and ReLU, while the second convolutional layer had the best filter, kernel, and activation 

settings of 118, 7, and Tanh. The fully connected layer of CNNs has the optimal nodes of 934 

and Sigmoid as the activation function. Other ideal CNN hyperparameters included the batch 

size of 113, learning rate of 0.107, momentum of 0.537, dropout rate_1 of 0.564, dropout rate_2 

of 0.437, and pooling size of 7. Longer training time is needed for CNNs' optimal architecture 

than for random architecture. Consequently, this TPE trial required 57.2 hours of training in 

total, compared to 32.81 hours for the other four trials. Due to utilizing 243 coarse grid points 

during training, GS required the least time—roughly 21.5 hours. The computation times for RS 

and GA were 31.85 and 32.49 hours, respectively. The GP-LCB required an average training 

duration of 36.55 hours, whereas the RF-LCB needed 36.28 hours. IDT- R's computation time 
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for the 300 total evaluated points is 33.10 hours, comparably less than other sequential-based 

algorithms (GP-LCB, RF-LCB, and TPE). 

Based on feature importance, it is clear that the parameters, learning rate, and momentum 

of the SGD optimizer significantly impacted the performance of CNNs. These two 

hyperparameters had permuted-based feature importances of 28.08 percent and 15.19 percent, 

respectively, with FCL activation coming in third (12.94 percent). The number of FCL nodes 

(5.47%), batch size (5.43%), activation of CL1 (5.81%), and dropout rate 2 (4.98%) were a few 

additional relatively significant features. Other hyperparameters, such as the filter of CL2 (4.17 

percent), pooling size (4.15 percent), filter of CL1 (3.90 percent), kernel of CL2 (2.96 percent), 

dropout rate 1 (2.58 percent), kernel of CL1 (2.47 percent), and activation of CL2 were less 

significant (1.87 percent). 

 

 

 
Figure 4.14 Numerical results of CNNs’ HPO for CIFAR-10 dataset: (top) Global 

convergence curve and (bottom) Mean and STD of feature importances of CNNs by IDT-R 

 

4.4.6 HPO result of RF and GRUs for shared e-scooter demand prediction  

This section employed IDT-R to optimize the hyperparameters of random forest (RF) and 

gated recurrent units (GRUs) for the total hyperparameters of 4 and 10, respectively. To control 

the overfitting of these two models, the objective function is the summation of the MSE of 

evaluation data and the ratio of MSE of evaluation data and that of training data, i.e., 𝑀𝑆𝐸𝑒𝑣𝑎𝑙 +

𝑀𝑆𝐸𝑒𝑣𝑎𝑙/𝑀𝑆𝐸𝑡𝑟𝑎𝑖𝑛. Both RF and GRUs were trained with multiple outputs and normalized 
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scale. The hyperparameters of these two models (RF and GRUs) were optimized for the total 

evaluation points of 200. The number of running trials was 10 for IDT-R and 5 for other 

benchmark algorithms. 

Four hyperparameters of RF were optimized, such as lookback length [10, 170], sampling 

rate [1, 24], number of trees in the forest [10, 400], and maximum depth of the tree [1, 10]. In 

the case of GS, four grid points of these four hyperparameters were selected, resulting in 256 

RF models being evaluated. On the other hand, the architecture of GRUs was the stack of the 

input layer with GRU cell, first dropout layer, one hidden layer with GRU cell, second dropout 

layer, and the output layer with conventional neurons and ReLU activation function. Therefore, 

the ten hyperparameters of GRUs are lookback length [10, 170], sampling rate [1, 24], number 

of nodes of input layer [10, 512], activation function of input layer (ReLU, Sigmoid, and Tanh), 

dropout rate_1 [0, 0.8], number of nodes of hidden layer [10, 512], activation function of 

hidden layer (ReLU, Sigmoid, and Tanh), dropout rate_2 [0, 0.8], learning rate [0.0001, 0.01], 

and batch size [8, 512]. GRU GS of GRUs was trained for 216 combinations as some 

hyperparameters were fixed, such as sampling rate as 1, dropout rate_1 as 0.1, activation 

function of hidden layer as ReLU, and dropout rate_2 as 0.05. Other hyperparameters were 

selected for 2 or 3 each, such as lookback length (36, 88, 140), number of nodes of input layer 

and hidden layer (93, 259, 425), activation function of input layer (ReLU and Tanh), learning 

rate [0.0026, 0.0076], and batch size [152, 392]. 

 

4.4.6.1 Thammasat TH dataset  

Figure 4.15 shows the convergence curve of HPO results of RF and GRUs for hourly 

shared e-scooter demand prediction using Thammasat TH dataset. In the case of RF, IDT-R 

achieved the lowest objective value (30.51) at a reasonable computational time of 125 minutes. 

TPE achieved a similar performance (30.78) but required the highest computational time of 232 

minutes. In this case, RF-LCB performed better than GP-LCB in both performance (31.06 vs. 

31.39) and training time (91 vs. 157 minutes). GA had a relatively short training time (66 

minutes) while achieving the objective value of 31.63. GS and RS had the lowest training time, 

28 and 32 minutes, respectively, but their performances are quite poor, i.e., 35.89 and 32.53, 

respectively. With the setting architecture of GRUs mentioned above, RF achieved slightly 

better performance compared to GRUs in both optimal objective value and computational time. 

For an instant, the performance of GRUs optimized by TPE had the lowest objective value of 

30.95 for the computational time of 149 minutes. IDT-R and RF found a similar optimal value 

of 31.42 and 31.76, respectively, with a training time of 154 and 137 minutes. GA and GS had 

a similar objective value of 33.67 and 33.54, respectively, but GA had a shorter training time of 

only 72 minutes compared to 279 minutes by GS. RS had the shortest training time of 47 

minutes but a poor objective value of 34.80. Interestingly, GP-LCB has the worst performance 

for both training time (366 minutes) and objective value (35.79). 
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Figure 4.15 Numerical results of HPO of RF (left) and GRUs (right): Thammasat dataset 

 

4.4.6.2 Minneapolis MN dataset  

Figure 4.16 shows the convergence curve of HPO results of RF and GRUs for hourly 

shared e-scooter demand prediction using Minneapolis MN dataset. Difference from 

Thammasat, the performance of GRUs performed better than RF in both optimal objective value 

and computational time. Similar to the previous problem, IDT-R achieved the lowest objective 

value (64.89) with a computational time of 295 minutes. TPE and RF-LCB had similar objective 

values, 66.86 and 66.08, respectively, but TPE had more than twice the training time compared 

to RF-LCB, i.e., 670 vs. 258 minutes, respectively. RS, GP-LCB, and GA had comparable 

performances of 69.52, 70.21, and 70.51, with a training time of 127, 769, and 213 minutes, 

respectively. GS has the shortest training time, 89 minutes, but also had the worst performance 

(81.33). In the case of GRUs, IDT-R also achieved the best objective value of 54.80 with a 

training time of 198 minutes. TPE achieved a comparable objective value (55.50) which a 

shorter computational time of 151 minutes. RF-LCB performs better than GP-LCB in both 

objective values (57.40 vs. 63.32) and training time (186 vs. 251 minutes). GA had the shortest 

training time, 58 minutes, with a fairly poor optimal objective value of 59.40. GS achieved a 

relatively good objective value (55.64) but consumed the longest training time of 622 minutes. 

RS had the worst objective value of 61.11, with a training time of only 93 minutes.  

 

 
Figure 4.16 Numerical results of HPO of RF (left) and GRUs (right):  Minneapolis dataset 
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4.4.6.3 Austin TX dataset 

Figure 4.17 shows the convergence curve of HPO results of RF and GRUs for hourly 

shared e-scooter demand prediction using Austin TX dataset. Similar to Minneapolis dataset, 

GRUs provided better performance in both objective value and training time. This means that 

RF is more susceptible to the number of data (inputs and outputs) than GRUs. On other words, 

RF is not favorable for the prediction with multiple outputs, while the computational time 

exponentially increases in function of the number of data. For HPO of RF, RF-LCB, IDT-R, 

and TPE had the comparable optimal objective values (240.19, 241.33, and 241.60, 

respectively), while their training time were 1279, 810, and 2531 minutes, respectively. These 

three algorithms also had similar objective values (164.78, 162.32, and 158.28, respectively) in 

optimizing the hyperparameters of GRUs for the training time of 309, 408, and 604 minutes, 

respectively. RS, GP-LCB, and GA had similar objective values of around 257, but RS had a 

shorter training time of approximately 815 minutes compared to 3264 and 2437 minutes for 

GP-LCB and GA, respectively. The objective values of these algorithms for HPO of GRUs 

were 179.01, 171.79, and 187.49, with the training time of 158, 793, and 191 minutes, 

respectively. GS had the worst performance in optimizing the HPO of RF (objective value of 

300.31) but had the best performance in optimizing the HPO of GRUs (objective value of 

156.64). Contrary, the training time of GS was the shortest (495 minutes) for RF’s HPO but the 

longest for GRUs’ HPO (1049 minutes). 

 

 
Figure 4.17 Numerical results of HPO of RF (left) and GRUs (right): Austin dataset 

 

4.5 Discussion and sensitivity analysis 

The overall findings demonstrate that each HPO method has its own benefits and 

drawbacks, which allows them to perform better than other algorithms in situations when 

computational resources are limited, such as training time or the number of examined points. 

As shown in Figure 4.18, TPE performs admirably when tuning deep learning architectures, 

particularly CNNs, but it performs badly when tuning nonconvex functions and the two 

machine learning models (SVM and RF). According to our numerical findings, RF-LCB 

typically performs worse than GP-LCB. In addition, the proposed algorithm (IDT-R) performs 

a little better than GP-LCB in most tasks. However, GA performs worse than the sequential-

based HPO algorithms when there are fewer points to evaluate. As demonstrated in the problem 

of nonconvex functions, SVM, and RF, TPE converges more quickly than other methods but is 
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readily trapped in local optima. This suggests that while GP-LCB and IDT-R are probably 

superior if there are enough examined points, TPE performs better than other algorithms in 

limited numbers of searches. From the Pareto fronts in Figure 4.18, We can observe that IDT-

R consistently achieves Pareto superiority, demonstrating its efficiency in terms of objective 

value and computing time. 

 

 

 
Figure 4.18 Pareto fronts of the performance of HPO algorithms in benchmark problems (Y-

Objective value, X-Computational time)  

 

Similarly, Figure 4.19 shows the performance of HPO algorithms in optimizing the 

hyperparameters of RF and GRUs for shared e-scooter demand prediction. The proposed 

algorithm, IDT-R, is always on the Pareto fonts, except for the HPO of GRUs for the 

Thammasat dataset. RS shows consistent efficiency in computational time but limited 

performance, especially HPO of deep learning models. For demand prediction problems, GP-

LCB offers poor performance in both optimal value and training time. On the other hand, RF-

LCB tends to have a shorter training time compared to IDT-R, but IDT-R achieves a better 

objective value. TPE shows poor performance on the HPO of RF, specifically training time, but 

it performs better on the HPO of GRUs. This performance of TPE is also similar to the results 

from the benchmark problems above.  

To better understand how IDT-R settings affect the objective value or how to balance the 

exploration and exploitation of IDT-R, sensitivity analysis was investigated. Due to time 

constraints, only three problems were subjected to sensitivity analysis: one deep learning model 

(Autoencoder), one machine learning algorithm (Random Forest), and one nonconvex function 

(Styblinski-Tang function). The three IDT-R parameters, comprising number of initial random 

points (𝑁 ∈ [5, 150]), number of best-performed leaves (𝑇 ∈ [2, 10]), and the number of 

random points in each leaf (𝑅 ∈ [1, 7]), were randomly chosen while each problem was trained 

for 40 trials. These three parameters for the Styblinski-Tang Function were randomly chosen 

from the range of up to 300, 15, and 10, respectively. Since the total number of searches was 

chosen as the stopping criterion, the approximate number of iterations can be calculated as 𝐼 =

⁡(200 − 𝑁)/(𝑇 × 𝑅), where T is the product of the number of best-performed leaves, R is the 

number of random points per leaf, and N is the total number of searches. 
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Figure 4.19 Pareto fronts of the performance of HPO algorithms for shared e-scooter demand 

prediction models, RF and GRUs (Y-Objective value, X-Computational time)  

 

 
Figure 4.20 Sensitivity analysis for parameters (number of initial points (N), number of best-

performed leaves (T), number of random points (R) in each leaf, and number of iterations (I)) 

of Iterative Decision Tree with Random (IDT-R) for the case of Styblinski-Tang function, 

Random Forest, and Autoencoder. 

 

The scatter plot of the best objective value (y-axis) vs. the parameters' maximum values 

(x-axis) on a normalized scale is shown in Figure 4.20. The Styblinski-Tang function 

demonstrates that as T and R increase, the performance of IDT-R decreases since these two 

factors indicate the exploration. The relationship between the number of initial randoms (N) 

and the number of iterations (I) demonstrates that IDT-R performs better for greater values of 

N and I, but after a point, its performance degrades. Therefore, it is important to balance these 

four parameters in order to achieve good performance with enough exploitation (number of 

iterations). The number of best-performed leaves (T) and the number of random points per leaf 

(R), for instance, should be set at a lower value if the initial random points (N) are quite high. 

The pattern of each of the four IDT-R parameters in the context of Autoencoder's HPO closely 

resembles that of the Styblinski-Tang problem. On the other hand, RF's HPO shares 

characteristics with the Styblinski-Tang problem in terms of N and I, but performance is 

probably improved by using greater values of T and R.  

In summary, it is possible that the patterns of the IDT-R parameters vary from one problem 

to another, but the patterns of initial random points (N) and iteration number (I) are usually very 

clear-cut. The trade-off between IDT-R exploration and exploitation should therefore be based 
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on three factors: the number of initial random points (N), the number of best-performed leaves 

(T), and the number of randoms in each leaf (R). This will allow for an adequate number of 

exploitation iterations, around 30 - 50. The number of best-performed leaves (T) can be chosen 

between [2, 4], while the number of randoms in each leaf (R) can range between [1, 3] for the 

total evaluation points of 200. The proportion of initials random points (N) in the overall number 

of searches could range from 20 to 50%. 

 

4.6 Conclusion  

This study evaluated the proposed HPO algorithms, Iterative Decision Tree (IDT) on 

various problems, including benchmark problems shared e-scooter demand prediction by RF 

and GRUs. This method used decision tree regression as a surrogate function, and in each 

iteration, a number of new candidates were assessed as the extreme points (IDT-E) or the 

random points (IDT-R) from several promising leaves. This property permits concurrent 

training of IDT, which reduces training time. In contrast to sequential model-based techniques 

that are already in use, IDT does not necessitate computing the acquisition function or 

exhaustively updating the surrogate function. Since IDT does not train the repetitive candidates, 

it can deal with the reproducibility problem of the existing algorithms and possibly terminates 

the optimizing procedure before reaching the Maximum Iteration criterion (i.e., shorter training 

time). 

A benchmark set of cutting-edge algorithms were used, including Grid Search, Random 

Search, Gaussian Process with Lower Confidence Bound, Random Forest with Lower 

Confidence Bound, Tree-structured Parzen Estimator, and Genetic Algorithm to assess the 

effectiveness of the proposed framework. The proposed approach is more successful than other 

algorithms according to the numerical results (Figure 4.18 and Figure 4.19), and it is on par 

with Bayesian Optimization or Tree-structured Parzen Estimator in terms of efficiency. 

Additionally, IDT-R performs better than IDT-E, which is inappropriate for optimizing 

problems with numerous hyperparameters (more than 3). Under a constrained set of evaluation 

points, IDT-R outperforms the benchmark algorithms in most optimization problems with 

acceptable computational time and result stability. For instance, TPE has good performance on 

HPO of deep learning models but has relatively poor performance on HPO of machine learning 

models and optimization of nonconvex functions. 

Similarly, GP-LCB performs ineffectively in some problems, especially demand prediction 

problems, and requires longer training time. RF-LCB also provides quite good performance 

only on some problems. However, IDT-R performs well in most problems (i.e., model stability), 

while other algorithms can sometimes give slightly better objective values. But if we account 

for the training time as well, IDT-R performs efficiently as it mostly appears on the Pareto front 

line (12 out of 13 problems) compared to RF-LCB (8/13), TPE (5/13), and GP-LCB (4/13). 

Even IDT-R performs effectively in searching for a near-global solution, its parameters 

need to be properly set to balance the exploration and exploitation. This trade-off can be done 

between the number of iterations and the other three parameters, such as number of initial 

points, number of best-performed leaves, and number of random points picked up from each 

leaf. For example, if the number of initial points is high, the number of best-performed leaves 

should be small and vice-versa, while the number of random points in each leaf should be just 
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one or two. This balance should be done in a way that there are enough iterations for 

exploitation. 
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CHAPTER 5 

5. REBALANCING SHARD E-SCOOTERS UNDER DEMAND 

UNCERTAINTY 
5.1 Introduction 

The first-and-last-mile is a prevalent transportation challenge witnessed across numerous 

urban regions worldwide, stemming from inadequate public transit planning, financial 

limitations, and the expansion of urban areas. The private sector has intervened to bridge this 

transportation gap by introducing collaborative transportation modes, encompassing shared bikes, 

shared electric bikes (e-bikes), and shared electric scooters (e-scooters), which are operated 

through either dock-based or dockless systems. Dock-based systems are predominantly utilized 

for shared bicycles, while users start and end their trips by bikes at designated stations. As the 

station's capacity is determined by the number of docks, users of shared dock-based bicycles may 

encounter situations wherein they are unable to end their journeys at the most convenient station 

due to a lack of capacity. Consequently, they are compelled to terminate their trips at a less 

convenient station that has the requisite capacity. In contrast, individuals utilizing dockless shared 

bicycles or e-scooters have the flexibility to pick up or appropriately park such vehicles within 

any public space within a designated operational zone. Nevertheless, despite the convenience of 

this dockless shared mobility approach, these dockless bicycles or e-scooters at times impede 

public access (for example, by obstructing sidewalks), exert adverse impacts on urban aesthetics, 

or fall prey to acts of vandalism. To address these challenges, operators must promptly clear 

excessive vehicles and establish proper parking zones.  

Shared bicycles were initially introduced in Amsterdam in 1965 [1], whereas shared electric 

scooters (e-scooters) made their debut in Singapore in 2016 and later in the United States in 2017 

[2]. However, a notable development occurred in the United States in 2019, where the cumulative 

ridership of shared e-scooter trips (amounting to 96 million trips) exceeded the combined 

ridership of both dockless and dock-based shared bicycles (totaling 40 million trips). This shift 

can be attributed to the widespread availability of e-scooter services in over 100 U.S. cities [3]. 

This phenomenon of shared micromobility has been extensively investigated in the scholarly 

literature [2, 4, 5]. Furthermore, the topic of shared e-scooters has attracted significant scholarly 

interest across various dimensions, including policy and regulatory aspects [6-12], spatiotemporal 

patterns of trips [4, 13-18], life cycle assessments [19-22], and societal perceptions [23-26]. 

In the domain of short-term demand prediction, an innovative neural network structure 

known as GCScoot, categorized as a spatiotemporal graph capsule neural network, has been 

developed to anticipate the movement patterns of shared e-scooters by taking into account the 

adjustments in deployment configurations [27, 28]. The evaluation of GCScoot against baseline 

models was conducted using openly available datasets from four U.S. cities: Austin, Texas (TX); 

Louisville, Kentucky; Minneapolis, Minnesota (MN); and Chicago, Illinois, and it displayed 

superior performance, establishing a new benchmark. In the realm of hourly demand forecasting 

for shared e-scooters, distinct methodologies have been explored. For instance, the seasonal 

autoregressive integrated moving average (SARIMA) model was employed to predict the hourly 

e-scooter demand at Thammasat University (Thailand), while the variance in this demand was 

addressed using the generalized autoregressive conditional heteroskedasticity (GARCH) model 

[29]. In a separate study by Ham et al. [30], an encoder-recurrent neural network-decoder 
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framework was utilized to predict latent temporal characteristics within a convolutional 

autoencoder. This approach was applied to satisfied and unmet e-scooter demands in the 

Gwangjin district of Seoul, South Korea. To address the challenge of demand scarcity, a masked 

fully convolutional network, guided by a mask model or a region of interest, was devised. This 

network was designed to concentrate solely on the active cells within Calgary, Canada [31]. 

Similarly, Xu et al. [32] introduced a spatiotemporal multi-graph transformer, leveraging various 

graph types such as adjacency, functional similarity, demographic similarity, and transportation 

supply similarity graphs. This novel approach based on graph convolutional networks was used 

for predicting hourly shared e-scooter demand in Austin, TX, and Washington, District of 

Columbia (DC). Further studies explored different predictive techniques. For instance, a long 

short-term memory (LSTM) model was employed to forecast hourly shared e-scooter demand in 

Seoul, South Korea, specifically in the Seocho and Gangnam districts [33]. Recently, Khan et al. 

[34] proposed an ensemble model based on extreme gradient boosting (XGBoost), extra trees, 

and random forests, employed to predict the clustered daily demand of shared e-scooters using 

the k-means algorithm on Jeju Island, South Korea.  

On the other hand, there exists a limited body of research pertaining to the operational 

strategies of shared e-scooters, encompassing facets such as e-scooter recharging, fleet size 

determination, e-scooter distribution and rebalancing strategies, and facility location planning.  

Masoud et al. [35] addressed the challenge of recharging shared e-scooters by adapting a College 

Admission algorithm to solve an Integer Linear Programming (ILP) formulation. This approach 

aimed to ascertain the optimal allocation of freelance chargers required for the task. Similarly, 

Ciociola et al. [36] leveraged Poisson processes to investigate the interaction between fleet size, 

battery charging, and simulated demand patterns for shared e-scooters. The utilization of deep 

learning models also came into play. The 3D-CLoST model was introduced to predict shared e-

scooter demand, subsequently integrating a pragmatic relocating strategy executed by workers 

using a greedy approach [37]. Osorio et al. [38] introduced a mixed-integer program that 

accounted for the possibility of e-scooter charging on rebalancing vehicles during overnight 

periods. To address scalability concerns, a discrete-continuous hybrid model was developed, 

combining line haul and local operational considerations. This hybrid model was assessed 

through randomly generated demand scenarios based on normal distributions. Fathabad et al. [39] 

formulated a two-stage stochastic program for the short- and long-term operational planning of 

shared e-scooters. The primary stage aimed to minimize investment costs linked to charging 

infrastructure, e-scooter fleet sizing, and relocation schedules, while the secondary stage focused 

on optimizing short-term operational expenses encompassing relocation, charging, and unserved 

demand penalties. Losapio et al. [40] devised a novel approach termed "E-Scooter Balancing-

Deep Q Network," which employed multi-agent deep reinforcement learning. This approach 

aimed to minimize the need for rebalancing operations and battery swapping, encouraging 

customers to retrieve e-scooters from nearby zones to mitigate imbalances. Another recent study, 

a multi-criteria decision protocol underpinned by geographical information systems was proposed 

by Altintasi and Yalcinkaya [41] to optimize the placement of charging stations for shared e-

scooters. The objective was to seamlessly integrate the shared e-scooter system with existing 

public amenities, points of interest, and population densities, demonstrating a comprehensive 

approach.  
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Shared electric scooters are predominantly employed for short journeys, typically spanning 

around 1.5 kilometers in distance and lasting about 10 minutes. These rides are particularly 

popular for tourist activities and recreational purposes [5, 29, 31, 42]. It's noteworthy that the 

ridership patterns of shared e-scooters are more variable compared to shared bikes, which are 

primarily utilized for daily commuting. Shared bike ridership exhibits two peaks in demand: one 

during the morning rush hour and another during the evening rush hour. In contrast, shared e-

scooter ridership remains consistently high from morning until late evening. Within a dock-based 

system, the pickup and drop-off demands conform to the constraints of the available docks or 

station capacity. However, in a dockless system, demand is not bound by such limitations, leading 

to greater demand fluctuations and increased demand volatility. Due to the nature of shared e-

scooter ridership and the absence of docking stations, shared e-scooters require more frequent 

rebalancing efforts to meet their dynamically changing demand. Unlike shared bikes, which 

might suffice with two rebalancing operations during peak demand periods (morning and evening 

peaks), shared e-scooters necessitate a larger number of rebalancing actions and a shorter 

planning horizon. Furthermore, shared e-scooters require intensive maintenance [16] and possess 

a relatively short operational lifespan [20]. This is due to their design, focused on being 

lightweight and user-friendly, requiring battery replacement or recharging as their battery levels 

deplete. In contrast to the previous scenario, the latter situation aligns more seamlessly with the 

rebalancing process and was, therefore, the central focus of the present study. In this context, e-

scooters with low battery levels are relocated to nearby charging facilities, with a particular 

emphasis on charging stations powered by renewable energy sources such as solar power [43].  

Limited prior research has delved into the aspect of short-term operational planning for 

shared e-scooters, particularly focusing on daily planning involving hourly intervals, among 

others. In this context, the queuing model employing a Poisson distribution to model demand has 

found common usage in bike sharing applications. However, this approach is not without 

drawbacks. Firstly, the queuing model introduces higher demand uncertainty than demand 

prediction techniques, leading to escalated operational costs (as depicted in Figure 5.3). 

Secondly, actual demand patterns in shared micromobility are considerably erratic and influenced 

by various external factors, thereby diverging from the assumptions of a Poisson distribution (as 

detailed in Section 5.4.1). Conversely, several studies have harnessed machine learning or deep 

learning models to predict short-term demand for the purposes of rebalancing operations. 

Nevertheless, the deployment of e-scooters solely based on predictions from these models yields 

an undesirable service level due to the absence of consideration for prediction errors. Against this 

backdrop, this study introduces an original data-driven framework tailored for short-term 

rebalancing strategies for shared e-scooters, with an explicit incorporation of e-scooter and trip 

attributes. The primary objective of this framework revolves around reallocating the constrained 

e-scooters to locations projected to encounter the highest anticipated demand. Addressing the 

uncertainty inherent in shared e-scooter demand primarily involves demand prediction, while the 

residual uncertainty is managed by the SGARCH model. In this context, "Allocation" refers to 

the temporal correlation between forecasted variance via SGARCH, current trends in demand 

volatility, and the efficacy of demand prediction models. This stands in contrast to the 

conventional approaches involving constant or periodic (daily or weekly) variance assumptions. 

Our proposed framework aligns adeptly with the domain of static rebalancing planning, catering 

to planning horizons spanning from a few hours to several hours. Nevertheless, the scope of the 
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outlined framework can be extended to encompass multiple planning horizons in forthcoming 

research endeavors. The noteworthy contributions of this study are enumerated as follows:  

• Monte Carlo simulation was utilized to model the uncertainty in shared e-scooter demand, 

taking into account the trip gap projections derived from GB regression and the variance as 

well as probability distribution forecasted through the seasonal generalized autoregressive 

conditional heteroskedasticity (SGARCH).  

• The static vehicle-based rebalancing planning was expressed as an Integer Linear 

Programming (ILP) challenge, aiming to tackle demand uncertainty, relocation of faulty e-

scooters to the central depot for repairing, and collection of e-scooters with low battery levels 

to neighboring charging stations. Two distinct ILP formulations were devised, one with 

predetermined route sequences and the other with undisclosed sequences. To enhance practical 

feasibility, modifications were introduced to the objective function and operational constraints. 

This entailed incorporating penalties for specific unfulfilled demands, as opposed to deviations 

in requests found in previous studies.  

• The task of rebalancing optimization was addressed using both an Integer Linear Programming 

solver (GLPK) and a novel hybrid algorithm, namely the ant colony optimization–ILP (ACO-

ILP) approach. These methods were applied to solve rebalancing optimizations posed by 

demand scenarios simulated through the Monte Carlo technique. For empirical validation, a 

real-world dataset encompassing dockless shared e-scooter operations in Minneapolis (MN) 

was selected as the focal point of the case study. 

 

5.2 Literature review  

As outlined in the preceding section, the scope of research concerning the operational 

strategies of shared e-scooters remains constrained. However, the knowledge base can be 

enriched by drawing insights from analogous sharing services, particularly shared bikes, which 

share a degree of resemblance with shared e-scooters. Shui and Szeto [44] conducted a 

comprehensive survey of existing studies, revealing that these inquiries have centered around 

diverse facets of shared-bike rebalancing. These aspects encompass a variety of elements such 

as objective functions (e.g., distance, cost, and emissions optimization), constraints (e.g., 

budget, service duration, and inventory considerations), optimization algorithms (ranging from 

precise to heuristic methodologies), deterministic or stochastic problem formulations, and 

scenarios involving either static or dynamic considerations. In alignment with this context, the 

present study is dedicated to addressing shared bike rebalancing challenges under the presence 

of demand uncertainty and predicted demand scenarios. 

Shared bicycles find predominant utilization in commuting, thus exhibiting pronounced 

peak-demand periods during morning hours (6 am–10 am) and evening hours (4 pm–8 pm) [45, 

46]. This characteristic, in tandem with the station capacities, results in a more stable demand 

pattern for shared bikes in comparison to dockless shared e-scooters. Consequently, 

conventional investigations have frequently operated under the assumption that bike-sharing 

demand conforms to a Poisson distribution. For example, there has been a bias towards 

representing dynamic shared-bike inventory levels using continuous-time Markov chains 

(CTMCs), incorporating Poisson processes for pickups and drop-offs. This portrayal translates 

into a double-ended queuing system model. Empirical validation of this modeling paradigm 



107 
 

was carried out utilizing a real-world dataset from Tel Aviv, Israel's bike-sharing system [47]. 

Likewise, the simulation approach by Monte Carlo and the approximation approach with 

Skellam distribution derived from historical ridership of shared bikes were utilized to quantify 

the unserved demand in reference [48]. Meanwhile, the CTMC framework was adapted for 

addressing overnight rebalancing operations within New York City's Citi Bike system. Both 

small- and large-scale problems were addressed through the employment of an ILP solver and 

a greedy algorithm, respectively [49]. Several bike sharing datasets, from Boston, 

Massachusetts, and Washington, were utilized as case studies evaluating the effectiveness of a 

non-stationary queuing (Mt/Mt/1/K) model characterized by exponentially distributed pickups 

and drop-offs [50]. In the pursuit of dynamic rebalancing, Seo [51] incorporated demand 

uncertainty by adopting a Markov decision process reliant on a Poisson distribution, wherein 

the mean demand was predicted through random forest regression. This approach was evaluated 

through a case study centered around bike sharing in Seoul, South Korea. Nonetheless, a chi-

squared goodness-of-fit analysis unveiled that only 77% of the stations encompassed in the 

study exhibited demand patterns adhering to a Poisson distribution. Meanwhile, Lu [52] utilized 

the bike sharing dataset operated in New Taipei City, Taiwan, to examine the proposed robust 

multi-period bike fleet allocation scheme preventing the worst-case scenario (i.e., maximum 

demand).  

Other academic literatures have addressed the challenge of demand uncertainty within 

rebalancing contexts by integrating sample average approximation through Monte Carlo 

sampling. For instance, the operational management of shared autonomous electric vehicles in 

Shanghai, China, harnessed the Monte Carlo method to simulate daily demand, employing a 

normal distribution derived from historical ridership [53]. In the domain of bike sharing, Monte 

Carlo sampling emerged as a pivotal tool. It was leveraged to generate demand scenarios for 

Bergamo, Italy, employing four distinct probability distributions (uniform, exponential, normal, 

and log-normal) utilizing mean and standard deviation values drawn from historical ridership 

[54]. Likewise, for New Taipei City, Taiwan, historical weekly ridership was employed to 

simulate demand scenarios using a truncated normal distribution [55]. Contrary, Dell’Amico et 

al. [56] employed historical daily ridership as individual scenarios and proceeded to resolve 

stochastic programming models by a few methodologies, including branch-and-cut, 

deterministic equivalent programs, L-shaped procedures, and heuristic algorithms. These 

endeavors were executed utilizing a couple of open datasets.  

Conversely, machine learning and deep learning models have demonstrated commendable 

predictive capabilities, warranting their integration within rebalancing frameworks. For 

instance, Regue and Recker [57] introduced a chance-constrained programming approach for 

dynamic rebalancing of shared bikes, leveraging a normal distribution with the predicted 

demand from GB regression and the variance from prediction model's residuals. In a distinct 

application, RF was employed to predict station-level rental and return demands for bike 

sharing in Nanjing, China. Subsequently, static rebalancing was formulated to fulfill the 

predicted demand, conceptualizing the problem as a hub-first–route-second problem [58]. The 

truck-based rebalancing in New York City was constructed with the integration of a 

spatiotemporal graph neural network tailored to forecast city-wide bike demand [59]. Similarly, 

the deterministic dynamic rebalancing approach for shared bikes in Beijing, China, was framed 

within a data-driven framework fortified by a deep learning model [45]. Seoul, South Korea's 
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bike sharing operations were also subject to prediction-enhanced strategies by RF, adopted to 

forecast forthcoming demand and inventory levels for the purpose of repositioning [60]. 

Presenting a fusion of methodologies, Yu et al. [61] devised the SARIMA-LSTM hybrid model. 

This hybrid prediction model facilitated the prediction of pickup and drop-off demands, thereby 

underpinning the rebalancing planning for bike sharing centered around rail transit stations 

within Xicheng, Beijing.  

To synthesize, the strategies employed for short-term operational planning within the 

domain of bike sharing have predominantly accommodated demand uncertainty via Markov 

chain models, often assuming a particular probability distribution, commonly the Poisson 

distribution, to model demand behavior. Alternatively, operational rebalancing endeavors have 

embraced the utilization of machine learning and deep learning models to predict demand. 

While Regue and Recker [57] incorporated the error stemming from demand prediction models 

into their bike-sharing rebalancing scheme, they did not comprehensively analyze the variance 

and underlying probability distribution. Hence, this current study employs the SGARCH model 

to systematically scrutinize the residuals generated by the demand prediction model. This 

regression-based methodology serves to diminish the average demand uncertainty and 

concurrently furnishes vital parameters, including probability distribution and temporal 

variance—essential components for the subsequent Monte Carlo sampling process. Past 

research has addressed the collection of malfunctioning bikes within their rebalancing problems 

[45]. However, the topic of recharging, particularly concerning electric bikes (e-bikes), remains 

largely unexplored. This disparity in attention might be attributed to the fact that despite their 

similar cost profile to shared e-scooters, e-bikes are frequently introduced at lower fleets in 

conjunction with traditional bicycles. Nonetheless, e-bikes are generally considered to be of 

lesser allure. Consequently, this study strives to encompass all three e-scooter types: usable, 

faulty, and low-battery e-scooters. Moreover, it endeavors to frame the rebalancing problem 

against the backdrop of stochastic demand by adopting the Sample Average Approximation 

(SAA) methodology. This approach offers the advantage of tailoring parameter settings to attain 

a target service level. Notably, this strategy facilitates the formulation of the rebalancing 

challenge as an Integer Linear Programming (ILP) problem, accommodating both known and 

unknown route sequences, and thereby allowing the rebalancing optimization to be solvable 

exact or heuristic algorithms. Furthermore, the proposed ACO-ILP algorithm boasts 

compatibility with parallel computing, rendering it amenable to scalability and practical 

implementation. 

 

5.3 Methodology 

5.3.1 Research framework 

The standard protocol for dockless shared e-scooter journeys encompasses multiple stages: 

identifying nearby e-scooters through visual observation or employing a mobile application, 

proceeding to the designated e-scooter location on foot, activating the e-scooter lock 

mechanism via a mobile application, utilizing the e-scooter to travel to the desired destination, 

appropriately securing the e-scooter upon arrival, and ultimately ending the trip. While the 

termination process for dockless mode trips is undeniably convenient, customers may opt 

against initiating their e-scooter journey if the distance they must traverse to retrieve the e-
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scooter is deemed excessively lengthy. To mitigate this concern, operators frequently divide 

their operational zones into walkable regions (e.g., within a range of 200 to 500 meters) and 

ensure that e-scooters are strategically positioned within these designated zones. A common 

strategy employed by operators involves rebalancing or relocating e-scooters from zones 

characterized by an excessive number of such e-scooters to zones where the number of scooters 

is comparatively lower. Operators frequently evaluate the condition of each zone and engage in 

rebalancing efforts to avoid instances of unsatisfied demand or zones experiencing scarcity, 

particularly due to operational limitations such as the restricted availability of e-scooters. This 

is done within the designated timeframe. To optimize operational efficiency, operators can 

leverage pertinent information and historical trip data to predict future demands—quantities of 

pickup and drop-off demands anticipated within specific time intervals for each zone. This 

predictive insight subsequently forms the basis for refining the rebalancing strategy. This 

involves determining the most optimal route path for the rebalancing vehicle and ascertaining 

the appropriate number of e-scooters to be collected from or redistributed to each respective 

zone.  

Rebalancing operations can be classified into two primary categories: Static and Dynamic. 

In the context of static rebalancing, the rebalancing operational strategy, often revolving around 

vehicle-based rebalancing, is predicated upon several presumptions. These include scenarios 

wherein no e-scooter usage takes place during the rebalancing procedure, or the dynamic 

interaction between customers and the systems can be deemed negligible. Moreover, static 

rebalancing might involve predetermined time intervals and an extended planning horizon. It 

also assumes negligible influence from user activities, behaviors, or interventions, and 

presupposes that the number of e-scooters at each station remains constant throughout the 

rebalancing process. Contrastingly, dynamic rebalancing acknowledges the impact of users' 

usage patterns while rebalancing is underway. This category also accounts for short planning 

intervals, potentially extending to real-time planning, and leverages users' actions and behaviors 

as crucial inputs. Dynamic rebalancing takes into consideration the continuous alterations 

within the systems, particularly in instances where the systems are operational or in use. In this 

scenario, the optimal time for implementing static rebalancing is during nighttime when the 

system is inactive or experiencing minimal usage. If the planning horizon is relatively long and 

significant information such as requests, distribution of e-scooters, weather, etc. remains 

unchanged, rebalancing during daytime might be categorized as static rebalancing. In alignment 

with the foundational assumptions, the proposed framework for periodic rebalancing of shared 

e-scooters, as depicted in Figure 4.1, aligns itself more closely with the static rebalancing 

variant. This categorization is justified by the shared assumptions outlined in Section 5.3.4. 

However, it's noteworthy that the framework could be classified as dynamic rebalancing if the 

planning horizon is as short as an hour or less. Nevertheless, hinging upon the primary 

assumptions, our rebalancing framework is best classified within the static category, as 

illustrated in Figure 4.1. 

Figure 4.1 illustrates the schematic structure of the research framework, comprising three 

key segments: (1) the process of collecting and manipulating data, (2) the prediction of trip gap 

utilizing GB regression and variance prediction employing SGARCH, and (3) optimization of 

the rebalancing process. Given that shared e-scooters serve as a form of transportation for short 

distances, their immediate demand is influenced by various external factors, encompassing 
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weather conditions, seasonal patterns (both on a weekly and yearly basis), holidays, and special 

events [4]. These influential factors were thus incorporated into the demand prediction models, 

subject to manipulation. E-scooters represent a form of shared transportation that operates 

without the need for designated docking stations. This allows users the flexibility to both 

retrieve and return e-scooters at any location within a specified operational region, with the 

exception of private properties or areas explicitly prohibited by governing bodies. The common 

practice of grid-based spatial aggregation is often employed for handling spatial trips. However, 

this approach falls short in encapsulating demand concentration or the congruity of trip intents. 

For instance, spatial trips occurring within locales like shopping malls, parks, or schools might 

be dispersed across couple grid cells if these sites are situated along the grid's periphery. 

Furthermore, past research has explored aggregation methods based on postal codes or 

administrative divisions like communities or wards. Nonetheless, these territorial units often 

prove overly expansive for addressing the exigencies of short-term rebalancing operation to 

shared e-scooters. Consequently, the present investigation leveraged a k-means clustering 

algorithm to aggregate the spatial ridership patterns of shared e-scooters. This entailed 

employing cluster range of 15, 30, and 60 to effectively categorize and consolidate spatial 

ridership trends.  

In order to address the inherent scarcity in trip flow data, this study undertook the prediction 

of trip gap, denoting the net demand disparity between origin trips (referred to as trip generation 

or pickup demand) and destination trips (referred to as trip arrival or drop-off demand). In 

instances where the trip gap is positive, it signifies a prevalence of pickup trips over drop-off 

trips. The hyperparameters of the gradient boosting regressor for predicting trip gap were 

adjusted using an automated algorithm, namely Bayesian optimization (BO). Subsequently, the 

SGARCH model was trained using the residuals extracted from the trip gap prediction. Then, 

in light of the projected discrepancy and variability in trip demand, a Monte Carlo sampling 

technique was employed to model the unpredictable nature of shared e-scooter demand for the 

purpose of optimizing rebalancing operations.  

The problem of rebalancing optimization is classified as NP-hard, indicating that the 

computational time required to solve it grows exponentially as the number of clusters rises. As 

a result, the presence of computational limitations posed challenges for exact algorithms in 

generating either the globally optimal solutions or even the viable solutions. In order to address 

this limitation, we investigated viable heuristic techniques in conjunction with the precise 

Integer Linear Programming (ILP) solver "GLPK". The devised heuristic solutions involved 

breaking down the overarching rebalancing issues into two distinct components: Routing 

Problems and Pickup or Drop-off Problems. A suite of population-based algorithms, namely 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization 

(ACO), were subjected to scrutiny to optimize the routing problem. In parallel, the ILP solver 

and GA were enlisted to streamline the pickup and drop-off operations. Analyzing our 

numerical findings, as encapsulated in Table 5.1, reveals that the combination of heuristic 

algorithms for routing (GA, PSO, & ACO) and pickup/drop-off operations (GA) exhibited 

suboptimal efficacy. In fact, this hybrid scheme often struggled to locate feasible solutions, 

especially when grappling with expansive problem dimensions. This ineffectiveness was most 

noticeable with GA's inability to yield a feasible pickup and drop-off outcome, primarily due 

to violations of drop-off constraints. The occurrence of drop-off violations on small issue sizes 
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is initially minimal, but it increases exponentially as the number of nodes increases. Conversely, 

when routing optimization was governed by a blend of heuristic algorithms (GA, PSO, and 

ACO) and pick-up and drop-off operations were guided by the ILP solver, the ACO-ILP hybrid 

outperformed its counterparts—GA-ILP and PSO-ILP—particularly in the context of larger 

problem dimensions. Notably, ACO demonstrated a relatively longer computing time for 

generating feasible route sequences compared to GA and PSO, albeit with a faster convergence 

rate. In cases involving simple Traveling Salesman Problems, where the objective value (i.e., 

travel distance) entails computationally efficient evaluation, GA and PSO—with shorter 

computing times—are capable of assessing a larger pool of candidates within a confined time 

frame. Nevertheless, the computational cost associated with the objective value, namely the 

pickup and drop-off operation optimized by the ILP solver, is relatively high. Consequently, the 

total number of candidates (or route sequences) that can be assessed is constrained. In such 

scenarios, ACO, with its swift convergence, stands out for attaining superior optimal objective 

outcomes. 

 

Table 5.1 Performance of several algorithms for Rebalancing Optimization 

Number 

of Nodes 

Optimization Algorithms 
Time 

(min) 
Routing Penalty 

Objective 

Value Routing Optimization 
Pickup & Drop-off 

Optimization 

15 

Stations 

Integer Linear Programming (ILP) Solver 30.0 35.9 41.0 76.9 

Genetic Algorithm 

(GA) 

ILP-Solver 

31.3 40.2 41.0 81.2 

Particle Swarm 

Optimization (PSO) 
31.8 41.0 41.4 82.4 

Ant Colony 

Optimization (ACO) 
33.0 38.1 41.0 79.1 

GA 

GA 

43.4 59.7 42.6 102.3 

PSO 40.0 62.1 43.4 105.5 

ACO 43.9 43.4 44.0 87.4 

30 

Stations 

ILP-Solver 45.0 95.8 251.0 346.8 

GA 

ILP-Solver 

44.2 142.1 249.5 391.6 

PSO 46.4 158.8 233.5 392.3 

ACO 42.6 73.3 293.0 366.3 

GA 

GA 

57.3 208.3 394.0 602.3 

PSO 54.4 199.3 401.5 600.8 

ACO 40.2 100.2 494.5 594.7 

60 

Stations 

ILP-Solver 60.0 279.4 2056.5 2335.9 

GA 

ILP-Solver 

59.5 513.4 1815.7 2329.1 

PSO 58.7 491.1 1841.1 2332.2 

ACO 65.6 163.7 1908.9 2072.6 

GA 

GA 

Not Converge since GA can't find a 

feasible solution for pickup and drop-off 

problem. 

PSO 

ACO 
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Consequently, the optimization problems outlined in the Figure 5.1 framework were 

tackled using only an ILP solver and the hybrid approach merging ACO with ILP solver, ACO-

ILP. Traditionally, studies have often inferred the stochastic characteristics of shared-bike 

demand from historical records, where each scenario has manifested as a seasonal snapshot, or 

a sample generated through Monte Carlo simulation [54-56]. In order to mitigate any 

unwarranted assumptions regarding the distribution of demand, which would not be practicable 

when considering the demand for shared e-scooters, historical data pertaining to daily and 

weekly patterns were chosen as the benchmarks for rebalancing planning. In the last step, a 

comparison was made between the objective values of the rebalancing optimization problems, 

including the results obtained from ILP solver and ACO-ILP approaches, for various types of 

trip gaps, namely the actual trip gaps, historical daily and weekly trip gaps, and simulated trip 

gaps. The examination of the comparison was conducted using a sample of 30 randomly 

selected cases from the testing dataset, as described in Section 5.4.1. The objective of 

conducting a comparison between the ILP solver and the proposed ACO-ILP algorithm is to 

showcase the efficacy of these two algorithms in addressing varying issue sizes, hence 

emphasizing their scalability. Furthermore, the objective of comparing the simulated demands 

using the Monte Carlo approach with the baseline scenarios, specifically the historical daily and 

weekly trip gaps, is to demonstrate the efficacy of reducing and distributing the uncertainty in 

demand through the medium of demand and variance prediction. 

 

 
Figure 5.1 Research framework  
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5.3.2 Demand prediction by GB 

The short-term trip gap or net demand of shared e-scooters was forecasted using GB, a 

machine-learning technique pioneered by Friedman [62], as seen in Figure 4.1. The GB model 

is an ensemble of decision trees that operates on a boosting framework, effectively enhancing 

prediction accuracy by progressively introducing new weak learners (decision trees) to 

minimize residual errors stemming from the preceding learners, as depicted in Figure 5.2. Built 

upon the foundation of classification and regression trees, GB possesses applicability in both 

classification and regression tasks. The intricate formulation and algorithm underpinning GB 

were elucidated by [62], while the iterative process (entailing the accumulation of decision 

trees) within the GB regressor encompasses several pivotal stages: calculation of the negative 

gradient (initializing the initial prediction with the mean value), adaptation of a regression tree 

to prognosticate the negative gradient, determination of the gradient descent step size (or 

learning rate), and refinement of the GB model or prediction efficacy. For the current 

investigation, the GB model was trained employing a Python module housed within the Scikit-

Learn package, specifically the GradientBoostingRegressor [63]. 

 

 
Figure 5.2 Flowchart of gradient boosting (GB)  

 

The performance of the GB regressor can be equivalent to that of deep learning models 

[64], but it necessitates appropriate feature selection and hyperparameter tweaking. Several 

methodologies exist for hyperparameter optimization, including manual search, grid search, 

random search, sequential model-based approach, and population-based approach. The 

sequential-based technique is frequently employed for optimizing hyperparameters in both 

machine learning and deep learning domains due to its capacity to yield a near-globally optimal 

solution in a relatively short amount of computational time. The aforementioned methodology 

employs surrogate and acquisition functions in a sequential manner to propose a novel 

candidate until the predetermined stopping criteria are met. Among the well-recognized 

algorithms embracing this approach are Bayesian Optimization (BO) and tree-structured Parzen 

estimator. The Bayesian optimization (BO) algorithm employs a Gaussian process to create a 

surrogate function based on the assessed samples, which initially consist of randomly selected 
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data points. The selection of the new candidate is determined by maximizing the expected 

performance, such as minimizing the mean squared error (MSE) on evaluation data. This is 

achieved by utilizing acquisition functions such as the probability of improvement, expected 

improvement, or lower confidence bound. Elaborative insights into the BO algorithm can be 

sourced from existing literature [65]. The BO method was chosen in this study for its capacity 

to effectively address local optima. This is attributed to the inclusion of a parameter, kappa, 

which effectively balances the tradeoff between exploration and exploitation.  

The current investigation utilized BO with the lower confidence bound to tune the 

hyperparameters of the GB regressor in the Python package, Scikit-Optimize or skopt [66]. 

Predominantly, the default values were retained for most parameters of the BO algorithm, with 

the exception of key parameters. Specifically, the number of initial random samples 

(n_random_starts), the total number of evaluations (n_calls), and the coefficient of the lower 

confidence bound (kappa) were configured to 50, 200, and 1.8, respectively. The objective of 

BO optimization centered on minimizing the MSE of evaluation data and its proportion to that 

of training data, denoted as MSE_eval + MSE_eval/MSE_train. The primary goal of this 

objective function is to minimize overfitting and decrease the training time by discouraging the 

recommendation of sophisticated models that result in substantial reductions in MSE_train and 

only marginal reductions in MSE_eval. This BO algorithm configuration was implemented to 

optimize five hyperparameters of the GB algorithm: number of boosting stages (n_estimators), 

maximum depth of the decision tree (max_depth), learning rate (learning_rate), the lookback 

length (l), and sampling rate (r). Notably, two parameters (l and r) were associated with the 

selection of input variables (as shown in Figure 5.1), facilitating the GB regressor to 

prognosticate the forthcoming trip gap (t + 1). To make hourly predictions, the input selection 

was made by sampling from step t to step t − l −  1. One sample was chosen within each interval 

of length r, ranging from t − l − 1 to t − r. All of the samples were selected from the range t − r 

− 1 to t. As an illustration, given the values l = 24 and r = 3, the historical data list can be 

represented as [t −  23, t −  20, t −  17, t −  14, t −  11, t − 8, − 5, t −  2, t − 1, t]. The values of l 

and r were within the intervals [13, 170] and [1, 13], respectively. The duration of lookback 

length encompassed the weekly trend in order to anticipate the hourly trip-gap. The remaining 

three hyperparameters of GB, namely n_estimators, max_depth, and learning_rate, were tuned 

within the specified ranges of [5, 400], [1, 20], and [0.01, 0.5], correspondingly. The remaining 

settings of the GB technique were left at their default values. Specifically, the loss function was 

specified as the squared error, the minimum number of samples required to perform a split was 

set to 2, and the quality of a split was determined using the Friedman mean squared error. 

 

5.3.3 Variance prediction by SGARCH 

Despite the advanced performance achieved by machine learning algorithms, these models 

still exhibit prediction errors, typically quantified using metrics like MSE, Root-Mean-Square 

Error (RMSE), or Mean Absolute Error. Consequently, providing e-scooters based solely on the 

predictions derived from these models (disregarding the error term) would lead to a Service 

Level Type I, or a probability of encountering shortages, of only 50%. To elucidate, if e-scooters 

are allocated to 100 locations in accordance with predicted demands, approximately 50 of these 

locations (right-hand side of the residuals' histogram or probability distribution) may face 
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shortages. In essence, the predicted demand represents an expected value or mean around which 

nearly 50% of the actual demand fluctuates above or below. In an effort to address this issue, 

historical mean and variance have been utilized to simulate stochastic scenarios under an 

assumed demand distribution. Nevertheless, the presumed distributions for both trip-starts and 

trip-ends are impractical, particularly when it comes to shared e-scooters, as discussed in 

Section 5.4.1, with elevated uncertainty translating into heightened operational costs. As seen 

in Figure 5.3, two Gaussian trip-gap models exhibiting varying degrees of variability yield 

distinct expected unmet demands—clearly, greater uncertainty corresponds to increased 

expected unmet demand. Accordingly, we can optimize operational costs by diminishing 

demand uncertainty through the utilization of demand forecast techniques and the selection of 

suitable variation and distribution models. 

 

 
Figure 5.3 Effect of demand uncertainty on expected unmet demand 

 

Recently, a discovery was made that the residuals of a short-term demand prediction model 

for shared e-scooters did not exhibit the characteristics of white noise [29]. As a result, this 

study embarked on an investigation into the heteroskedastic nature of the residuals derived from 

trip gap prediction. Given that prediction in this context entails a time-series approach, a 

Lagrange multiplier test was conducted to ascertain whether the residuals from the previous 

phase adhered to homoskedasticity; if they did, the variance would remain constant. 

Conversely, if homoskedasticity was not observed, the conditional variance of these residuals 

was estimated through the employment of the SGARCH model. An Autoregressive Conditional 

Heteroskedasticity (ARCH) model can be employed to forecast future variance based on 

conditional variance, distinguishing between high and low volatility periods. This model only 

includes past residuals as independent variables. However, its generalized counterpart 

(GARCH) incorporates not only prior residuals but also previously predicted variances [67]. To 

accommodate the seasonal patterns inherent in the data, the SGARCH model was developed by 

augmenting the GARCH model with seasonal residuals and predicted variances. A 

comprehensive exposition of this model, along with its extensions, can be found in the reference 

manual of the STATA software [67]. The fundamental expression of the SGARCH(p,q)(P,Q,S) 

model is presented as follows: 
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𝑦𝑡+1 = 𝑿𝑡+1𝛽 + 𝜖𝑡+1  (5.1) 

𝜎𝑡+1
2 = 𝑎0 + ∑ 𝑎𝑖𝜀𝑡+1−𝑖

2𝑝
𝑖=1 + ∑ 𝑏𝑖𝜎𝑡+1−𝑖

2𝑞
𝑖=1 + ∑ 𝑐𝑖𝜀𝑡+1−𝑖𝑆

2𝑃
𝑖=1 + ∑ 𝑑𝑖𝜎𝑡+1−𝑖𝑆

2𝑄
𝑖=1   (5.2) 

 

In this context, 𝑦𝑡+1 represents the residuals originating from the demand prediction model, 

GB. Consequently, 𝑿𝑡+1 = 𝟏, and 𝑦𝑡+1⁡is determined by the summation of a constant value (𝛽) 

often in proximity to zero, and the disturbance term 𝜖𝑡+1. This model was constructed through 

the maximum log-likelihood estimator, employing versatile distributions such as the normal 

distribution 𝜖𝑡+1~𝑁(0, 𝜎𝑡+1
2 ), Student’s t distribution 𝜖𝑡+1~𝑡(0, 𝜎𝑡+1

2 , df), and a generalized 

error distribution. For the purpose of forecasting the hourly conditional variance 𝜎𝑡+1
2 , the 

SGARCH model encompassed parameters like 𝜎𝑡
2, 𝜎𝑡−1

2 , 𝜎𝑡−2
2 , 𝜎𝑡−23

2 , 𝜎𝑡−47
2 , 𝜀𝑡

2, 𝜀𝑡−1
2 , 

𝜀𝑡−2
2 , 𝜀𝑡−23

2 ⁡and⁡⁡𝜀𝑡−47
2 . Insignificant parameters (95% confidence level) were eliminated. This 

signifies that the estimated variance at time t+1 is significantly influenced by the residuals and 

predicted variances from recent time steps (t, t-1, t-2), along with the corresponding hours from 

preceding days (t-23 and t-47). Such estimation of conditional variance effectively distributes 

uncertainty across the day, yielding a lower variance during nighttime and a heightened variance 

during daytime. Due to its emphasis on recent trends, the SGARCH model exhibits a greater 

tolerance for extended-term fluctuations when contrasted with daily variance (i.e., variance at 

the same hour of the day). Each cluster underwent independent SGARCH model training using 

the STATA statistical software [67]. Both the normal and Student’s t distributions were 

considered, with the choice of distribution being contingent on the one yielding the smallest 

standard deviation. This chosen distribution, along with the projected variance, was 

subsequently leveraged in the Monte Carlo simulation to generate demand uncertainty. 

 

5.3.4 Description of rebalancing problem 

Given the constraints imposed by data availability and the intricate operational dynamics 

of shared micromobility encompassing bicycles, electric bikes (e-bikes), and electric scooters 

(e-scooters), the formulation of operational planning often necessitates reliance on a range of 

assumptions, which can diverge across different research endeavors. While certain assumptions 

can be managed via parameter configuration, worst-case analyses, and similar approaches, this 

study has established the subsequent assumptions.  

• Assumption 1: The time distribution of both trip-starts (pickups) and trip-ends (drop-offs) 

within a specific cluster is assumed to follow a uniform pattern across the time interval (∆𝑡). 

This implies that all e-scooters from trip-ends can potentially be used for pickup trips, 

particularly when the drop-off demand is less than the pickup demand (resulting in a positive 

trip gap). To illustrate, consider an empty cluster with 15 trip-starts and 10 trip-ends, yielding a 

trip gap of +5. Under ideal conditions and no other disruptions, this cluster would experience 

only five unmet demands. However, if all trip-starts occur in the first half of the time interval 

and all trip-ends are concentrated in the second half, the unmet demands could escalate to as 

many as 15.  

• Assumption 2: The demand within each cluster remains constant throughout the planning 

and rebalancing process.  

• Assumption 3: Due to the dockless sharing system, a user retrieves an e-scooter when it's 

accessible within the same cluster, irrespective of walking distance; otherwise, the user opts out 
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of the system, leading to unmet demand.   

• Assumption 4: Faulty or broken e-scooters are exclusively fixed at the depot, while e-

scooters with low-battery levels are either recharged at charging stations or brought back to the 

depot. 

• Assumption 5: A single rebalancing vehicle is available, and it is required to visit all 

nodes, encompassing both the charging stations and demand clusters.  

The process of minimizing demand uncertainty is primarily achieved through demand 

prediction, which is evidenced by the lower Mean Squared Error (MSE) compared to historical 

averages. With the inclusion of explanatory features in the demand prediction model (GB), the 

residuals are expected to exhibit characteristics of white noise or a random walk. Nevertheless, 

the residual uncertainty, represented by variance, can be further addressed through a variance 

prediction model tailored for datasets characterized by heteroscedasticity. The key purpose of 

variance prediction is to distribute uncertainty using the principle of conditional variance, 

focusing on temporal variance. By utilizing the forecasted trip gaps and variances, the operator 

can strategically relocate the limited e-scooters to areas where the potential profit is maximized. 

This study focuses on the rebalancing problem inside a complete network 𝐺 = ⁡ (𝑁, 𝐴), 

where 𝑁 represents the collection of all nodes, encompassing the depot, charging stations, and 

demand clusters, while 𝐴 denotes the arcs connecting these nodes. Additional symbols 

employed in this study can be found in Table 5.2. This study examines three distinct categories 

of e-scooters: malfunctioning (or broken or faulty), low-battery, and operational (or usable) e-

scooters. Defective electric scooters are retrieved and transported to the designated facility for 

necessary repairs, while e-scooters with depleted battery levels are either relocated to charging 

stations or the depot to undergo the recharging process. "Faulty" in this context refers to e-

scooters exhibiting electronic or structural issues warranting attention from depot technicians, 

a status usually communicated by users. The operator retains the prerogative to determine the 

battery threshold that designates e-scooters as "low-battery" (e.g., a battery level sufficient for 

an average trip duration or the entire planning period). Therefore, the operator's awareness of 

these two e-scooter types is presumed at the planning phase. The depot and charging stations 

are assumed to have zero demand, while Monte Carlo simulation was employed to generate the 

predicted net demand 𝑔𝑖
𝜃⁡in scenario 𝜃 in each cluster 𝑖 for the total scenarios of Θ. Within this 

framework, a single vehicle with a capacity of B is designated for relocating operational and 

low-battery e-scooters, as well as for retrieving faulty e-scooters. The overarching operational 

objective seeks to minimize the cumulative expense encompassing driving costs, pickup costs, 

penalty costs stemming from unmet demand, and the lingering presence of faulty and low-

battery e-scooters within the system.  

In this research, the net demand 𝑔𝑖
𝜃, generated b through Monte Carlo simulation via 

normal or Student's t distribution, is rounded to either an integer value or zero decimal places. 

A positive net demand signifies an excess of pickup demands compared to drop-off demands. 

Conversely, a negative net demand indicates a surplus of drop-off trips relative to pickup trips. 

Consequently, all variables and decision variables (outlined in Table 5.2) adopt nonnegative-

integer values, barring 𝑥𝑖𝑗 and 𝑎𝑖, as they pertain to the e-scooter unit or the e-scooter trip unit. 

The rebalancing task investigated in this paper encompasses two primary categories of decision 

variables: routing variables (𝑥𝑖𝑗 and 𝑎𝑖𝑗), and pickup and drop-off variables associated with 



118 
 

various types of e-scooters (𝑝𝑖
𝑓
, 𝑝𝑖
𝑙, 𝑑𝑖

𝑙, 𝑝𝑖
𝑢, and⁡𝑑𝑖

𝑢). In prior research, it was usual practice to 

aggregate pickup and drop-off operations into a single decision variable. This approach 

involved characterizing pickup activities as positive indicators and drop-off activities as 

negative signs. In the present study, a clear distinction is made between the two activities, with 

the requirement that all choice variables be strictly positive integers (nonnegative-integer). 

Furthermore, the implementation of a penalty on pickup operations is proposed as a means to 

reduce the occurrence of needless pickups and to attain a certain service level.   

For usable e-scooters, the number of pickups (𝑝𝑖
𝑢) is allowed if there are more usable e-

scooters than the specific safety stock (𝐶𝑖), while the drop-offs (𝑑𝑖
𝑢) are constrained by the 

availability on the rebalancing vehicle. There is only one activity whether to pick up (𝑝𝑖
𝑢 > 0) 

or to drop off (𝑑𝑖
𝑢 > 0) usable e-scooters at each station i, otherwise there is no pickup or drop-

off activity 𝑝𝑖
𝑢 = 𝑑𝑖

𝑢 = 0. Therefore, these two decision variables are strictly positive integers 

(non-integer). In each cluster 𝑖 and scenario 𝜃, unmet demand (𝑈𝑖
𝜃 > 0) occurs when the 

available (𝑣𝑖
𝑢) and the drop-off amount (𝑝𝑖

𝑢) of usable e-scooters are less than the sum of the 

positive net demand (𝑔𝑖
𝜃 > 0) and safety stock (𝐶𝑖). Consequently, the total inventory tends to 

approach the upper bound value of the predicted net demand under the constraint of total usable 

e-scooters. This approach leads to an improvement in the service level while reducing the 

impact of potential demand. Additionally, this study introduces another parameter, the 

minimum number of usable e-scooters (𝐶𝑖), also referred to as safety stock. This parameter 

allows the operator to consider potential demand, especially when utilizing a demand prediction 

model trained on historical ridership data, and address the limitations of assumptions (1)-(3) 

and distribution regulations. As reviewed in the previous chapter, certain regulations mandate 

that operators promptly remove excessive e-scooters that obstruct pedestrians or have an 

adverse effect on the aesthetic environment. Therefore, this study incorporates an additional 

penalty term, referred to as excess e-scooters (𝐸𝑖
𝜃), into the rebalancing objective function. The 

inclusion of this term aims to prevent such unfavorable events from occurring. In this case, the 

excess e-scooters (𝐸𝑖
𝜃) is strictly positive integer values (non-integer) as it represents the 

number of e-scooters that surpass a specific threshold value, 𝐶𝑖̅.  

Faulty e-scooters refer to those with electronic or frame issues that require repair by 

technicians at the depot, and this status is commonly reported by customers. The operator has 

the flexibility to define the threshold of battery level for categorizing e-scooters as low-battery 

(e.g., the battery level required for an average trip duration or the entire planning horizon). 

Therefore, the status of these two types of e-scooters is assumed to be known by the operator 

during the planning stage. 𝑣𝑖
𝑓
 denotes the number of faulty e-scooters at each node i, and it is 

strictly a positive integer. Therefore, the variable 𝑝𝑖
𝑓
 denoting the number of faulty e-scooters 

picked up at node i, is also strictly positive integer. This decision variable 𝑝𝑖
𝑓
 is constrained by 

the number of faulty e-scooters in each node, 𝑣𝑖
𝑓
. Low-battery e-scooters can be charged at any 

charging station or the depot, while the number of low-battery e-scooters in each node are 

denoted as 𝑣𝑖
𝑙. 𝑝𝑖

𝑙 denotes the number of low-battery e-scooters to be picked up at each node, so 

this decision variable is strictly a positive integer. The pickup activity (𝑝𝑖
𝑙) of low battery e-

scooter may be required if there are low-battery e-scooters present in each demand cluster and 

if there are more low-battery e-scooters than charging docks at each charging station. On the 
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other hand, 𝑑𝑖
𝑙 denotes the number of low-battery e-scooters that can be dropped off at each 

node, hence this decision variable is also a strictly positive integer. The drop-off activity of low-

battery e-scooters is constrained by the number of low-battery e-scooters on the rebalancing 

vehicle and only allowed if there are available charging docks.  

As shown in Figure 5.1, the rebalancing optimization problem was formulated in two 

approaches, which were solved by ILP and ACO-ILP. To make it easy to understand, we provide 

a list of notations (see Table 5.2) for the rebalancing problem, while the formulation can be 

found in the following sections. 

 

Table 5.2 List of notations for rebalancing optimization  

Notation Description 

Set 

𝑁 Set of nodes (depot, charging stations, and clusters), with component 𝑛  

𝐴 Set of links in the network, with component (𝑖, 𝑗) 

Θ Set of scenarios, with component 𝜃 

Parameter 

𝑣𝑖
𝑓
 Number of faulty e-scooters at node 𝑖 

𝑣𝑖
𝑙 Number of low-battery e-scooters at node 𝑖 

𝑣𝑖
𝑢 Number of usable e-scooters at node 𝑖 

𝐷𝑖 Number of charging docks at node 𝑖 

𝐶𝑖̅ Maximum number of e-scooters at node 𝑖 

𝐶𝑖 Minimum number of usable e-scooters at node 𝑖 

𝑔𝑖
𝜃 Trip gap in scenario 𝜃 and node 𝑖 

𝐵 Capacity of vehicle 

𝑐𝑖𝑗 Driving distance between nodes 𝑖 and 𝑗 

𝛽0 Unit cost of driving distance 

𝛽1, 𝛽2, 𝛽3, 

𝛽4, 𝛽5 

Unit costs of penalty functions of picking up e-scooters, remaining faulty 

e-scooters, remaining low-battery e-scooters, unmet demand, and excess 

e-scooters, respectively 

Variable 

𝑅𝑖
𝑓
 Nonnegative-integer: Remaining faulty e-scooters at node 𝑖 

𝑅𝑖
𝑙 Nonnegative-integer: Remaining low-battery e-scooters at node 𝑖 

ℎ𝑖
𝑓
 Nonnegative-integer: number of faulty e-scooters on the vehicle at node 𝑖 

ℎ𝑖
𝑙 Nonnegative-integer: number of low-battery e-scooters on the vehicle at node 𝑖 

ℎ𝑖
𝑢 Nonnegative-integer: number of usable e-scooters on the vehicle at node 𝑖 

𝑈𝑖
𝜃 Nonnegative-integer: unmet demand in scenario 𝜃 and at node 𝑖 

𝐸𝑖
𝜃 Nonnegative-integer: excess e-scooters in scenario 𝜃 and at node 𝑖 

Decision 

Variable 

𝑥𝑖𝑗 Binary: 1 if the rebalancing vehicle passes the link (𝑖, 𝑗), 0 otherwise. 

𝑎𝑖 Nonnegative-integer: auxiliary variable for subtour elimination  

𝑝𝑖
𝑓
 Nonnegative-integer: number of faulty e-scooters picked up at node 𝑖 

𝑝𝑖
𝑙 Nonnegative-integer: number of low-battery e-scooters picked up at node 𝑖 

𝑑𝑖
𝑙 Nonnegative-integer: number of low-battery e-scooters dropped off at node 𝑖 

𝑝𝑖
𝑢 Nonnegative-integer: number of usable e-scooters picked up at node 𝑖 

𝑑𝑖
𝑢 Nonnegative-integer: number of usable e-scooters dropped off at node 𝑖 
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5.3.5 Rebalancing formulation by ILP solver 

As elucidated in Section 5.2, prior research efforts have undertaken the formulation of 

rebalancing quandaries, each characterized by diverse objective functions, with primary 

emphasis on metrics like total driving distance [46] and generalized cost [45, 56, 58, 59, 68]. 

Within these generalized cost functions, there exists a shared pool of terms, including factors 

such as driving distance or duration, and common constraints such as vehicle capacity, pickup 

and drop-off requirements, and more. However, these generalized cost functions are also 

marked by distinctive elements and constraints, tailored to the specific objectives of each study. 

For example, Chang et al. [45] introduced deterministic rebalancing models pertinent to 

dockless bike sharing, devising a generalized cost function that encompasses parameters such 

as driving cost, pickup and drop-off expenses, and penalties for unattended zones harboring 

pending requests. On the contrary, Dell’Amico et al. [56] designed stochastic rebalancing 

strategies for station-based bike sharing, with their generalized cost function integrating driving 

cost alongside penalized charges linked to the variance in supply (excess and shortage) 

concerning stochastic requests.  

In this investigation, we likewise embrace a generalized cost function to act as the 

underlying objective for addressing the stochastic rebalancing task within the realm of dockless 

shared e-scooters. The fundamental aim of our generalized cost function is the minimization of 

costs tied to driving distances and the intricacies of pick-up procedures. Nonetheless, a 

distinctive feature of our approach lies in the incorporation of penalties that are specifically 

tailored to address instances of unfulfilled demand, surplus e-scooters, as well as the presence 

of malfunctioning (i.e., damaged or broken) and low-battery e-scooters. The penalty attributed 

to unmet demand, 𝑈𝑖
𝜃, encapsulates not only the simulated demand for each scenario, 𝑔𝑖

𝜃, but 

also takes into consideration the parameter 𝐶𝑖, which pertains to the safety stock. In parallel, 

the imposition of an excess e-scooter penalty becomes effective when the cumulative number 

of e-scooters in a given zone crosses a predefined threshold, 𝐶𝑖̅. By virtue of these 

enhancements, our objective function gains enhanced interpretability, particularly for 

individuals who lack extensive expertise in the field, thereby facilitating pragmatic parameter 

fine-tuning during the practical implementation phase. Additionally, our formulated objective 

function conveniently facilitates a trade-off consideration encompassing the realms of driving 

distances and the intricacies associated with pick-up and drop-off activities. This provides a 

valuable avenue for striking an optimal balance between these facets, rather than solely 

adhering to the strict confines dictated by request-based constraints.  

As delineated in the research framework depicted in Figure 5.1, the technique of Monte 

Carlo simulation was harnessed to engender the demand uncertainty, drawing upon the 

projected trip gap information expounded upon in Section 5.3.2, alongside the envisaged 

variance and associated distribution elaborated upon in Section 5.3.3. The simulation process 

yielded randomized trip gap scenarios, with an equal and uniform likelihood distribution across 

the spectrum. Consequently, the formulation of the transient rebalancing strategy for shared e-

scooters can be articulated as follows.  
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Minimize 

𝛽0∑ 𝑐𝑖𝑗⁡𝑥𝑖𝑗(𝑖,𝑗)𝜖𝐴 + 𝛽1∑ (𝑝𝑖
𝑓
+⁡𝑝𝑖

𝑙 + 𝑝𝑖
𝑢)𝑖𝜖𝑁 + 𝛽2∑ 𝑅𝑖

𝑓
𝑖𝜖𝑁 +⁡𝛽3∑ 𝑅𝑖

𝑙
𝑖𝜖𝑁 +

𝛽4

Θ
∑ 𝑈𝑖

𝜃
𝑖𝜖𝑁;𝜃𝜖Θ +

𝛽5

Θ
∑ 𝐸𝑖

𝜃
𝑖𝜖𝑁;𝜃𝜖Θ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (5.3) 

Subject to 

∑ 𝑥𝑖𝑗𝑖𝜖𝑁 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁  (5.4) 

∑ 𝑥𝑖𝑗𝑗𝜖𝑁 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁  (5.5) 

𝑎𝑖 − 𝑎𝑗 + 𝑁𝑥𝑖𝑗 ≤ 𝑁 − 1⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴 − {1}, 𝑖 ≠ 𝑗  (5.6) 

0 ≤ 𝑝𝑖
𝑓
≤ 𝑣𝑖

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁   (5.7) 

0 ≤ 𝑝𝑖
𝑙 ≤ max⁡(0, 𝑣𝑖

𝑙 − 𝐷𝑖)⁡⁡⁡⁡∀𝑖𝜖𝑁  (5.8) 

0 ≤ 𝑑𝑖
𝑙 ≤ max⁡(0, 𝐷𝑖 − 𝑣𝑖

𝑙)⁡⁡⁡⁡∀𝑖𝜖𝑁  (5.9) 

0 ≤ 𝑝𝑖
𝑢 ≤ max⁡(0, 𝑣𝑖

𝑢 − 𝐶𝑖)⁡⁡⁡∀𝑖𝜖𝑁  (5.10) 

ℎ𝑗
𝑓
− ℎ𝑖

𝑓
− 𝑝𝑗

𝑓
+𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴, 𝑗 ≥ 2   (5.11) 

ℎ𝑖
𝑓
− ℎ𝑗

𝑓
+ 𝑝𝑗

𝑓
+𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴  (5.12) 

𝑅𝑖
𝑓
= 𝑣𝑖

𝑓
− 𝑝𝑖

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁  (5.13) 

ℎ𝑗
𝑙 − ℎ𝑖

𝑙 − 𝑝𝑗
𝑙 + 𝑑𝑗

𝑙 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴, 𝑗 ≥ 2  (5.14) 

ℎ𝑖
𝑙 − ℎ𝑗

𝑙 + 𝑝𝑗
𝑙 − 𝑑𝑗

𝑙 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴  (5.15) 

𝑅𝑖
𝑙 = max{𝑣𝑖

𝑙 −𝐷𝑖 , 0} − 𝑝𝑖
𝑙⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁  (5.16) 

ℎ𝑗
𝑢 − ℎ𝑖

𝑢 − 𝑝𝑗
𝑢 + 𝑑𝑗

𝑢 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴, 𝑗 ≥ 2  (5.17) 

ℎ𝑖
𝑢 − ℎ𝑗

𝑢 + 𝑝𝑗
𝑢 − 𝑑𝑗

𝑢 +𝑀(1 − 𝑥𝑖𝑗) ≥ 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗|(𝑖, 𝑗)𝜖𝐴  (5.18) 

𝐶𝑖 − 𝑣𝑖
𝑢 + 𝑝𝑖

𝑢 − 𝑑𝑖
𝑢 +max{𝑔𝑖

𝜃, 0} − 𝑈𝑖
𝜃 ≤ 0⁡⁡⁡⁡⁡⁡⁡∀𝑖𝜖𝑁, 𝜃𝜖Θ    (5.19) 

𝑅𝑖
𝑓
+ 𝑅𝑖

𝑙 + 𝑣𝑖
𝑢 − 𝑝𝑖

𝑢 + 𝑑𝑖
𝑢 − 𝑔𝑖

𝜃 − 𝐶𝑖̅ − 𝐸𝑖
𝜃 ≤ 0⁡⁡⁡∀𝑖𝜖𝑁, 𝜃𝜖Θ   (5.20) 

ℎ𝑖
𝑓
+ ℎ𝑖

𝑙 + ℎ𝑖
𝑢 ≤ 𝐵⁡⁡⁡∀𝑖𝜖𝑁  (5.21) 

 

The primary objective of the transient rebalancing process, as articulated in Eq. 5.3, is to 

minimize the amalgamated cost encompassing driving distance and a constellation of penalty 

costs. These penalties pertain to pickup undertakings, the retention of faulty and low-battery e-

scooters within the system, unmet demands, and an undue accumulation of e-scooters. The 

constraints delineated in Eq. 5.4–5.6 encapsulate routing-related stipulations that govern 

arrivals and departures at all nodes while precluding the emergence of subtours. Eq. 5.7–5.10 

are pickup and drop-off constraints for each type of e-scooters. Eq. 5.11 and Eq. 5.12 

encapsulate loading rules for faulty e-scooters onto the rebalancing vehicle, while Eq. 5.13 

ensures the equivalence between initial faulty e-scooters minus those picked up and the 

remaining faulty e-scooters. Similarly, Eq. 5.14 and 5.15 embody loading and unloading 

conservation for low-battery e-scooters, and the remaining is computed through Eq. 5.16. The 

loading and unloading balance for usable e-scooters is enforced by Eq. 5.17 and 5.18. The 

quantification of unmet demand ensues via Eq. 5.19, necessitating the tally of usable e-scooters 

within each cluster to surpass a stipulated threshold (𝐶𝑖) following both the rebalancing 

procedure and the end of the planning time frame. This threshold serves as a safety buffer, 

accommodating the aforementioned assumptions, along with potential demands and regulatory 
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frameworks. The number of excessive e-scooters is quantified by Eq. 5.20, a measure that 

forestalls overloading at particular locations and ensures swift intervention. Lastly, the vehicle 

capacity is constrained by Eq. 5.21. 

 

5.3.6 Rebalancing formulation by hybrid ACO-ILP algorithm 

Solving NP-hard optimization problems with ILP solvers often presents challenges in 

generating satisfactory solutions, let alone feasible ones, within imposed time constraints, 

particularly in the realm of stochastic problems. Conversely, heuristic algorithms, although 

incapable of ensuring exact solutions, frequently yield improved feasible outcomes within a 

confined computational timeframe. Against this backdrop, this study proposes a hybrid heuristic 

technique named the ACO–ILP algorithm. This approach combines ant colony optimization 

(ACO) with an ILP solver to tackle the aforementioned rebalancing optimization predicaments. 

A similar hybrid algorithm, denoted ACO–CP, was previously formulated for deterministic bike 

sharing rebalancing [68]. Nonetheless, our approach diverges in its treatment of the rebalancing 

vehicle's routing issue, viewing it as a variant of the traveling salesman problem. This facet can 

be addressed using the ACO algorithm, which optimizes the driving distance cost and penalty 

cost through input from the above-described ILP solver. The ACO algorithm, introduced in the 

early 1990s, draws inspiration from the foraging conduct of ants, who employ pheromone trails 

for indirect communication regarding the shortest path between their nest and food sources [69]. 

The ACO algorithm emulates this foraging behavior by deploying artificial ants to 

progressively adjust the path based on transition probabilities, influenced by the concentration 

of "pheromones" and a visibility function.  

Algorithm 5.1 delineates the rebalancing optimization procedure through the utilization of 

ACO. The initial steps (Lines 1–4) encompass the inputs required for ACO, encompassing a 

graph delineated by a set of nodes 𝑁 and a set of links 𝐴, a distance function denoted as 𝑐 that 

encapsulates the driving distance derived from Bing Maps (https://www.bing.com/maps), a 

comprehensive cost function that amalgamates the driving distance cost and penalty costs, and 

the pertinent ACO parameters. Within each iteration, a sequence of actions is undertaken, 

including the computation of transition probabilities, the construction of route sequences for 

individual ants based on the calculated probabilities, the assessment of the performance of each 

ant, the retention of the best-found solution, and the updating of the pheromone trails. These 

pheromone trails are initially set with uniform weights (values of 1). The intricate formulations 

underpinning the ACO algorithm are enumerated in the following depiction. 

 

𝑃𝑖𝑗
𝑘(𝑡) =

[𝜏𝑖𝑗(𝑡)]
𝛼
(𝜂𝑖𝑗)

𝛽

∑ [𝜏𝑖𝑙(𝑡)]
𝛼(𝜂𝑖𝑙)

𝛽
𝑙𝜖𝑁𝑖

𝑘
⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁𝑖

𝑘  (5.22) 

𝜂𝑖𝑗 = 1/𝑐𝑖𝑗  (5.23) 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌)𝜏𝑖𝑗(𝑡) + Δ𝜏𝑖𝑗(𝑡)  (5.24) 

Δ𝜏𝑖𝑗(𝑡) = ∑ Δ𝜏𝑖𝑗
𝑘 (𝑡)𝑚

𝑘=1   (5.25) 

Δ𝜏𝑖𝑗
𝑘 (𝑡) = {

1

𝐿𝑘
,⁡⁡⁡The⁡k𝑡ℎ ⁡ant⁡passes⁡between⁡𝑖⁡and⁡𝑗

0,⁡⁡⁡⁡⁡Otherwise⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
  (5.26) 

 

https://www.bing.com/maps
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Algorithm 5.1: the ACO algorithm for the rebalancing problem 

1 Input:  

2      complete non-directed graph: 𝐺 = (𝑁, 𝐴) 

3      distance function: 𝑐 

4      cost function: 𝐿 

5      set all of the ACO parameters {𝛼, 𝛽, 𝜌, #𝑎𝑛𝑡𝑠, #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠} 

6 initialize all of the pheromone trails 𝜏0 

7 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡 = [⁡]  

8 for 𝑡 ← 1 to #𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 

9      calculate the probability matrix: 𝑃𝑡 = [𝜏𝑡−1]
𝛼(1/𝑐)𝛽 

10      for 𝑘 ← 1 to #𝑎𝑛𝑡𝑠 do 

11           𝑟𝑜𝑢𝑡𝑒𝐴𝑛𝑡(𝑘)[0] ← 0 

12           for 𝑖 ← 1 to 𝑁 − 1 do 

13                list the nodes to be visited: 𝑁𝑖
𝑘 

14                normalize the probability of the remaining nodes: 𝑃𝑡,𝑖
𝑘  

15                randomly choose the next node according to the probability: 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 

16                𝑟𝑜𝑢𝑡𝑒𝐴𝑛𝑡(𝑘)[𝑖] ← 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒  

17           evaluate the cost function of each ant: 𝐿𝑘 

18      𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡. add([min{𝐿𝑘} ; ⁡argmin{𝐿𝑘}]) 

19      update the pheromone trails: 𝜏𝑡 = (1 − 𝜌)𝜏𝑡−1 + Δ𝜏𝑡 

 

In the presented equations, 𝑃𝑖𝑗
𝑘(𝑡) signifies the probability linked to ant 𝑘 moving from the 

ongoing node 𝑖 to the subsequent node 𝑗 within the 𝑡 iteration. The ensemble 𝑁𝑖
𝑘 stands for the 

collection of nodes that ant 𝑘 has yet to traverse. The visibility of node⁡𝑗 from node 𝑖, denotes 

as 𝜂𝑖𝑗, is characterized as the reciprocal of the distance between these two nodes. The 

parameters 𝛼 and 𝛽 denote the respective significance of the pheromone and visibility aspects 

(with the pheromone undergoing updates as per Eq. 5.24). Meanwhile, 𝜌 and Δ𝜏𝑖𝑗(𝑡) symbolize 

the coefficient for pheromone evaporation and the cumulative pheromone deposited by all ants 

(amounting to m ants), correspondingly. Lastly, 𝐿𝑘 refers to the cost function, encompassing the 

description of both driving distance and penalty costs, associated with ant 𝑘. In the course of 

this investigation, the ACO algorithm was executed utilizing the Scikit-opt Python library [70]. 

Default values were assigned to 𝛼, 𝛽, and⁡𝜌, with their values set as 1, 2, and 0.1, respectively. 

In this subsection, the objective function remains consistent with the one described in the 

preceding section (Eq. 5.3), with the exception that the integration of the ACO algorithm and 

ILP is employed to tackle the problem of routing for the rebalancing vehicle and the 

corresponding pickup/drop-off activities. In this composite approach, the ILP solver handles 

the optimization of pickups and drop-offs for a predetermined route sequence (… → 𝑖 → 𝑗 →

⋯, ∀𝑖, 𝑗𝜖𝑁 ) established by the ACO algorithm. Subsequently, the ACO algorithm fuses the 

penalty cost with the driving distance cost to iteratively enhance the arrangement of the route 

sequence. Consequently, the ILP formulation for rebalancing involving a pre-determined route 

sequence is represented as follows:  
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Minimize 

𝛽1∑(𝑝𝑗
𝑓
+⁡𝑝𝑗

𝑙 + 𝑝𝑗
𝑢)

𝑗𝜖𝑁

+ 𝛽2∑𝑅𝑗
𝑓

𝑗𝜖𝑁

+⁡𝛽3∑𝑅𝑗
𝑙

𝑗𝜖𝑁

+
𝛽4
Θ

∑ 𝑈𝑗
𝜃

𝑗𝜖𝑁;𝜃𝜖Θ

+
𝛽5
Θ

∑ 𝐸𝑗
𝜃

𝑗𝜖𝑁;𝜃𝜖Θ

 

(5.27) 

 

Subject to 

0 ≤ 𝑝𝑗
𝑓
≤ 𝑣𝑗

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁  (5.28) 

0 ≤ 𝑝𝑗
𝑙 ≤ max⁡(0, 𝑣𝑗

𝑙 − 𝐷𝑗)⁡⁡⁡⁡∀𝑗𝜖𝑁  (5.29) 

0 ≤ 𝑑𝑗
𝑙 ≤ max⁡(0, 𝐷𝑗 − 𝑣𝑗

𝑙)⁡⁡⁡⁡∀𝑗𝜖𝑁  (5.30) 

0 ≤ 𝑝𝑗
𝑢 ≤ max⁡(0, 𝑣𝑗

𝑢 − 𝐶𝑗)⁡⁡⁡∀𝑗𝜖𝑁  (5.31) 

ℎ𝑗
𝑓
= ℎ𝑖

𝑓
+ 𝑝𝑗

𝑓
⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗𝜖𝑁  (5.32) 

𝑅𝑗
𝑓
= 𝑣𝑗

𝑓
− 𝑝𝑗

𝑓
⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁  (5.33) 

ℎ𝑗
𝑙 = ℎ𝑖

𝑙 + 𝑝𝑗
𝑙 − 𝑑𝑗

𝑙⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗𝜖𝑁  (5.34) 

𝑅𝑗
𝑙 = max⁡(0, 𝑣𝑗

𝑙 − 𝐷𝑗) − 𝑝𝑗
𝑙 ⁡⁡⁡⁡∀𝑗𝜖𝑁  (5.35) 

ℎ𝑗
𝑢 = ℎ𝑖

𝑢 + 𝑝𝑗
𝑢 − 𝑑𝑗

𝑢⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀𝑖, 𝑗𝜖𝑁  (5.36) 

𝐶𝑗 − 𝑣𝑗
𝑢 + 𝑝𝑗

𝑢 − 𝑑𝑗
𝑢 +max{𝑔𝑗

𝜃, 0} − 𝑈𝑗
𝜃 ≤ 0⁡⁡⁡⁡⁡⁡⁡∀𝑗𝜖𝑁, 𝜃𝜖Θ  (5.37) 

𝑅𝑗
𝑓
+ 𝑅𝑗

𝑙 + 𝑣𝑗
𝑢 − 𝑝𝑗

𝑢 + 𝑑𝑗
𝑢 − 𝑔𝑗

𝜃 − 𝐶𝑗̅ − 𝐸𝑗
𝜃 ≤ 0⁡⁡⁡∀𝑖𝜖𝑁, 𝜃𝜖Θ  (5.38) 

ℎ𝑗
𝑓
+ ℎ𝑗

𝑙 + ℎ𝑗
𝑢 ≤ 𝐵⁡⁡⁡∀𝑗𝜖𝑁  (5.39) 

 

In this context, Eq. 5.28–5.31 correspond to the pickup and drop-off constraints at the 

present node 𝑗. Eq. 5.32, 5.34, and 5.36 provide the cumulative quantities of faulty, low-battery, 

and usable e-scooters, respectively, situated on the rebalancing vehicle at the current node 𝑗. 

These values are the summation of the quantities on the rebalancing vehicle at the preceding 

node 𝑖 and the quantities that are either picked up or dropped off at the current node 𝑗. 

Meanwhile, Eq. 5.33 and 5.35 furnish the remaining amounts of faulty and low-battery e-

scooters, respectively. Eq. 5.37 and 5.38 yield the unmet demands and surplus numbers of e-

scooters, respectively. Finally, Eq. 5.39 enforces the stipulation on the capacity of the 

rebalancing vehicle. The commencement of the rebalancing vehicle's journey is mandated from 

the depot, consequently necessitating that all decision variables pertaining to this specific node 

are set to zero, except for the variables associated with the pickup of usable e-scooters 𝑝1
𝑢 and 

the number of usable e-scooters on the rebalancing vehicle ℎ1
𝑢.  

 

5.4 Application of demand and variance prediction  

5.4.1 Data collection and description 

Obtaining true demand information is crucial for effective operational planning. However, 

this data is often challenging to access unless operators authorize its extraction from user 

application interactions [30]. Given these data constraints, past ridership data is frequently 

utilized to assess the viability of suggested models or systems, as in references [4, 28, 29, 33, 

34, 61]. Likewise, in this research, historical data is employed as a case study, with potential 
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demand being managed via the safety stock parameter, denoted as the minimum number of 

functional e-scooters (𝐶𝑖). In practical implementation, the proposed framework, particularly 

the demand forecasting model, may necessitate training using true demand data that 

encompasses unmet demand, as elaborated by Ham et al. [30].  

The numerical examination was conducted utilizing an openly available dataset 

representing shared e-scooter ridership in Minneapolis, Minnesota (accessible at 

https://opendata.minneapolismn.gov). This dataset encompasses a total of 961,040 trips taken 

during the timeframe spanning May 13 to November 25, 2019. Pertinent trip details include the 

trip's ID, trip distance, trip duration, start/end date time, and start/end center line ID. To 

determine geographical coordinates, the central point of the street where each trip was picked 

up and dropped off was considered. During the process of data refinement, records with missing 

values were excluded, while those fulfilling the criteria of having a trip distance ranging from 

20 meters to 10 kilometers, a trip duration spanning 20 seconds to 2 hours, alignment with the 

study period (from May 14 to November 24, 2019), and adherence to the study's geographical 

boundary were included. Post-cleaning, a total of 813,970 trips remained in the dataset, 

exhibiting an average duration of approximately 13 minutes, and covering an average distance 

of about 1.72 kilometers. As previously discussed, the trips were subjected to clustering using 

the k-means clustering algorithm with varying cluster counts of 15, 30, and 60 clusters, as 

depicted in Figure 5.4. For the purpose of forecasting hourly net demand (Δt = 1 hour), a dataset 

consisting of 4,680 samples was assembled. In the model development process, 80% of this 

data was allocated for training the model, while the remaining 20% was designated for model 

testing, as illustrated in Figure 5.5. To avert the risk of overfitting, a strategy of random 

sampling was employed to divide the training dataset into segments, with 75% employed for 

model construction and 25% reserved for model evaluation.  

https://opendata.minneapolismn.gov/
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Figure 5.4 Trip clustering generated by the k-means algorithm (red stars = depot and charging 

stations; blue dots = centers of trip clusters; gray dots = street centers of pickup and drop-off 

trips) 

 

 
Figure 5.5 Hourly pickup and drop-off trips and the trip gap for shared e-scooters in 

Minneapolis, MN 
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Research findings have demonstrated a meaningful correlation between the utilization of 

shared e-scooters and various environmental variables such as weather conditions, public 

holidays, recurring yearly festivities, and weekly usage trends. In light of this, weather-related 

attributes encompassing temperature, precipitation, wind speed, humidity, wind gust, pressure, 

and dew point were procured from Weather Underground (www.wunderground.com). In 

instances where attribute data were absent, linear interpolation was employed to estimate these 

values. Furthermore, the model devised for predicting gaps between trips accounted for official 

public holidays, annual festivals, and noteworthy events such as open street events, a pride 

festival parade, a state fair festival, a stone arch bridge festival, and an uptown art fair. Notably, 

an exception was made for October 10, 2019, when the operation of shared e-scooters was 

suspended due to the state visit of the President of the United States to Minneapolis. It is vital 

to acknowledge that the demand for shared e-scooters is influenced by numerous factors. As 

such, it is inappropriate to assume a specific distribution—like the Poisson distribution—to 

represent the pickup and drop-off demand patterns, as indicated in Figure 5.6. This 

characteristic was verified through a goodness-of-fit test conducted on both daily patterns (at 

the same hour of the day) and weekly patterns (at the same hour of the day and day of the week). 

Given this insight, it's evident that rebalancing methodologies grounded in such assumptions 

(e.g., queue theory), which have commonly been applied to analyze shared bike services, may 

not be well-suited for examining shared e-scooter services. 

 

 

 
Figure 5.6 Histograms and Poisson distributions of the pickup and drop-off demands of 

shared e-scooters 

 

http://www.wunderground.com/


128 
 

5.4.2 Result of demand prediction 

As previously mentioned, the k-means algorithm was applied to cluster the trips into groups 

of 15, 30, and 60. For enhanced predictive accuracy in trip gap estimations, the model was 

trained with spatial independence. This was achieved by incorporating external features (as 

outlined in Section 5.3.2), local historical data, and historical data sourced from four 

neighboring clusters into the model's inputs. Displayed in Figure 5.7 (left), the convergence 

curve of Gaussian Process Bayesian Optimization (BO) is depicted, illustrating the 

hyperparameter tuning process for cluster 37 in the GB model. Hyperparameter tuning is a 

customary practice aimed at minimizing a loss metric on the evaluation dataset (e.g., 

MSE_eval). However, such optimization can potentially lead to overfitting, particularly when 

working with decision tree models. Figure 5.7 (right) showcases the assessed GB models 

generated through BO, with the models arranged based on the sorted values of MSE_train. This 

visualization indicates that the minimal MSE_eval occurs within a range where the divergence 

between MSE_train and MSE_eval is notable. Beyond this point, MSE_eval deteriorates or 

loses its generalization capability. Additionally, it's worth noting that the modeling process in 

this region demands substantial inputs due to the inherent complexity of models, often 

necessitating a greater number of deeper decision-tree regressors and a lengthier historical data 

lookback. Hence, the objective function utilized for BO, encompassing the ratio of MSE_eval 

to MSE_train, effectively reduces training duration and promotes the construction of a more 

generalized GB model. 

 
Figure 5.7 Hyperparameter optimization by Bayesian optimization for trip gap prediction 

 

 
Figure 5.8 Trip gap predicted using the testing data for cluster 37 
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Figure 5.8 displays the trip gap projections generated by GB regressor for cluster 37. While 

the GB model effectively captured the temporal patterns, it exhibited residual errors in its 

predictions. Failing to address these discrepancies in the context of rebalancing planning could 

result in diminished service levels or profits compared to strategies that account for such errors. 

Table 5.3 provides a comparative overview of the GB model's predictions with those of two 

benchmark models—the historical average model and the daily historical average model—

using the RMSE as the metric for accuracy assessment. Our numerical findings derived from 

the training data showcase that the GB model yielded a significantly reduced RMSE, 

approximately 26% and 16% lower than the baseline historical average and daily historical 

average models, respectively. When evaluated against the testing dataset, the RMSE (indicative 

of uncertainty) associated with the GB model was roughly 19% and 15% lower than the 

corresponding RMSE values of the historical average model and the daily historical average 

model, respectively.  

 

Table 5.3 Results of trip gap prediction and variance prediction 

Model 15 Clusters 30 Clusters 60 Clusters 

Trip Gap 

Prediction 

Historical 

Average 

RMSE-train 7.13 4.97 3.46 

RMSE-test 5.25 3.94 2.66 

Daily Historical 

Average 

RMSE-train 6.00 4.47 3.17 

RMSE-test 5.10 3.73 2.55 

GB 
RMSE-train 5.04 3.69 2.67 

RMSE-test 4.14 3.16 2.24 

Variance 

Prediction 

for GB 

residuals 

Constant 

Variance 

Mean-STD 4.01 3.02 2.30 

Coverage 95.73% 96.15% 97.09% 

Daily Variance 
Mean-STD 3.44 2.57 1.93 

Coverage 96.13% 95.65% 95.96% 

SGARCH 

Variance 

Mean-STD 3.17 2.31 1.59 

Coverage 93.46% 91.55% 94.40% 

 

5.4.3 Result of variance prediction 

The utilization of SGARCH for predicting variance furnishes two pivotal parameters that 

find application in Monte Carlo simulation: the standard deviation (STD) and the distribution 

of residuals. As elaborated upon in Section 5.3.3, a lower STD or diminished uncertainty leads 

to a decrease in expected loss. Nonetheless, the STD must be minimized in a manner that doesn't 

compromise coverage—signifying the percentage of residuals contained within confidence 

bounds. For instance, the daily variance associated with GB residuals exhibited a Mean-STD 

(average standard deviation) that was smaller than that of constant variance, all without 

compromising coverage, as presented in Table 5.3. This outcome suggests that the variance 

prediction model possesses the potential to influence rebalancing planning by further mitigating 

uncertainty stemming from the demand prediction model. However, it's worth noting that the 

daily variance derived from historical data was incapable of capturing prolonged fluctuations, 

as evidenced by Figure 5.9. Notably, the SGARCH-derived variance exhibited heightened 

flexibility over time, encompassing seasonal or annual patterns, owing to a greater weighting 
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assigned to recent residuals compared to earlier ones. On the whole, in comparison to the daily 

variance, the SGARCH model yielded a marginally reduced Mean-STD; however, it also 

brought about a minor reduction in coverage. 

 

 
Figure 5.9 Variance prediction based on residuals of the GB model for cluster 37 

 

5.5 Result of rebalancing optimization  

5.5.1 Parameter settings  

The accessible dataset includes trip information that doesn't encompass all the requisite 

operational planning parameters. Consequently, these parameters were simulated by assigning 

fixed and random values within designated ranges, as detailed in Table 5.4. The utilization of 

k-means clustering facilitated the division of the coordinates associated with dockless shared e-

scooter trips. While augmenting the cluster count addressed Assumption 1, it simultaneously 

led to a decrease in the performance of demand prediction models, characterized by sparsity 

and random walk patterns. Additionally, this increment exponentially amplified the time 

required for rebalancing optimization. For the scenarios under consideration, the cluster count 

was established at 15, 30, and 60, yielding corresponding total node counts N (inclusive of the 

depot and charging stations) of 18, 35, and 70. Earlier studies typically restrict computational 

time to around 1 hour or 3600 seconds. Within this study, a maximum computational time of 

approximately 1 minute (or 60 seconds) per node was established, and the ultimate rounding 

time for the aforementioned scenarios was set at 20, 40, and 60 minutes, respectively. If 

optimization were carried out under the universal constraint of 3600 seconds for all three 

rebalancing problem instances, the performance of the ILP solver and ACO-ILP algorithm 

would be on par. Hence, a comparison of these two algorithms hinged on their speed in 

achieving optimal objective values. Alternatively, proportional allocation of computational time 

across these scenarios would enable a comparison of the two algorithms based on their 

respective optimal objective values. On the other hand, if the computational time for these three 

cases were set proportionally, we could compare the performance of these two algorithms based 

on their optimal objective values. The travel distance between nodes was acquired from Bing 

Maps. The testing dataset encompassed approximately 39 days or roughly five weeks, and 30 

instances were randomly extracted from the high-demand timeframe spanning 10 am to 8 pm 

during the first (for the 15-cluster problem), second (for the 30-cluster problem), and third (for 

the 60-cluster problem) three weeks. The rebalancing process was executed using a single 

vehicle with a capacity of accommodating 35 e-scooters. 
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The total count of e-scooters was taken as 400, inclusive of 20 defective e-scooters (about 

5%) and 60 e-scooters with low battery levels (approximately 15%). Consequently, the total 

pool of operational e-scooters amounted to 320, roughly equivalent to half of the hourly pickup 

demand during peak demand hours. These e-scooters classified as faulty, low-battery, and 

usable were allocated randomly across the clusters. Based on the average usage expenditure of 

shared e-scooters in Minneapolis, it was deduced that users typically spent around 3 USD per 

trip. For the purposes of this study, the penalty cost per unit of unfulfilled demand was defined 

as 2 USD, constituting approximately 67% of the revenue. The unit cost related to surplus e-

scooters stood at 1 USD, while penalty costs associated with the remaining defective and low-

battery e-scooters were determined as 5 and 3 USD, respectively. Travel distance expenses were 

assessed at a rate of 1 USD per kilometer traveled. To ensure that the same e-scooter wasn't 

both picked up and dropped off at the same location, a pickup cost of 0.1 USD was established. 

This decision not only prevented such instances but also served to harmonize the service level. 

This pickup cost represented approximately 5% of the unmet demand penalty, mirroring a 

service level categorized as Type II, denoting a 95% fulfillment level (i.e., demands with a 

probability below 5% didn't warrant incurring the pickup cost).  

Table 5.4 Parameter settings for the rebalancing optimization 

Parameter 
15-

Cluster 

30-

Cluster 

60-

Cluster 

Computational time (minutes) 20 40 60 

Testing week 
1st, 2nd, 

3rd  

2nd, 3rd, 

4th  

3rd, 4th, 

5th  

Number of scenarios 𝜃 100 100 100 

Number of charging stations 2 4 9 

Total e-scooters 400 400 400 

Number of docks in each station (total of 100) 50 25 10–15 

Maximum number of e-scooters in each cluster 𝐶𝑖̅ 

(total of 700) 
30–50 15–30  10–15 

Minimum number of e-scooters in each cluster 𝐶𝑖 

(total of 80) 
0–10  0–5  0–3  

Number of faulty e-scooters in each cluster ℎ𝑖
𝑓
 (total 

of 20) 
0–3  0–2  0–2  

Number of low-battery e-scooters in each cluster ℎ𝑖
𝑙 

(total of 60) 
0–10  0–5  0–3  

Number of usable e-scooters in each cluster ℎ𝑖
𝑢 (total 

of 320) 
5–25  1–20  0–10  

Vehicle capacity 𝐵 35 35 35 

Unit cost of the driving distance 𝛽0 1 1 1 

Unit cost of picking up e-scooters 𝛽1 0.1 0.1 0.1 

Unit cost of remaining faulty e-scooters 𝛽2 5 5 5 

Unit cost of remaining low-battery e-scooters 𝛽3 3 3 3 

Unit cost of unmet demands 𝛽4 2 2 2 

Unit cost of excess e-scooters 𝛽5 1 1 1 
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The optimization for rebalancing procedures was executed within the Spyder integrated 

development environment utilizing Python. For solving the Integer Linear Programming (ILP) 

rebalancing formulation, the ILP solver GLPK, integrated into the Pyomo Python library [71], 

was employed, consistent with the approach outlined in Section 5.3.5. The same ILP solver was 

also utilized for tackling the pickup and drop-off operations, as elaborated upon in Section 

5.3.6. In parallel, the Ant Colony Optimization (ACO) algorithm was trained employing another 

Python library called Scikit-opt [70]. All of these operations were conducted within a Windows 

10 environment operating on a 64-bit system architecture. The underlying hardware consisted 

of an Intel processor core i7-9750H CPU clocked at 2.60 GHz, complemented by 8.00 GB of 

RAM.  

 

5.5.2 Sensitivity of the number of scenarios 

Monte Carlo simulation was employed to generate demand uncertainty based on the 

predicted trip gap in Section 5.4.2 and predicted variance and the distribution from Section 

5.4.3. The number of samples to be generated can impact the optimization result. Sensitivity 

analysis was conducted to examine the impact of the number of simulated samples on optimal 

objective value. As we know, more samples likely provide more stable outputs, but it also 

increases the complexity of optimization problems. In other words, a higher number of 

scenarios creates more optimization parameters and constraint equations, resulting in a longer 

computational time to produce a feasible or global optimal solution. Figure 5.10 shows the 

sensitivity analysis of the number of scenarios ranging from 50 to 1000, while three 

optimization trials were performed for each problem, 15-, 30-, and 60-cluster problems. In this 

case, the ILP solver could provide a feasible solution within the limited time (see Table 5.4) for 

15- and 30-cluster problems, but this solver could produce a feasible solution only up to 500 

scenarios for 60-cluster problems. Moreover, we observed a high variation of feasible solutions 

for 60-cluster problems for scenarios 800, 900, and 1000. We could also observe that the 

variation of optimal values is higher for a greater number of cluster problems. Overall, there is 

no significant pattern for the number of scenarios more than 100. Therefore, Monte Carlo 

simulation was conducted to generate 100 scenarios, whereas the benchmark cases using daily 

or weekly historical trip data had approximately 180 and 26 scenarios, respectively. 

 

 
Figure 5.10 Sensitivity analysis on the number of scenarios 
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5.5.3 15-cluster problem  

As detailed in Table 5.4, the computational timeframe for the balancing optimization was 

subject to constraints. Consequently, to strike a balance between exploration and exploitation 

within the hybrid ACO–ILP algorithm, two parameters from the ACO framework were 

employed: population size and the number of iterations. Notably, a larger population 

necessitates fewer iterations compared to a smaller population to successfully accomplish an 

optimization task within the designated computational limits. Illustrated in Figure 5.11, the left 

portion of the graph portrays the interplay between population size and the number of iterations, 

while the right segment showcases the convergence trajectory of the optimal trial (with 

population size set at 65 and the number of iterations at 25) for the rebalancing challenge 

pertaining to the 15-cluster problem. The benchmark instances, characterized by actual, 

historical daily, and historical weekly net demand, featured varying number of scenarios. 

Correspondingly, the population size was adjusted, either amplified or diminished, to 

accommodate these distinct scenarios. 

 

  
Figure 5.11 Exploration and exploitation tradeoff of ant colony optimization (left) and the 

convergence curve (right) for 15-cluster problems 

 

The optimal parameters derived from the ACO methodology were subsequently utilized to 

optimize other instances of the 15-cluster rebalancing problem. Figure 5.12 portrays the 

outcome of the optimal rebalancing process for one of the instances within the 15-cluster 

problem. Given the substantial penalty costs associated with the remaining defective and low-

battery e-scooters, no remainder was left after the rebalancing operation. In this specific 

scenario, the rebalancing vehicle traversed multiple demand clusters, collecting low-battery e-

scooters en route and subsequently depositing them at charging stations. During the initial 

nodes, the rebalancing vehicle retrieved 13 operational e-scooters from the depot, proceeded to 

collect 22 low-battery e-scooters, which were then delivered to charging station 2. Upon 

reaching cluster 6, five operational e-scooters were dropped off—this step might have been 

superfluous if demand uncertainty had been disregarded. Subsequently, the remainder (eight 

operational e-scooters) along with an additional ten operational e-scooters picked up at cluster 

13 were transported to cluster 2, characterized by significant trip-gap variation. At cluster 2, the 

accumulated low-battery e-scooters were unloaded at charging station 1. Following this, nine 

operational e-scooters were collected and redeployed to either cluster 9 (six e-scooters) or 

cluster 5 (three e-scooters). Ultimately, from clusters 4 and 10, five and two operational e-

scooters, respectively, were relocated to cluster 1, presumably resulting in higher anticipated 
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revenue. Subsequently, the amassed defective and low-battery e-scooters on the vehicle up to 

that point were returned to the depot for necessary repairs and recharging. This outcome 

underscores that the strategy managed to minimize the projected unmet demand within the 

confines of several constraints (such as vehicle capacity, driving distance, and the available 

number of operational e-scooters). This was achieved by redistributing operational e-scooters 

from locations characterized by an excess number of e-scooters or a low anticipated demand to 

areas where the expected demand was higher. 

 

 

 
Figure 5.12 (top) Optimal route sequence of an instance in the 15-cluster problem and 

(bottom) its optimal pickup and drop-off results (CH: charging station, CL: cluster of trips) 
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In this scenario, the ILP solver demonstrated the capability to generate feasible solutions 

across all 30 instances and four distinct problem types (Actual, Sampling, Daily, and Weekly) 

within the 15-cluster problem. Depicted in Figure 5.14 (left), the average of the optimal 

objective values from all 30 instances for the 15-cluster problem is presented. Given the 

relatively modest scale of this problem, the ILP solver "GLPK" yielded superior optimal 

objective values in contrast to the hybrid ACO-ILP approach. Analyzing the ILP numerical 

results, it's evident that the average driving distance remains consistent across the four cases 

(approximately 50 km); however, these cases exhibit variations in expected penalty costs. 

Specifically, the average optimal objective values for the four scenarios—Actual, Sampling, 

Daily, and Weekly—are recorded as 65 USD, 66.66 USD, 71.18 USD, and 68.85 USD, 

respectively. In essence, having perfect information resulted in the lowest penalty costs, while 

the sampling strategy demonstrated the ability to decrease penalty costs, along with introducing 

advantages in terms of temporal flexibility, as compared to the baseline daily and weekly 

scenarios. The sampling approach managed to lower penalty costs by approximately 6.35% and 

3.18% when contrasted with the daily and weekly cases. The sampling approach could reduce 

penalty costs by roughly 6.35% and 3.18% compared to daily and weekly cases. With respect 

to penalty costs, excluding driving distance, the proposed methodology led to a reduction of 

penalty costs by 19.87% and 9.93% in comparison to these two baseline scenarios.  

 

5.5.4 30-cluster problem  

Figure 5.13 (left) shows the tradeoff between exploring and exploiting ACO’s parameters, 

population size, and number of iterations for the 30-cluster problem. The optimal values of 

these two parameters were 90 and 19, respectively, while its convergence curve is shown in 

Figure 5.13 (right). Similar to the problem above, the ILP solver can provide a feasible solution 

for all instances within the limited computational time, and it achieves better optimal solutions 

compared to the ACO-ILP algorithm. Based on optimal results from the ILP solver, as in Figure 

5.14, the driving distance of the actual trip gaps is 80 km, while that of the other three cases is 

around 92 km. Moreover, the average objective value of the actual case is relatively low 

compared to the other three cases representing the necessity of perfect information or accurately 

forecasted demand. In this case, the combination of prediction demand variance could reduce 

the overall penalty costs by 8.25% and 2.75% compared to the implementation of historical 

actual daily and weekly trip data. If we exclude the driving distance, the percentage of reduction 

by sampling method is 22.28% and 13.55%, respectively. 

 
Figure 5.13 Exploration and exploitation tradeoff of ant colony optimization (left) and the 

convergence curve (right) for 30-cluster problems 
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Figure 5.14 Average objective value for 30 random instances for 15-, 30-, and 60-cluster 

problems 

 

5.5.5 60-cluster problem  

Figure 5.15 (left) shows the balance of exploration and exploitation of ACO while the 

optimal values of population size and number of iterations are 7 and 160, respectively. The 

convergence curve of this case is shown in Figure 5.15 (right), whereas the optimal objective 

value is 180.65. Unlike the previous two cases, ACO-ILP performs better than ILP solver, which 

cannot provide a feasible solution for some instances of historical daily (70%) and historical 

weekly (25%) trip gaps. There were approximately 200 and 28 scenarios for historical daily and 

historical weekly trip gaps, respectively, whereas the Monte Carlo sampling had 100 scenarios. 

Our result for Monte Carlo sampling showed that the ILP solver could provide a feasible 

solution for as many as 500 scenarios within the limited computational time. Hence, the 

distribution and variance of the trip gaps rather than just the number of scenarios contributed to 

the complexity of the optimization problem, which prevented the ILP solver from reaching a 

feasible solution. To obtain feasible results for all instances of historical daily and historical 

weekly trip gaps, the computational time was iteratively increased by 30 and 15 minutes, 

respectively. On average, the computational time required to reach a feasible solution in these 

two cases was 120 and 72 minutes, respectively.  

As shown in Figure 5.14, the pattern of the average optimal objective values is similar, 

i.e., the Actual case has the lowest penalty costs, and the Sampling approach has lower penalty 

costs compared to the other two baselines. The driving distances of 60-cluster problems are 

around 123.88 km, 127.57 km, 127.27 km, and 126.24 km for Actual, Sampling, Daily, and 

Weekly cases, respectively. As shown in Figure 6.11, the average penalty costs of these four 

cases are 135.74 USD, 167.33 USD, 200.82 USD, and 192.94 USD, respectively. This means 

the sampling approach based on the forecasted trip gap and variance can reduce the overall 

penalty costs of 16.68% and 13.27% compared to the baselines. In other words, the reduction 

excluding driving distance achieved by the Sampling approach is 47.95% and 41.77%, 

respectively, compared to these two benchmark cases. 
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Figure 5.15 Exploration and exploitation tradeoff of ant colony optimization (left) and the 

convergence curve (right) for 60-cluster problems 

 

5.5.6 Discussion  

Figure 5.14 illustrates the average objective values for all three types of clusters, 

encompassing 30 random instances, while accounting for routing and penalty costs. This 

graphical representation reveals that regardless of the number of clusters, the perfect 

information (actual trip gap) corresponded to the lowest penalty cost. In contrast, the Sampling, 

Daily, and Weekly cases incurred higher penalty costs, roughly 20%, 35%, and 29% higher than 

the Actual case, respectively. This underscores the potential for further reduction in demand 

uncertainty, particularly through enhancements in demand and variance predictions. 

Furthermore, the graph indicates that for smaller-sized problems (15- and 30-cluster scenarios), 

the ILP solver "GLPK" outperformed, whereas for larger-sized problems (60-cluster scenario), 

the hybrid ACO-ILP algorithm exhibited better performance. It's noteworthy that Assumption 

1 necessitates a higher quantity of clusters, which in turn results in elongated driving distances 

for rebalancing vehicles and amplified penalty costs due to heightened demand uncertainty. 

Moreover, while the ILP solver requires prolonged training times to generate feasible solutions 

for larger-scale problems involving an increased number of clusters, our findings highlight that 

the sampling approach utilizing the Monte Carlo method, founded on predicted demand and 

variance, managed to curtail demand uncertainty. This in turn expedited the ILP solver's ability 

to attain feasible solutions more swiftly than relying on historical daily and weekly net 

demands.  

During a pilot initiative conducted in 2019, the city of Minneapolis sanctioned the 

deployment of up to 2,000 shared e-scooters distributed among various operators, including 

Lime, Lyft, JUMP, and Spin. For this present study, the total count of e-scooters was established 

at 400, a number roughly equivalent to those deployed by each individual operator. In a parallel 

context involving dockless shared bikes, a study by Hua et al. [72] identified that by providing 

merely 14.5% of the original fleet, it was possible to satisfy 96.8% of the trip demand. Adhering 

to a constraint of 400 e-scooters (about 20% of the permissible fleet), we managed to achieve a 

service level of approximately 96.6% through hourly rebalancing efforts. From an operational 

perspective, this accomplishment signifies the potential to curtail the deployed fleet size, 

especially if all operators collaboratively engaged in unified rebalancing planning or minimized 

territorial overlap by incorporating geofences. Taking environmental factors into account, 

frequent rebalancing actions, particularly when involving vehicles with internal combustion 
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engines, are ill-advised due to their substantial contribution to emissions (up to 50% according 

to [19]). Given the challenges in achieving complete operational harmonization among 

operators, a viable strategy involves judiciously segregating deployment zones, thereby 

minimizing overlaps and optimizing intrazonal trips. In such a framework, rebalancing efforts 

should be confined to a few instances daily, ideally conducted using electric rebalancing 

vehicles, while also minimizing the number of clusters to be visited.  

Based on the empirical findings discussed earlier, the calculated driving distances 

approximately amount to 50 km, 90 km, and 120 km for the three distinct problem sizes: 15-

cluster, 30-cluster, and 60-cluster scenarios, respectively. This indicates that the rebalancing 

vehicle would be unable to complete the entire rebalancing operation within the stipulated 1-

hour timeframe, as demonstrated in the case study. Given this context, the practicality of our 

proposed framework might be better suited for extended rebalancing durations, such as 2 to 3 

hours, or it may necessitate adjustments to meet specific objectives, including driving distance 

reduction or service level enhancements. Among potential modifications, the initial option 

involves enabling the rebalancing algorithm to bypass nodes that are deemed unnecessary or 

have already been balanced. The second modification suggests augmenting the number of 

rebalancing vehicles, particularly by implementing multiple smaller rebalancing vehicles. 

However, the third option is particularly advisable. This involves eliminating balanced demand 

clusters prior to the rebalancing optimization and execution phase. By doing so, both 

computational time and driving distance can be curtailed, owing to the reduction in the overall 

number of nodes. Within this framework, operators can concentrate their efforts solely on nodes 

displaying significant deviations from the desired supply level—summing predicted trip gaps, 

predicted trip gap variations with service level parameters, and safety stock considerations. 

When the quantity of nodes is relatively modest (below 15 nodes), rebalancing optimization 

can be executed efficiently through the employment of an ILP solver. For more extensive 

optimization challenges, an ACO-ILP strategy, especially when supplemented with parallel 

computing capabilities, becomes more apt. The viability of the proposed framework is further 

accentuated if operators choose to segregate operational territories, generating smaller 

rebalancing regions for streamlined management.  

 

5.6 Conclusion  

In summation, dockless shared e-scooters exhibit considerable potential as a solution for 

enhancing compact urban mobility, especially in addressing the challenges of the first-mile-

last-mile dilemma, parking scarcities, and offering an alternative transportation mode. 

However, the nuanced characteristics of trips, vehicles, and regulatory considerations render 

the short-term operational planning for this mode notably more intricate compared to its closest 

counterpart, shared bikes. Notably, the pickup and drop-off patterns of shared e-scooters deviate 

from conventional Poisson distributions. This divergence implies that standard operational 

planning strategies—often utilized under conditions of demand uncertainty for shared bikes, 

such as the application of Markov chains or queue theory—might not be directly applicable to 

shared e-scooters.  

In light of these complexities, this study introduces a novel framework tailored for the 

short-term rebalancing of shared e-scooters. This framework hinges on Monte Carlo simulation, 
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leveraging predicted demand and variance. Employing a GB model, the hourly trip gap of 

shared e-scooters is forecasted, while the residuals of this model are refined via SGARCH. This 

dual-model integration successfully mitigates demand uncertainty, as evidenced by the 

reduction in RMSE and average STD.  

Furthermore, a novel ILP rebalancing formulation is devised, encompassing demand 

uncertainty, malfunctioning e-scooters, and low-battery instances. Given the NP-hard nature of 

this problem, an ILP solver is deployed to tackle smaller-scale scenarios, while the solution to 

larger-scale problems is achieved through a hybrid ACO–ILP algorithm. Numerical results, 

derived from real-world data in the context of Minneapolis, MN, and focused on the 60-cluster 

scenario, indicate that the application of our framework leads to a reduction of the operational 

burden by 20.01% and 15.30% relative to benchmark practices relying on historical daily and 

weekly demands, respectively. Moreover, while the ILP solver at times struggled to furnish a 

feasible solution within computational time limits for these benchmark cases, this challenge 

was circumvented by our simulated demand approach. Importantly, the ILP solver necessitated 

a lengthier duration to yield feasible solutions for baseline problems compared to the efficiency 

demonstrated by our Monte Carlo sampling strategy. 

 

References  

[1] T. Benarbia, K. Labadi, A. M. Darcherif, J. P. Barbot and A. Omari, "Real-time inventory 

control and rebalancing in bike-sharing systems by using a stochastic Petri net model," in 

3rd International Conference on Systems and Control, 2013, pp. 583-589,  doi: 

https://doi.org/10.1109/ICoSC.2013.6750920. 

[2] N. Saum and M. Piantanakulchai, "A Review on an Emerging New Mode of Transport: 

The Shared Dockless Electric Scooter," presented at the 13th International Conference of 

the Eastern Asia Society for Transportation Studies (EASTS 2019), Colombo, 2019. 

Available: http://www.easts.info/on-line/proceedings/vol.12/head.htm. 

[3] NACTO. Shared Micromobility in the U.S.: 2019. Available: https://nacto.org/shared-

micromobility-2019/. 

[4] A. Hosseinzadeh, A. Karimpour and R. Kluger, "Factors influencing shared micromobility 

services: An analysis of e-scooters and bikeshare," Transportation Research Part D: 

Transport and Environment, vol. 100, pp. 103047, 2021, doi: 

https://doi.org/10.1016/j.trd.2021.103047. 

[5] K. Wang, X. Qian, D. T. Fitch, Y. Lee, J. Malik and G. Circella, "What travel modes do 

shared e-scooters displace? A review of recent research findings," Transport Reviews, pp. 

1-27, 2022, doi: https://doi.org/10.1080/01441647.2021.2015639. 

[6] W. Riggs, M. Kawashima and D. Batstone, "Exploring best practice for municipal e-scooter 

policy in the United States," Transportation Research Part A: Policy and Practice, vol. 

151, pp. 18-27, 2021, doi: https://doi.org/10.1016/j.tra.2021.06.025. 

[7] A.-H. Kirstin, B. Brandon, O. N. Riley and S. Smith C, "Governing micro-mobility: A 

nationwide assessment of electric scooter regulations," presented at the Transportation 

Research Board 98th Annual Meeting, Washington D.C., 2019.  doi: 

https://trid.trb.org/view/1572811. 

https://doi.org/10.1109/ICoSC.2013.6750920
http://www.easts.info/on-line/proceedings/vol.12/head.htm
https://nacto.org/shared-micromobility-2019/
https://nacto.org/shared-micromobility-2019/
https://doi.org/10.1016/j.trd.2021.103047
https://doi.org/10.1080/01441647.2021.2015639
https://doi.org/10.1016/j.tra.2021.06.025
https://trid.trb.org/view/1572811


140 
 

[8] K. Button, H. Frye and D. Reaves, "Economic regulation and E-scooter networks in the 

USA," Research in Transportation Economics, vol. 84, pp. 100973, 2020, doi: 

https://doi.org/10.1016/j.retrec.2020.100973. 

[9] A. Brown, "Micromobility, Macro Goals: Aligning scooter parking policy with broader city 

objectives," Transportation Research Interdisciplinary Perspectives, vol. 12, pp. 100508, 

2021, doi: https://doi.org/10.1016/j.trip.2021.100508. 

[10] A. Pashkevich, T. E. Burghardt, S. Puławska-Obiedowska and M. Šucha, "Visual attention 

and speeds of pedestrians, cyclists, and electric scooter riders when using shared road – a 

field eye tracker experiment," Case Studies on Transport Policy, vol. 10, no. 1, pp. 549-

558, 2022, doi: https://doi.org/10.1016/j.cstp.2022.01.015. 

[11] S. Sareen, D. Remme and H. Haarstad, "E-scooter regulation: The micro-politics of market-

making for micro-mobility in Bergen," Environmental Innovation and Societal Transitions, 

vol. 40, pp. 461-473, 2021, doi: https://doi.org/10.1016/j.eist.2021.10.009. 

[12] A. Brown, N. J. Klein, C. Thigpen and N. Williams, "Impeding access: The frequency and 

characteristics of improper scooter, bike, and car parking," Transportation Research 

Interdisciplinary Perspectives, vol. 4, pp. 100099, 2020, doi: 

https://doi.org/10.1016/j.trip.2020.100099. 

[13] H. Li, Z. Yuan, T. Novack, W. Huang and A. Zipf, "Understanding spatiotemporal trip 

purposes of urban micro-mobility from the lens of dockless e-scooter sharing," Computers, 

Environment and Urban Systems, vol. 96, pp. 101848, 2022, doi: 

https://doi.org/10.1016/j.compenvurbsys.2022.101848. 

[14] C. S. Smith and J. P. Schwieterman, "E-scooter scenarios: evaluating the potential mobility 

benefits of shared dockless scooters in Chicago," Chaddick Institute for Metropolitan 

Development, Depaul University. 2018. 

[15] O. Caspi, M. J. Smart and R. B. Noland, "Spatial associations of dockless shared e-scooter 

usage," Transportation Research Part D: Transport and Environment, vol. 86, pp. 102396, 

2020, doi: https://doi.org/10.1016/j.trd.2020.102396. 

[16] R. Zhu, X. Zhang, D. Kondor, P. Santi and C. Ratti, "Understanding spatio-temporal 

heterogeneity of bike-sharing and scooter-sharing mobility," Computers, Environment and 

Urban Systems, vol. 81, pp. 101483, 2020, doi: 

https://doi.org/10.1016/j.compenvurbsys.2020.101483. 

[17] H. Younes, Z. Zou, J. Wu and G. Baiocchi, "Comparing the Temporal Determinants of 

Dockless Scooter-share and Station-based Bike-share in Washington, D.C," Transportation 

Research Part A: Policy and Practice, vol. 134, pp. 308-320, 2020, doi: 

https://doi.org/10.1016/j.tra.2020.02.021. 

[18] G. McKenzie, "Urban mobility in the sharing economy: A spatiotemporal comparison of 

shared mobility services," Computers, Environment and Urban Systems, vol. 79, pp. 

101418, 2020, doi: https://doi.org/10.1016/j.compenvurbsys.2019.101418. 

[19] A. de Bortoli and Z. Christoforou, "Consequential LCA for territorial and multimodal 

transportation policies: method and application to the free-floating e-scooter disruption in 

Paris," Journal of Cleaner Production, vol. 273, pp. 122898, 2020, doi: 

https://doi.org/10.1016/j.jclepro.2020.122898. 

[20] H. Moreau, L. de Jamblinne de Meux, V. Zeller, P. D’Ans, C. Ruwet and W. M. J. Achten, 

"Dockless E-Scooter: A Green Solution for Mobility? Comparative Case Study between 

https://doi.org/10.1016/j.retrec.2020.100973
https://doi.org/10.1016/j.trip.2021.100508
https://doi.org/10.1016/j.cstp.2022.01.015
https://doi.org/10.1016/j.eist.2021.10.009
https://doi.org/10.1016/j.trip.2020.100099
https://doi.org/10.1016/j.compenvurbsys.2022.101848
https://doi.org/10.1016/j.trd.2020.102396
https://doi.org/10.1016/j.compenvurbsys.2020.101483
https://doi.org/10.1016/j.tra.2020.02.021
https://doi.org/10.1016/j.compenvurbsys.2019.101418
https://doi.org/10.1016/j.jclepro.2020.122898


141 
 

Dockless E-Scooters, Displaced Transport, and Personal E-Scooters," Sustainability, vol. 

12, no. 5, pp. 1803, 2020, doi: https://doi.org/doi:10.3390/su12051803. 

[21] H. Peng, Y. Nishiyama and K. Sezaki, "Assessing environmental benefits from shared 

micromobility systems using machine learning algorithms and Monte Carlo simulation," 

Sustainable Cities and Society, vol. 87, pp. 104207, 2022, doi: 

https://doi.org/10.1016/j.scs.2022.104207. 

[22] S. Severengiz, S. Finke, N. Schelte and N. Wendt, "Life Cycle Assessment on the Mobility 

Service E-Scooter Sharing," presented at the 2020 IEEE European Technology and 

Engineering Management Summit (E-TEMS), Dortmund, 2020.  doi: 

https://doi.org/10.1109/E-TEMS46250.2020.9111817. 

[23] M. Javadinasr, S. Asgharpour, E. Rahimi, P. Choobchian, A. K. Mohammadian and J. Auld, 

"Eliciting attitudinal factors affecting the continuance use of E-scooters: An empirical 

study in Chicago," Transportation Research Part F: Traffic Psychology and Behaviour, 

vol. 87, pp. 87-101, 2022, doi: https://doi.org/10.1016/j.trf.2022.03.019. 

[24] R. G. Öztaş Karlı, H. Karlı and H. S. Çelikyay, "Investigating the acceptance of shared e-

scooters: Empirical evidence from Turkey," Case Studies on Transport Policy, vol. 10, no. 

2, pp. 1058-1068, 2022, doi: https://doi.org/10.1016/j.cstp.2022.03.018. 

[25] M. Abouelela, C. Al Haddad and C. Antoniou, "Are young users willing to shift from 

carsharing to scooter–sharing?," Transportation Research Part D: Transport and 

Environment, vol. 95, pp. 102821, 2021, doi: https://doi.org/10.1016/j.trd.2021.102821. 

[26] H. Fitt and A. Curl, "The early days of shared micromobility: A social practices approach," 

Journal of Transport Geography, vol. 86, pp. 102779, 2020, doi: 

https://doi.org/10.1016/j.jtrangeo.2020.102779. 

[27] S. He and K. G. Shin, "Dynamic flow distribution prediction for urban dockless e-scooter 

sharing reconfiguration," presented at the WWW '20: Proceedings of The Web Conference 

2020, Taipei, 2020.  doi: https://doi.org/10.1145/3366423.3380101. 

[28] S. He and K. G. Shin, "Distribution Prediction for Reconfiguring Urban Dockless E-

Scooter Sharing Systems," IEEE Transactions on Knowledge and Data Engineering, vol. 

34, no. 12, pp. 5722-5740, 2022, doi: https://doi.org/10.1109/TKDE.2021.3062074. 

[29] N. Saum, S. Sugiura and M. Piantanakulchai, "Short-Term Demand and Volatility 

Prediction of Shared Micro-Mobility: a case study of e-scooter in Thammasat University," 

presented at the 2020 Forum on Integrated and Sustainable Transportation Systems 

(FISTS), Delft, 2020.  doi: https://doi.org/10.1109/FISTS46898.2020.9264852. 

[30] S. W. Ham, J.-H. Cho, S. Park and D.-K. Kim, "Spatiotemporal Demand Prediction Model 

for E-Scooter Sharing Services with Latent Feature and Deep Learning," Transportation 

Research Record, vol. 2675, no. 11, pp. 34-43, 2021, doi: 

https://doi.org/10.1177/03611981211003896. 

[31] S. Phithakkitnukooon, K. Patanukhom and M. G. Demissie, "Predicting Spatiotemporal 

Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional 

Network," ISPRS International Journal of Geo-Information, vol. 10, no. 11, pp. 773, 2021. 

[32] Y. Xu, X. Zhao, X. Zhang and M. Paliwal, "Real-Time Forecasting of Dockless Scooter-

Sharing Demand: A Spatio-Temporal Multi-Graph Transformer Approach," 2021. 

https://doi.org/doi:10.3390/su12051803
https://doi.org/10.1016/j.scs.2022.104207
https://doi.org/10.1109/E-TEMS46250.2020.9111817
https://doi.org/10.1016/j.trf.2022.03.019
https://doi.org/10.1016/j.cstp.2022.03.018
https://doi.org/10.1016/j.trd.2021.102821
https://doi.org/10.1016/j.jtrangeo.2020.102779
https://doi.org/10.1145/3366423.3380101
https://doi.org/10.1109/TKDE.2021.3062074
https://doi.org/10.1109/FISTS46898.2020.9264852
https://doi.org/10.1177/03611981211003896


142 
 

[33] S. Kim, S. Choo, G. Lee and S. Kim, "Predicting Demand for Shared E-Scooter Using 

Community Structure and Deep Learning Method," Sustainability, vol. 14, no. 5, pp. 2564, 

2022. 

[34] P. W. Khan, S.-J. Park, S.-J. Lee and Y.-C. Byun, "Electric Kickboard Demand Prediction 

in Spatiotemporal Dimension Using Clustering-Aided Bagging Regressor," Journal of 

Advanced Transportation, vol. 2022, pp. 8062932, 2022, doi: 

https://doi.org/10.1155/2022/8062932. 

[35] M. Masoud, M. Elhenawy, M. H. Almannaa, S. Q. Liu, S. Glaser and A. Rakotonirainy, 

"Heuristic Approaches to Solve E-Scooter Assignment Problem," IEEE Access, vol. 7, pp. 

175093-175105, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2957303. 

[36] A. Ciociola, M. Cocca, D. Giordano, L. Vassio and M. Mellia, "E-Scooter Sharing: 

Leveraging Open Data for System Design," in 2020 IEEE/ACM 24th International 

Symposium on Distributed Simulation and Real Time Applications (DS-RT), 2020, pp. 1-8,  

doi: 10.1109/DS-RT50469.2020.9213514. 

[37] L. Tolomei, S. Fiorini, A. Ciociola, L. Vassio, D. Giordano and M. Mellia, "Benefits of 

Relocation on E-scooter Sharing - a Data-Informed Approach," in 2021 IEEE International 

Intelligent Transportation Systems Conference (ITSC), 2021, pp. 3170-3175,  doi: 

10.1109/ITSC48978.2021.9564809. 

[38] J. Osorio, C. Lei and Y. Ouyang, "Optimal rebalancing and on-board charging of shared 

electric scooters," Transportation Research Part B: Methodological, vol. 147, pp. 197-219, 

2021, doi: https://doi.org/10.1016/j.trb.2021.03.009. 

[39] A. M. Fathabad, X. Li, J. Cheng and Y.-J. Wu, "Data-Driven Optimization for E-Scooter 

System Design," (in English), Tech Report 2022. 

[40] G. Losapio, F. Minutoli, V. Mascardi and A. Ferrando, "Smart balancing of E-scooter 

sharing systems via deep reinforcement learning," in 22nd Workshop "From Objects to 

Agents", Bologna, Italy, 2022, vol. 2963, pp. 83–97: CEUR-WS.org. 

[41] O. Altintasi and S. Yalcinkaya, "Siting charging stations and identifying safe and 

convenient routes for environmentally sustainable e-scooter systems," Sustainable Cities 

and Society, vol. 84, p. 104020, 2022, doi: https://doi.org/10.1016/j.scs.2022.104020. 

[42] G. McKenzie, "Spatiotemporal comparative analysis of scooter-share and bike-share usage 

patterns in Washington, D.C," Journal of Transport Geography, vol. 78, pp. 19-28, 2019, 

doi: https://doi.org/10.1016/j.jtrangeo.2019.05.007. 

[43] A. Martínez-Navarro, V. A. Cloquell-Ballester and S. Segui-Chilet, "Photovoltaic Electric 

Scooter Charger Dock for the Development of Sustainable Mobility in Urban 

Environments," IEEE Access, vol. 8, pp. 169486-169495, 2020, doi: 

https://doi.org/10.1109/ACCESS.2020.3023881. 

[44] C. S. Shui and W. Y. Szeto, "A review of bicycle-sharing service planning problems," 

Transportation Research Part C: Emerging Technologies, vol. 117, pp. 102648, 2020, doi: 

https://doi.org/10.1016/j.trc.2020.102648. 

[45] X. Chang, J. Wu, H. Sun, G. H. d. A. Correia and J. Chen, "Relocating operational and 

damaged bikes in free-floating systems: A data-driven modeling framework for level of 

service enhancement," Transportation Research Part A: Policy and Practice, vol. 153, pp. 

235-260, 2021, doi: https://doi.org/10.1016/j.tra.2021.09.010. 

https://doi.org/10.1155/2022/8062932
https://doi.org/10.1109/ACCESS.2019.2957303
https://doi.org/10.1016/j.trb.2021.03.009
https://doi.org/10.1016/j.scs.2022.104020
https://doi.org/10.1016/j.jtrangeo.2019.05.007
https://doi.org/10.1109/ACCESS.2020.3023881
https://doi.org/10.1016/j.trc.2020.102648
https://doi.org/10.1016/j.tra.2021.09.010


143 
 

[46] M. Dell'Amico, E. Hadjicostantinou, M. Iori and S. Novellani, "The bike sharing 

rebalancing problem: Mathematical formulations and benchmark instances," Omega, vol. 

45, pp. 7-19, 2014, doi: https://doi.org/10.1016/j.omega.2013.12.001. 

[47] T. Raviv and O. Kolka, "Optimal inventory management of a bike-sharing station," IIE 

Transactions, vol. 45, no. 10, pp. 1077-1093, 2013, doi: 

https://doi.org/10.1080/0740817X.2013.770186. 

[48] R. Alvarez-Valdes et al., "Optimizing the level of service quality of a bike-sharing system," 

Omega, vol. 62, pp. 163-175, 2016, doi: https://doi.org/10.1016/j.omega.2015.09.007. 

[49] E. O'Mahony, "Smarter Tools For (Citi)Bike Sharing," Computer Science, Cornell 

University, Cornell University, 2015. 

[50] J. Schuijbroek, R. C. Hampshire and W. J. van Hoeve, "Inventory rebalancing and vehicle 

routing in bike sharing systems," European Journal of Operational Research, vol. 257, no. 

3, pp. 992-1004, 2017, doi: https://doi.org/10.1016/j.ejor.2016.08.029. 

[51] Y.-H. Seo, "A Dynamic Rebalancing Strategy in Public Bicycle Sharing Systems Based on 

Real-Time Dynamic Programming and Reinforcement Learning," Doctoral dissertation, 

Seoul National University, 2020. 

[52] C.-C. Lu, "Robust Multi-period Fleet Allocation Models for Bike-Sharing Systems," 

Networks and Spatial Economics, vol. 16, no. 1, pp. 61-82, 2016, doi: 

https://doi.org/10.1007/s11067-013-9203-9. 

[53] Y. Chen and Y. Liu, "Integrated Optimization of Planning and Operations for Shared 

Autonomous Electric Vehicle Systems," Transportation Science, 2022, doi: 

https://doi.org/10.1287/trsc.2022.1156. 

[54] F. Maggioni, M. Cagnolari, L. Bertazzi and S. W. Wallace, "Stochastic optimization models 

for a bike-sharing problem with transshipment," European Journal of Operational 

Research, vol. 276, no. 1, pp. 272-283, 2019, doi: 

https://doi.org/10.1016/j.ejor.2018.12.031. 

[55] S. Yan, C.-C. Lu and M.-H. Wang, "Stochastic fleet deployment models for public bicycle 

rental systems," International Journal of Sustainable Transportation, vol. 12, no. 1, pp. 39-

52, 2018, doi: https://doi.org/10.1080/15568318.2017.1324586. 

[56] M. Dell’Amico, M. Iori, S. Novellani and A. Subramanian, "The Bike sharing Rebalancing 

Problem with Stochastic Demands," Transportation Research Part B: Methodological, vol. 

118, pp. 362-380, 2018, doi: https://doi.org/10.1016/j.trb.2018.10.015. 

[57] R. Regue and W. Recker, "Proactive vehicle routing with inferred demand to solve the 

bikesharing rebalancing problem," Transportation Research Part E: Logistics and 

Transportation Review, vol. 72, pp. 192-209, 2014, doi: 

https://doi.org/10.1016/j.tre.2014.10.005. 

[58] D. Huang, X. Chen, Z. Liu, C. Lyu, S. Wang and X. Chen, "A static bike repositioning 

model in a hub-and-spoke network framework," Transportation Research Part E: Logistics 

and Transportation Review, vol. 141, p. 102031, 2020. 

[59] R. Guo et al., "BikeNet: Accurate Bike Demand Prediction Using Graph Neural Networks 

for Station Rebalancing," presented at the 2019 IEEE SmartWorld, Ubiquitous Intelligence 

& Computing, Advanced & Trusted Computing, Scalable Computing & Communications, 

Cloud & Big Data Computing, Internet of People and Smart City Innovation 

https://doi.org/10.1016/j.omega.2013.12.001
https://doi.org/10.1080/0740817X.2013.770186
https://doi.org/10.1016/j.omega.2015.09.007
https://doi.org/10.1016/j.ejor.2016.08.029
https://doi.org/10.1007/s11067-013-9203-9
https://doi.org/10.1287/trsc.2022.1156
https://doi.org/10.1016/j.ejor.2018.12.031
https://doi.org/10.1080/15568318.2017.1324586
https://doi.org/10.1016/j.trb.2018.10.015
https://doi.org/10.1016/j.tre.2014.10.005


144 
 

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, 2019.  doi: 

https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00153. 

[60] J.-H. Cho, Y.-H. Seo and D.-K. Kim, "Efficiency Comparison of Public Bike-Sharing 

Repositioning Strategies Based on Predicted Demand Patterns," Transportation Research 

Record, vol. 2675, no. 11, pp. 104-118, 2021, doi: 

https://doi.org/10.1177/03611981211016859. 

[61] L. Yu, T. Feng, T. Li and L. Cheng, "Demand Prediction and Optimal Allocation of Shared 

Bikes Around Urban Rail Transit Stations," Urban Rail Transit, 2022, doi: 

https://doi.org/10.1007/s40864-022-00183-w. 

[62] J. H. Friedman, "Greedy function approximation: A gradient boosting machine," The 

Annals of Statistics, vol. 29, no. 5, pp. 1189-1232, 2001, doi: 

https://doi.org/10.1214/aos/1013203451. 

[63] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal of Machine 

Learning Research, vol. 12, pp. 2825-2830, 2011. 

[64] A. Oyedele et al., "Deep learning and Boosted trees for injuries prediction in power 

infrastructure projects," Applied Soft Computing, vol. 110, pp. 107587, 2021, doi: 

https://doi.org/10.1016/j.asoc.2021.107587. 

[65] J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei and S.-H. Deng, "Hyperparameter 

Optimization for Machine Learning Models Based on Bayesian Optimization," Journal of 

Electronic Science and Technology, vol. 17, no. 1, pp. 26-40, 2019, doi: 

https://doi.org/10.11989/JEST.1674-862X.80904120. 

[66] T. Head, G. Louppe, H. Nahrstaedt, I. Shcherbatyi and M. Kumar, "Scikit-Optimize," 

Available: https://github.com/scikit-optimize 

[67] StataCorp, Stata: Time-Series Reference Manual Release 17 (Statistical Software). TX: 

StataCorp LLC: College Station, 2021. 

[68] L. Di Gaspero, A. Rendl and T. Urli, "A Hybrid ACO+CP for Balancing Bicycle Sharing 

Systems," in Hybrid Metaheuristics, Berlin, Heidelberg, 2013, pp. 198-212: Springer 

Berlin Heidelberg. 

[69] M. Dorigo, M. Birattari and T. Stutzle, "Ant colony optimization," IEEE Computational 

Intelligence Magazine, vol. 1, no. 4, pp. 28-39, 2006, doi: 

https://doi.org/10.1109/MCI.2006.329691. 

[70] Guofei, Agrover, Ilikega, Zidong, Zhangxiao and e. al., "Scikit-opt," Available: 

https://github.com/guofei9987/scikit-opt 

[71] W. E. Hart, J.-P. Watson and D. L. Woodruff, "Pyomo: modeling and solving mathematical 

programs in Python," Mathematical Programming Computation, vol. 3, no. 3, pp. 219, 

2011, doi: https://doi.org/10.1007/s12532-011-0026-8. 

[72] M. Hua, X. Chen, J. Chen and Y. Jiang, "Minimizing fleet size and improving vehicle 

allocation of shared mobility under future uncertainty: A case study of bike sharing," 

Journal of Cleaner Production, vol. 370, pp. 133434, 2022, doi: 

https://doi.org/10.1016/j.jclepro.2022.133434. 

 

https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00153
https://doi.org/10.1177/03611981211016859
https://doi.org/10.1007/s40864-022-00183-w
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.asoc.2021.107587
https://doi.org/10.11989/JEST.1674-862X.80904120
https://github.com/scikit-optimize
https://doi.org/10.1109/MCI.2006.329691
https://github.com/guofei9987/scikit-opt
https://doi.org/10.1007/s12532-011-0026-8
https://doi.org/10.1016/j.jclepro.2022.133434


145 
 

CHAPTER 6 

6. CONCLUSION AND RECOMMENDATIONS 
6.1 Conclusion 

Shared e-scooter is a new dockless sharing micromobility, expanding across the globe for 

its exciting riding experience (ease of riding and parking), time- and cost-effectiveness for 

short-range trips (dealing with first- and last-mile problems), and environmentally friendly. 

However, this shared transportation mode faces many challenges in short-term operational 

planning, such as high demand volatility, intensive maintenance, short-service life, emission 

from rebalancing, and relevant regulations. Therefore, this study aims to explore historical 

ridership data to improve the short-term management planning for this shared micromobility. 

To achieve this objective, this study is divided into three main parts: supply planning design, 

hyperparameter optimization, and rebalancing planning. The research findings and 

recommendations from these three parts are summarized as follows. 

 

6.1.1 Findings and recommendations from short-term supply planning  

Several findings and recommendations can be drawn from the numerical results of short-

term supply planning design, such as:  

➢ Box Cox transformation can improve the demand prediction accuracy, specifically MAE, 

and remove the heteroscedasticity.  

➢ Box Cox transformation is suitable for supply planning at a low service level (or lower 

confidence bound), while a ceiling value for supply level is necessary for a higher service 

level, especially when 𝜆 < 0 and 𝜆 → 0. 

➢ Box Cox transformation can deal with outliers or data with insufficient explanatory 

variables.  

➢ Hyperparameter optimization is necessary for machine learning and deep learning models, 

otherwise it might have worse performance than statistical regression models (ex., 

SARIMAX).  

➢ The residuals of machine learning and deep learning models are not white noise but 

heteroscedastic or conditional variance.  

➢ Even deep learning models can have higher demand prediction accuracy, their supply level 

models might be worse than SARIMAX if their residuals are not properly examined. In 

other words, the demand uncertainty can be minimized by combining demand prediction 

and variance analysis.  

➢ Daily variance can be an efficient variance model for supply level estimation, but it is not 

flexible for long-term trends, especially seasonal or annual trends.  

➢ SGARCH is more temporally flexible than daily variance and is suitable for supply level 

estimation at a high service level (or upper confidence bound).  

➢ Mean Oversupply metric can be used to evaluate the efficiency of supply-level estimation 

models, while previous studies used two or more metrics.  

➢ Based on three real-world datasets, accounting for heteroscedasticity in supply planning 

can reduce the oversupply by 26.22% at 95% served demand. 
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6.1.2 Findings and recommendations from hyperparameter optimization  

Several findings and recommendations can be drawn from the empirical results of 

hyperparameter optimization, such as:  

➢ Compared with sequential-based algorithms (ex., TPE and BO), Iterative Decision Tree 

(IDT) has several advantages such as ease of parallel computation, no acquisition model, 

less intensive training of the surrogate model, better avoiding local optimal solutions, and 

support for multiple objectives.  

➢ Compared with population-based algorithms (ex., GA), IDT has several advantages, such 

as keeping historical evaluated points, avoiding training repetitive candidates, providing 

feature importance, and faster convergence.  

➢ IDT-R performs better than IDT-E, which is unsuitable for optimizing problems with more 

than three parameters.  

➢ TPE easily falls into local optimal points, so it is not suitable for optimization problems 

with multiple locally optimal solutions like optimization of nonconvex functions and HPO 

of machine learning models. However, TPE performs well in optimizing the 

hyperparameters of deep learning models.  

➢ IDT-R has stable performance across optimization problems in searching for a near-global 

optimal solution. Moreover, IDT-R has comparable performance with TPE for HPO of deep 

learning models while outperforming it and other baseline algorithms in searching optimal 

solutions for nonconvex functions and HPO of machine learning models.  

➢ Random Forest (RF) can predict multiple output problems (ex., predict spatial demands), 

but its performance reduces for a greater number of spatial demands, especially in 

comparison with GRUs. Moreover, it requires more extended training than GRUs if the 

number of data and outputs increases. 

 

6.1.3 Findings and recommendations from rebalancing planning  

The lesson learned from the two sections above was used to construct an efficient 

framework for rebalancing shared e-scooters. In addition, from the numerical results evaluated 

using ridership data in Minneapolis MN, we achieved several more findings and 

recommendations as follows:  

➢ As many external factors influence shared e-scooter ridership, the arrival and departure 

trips do not follow the typical Poisson distribution, which is the most important assumption 

for Markov Chain used for operational planning in previous studies (especially shared 

bikes).  

➢ Sample Average Approach (SAA) based on Monte Carlo method can be employed to 

generate the demand uncertainty, which can be minimized through demand prediction by 

robust machine or deep learning models and the estimation of variance and distribution by 

SGARCH.  

➢ Integer Linear Programming (ILP) solver “GLPK” is suitable for solving small-size 

rebalancing optimization problems (ex., 15- and 30-cluster problems), but hybrid Ant 

Colony Algorithm with ILP (ACO-ILP) is more suitable for large-size problems (ex., 60-

cluster problems). 



147 
 

➢ Besides the number of scenarios, the distribution and variance of the trip gaps also 

contribute to the complexity of the optimization problem, which prevents the ILP solver 

from reaching a feasible solution.  

➢ A greater number of demand clusters requires longer computational time and increase the 

demand uncertainty and driving distance of rebalancing vehicle.  

➢ From the most practical case (60-cluster problems), the proposed framework (SAA with 

predicted trip gaps and variances) reduces the operational burden by around 16.68% and 

13.27% compared to historical daily and weekly demands.  

➢ The proposed rebalancing planning is suitable for periodic rebalancing or distribution, so 

it can be integrated with other strategies such as (1) real-time rebalancing to respond to the 

instant demand spikes and (2) customer incentivizing to minimize the rebalancing 

operation.  

➢ From the emission viewpoint, there should be unified rebalancing planning among 

operators or proper separation of e-scooter deployment zones (ex., minimize inter-zonal 

trips). 

 

6.2 Recommendations for future study  

There are a couple of directions for future studies such as:  

➢ SGARCH model is strongly susceptible to significant prediction errors, so future studies 

may employ or adopt other variance prediction models that can deal with this limitation. 

➢ Including the conditional variance in demand prediction models is also a promising 

technique for future works as it possibly improves the prediction accuracy and promptly 

provides the expected demand and variance.  

➢ The performance of the proposed algorithm (IDT-R) can be compared in future works 

under the constraint of computational time, especially in the case of parallelization and 

multiple objectives.  

➢ IDT-R can achieve higher efficiency if we combine it with the multi-fidelity approach, as 

it could reduce the training time of some poor performance configurations of deep learning.  

➢ IDT-R gives one additional piece of information, feature importance. Further research may 

focus on applying this metric, ex., narrowing the search space.  

➢ Another direction of the future study related to IDT-R is examining it on varied and 

conditional search spaces. 

➢ In terms of rebalancing planning, future studies could focus on dynamic rebalancing, 

including rebalancing planning a few steps ahead or in real-time. 

➢ Moreover, for more practical applications, future research could implement parallel 

computing to reduce the computational time of the rebalancing optimization. 

➢ Future studies could also focus on sensitivity analysis of the unit costs of the rebalancing 

penalty terms (e.g., unmet demand) to assess its impact on operational costs, service level, 

or driving distance.  

➢ Future studies may consider the constraints of driving distance in the operational planning 

optimization as discussed in Section 5.5.6, specifically the remedy recommendations such 

as using multiple small vehicles, allowing the rebalancing vehicle to skip some nodes, and 

removing the rebalanced clusters. 



148 
 

Appendix: Python Code 

 
# Import All Necessary Libraries  

import pandas as pd 

import numpy as np 

import os 

import xgboost as xgb 

import tensorflow as tf 

from keras.models import Sequential 

from keras.layers import LSTM, Dense, Dropout, SimpleRNN, GRU, Flatten, LSTM 

import sklearn 

from sklearn.cluster import KMeans 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import PowerTransformer, MinMaxScaler 

from sklearn.metrics import mean_absolute_error, mean_squared_error 

from keras.callbacks import EarlyStopping, ModelCheckpoint 

from sklearn.ensemble import RandomForestRegressor 

from sklearn import datasets, svm, metrics 

import skopt 

from skopt import gp_minimize, forest_minimize 

from skopt.space import Integer, Real, Categorical 

import optuna 

from sklearn import tree 

from geneticalgorithm import geneticalgorithm as ga 

from pyomo.environ import * 

from pyomo.gdp import * 

from pyomo.dae import * 

import pyomo.environ as pyEnv 

from sko.ACA import ACA_TSP     # Ant Colony Algorithm 

 

# Data Transformation  

sc = MinMaxScaler(feature_range=(0,1))      # Normalization to range of 0-1 

data_norm = sc.fit_transform(data) 

pt = PowerTransformer(standardize=False)   # Box Cox transformation 

data_bc = sc.fit_transform(data) 

MaxDemand = np.array(data[Regions_].max()) 

# Input Selection 

def datasplit_(features, targets, lookback, sampling_rate, split_fraction): 

    train_split = int(split_fraction*len(features)) 

    # Target split  

    train_target = targets[lookback:train_split] 

    test_target = targets[train_split:] 

    # Feature preparation 

    inputs_ = [] 

    for i in range(lookback, len(features)): 

        candidate_ = features[i-lookback:i] 

        inputs_.append(candidate_[np.arange(0,lookback,sampling_rate),:].ravel()) 

    train_input = inputs_[0:train_split-lookback] 

    test_input = inputs_[train_split-lookback:] 

    return train_input, test_input, train_target, test_target 

 

# Objective Function for Random Forest 

def Objective_(params_): 

    # Test and Train Split 

    x_train, x_test, y_train, y_test = datasplit_(np.array(Variables), np.array(Trips),int(params_[0]),int(params_[1]),0.7018) 

    x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test) 

    # Training and Evaliation Split 

    X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128) 

    # Model Construction 

    regr_rf = RandomForestRegressor(n_estimators=params_[2], max_depth=params_[3], random_state=128) 

    regr_rf.fit(X_training, y_training) 

    mse_train_ = np.round_(mean_squared_error(np.array(regr_rf.predict(X_training))*MaxDemand,  

                                              np.array(y_training)*MaxDemand), decimals=6) 

    mse_eval_ = np.round_(mean_squared_error(np.array(regr_rf.predict(X_validation))*MaxDemand,  

                                              np.array(y_validation)*MaxDemand), decimals=6) 

    mse_test_ = np.round_(mean_squared_error(np.array(regr_rf.predict(x_test))*MaxDemand,  

                                              np.array(y_test)*MaxDemand), decimals=6) 

    print(mse_train_, mse_eval_, mse_test_) 

    return mse_eval_+mse_eval_/mse_train_ 
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# Grid Search  

x0_ = np.arange(10+20, 170, 40) 

x1_ = np.arange(1+3, 24, 6) 

x2_ = np.arange(10+50, 400, 100) 

x3_ = np.arange(1+1, 10, 2) 

x0_, x1_, x2_, x3_ = np.meshgrid(x0_, x1_, x2_, x3_) 

x0_, x1_, x2_, x3_  = np.ravel(x0_), np.ravel(x1_), np.ravel(x2_), np.ravel(x3_) 

gridspace = np.vstack((x0_, x1_, x2_, x3_)).T 

result = [] 

for i in range(len(gridspace)): 

    print('Interation:', i+1) 

    result.append(Objective_(gridspace[i])) 

 

# Random Search  

x0_, x1_, x2_, x3_, result  = [], [], [], [], [] 

for i in range(200): 

    x0 = np.random.randint(10, 171) 

    x1 = np.random.randint(1, 25) 

    x2 = np.random.randint(10, 401) 

    x3 = np.random.randint(1, 11) 

    x0_.append(x0) 

    x1_.append(x1) 

    x2_.append(x2) 

    x3_.append(x3) 

    print('Interation:', i+1, [x0, x1, x2, x3]) 

    result.append(Objective_([x0, x1, x2, x3])) 

 

# Bayesian Optimization GP-LCB and RF-LCB 

SPACE = [Integer(10, 170, name='x0_'), 

         Integer(1, 24, name='x1_'), 

         Integer(10, 400, name='x2_'), 

         Integer(1, 10, name='x3_')] 

res = gp_minimize(Objective_, SPACE, 

                  acq_func="LCB", n_calls=200, 

                  kappa= np.random.default_rng().uniform(1.0, 2.0), 

                  n_random_starts= np.random.randint(50, 150), 

                  random_state=1042578) 

res = forest_minimize(Objective_, SPACE, 

                      acq_func="LCB", n_calls=200, 

                      kappa= np.random.default_rng().uniform(1.0, 2.0), 

                      n_random_starts= np.random.randint(50, 150),  

                      base_estimator='RF', random_state=1294571) 

 

# Tree-Structured Parzen Estimator 

def Objective_(trial): 

    # Variables Declaration  

    x0_ = trial.suggest_int('x0_', 10, 170) 

    x1_ = trial.suggest_int('x1_', 1, 24) 

    x2_ = trial.suggest_int('x2_', 10, 400) 

    x3_ = trial.suggest_int('x3_', 1, 10) 

    # Test and Train Split 

    x_train, x_test, y_train, y_test = datasplit_(np.array(Variables), np.array(Trips), x0_, x1_, 1.0) 

    x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test) 

    # Training and Evaliation Split 

    X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128) 

    # Model Construction 

    regr_rf = RandomForestRegressor(n_estimators=x2_, max_depth=x3_, random_state=128) 

    regr_rf.fit(X_training, y_training.ravel()) 

    mse_train_ = np.round_(mean_squared_error(regr_rf.predict(X_training)*115, 115*y_training), decimals=6)    # 115 is max demand 

    mse_eval_ = np.round_(mean_squared_error(regr_rf.predict(X_validation)*115, 115*y_validation), decimals=6) # 115 is max demand 

    print(mse_train_) 

    return mse_eval_+mse_eval_/mse_train_ 

study = optuna.create_study(direction="minimize", 

                            pruner=optuna.samplers.TPESampler(n_startup_trials=np.random.randint(50, 150), 

                                                              n_ei_candidates=np.random.randint(20, 50), 

                                                              multivariate=True, group=True, seed=1541278)) 

study.optimize(Objective_, n_trials=200) 
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# Genetic Algorithm  

np.random.seed(5672849) 

varbound = np.array([[10, 170], [1, 24], [10, 400], [1, 10]]) 

vartype = np.array([['int'], ['int'], ['int'], ['int']]) 

population_ = np.random.randint(10, 30) 

mutation_ = np.random.uniform(0.01, 0.5) 

elit_ = np.random.uniform(0.0, 0.1) 

crossover_ = np.random.uniform(0.2, 0.7) 

parents_ = np.random.uniform(0.1, 0.5) 

print('population_ %5.1f.' % population_,'mutation_ %5.4f.' % mutation_,'elit_ %5.4f.' % elit_, 

      'crossover_ %5.4f.' % crossover_,'parents_ %5.4f.' % parents_) 

algorithm_param = {'max_num_iteration': 16,   # Change to make it at least 200 Trials  

                   'population_size': population_ , 

                   'mutation_probability': mutation_, 

                   'elit_ratio': elit_, 

                   'crossover_probability': crossover_, 

                   'parents_portion': parents_, 

                   'crossover_type':'uniform', 

                   'max_iteration_without_improv':None} 

model=ga(function=Objective_,dimension=4, variable_type_mixed=vartype, 

         algorithm_parameters=algorithm_param,variable_boundaries=varbound, 

         function_timeout = 30000) 

model.run() 

 

# Objective Function for GRUs 

def Objective_(params_):   # Train with Categorical Variables  

    # Test and Train Split 

    x_train, x_test, y_train, y_test = datasplit_(np.array(Variables),np.array(Trips),int(params_[0]),int(params_[1]),0.7018) 

    x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test) 

    # Training and Evaliation Split 

    X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128) 

    # Model Construction 

    model = keras.Sequential() 

    model.add(layers.GRU(units=int(params_[2]), input_shape=(np.shape(X_training)[1], np.shape(X_training)[2]), 

                         activation= params_[3], kernel_initializer='glorot_uniform',return_sequences=True)) 

    model.add(layers.Dropout(rate = float(params_[4]))) 

    model.add(layers.GRU(units=int(params_[5]), activation= params_[6], 

                           kernel_initializer='glorot_uniform', return_sequences=False)) 

    model.add(layers.Dropout(rate = float(params_[7]))) 

    model.add(layers.Dense(units=30, activation='relu')) 

    callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) 

    model.compile(optimizer=optimizers.Adam(learning_rate=float(params_[8])), loss='mse') 

    history = model.fit(X_training, y_training, epochs=100, callbacks=[callback], verbose=0, 

                        validation_data=(X_validation, y_validation), batch_size=int(params_[9])) 

    #print(np.round_(np.min(history.history["loss"]),decimals=6), np.round_(np.min(history.history["val_loss"]),decimals=6)) 

    mse_train_ = np.round_(mean_squared_error(np.array(model.predict(X_training))*MaxDemand,  

                                              np.array(y_training)*MaxDemand), decimals=6) 

    mse_eval_ = np.round_(mean_squared_error(np.array(model.predict(X_validation))*MaxDemand,  

                                              np.array(y_validation)*MaxDemand), decimals=6) 

    mse_test_ = np.round_(mean_squared_error(np.array(model.predict(x_test))*MaxDemand,  

                                              np.array(y_test)*MaxDemand), decimals=6) 

    print(mse_train_, mse_eval_, mse_test_, mse_eval_+mse_eval_/mse_train_) 

    return mse_eval_+mse_eval_/mse_train_ 

 

# Grid Search  

x0_ = np.arange(10+26, 171, 52) 

x1_ = 1 

x2_ = np.arange(10+83, 513, 166) 

x3_ = ['relu', 'tanh'] 

x4_ = 0.1 

x5_ = np.arange(10+83, 513, 166) 

x6_ = 'relu' 

x7_ = 0.05 

x8_ = np.arange(0.0001+0.0025, 0.0101, 0.005) 

x9_ = np.arange(32+120, 513, 240) 

x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_ = np.meshgrid(x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_) 

x0_, x1_, x2_, x3_, x4_,  = np.ravel(x0_), np.ravel(x1_), np.ravel(x2_), np.ravel(x3_), np.ravel(x4_) 

x5_, x6_, x7_, x8_, x9_,  = np.ravel(x5_), np.ravel(x6_), np.ravel(x7_), np.ravel(x8_), np.ravel(x9_) 

gridspace = np.vstack((x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_)).T 

result = [] 
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for i in range(len(gridspace)): 

    print('Interation:', i+1) 

    result.append(Objective_(gridspace[i])) 

# Random Search  

x0_, x1_, x2_, x3_, x4_, x5_, x6_, x7_, x8_, x9_, result  = [], [], [], [], [], [], [], [], [], [], [] 

for i in range(200): 

    x0 = np.random.randint(10, 171) 

    x1 = np.random.randint(1, 25) 

    x2 = np.random.randint(10, 513) 

    x3 = np.random.choice(['relu', 'sigmoid', 'tanh']) 

    x4 = np.random.choice(np.arange(0.0, 0.801, 0.001)) 

    x5 = np.random.randint(10, 513) 

    x6 = np.random.choice(['relu', 'sigmoid', 'tanh']) 

    x7 = np.random.choice(np.arange(0.0, 0.801, 0.001)) 

    x8 = np.random.choice(np.arange(0.0001, 0.0101, 0.0001)) 

    x9 = np.random.randint(8, 257) 

    x0_.append(x0) 

    x1_.append(x1) 

    x2_.append(x2) 

    x3_.append(x3) 

    x4_.append(x4) 

    x5_.append(x5) 

    x6_.append(x6) 

    x7_.append(x7) 

    x8_.append(x8) 

    x9_.append(x9) 

    print('Interation:', i+1, [x0, x1, x2, x3, x4, x5, x6, x7, x8, x9]) 

    result.append(Objective_([x0, x1, x2, x3, x4, x5, x6, x7, x8, x9])) 

 

# Bayesian Optimization GP-LCB and RF-LCB 

SPACE = [Integer(10, 170, name='x0_'), 

         Integer(1, 24, name='x1_'), 

         Integer(10, 512, name='x2_'), 

         Categorical(['relu', 'sigmoid', 'tanh'], name='x3_'), 

         Real(0.0, 0.8, name='x4_'), 

         Integer(10, 512, name='x5_'), 

         Categorical(['relu', 'sigmoid', 'tanh'], name='x6_'), 

         Real(0.0, 0.8, name='x7_'), 

         Real(0.0001, 0.01, name='x8_'), 

         Integer(32, 512, name='x9_')] 

res = gp_minimize(Objective_, SPACE, 

                  acq_func="LCB", n_calls=200, 

                  kappa= np.random.default_rng().uniform(1.0, 2.0), 

                  n_random_starts= np.random.randint(50, 150), 

                  random_state=3632457) 

res = forest_minimize(Objective_, SPACE, 

                      acq_func="LCB", n_calls=200, 

                      kappa= np.random.default_rng().uniform(1.0, 2.0), 

                      n_random_starts= np.random.randint(50, 150),  

                      base_estimator='RF', random_state=3612458) 

 

# Tree-Structured Parzen Estimator 

def Objective_(trial): 

    # Variables Declaration  

    x0_ = trial.suggest_int('x0_', 10, 170) 

    x1_ = trial.suggest_int('x1_', 1, 24) 

    x2_ = trial.suggest_int('x2_', 10, 512) 

    x3_ = trial.suggest_categorical('x3_', ['relu', 'sigmoid', 'tanh']) 

    x4_ = trial.suggest_uniform('x4_', 0.0, 0.8) 

    x5_ = trial.suggest_int('x5_', 10, 512) 

    x6_ = trial.suggest_categorical('x6_', ['relu', 'sigmoid', 'tanh']) 

    x7_ = trial.suggest_uniform('x7_', 0.0, 0.8) 

    x8_ = trial.suggest_uniform('x8_', 0.0001, 0.01) 

    x9_ = trial.suggest_int('x9_', 32, 512) 

    # Test and Train Split 

    x_train, x_test, y_train, y_test = datasplit_(np.array(Variables), np.array(Trips), x0_, x1_, 0.7018) 

    x_train, x_test, y_train, y_test = np.array(x_train), np.array(x_test), np.array(y_train), np.array(y_test) 

    # Training and Evaliation Split 

    X_training, X_validation, y_training, y_validation = train_test_split(x_train, y_train, test_size=0.25, random_state=128) 

    # Model Construction 
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    model = keras.Sequential() 

    model.add(layers.GRU(units= x2_, input_shape=(np.shape(X_training)[1], np.shape(X_training)[2]), 

                         activation= x3_, kernel_initializer='glorot_uniform',return_sequences=True)) 

    model.add(layers.Dropout(rate = x4_)) 

    model.add(layers.GRU(units= x5_, activation= x6_, 

                           kernel_initializer='glorot_uniform', return_sequences=False)) 

    model.add(layers.Dropout(rate = x7_)) 

    model.add(layers.Dense(units=30, activation='relu')) 

    callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5) 

    model.compile(optimizer=optimizers.Adam(learning_rate= x8_), loss='mse') 

    history = model.fit(X_training, y_training, epochs=100, callbacks=[callback], verbose=0, 

                        validation_data=(X_validation, y_validation), batch_size=x9_) 

    mse_train_ = np.round_(mean_squared_error(np.array(model.predict(X_training))*MaxDemand,  

                                              np.array(y_training)*MaxDemand), decimals=6) 

    mse_eval_ = np.round_(mean_squared_error(np.array(model.predict(X_validation))*MaxDemand,  

                                              np.array(y_validation)*MaxDemand), decimals=6) 

    mse_test_ = np.round_(mean_squared_error(np.array(model.predict(x_test))*MaxDemand,  

                                              np.array(y_test)*MaxDemand), decimals=6) 

    print(mse_train_, mse_eval_, mse_test_, mse_eval_+mse_eval_/mse_train_) 

    return mse_eval_+mse_eval_/mse_train_ 

study = optuna.create_study(direction="minimize", 

                            pruner=optuna.samplers.TPESampler(n_startup_trials=np.random.randint(50, 150), 

                                                              n_ei_candidates=np.random.randint(20, 50), 

                                                              multivariate=True, group=True, seed=3612895)) 

study.optimize(Objective_, n_trials=200) 

 

# Genetic Algorithm  

np.random.seed(1687493) 

varbound = np.array([[10, 170], [1, 24], [10, 512], [0, 2], [0.0, 0.8], 

                     [10, 512], [0, 2], [0.0, 0.8], [0.0001, 0.01], [32, 512]]) 

vartype = np.array([['int'], ['int'], ['int'], ['int'], ['real'], 

                    ['int'], ['int'], ['real'], ['real'], ['int']]) 

population_ = np.random.randint(10, 30) 

mutation_ = np.random.uniform(0.01, 0.5) 

elit_ = np.random.uniform(0.0, 0.1) 

crossover_ = np.random.uniform(0.2, 0.7) 

parents_ = np.random.uniform(0.1, 0.5) 

print('population_ %5.1f.' % population_,'mutation_ %5.4f.' % mutation_,'elit_ %5.4f.' % elit_, 

      'crossover_ %5.4f.' % crossover_,'parents_ %5.4f.' % parents_) 

algorithm_param = {'max_num_iteration': 21,   # Change to make it at least 200 Trials  

                   'population_size': population_ , 

                   'mutation_probability': mutation_, 

                   'elit_ratio': elit_, 

                   'crossover_probability': crossover_, 

                   'parents_portion': parents_, 

                   'crossover_type':'uniform', 

                   'max_iteration_without_improv':None} 

 

model=ga(function=Objective_, 

         dimension=10, variable_type_mixed=vartype, 

         algorithm_parameters=algorithm_param, 

         variable_boundaries=varbound, 

         function_timeout = 30000) 

model.run() 

 

# Optimization of Eggholder Function 

def Eggholder_(x): 

    return -(x[1]+47)*np.sin(np.sqrt(abs(0.5*x[0]+x[1]+47)))-x[0]*np.sin(np.sqrt(abs(x[0]-x[1]-47))) 

 

# Grid Search  

x_ = np.arange(-486.4,512, 51.2) 

y_ = np.arange(-486.4,512, 51.2) 

x_, y_ = np.meshgrid(x_, y_)  

x_, y_ = np.ravel(x_), np.ravel(y_)  

gridspace = np.vstack((x_, y_,)).T 

result = [] 

for i in range(len(gridspace)): 

    result.append(Eggholder_(gridspace[i])) 
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# Random Search  

x_, y_,result  = [], [], [] 

for i in range(400): 

    x1_ = np.random.default_rng().uniform(-512.,512.) 

    y1_ = np.random.default_rng().uniform(-512.,512.) 

    x_.append(x1_) 

    y_.append(y1_) 

    result.append(Eggholder_([x1_ ,y1_])) 

 

# Bayesian Optimization  

SPACE = [Real(-512., 512., name='x_'), Real(-512., 512., name='y_')] 

res = gp_minimize(Eggholder_, SPACE, 

                  acq_func="LCB", n_calls=400, 

                  kappa= np.random.default_rng().uniform(0.0, 2.0), 

                  n_random_starts= np.random.randint(100, 300),  

                  random_state=666) 

res = forest_minimize(Eggholder_, SPACE, 

                  acq_func="LCB", n_calls=400, 

                  kappa= np.random.default_rng().uniform(0.0, 2.0), 

                  n_random_starts= np.random.randint(100, 300),  

                  base_estimator='RF', random_state=10306524) 

 

# Genetic Algorithm  

def Eggholder_(x): 

    return -(x[1]+47)*np.sin(np.sqrt(abs(0.5*x[0]+x[1]+47)))-x[0]*np.sin(np.sqrt(abs(x[0]-x[1]-47))) 

np.random.seed(1030216) 

varbound=np.array([[-512, 512]]*2) 

population_ = np.random.randint(5, 20) 

mutation_ = np.random.uniform(0.01, 0.5) 

elit_ = np.random.uniform(0.0, 0.1) 

crossover_ = np.random.uniform(0.2, 0.7) 

parents_ = np.random.uniform(0.1, 0.5) 

print('population_ %5.1f.' % population_, 

      'mutation_ %5.4f.' % mutation_, 

      'elit_ %5.4f.' % elit_, 

      'crossover_ %5.4f.' % crossover_, 

      'parents_ %5.4f.' % parents_) 

algorithm_param = {'max_num_iteration': 32,   # Change to make it at least 400 Trials  

                   'population_size': population_ , 

                   'mutation_probability': mutation_, 

                   'elit_ratio': elit_, 

                   'crossover_probability': crossover_, 

                   'parents_portion': parents_, 

                   'crossover_type':'uniform', 

                   'max_iteration_without_improv':None} 

model=ga(function=Eggholder_, 

         dimension=2,variable_type='real', 

         algorithm_parameters=algorithm_param, 

         variable_boundaries=varbound) 

model.run() 

 

# SVM for Digit Data Classification  

digits = datasets.load_digits() 

n_samples = len(digits.images) 

data = digits.images.reshape((n_samples, -1)) 

data = data/16.0      # Normalization  

# Split data into 50% train and 50% test subsets 

X_train, X_test, y_train, y_test = train_test_split( 

    data, digits.target, test_size=0.5, shuffle=False, random_state=1024) 

 

def svm_digits(x): 

  clf = svm.SVC(C= x[0], gamma=x[1], decision_function_shape='ovo') 

  clf.fit(X_train, y_train) 

  return -np.round_(metrics.accuracy_score(clf.predict(X_test), y_test)*100, decimals=4) 

 

# Grid Search  

x_ = np.arange(0.001+0.36, 10, 0.71) 

y_ = np.arange(0.001+0.036, 1, 0.071) 

x_, y_ = np.meshgrid(x_, y_) 

x_, y_ = np.ravel(x_), np.ravel(y_)  
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gridspace = np.vstack((x_, y_,)).T 

result = [] 

for i in range(len(gridspace)): 

    result.append(svm_digits(gridspace[i])) 

 

# Random Search  

x_, y_, result  = [], [], [] 

for i in range(200): 

    x1_ = np.random.default_rng().uniform(0.001, 10.) 

    y1_ = np.random.default_rng().uniform(0.001, 1.) 

    x_.append(x1_) 

    y_.append(y1_) 

    result.append(svm_digits([x1_ , y1_])) 

 

# Bayesian Optimization GP-LCB and RF-LCB 

SPACE = [Real(0.001, 10., name='x_'), Real(0.001, 1., name='y_')] 

res = gp_minimize(svm_digits, SPACE, 

                  acq_func="LCB", n_calls=200, 

                  kappa= np.random.default_rng().uniform(0.0, 2.0), 

                  n_random_starts= np.random.randint(50, 150)) 

res = forest_minimize(svm_digits, SPACE, 

                      acq_func="LCB", n_calls=200, 

                      kappa= np.random.default_rng().uniform(0.0, 2.0), 

                      n_random_starts= np.random.randint(50, 150), base_estimator='RF') 

 

# Tree-Structured Parzen Estimator  

def svm_digits(trial): 

    x = trial.suggest_uniform('x', 0.001, 10.) 

    y = trial.suggest_uniform('y', 0.001, 1.) 

    clf = svm.SVC(C= x, gamma=y, decision_function_shape='ovo') 

    clf.fit(X_train, y_train) 

    return np.round_(metrics.accuracy_score(clf.predict(X_test), y_test)*100, decimals=4) 

study = optuna.create_study(direction="maximize", 

                            pruner=optuna.samplers.TPESampler(n_startup_trials=np.random.randint(50, 150), 

                                                              n_ei_candidates=np.random.randint(20, 50), 

                                                              multivariate=True, group=True)) 

study.optimize(svm_digits, n_trials=200) 

 

# Genetic Algorithm 

varbound = np.array([[0.001, 10.], [0.001, 1.]]) 

population_ = np.random.randint(5, 30) 

mutation_ = np.random.uniform(0.01, 0.5) 

elit_ = np.random.uniform(0.0, 0.1) 

crossover_ = np.random.uniform(0.2, 0.7) 

parents_ = np.random.uniform(0.1, 0.5) 

print('population_ %5.1f.' % population_,'mutation_ %5.4f.' % mutation_,'elit_ %5.4f.' % elit_, 

      'crossover_ %5.4f.' % crossover_,'parents_ %5.4f.' % parents_) 

algorithm_param = {'max_num_iteration': 24,   # Change to make it at least 200 Trials  

                   'population_size': population_ , 

                   'mutation_probability': mutation_, 

                   'elit_ratio': elit_, 

                   'crossover_probability': crossover_, 

                   'parents_portion': parents_, 

                   'crossover_type':'uniform', 

                   'max_iteration_without_improv':None} 

model=ga(function=svm_digits, 

         dimension=2,variable_type='real', 

         algorithm_parameters=algorithm_param, 

         variable_boundaries=varbound) 

model.run() 

 

# IDT-E  

def initial_random(param1, param2, Numberinit_):  

    y1_ = np.random.choice(np.ravel(param1), size=Numberinit_)  

    y2_ = np.random.choice(np.ravel(param2), size=Numberinit_)  

    initial_random = np.vstack((y1_, y2_)).T 

    return initial_random 

def decision_tree(var_list, num_initials, num_top_tree, max_iteration): 

    var_names_ = list(var_list.keys()); 

    length_ = [len(list(var_list.items())[0][1]), len(list(var_list.items())[1][1])] 
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    param_initial = initial_random(list(var_list.items())[0][1], list(var_list.items())[1][1], num_initials) 

    param_list = param_initial.copy(); 

    objective_list = []; 

    for i in range(len(param_initial)): 

        objective_list.append(svm_digits(param_initial[i])) 

     

    for j in range(len(param_initial), 1000):  # Total Number of Iteration  

         

        result_ = pd.DataFrame(param_list, columns=var_names_) 

        result_['Output_'] = objective_list 

        result_ = result_.sort_values(by=['Output_'], ascending=True) 

         

        tree_ = tree.DecisionTreeRegressor() 

        tree_ = tree_.fit(np.array(result_[var_names_]), np.array(result_[['Output_']])) 

             

        for k in range(num_top_tree):   # Total Number of Top Tree to explore  

            top_tree_k = result_[k:k+1] 

            update_param = np.zeros((2, len(length_))) 

             

            for l in range(len(length_)):  # Optimize variable (l) One by One 

                vars_l = np.zeros((length_[l], len(length_))) 

                vars_l[:,0] = np.array(top_tree_k)[:,0] 

                vars_l[:,1] = np.array(top_tree_k)[:,1] 

                vars_l[:,l] = list(var_list.items())[l][1] 

                result_var_l = pd.DataFrame(vars_l, columns=var_names_) 

                result_var_l['tree_k'] = np.round_(tree_.predict(np.array(result_var_l)), decimals=5) 

                vars_l_new = result_var_l[result_var_l['tree_k']==float(np.array(top_tree_k)[:,2])] 

                update_param[:,l] = [np.array(vars_l_new)[:,l].min(), np.array(vars_l_new)[:,l].max()] 

            leaf_0 = np.array(update_param)[:,0] 

            leaf_1 = np.array(update_param)[:,1] 

            leaf_0, leaf_1 = np.meshgrid(leaf_0, leaf_1) 

            leaf_0, leaf_1 = np.ravel(leaf_0), np.ravel(leaf_1) 

            update_paramnew = np.vstack((leaf_0, leaf_1)).T 

             

            new_array = [tuple(row) for row in update_paramnew] # Remove redundant row  

            update_paramnew = np.unique(new_array, axis=0) 

             

            repeat_param = []; 

            for m in range(len(update_paramnew)):  # Remove the Repeated Candidate  

                for n in range(len(param_list)): 

                    if np.array_equal(param_list[n], update_paramnew[m]) == True:  

                        repeat_param.append(m) 

            candi_param = np.delete(update_paramnew, repeat_param, 0) 

            if len(candi_param) == 0: break 

            param_list = np.vstack([param_list, candi_param]) 

            for o in range(len(candi_param)): 

                objective_list.append(svm_digits(candi_param[o])) 

            if len(objective_list) > max_iteration : break  

        if len(objective_list) > max_iteration : break 

    return param_list, objective_list 

 

np.random.seed(1036487); 

var_list = {'x_0': np.arange(0.001, 10.001, 0.001), 

            'x_1': np.arange(0.001, 1.001, 0.001)} 

num_initials = np.random.randint(50, 150);  # Number of Initials  

num_top_tree = np.random.randint(2, 6);      # Number of Top Tree to be minimized 

max_iteration = 200; 

X_, Y_ = decision_tree(var_list, num_initials, num_top_tree, max_iteration) 

 

# IDT-R 

def initial_random(param0, param1, Numberinit_):  

    b0_ = np.random.choice(np.ravel(param0), size=Numberinit_) 

    b1_ = np.random.choice(np.ravel(param1), size=Numberinit_) 

    initial_random = np.vstack((b0_, b1_)).T 

    return initial_random 

 

def decision_tree(var_list, num_initials, num_top_tree, random_in_tree, max_iteration): 

    var_names_ = list(var_list.keys()); 

    length_ = [len(list(var_list.items())[0][1]), len(list(var_list.items())[1][1])] 

    param_initial = initial_random(list(var_list.items())[0][1], list(var_list.items())[1][1], num_initials) 
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    param_list = param_initial.copy(); 

    objective_list = []; 

    for i in range(len(param_initial)): 

        objective_list.append(svm_digits(param_initial[i])) 

     

    for j in range(len(param_initial), 1000):  # Total Number of Iteration  

         

        result_ = pd.DataFrame(param_list, columns=var_names_) 

        result_['Output_'] = objective_list 

        result_ = result_.sort_values(by=['Output_'], ascending=True) 

         

        tree_ = tree.DecisionTreeRegressor() 

        tree_ = tree_.fit(np.array(result_[var_names_]), np.array(result_[['Output_']])) 

             

        for k in range(num_top_tree):   # Total Number of Top Tree to explore  

            top_tree_k = result_[k:k+1] 

            update_param = np.zeros((random_in_tree, len(length_))) 

             

            for l in range(len(length_)):  # Optimize variable (l) One by One 

                vars_l = np.zeros((length_[l], len(length_))) 

                vars_l[:,0] = np.array(top_tree_k)[:,0] 

                vars_l[:,1] = np.array(top_tree_k)[:,1] 

                vars_l[:,l] = list(var_list.items())[l][1] 

                result_var_l = pd.DataFrame(vars_l, columns=var_names_) 

                result_var_l['tree_k'] = np.round_(tree_.predict(np.array(result_var_l)), decimals=4) 

                vars_l_new = result_var_l[result_var_l['tree_k']==float(np.array(top_tree_k)[:,2])] 

                update_param[:,l] = np.random.choice(np.ravel(vars_l_new[var_names_[l]]), size=random_in_tree) 

            new_array = [tuple(row) for row in update_param] # Remove redundant row  

            update_param = np.unique(new_array, axis=0) 

            repeat_param = []; 

            for m in range(len(update_param)):  # Remove the Repeated Candidate  

                for n in range(len(param_list)): 

                    if np.array_equal(param_list[n], update_param[m]) == True:  

                        repeat_param.append(m) 

            candi_param = np.delete(update_param, repeat_param, 0) 

            if len(candi_param) == 0: break 

            param_list = np.vstack([param_list, candi_param]) 

            for o in range(len(candi_param)): 

                objective_list.append(svm_digits(candi_param[o])) 

            if len(objective_list) > max_iteration : break  

        if len(objective_list) > max_iteration : break 

    return param_list, objective_list 

 

np.random.seed(7943158); 

var_list = {'x_0': np.arange(0.001, 10.001, 0.001), 

            'x_1': np.arange(0.001, 1.001, 0.001)} 

num_initials = np.random.randint(50, 150);  # Number of Initials  

num_top_tree = np.random.randint(2, 5);    # Number of Top Tree to be minimized 

random_in_tree = np.random.randint(1, 3); # Number of Random Pickup from Optimal Tree 

max_iteration = 200; 

X_, Y_ = decision_tree(var_list, num_initials, num_top_tree, random_in_tree, max_iteration) 

# Rebalancing Optimization 

cost_km = 1;     # Transportation Cost per km 

p_remainFE = 5;  # Penalty cost of each remaining Faulty E-scooter 

p_remainLBE = 3; # Penalty cost of each remaining Low Battery E-scooter 

p_Unmet = 2;     # Penalty cost of Unmet Demand 

p_Excess = 1;  # Penalty cost of Exessive Number of E-Scooter  

v_capacity = 35; # Capacity of Vehicles 

# Sampling Approach 

def sampling_tg(pred_tg, pred_std,first_zeros,num_scen): 

    Trip_Gap = np.zeros((num_scen,first_zeros)) 

    for i in range(len(pred_tg)):       # Generate for 10 Nodes 

        sampling_i = np.random.normal(0, 1, num_scen) 

        sampling_i[sampling_i > 2] = 2     # Set bound of Resampling to be within 2 to -2 

        sampling_i[sampling_i < -2] = -2 

        scenario_tg = pred_tg[i] + pred_std[i]*sampling_i 

        scenario_tg = scenario_tg.round(0).reshape(-1,1) 

        Trip_Gap = np.hstack((Trip_Gap, scenario_tg)) 

    Trip_Gap = np.array(Trip_Gap).astype(int) 

    return Trip_Gap 



157 
 

# Baseline as Daily and Weekly Historical Trip Gaps 

def seasonal_ha(targ_date, all_df, first_zeros, seasonal): 

    all_df_ = all_df.copy() 

    sha_ = [] 

    sha_ = all_df_.drop(all_df_[all_df_.new_date >= targ_date].index) 

    sha_ = np.array(sha_) 

    sha_ = sha_[np.arange(len(sha_)%seasonal,len(sha_),seasonal), 1:] 

    return np.hstack((np.zeros((len(sha_), first_zeros)), sha_)).astype(int) 

 

# Rebalancing Optimziation by ILP 

while ii_i < 30:  

  i_i = to_runs[ii_i]  # List of Random Instance  

  print('#######################') 

  print(' Result of Group', i_i) 

  ### Actual Data ### 

  #Trip_Gap = np.array([list(Actual_trip[i_i])]) 

  ### TripGap Sampling ## 

  np.random.seed(123) 

  Trip_Gap = sampling_tg(predict_tg[i_i], predict_std[i_i], 3, 100) 

  ### Trip Gas as Seasonal HA ## 24:Daily and 168:Weekly 

  #np.random.seed(123) 

  #Trip_Gap = seasonal_ha(my_date[i_i], b_b, 10, 24) 

  n = len(dist_matrix) 

  n_sce = len(Trip_Gap) 

  # Boundary Construction  

  Bound_FE,Bound_PLBE,Bound_DLBE,Bound_UE = [],[],[],[] 

  for k in range(n): 

    Bound_FE.append([0, Faulty_E[k]]) 

    Bound_PLBE.append([0, max(LowBat_E[k] - Num_Dock[k], 0)]) 

    Bound_DLBE.append([0, max(Num_Dock[k] - LowBat_E[k], 0)]) 

    Bound_UE.append([0, max(0, Usable_E[k] - Min_E[k])]) 

  # MILP Model 

  model = pyEnv.ConcreteModel() 

  model.node_ = pyEnv.RangeSet(0, n-1) 

  model.node_1 = pyEnv.RangeSet(1, n-1) 

  model.stoch = pyEnv.RangeSet(0, n_sce-1) 

  # Decision Variables 

  model.x = pyEnv.Var(model.node_, model.node_, within = pyEnv.Binary) 

  model.u = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, n-1)) 

  model.pfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_FE)         # Pickup FE 

  model.vfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity))  # FE on Vehicle 

  model.plbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_PLBE)      # Pickup LBE 

  model.dlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_DLBE)      # DropOff LBE 

  model.rlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_PLBE)      # Remaining LBE 

  model.vlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity)) # LBE on Vehicle 

  model.pue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = Bound_UE)         # Pickup UE 

  model.due = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity))  # DropOff FE 

  model.vue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers, bounds = (0, v_capacity))  # UE on Vehicle 

  model.ud = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers)                # Unmet Demand 

  model.ee = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers)                # Excessive E-scooter 

  # Objective Function 

  def obj_func(model): 

    sum_distance = 0 

    remain_fe = 0 

    remain_lbe = 0 

    unmet_demand = 0 

    excess_ = 0 

    pickup_cost = 0 

    for i in range(n): 

      remain_fe = remain_fe + Faulty_E[i] - model.pfe[i] 

      remain_lbe = remain_lbe + model.rlbe[i] 

      pickup_cost = pickup_cost+ 0.1*(model.pfe[i]+model.plbe[i]+model.pue[i]) 

      for j in range(n): 

        sum_distance = sum_distance + model.x[i,j] * dist_matrix[i,j] 

      for k in range(n_sce): 

        unmet_demand = unmet_demand + model.ud[i,k] 

        excess_ = excess_ + model.ee[i,k] 

    return sum_distance*cost_km +pickup_cost+ remain_fe*p_remainFE + remain_lbe*p_remainLBE + (1/n_sce)*(unmet_demand*p_Unmet 

+ excess_*p_Excess) 

  model.objective = pyEnv.Objective(rule = obj_func, sense = pyEnv.minimize) 
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  # Constraint of Node Leave and Arrive  

  model.constNode = pyEnv.ConstraintList() 

  for i in range(n): 

    model.constNode.add(sum(model.x[j, i] for j in model.node_) == 1) 

    model.constNode.add(sum(model.x[i, j] for j in model.node_) == 1) 

  # Constraints Subtour Elimination 

  model.constSub = pyEnv.ConstraintList() 

  model.constSub.add(model.u[0] == 0) 

  for i in range(1, n): 

    for j in range(1, n): 

        if i != j: 

            model.constSub.add(model.u[i] - model.u[j] + model.x[i,j]*n <= n-1) 

        else : 

            model.constSub.add(model.u[i] - model.u[j]  == 0) 

  # Constraints Loading and Unloading FE 

  model.constFE = pyEnv.ConstraintList() 

  model.constFE.add(model.vfe[0] == 0) 

  for i in range(n): 

    for j in range(1, n): 

        model.constFE.add(model.vfe[j] - model.vfe[i] - model.pfe[j] + 1000000*(1-model.x[i,j]) >= 0) 

  for i in range(n): 

    for j in range(n): 

        model.constFE.add(model.vfe[i] - model.vfe[j] + model.pfe[j] + 1000000*(1-model.x[i,j]) >= 0) 

  # Constraints Loading and Unloading LBE 

  model.constLBE = pyEnv.ConstraintList() 

  model.constLBE.add(model.vlbe[0] == 0) 

  for i in range(n): 

    for j in range(1, n): 

        model.constLBE.add(model.vlbe[j] - model.vlbe[i] - model.plbe[j] + model.dlbe[j] + 1000000*(1-model.x[i,j]) >= 0) 

  for i in range(n): 

    for j in range(n): 

        model.constLBE.add(model.vlbe[i] - model.vlbe[j] + model.plbe[j] - model.dlbe[j] + 1000000*(1-model.x[i,j]) >= 0) 

  # Constraints Loading and Unloading UE 

  model.constUE = pyEnv.ConstraintList() 

  model.constUE.add(model.vue[0] == model.pue[0]) 

  for i in range(n): 

    for j in range(1, n): 

        model.constUE.add(model.vue[j] - model.vue[i] - model.pue[j] + model.due[j] + 1000000*(1-model.x[i,j]) >= 0) 

  for i in range(n): 

    for j in range(n): 

        model.constUE.add(model.vue[i] - model.vue[j] + model.pue[j] - model.due[j] + 1000000*(1-model.x[i,j]) >= 0) 

  # Constraints Remain LBE, Unmet Demand and Excessive  

  model.constUDEE = pyEnv.ConstraintList() 

  model.constUDEE.add(model.rlbe[0] == 0) 

  for k in range(n_sce): 

    model.constUDEE.add(model.ud[0,k] == 0) 

    model.constUDEE.add(model.ee[0,k] == 0) 

  for i in range(1, n): 

    model.constUDEE.add( max(LowBat_E[i] - Num_Dock[i], 0) - model.plbe[i] - model.rlbe[i] == 0) 

    for k in range(n_sce): 

      model.constUDEE.add(Min_E[i]-Usable_E[i]+model.pue[i]-model.due[i]+max(0, Trip_Gap[k,i])-model.ud[i,k] <= 0) 

      model.constUDEE.add(Faulty_E[i]-model.pfe[i]+model.rlbe[i]+Usable_E[i]-model.pue[i]+model.due[i]-Trip_Gap[k,i]-Max_E[i]-

model.ee[i,k] <= 0) 

  # Constraints Vehicle Capacity 

  model.constVall = pyEnv.ConstraintList() 

  for i in range(1, n): 

    model.constVall.add(model.vfe[i] + model.vlbe[i] + model.vue[i] <= v_capacity) 

    # Model Sovler 

  solver = pyEnv.SolverFactory("glpk") # glpk 

  result = solver.solve(model,timelimit= 1200) # timelimit (15 nodes = 1200, 30 nodes = 2400, 60 nodes = 3600)  

  try:  

    print("Objective Value: ", pyEnv.value(model.objective)) 

    print("U-i: ", np.array(list(model.u.get_values().items()))[:,1].astype(int)) 

    print("Routing Result X-ij: ") 

    #print(np.array(list(model.x.get_values().items()), dtype=object)[:,1].reshape(n,n).astype(int)) 

    print("PFE-i: ", np.array(list(model.pfe.get_values().items()))[:,1].astype(int)) 

    print("PLBE-i: ", np.array(list(model.plbe.get_values().items()))[:,1].astype(int)) 

    print("DLBE-i: ", np.array(list(model.dlbe.get_values().items()))[:,1].astype(int)) 

    print("PUE-i: ", np.array(list(model.pue.get_values().items()))[:,1].astype(int)) 

    print("DUE-i: ", np.array(list(model.due.get_values().items()))[:,1].astype(int)) 
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    rout_seq = np.array(list(model.x.get_values().items()), dtype=object)[:,1].reshape(n,n).astype(int) 

    x_seq = [] 

    for seq_ in range(len(rout_seq)): 

      x_seq.append([seq_,np.argmax(rout_seq[seq_])]) 

    print(x_seq) 

  except ValueError: 

    print("No result Found! Please try again ...") 

  ii_i += 1 

 

# Rebalancing Optimziation by ACO-ILP 

def route_length(x): 

    r_r = np.append(np.array(x), [0]) 

    sum_distance_ = 0 

    for i in range(1, len(r_r)): 

        sum_distance_ = sum_distance_+  dist_matrix[r_r[i-1],r_r[i]] 

    return np.round_(sum_distance_*cost_km, decimals=3) 

def get_penalty_cost(x): 

  r = np.array(x).astype(int) 

  n = len(dist_matrix) 

  n_sce = len(Trip_Gap) 

  # Model Constrution  

  model = pyEnv.ConcreteModel() 

  model.node_ = pyEnv.RangeSet(0, n-1) 

  model.stoch = pyEnv.RangeSet(0, n_sce-1) 

  # Decision Variables 

  model.pfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers)  # Pickup FE 

  model.vfe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers)  # FE on Vehicle 

  model.plbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # Pickup LBE 

  model.dlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # DropOff LBE 

  model.rlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # Remaining LBE 

  model.vlbe = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers) # LBE on Vehicle 

  model.pue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers)  # Pickup UE 

  model.due = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers)  # DropOff FE 

  model.vue = pyEnv.Var(model.node_, within = pyEnv.NonNegativeIntegers)  # UE on Vehicle 

  model.ud = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers)   # Unmet Demand 

  model.ee = pyEnv.Var(model.node_, model.stoch, within = pyEnv.NonNegativeIntegers)   # Excessive E-scooter 

  # Objective Function 

  def obj_func(model): 

    remain_fe = 0 

    remain_lbe = 0 

    unmet_demand = 0 

    excess_ = 0 

    pickup_cost = 0 

    for i in range(n): 

      remain_fe = remain_fe + Faulty_E[r[i]] - model.pfe[r[i]] 

      remain_lbe = remain_lbe + model.rlbe[r[i]] 

      pickup_cost = pickup_cost+ 0.1*(model.pfe[r[i]]+model.plbe[r[i]]+model.pue[r[i]]) 

      for k in range(n_sce): 

        unmet_demand = unmet_demand + model.ud[r[i],k] 

        excess_ = excess_ + model.ee[r[i],k] 

    return pickup_cost+ remain_fe*p_remainFE + remain_lbe*p_remainLBE + (1/n_sce)*(unmet_demand*p_Unmet + excess_*p_Excess) 

  model.objective = pyEnv.Objective(rule = obj_func, sense = pyEnv.minimize) 

  # Constraints Loading and Unloading FE 

  model.const = pyEnv.ConstraintList() 

  model.const.add(model.pfe[0] == 0) 

  model.const.add(model.vfe[0] == 0) 

  model.const.add(model.plbe[0] == 0) 

  model.const.add(model.dlbe[0] == 0) 

  model.const.add(model.vlbe[0] == 0) 

  model.const.add(model.rlbe[0] == 0) 

  model.const.add(model.due[0] == 0) 

  model.const.add(model.pue[0] <= Usable_E[0]) 

  model.const.add(model.pue[0] == model.vue[0]) 

  model.const.add(model.vue[0] <= v_capacity) 

  for i in range(n_sce):  

    model.const.add(model.ud[0, i] == 0) 

    model.const.add(model.ee[0, i] == 0) 

  for k in range(1,n): 

    model.const.add(model.vfe[r[k]] == model.pfe[r[k]] + model.vfe[r[k-1]]) 

    model.const.add(model.pfe[r[k]] <= Faulty_E[r[k]]) 
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    model.const.add(model.vlbe[r[k]] == model.plbe[r[k]] - model.dlbe[r[k]] + model.vlbe[r[k-1]]) 

    model.const.add(max(LowBat_E[r[k]] - Num_Dock[r[k]], 0) >= model.plbe[r[k]]) 

    #model.const.add( model.dlbe[r[k]] <= model.vlbe[r[k-1]]) 

    model.const.add( model.dlbe[r[k]] <=  max(Num_Dock[r[k]] - LowBat_E[r[k]], 0)) 

 

    model.const.add(model.rlbe[r[k]] == max(LowBat_E[r[k]] - Num_Dock[r[k]], 0) - model.plbe[r[k]]) 

    model.const.add(model.vue[r[k]] == model.vue[r[k-1]] + model.pue[r[k]] - model.due[r[k]]) 

    model.const.add(model.pue[r[k]] <=  max(Usable_E[r[k]] - Min_E[r[k]], 0)) 

    #model.const.add(model.due[r[k]] <= model.vue[r[k-1]]) 

    model.const.add(model.vfe[r[k]] + model.vlbe[r[k]] + model.vue[r[k]]<= v_capacity) 

 

    for j in range(n_sce):  

      model.const.add(Min_E[r[k]]-Usable_E[r[k]]+model.pue[r[k]]-model.due[r[k]]+max(0, Trip_Gap[j, r[k]])-model.ud[r[k], j] <= 0) 

      model.const.add(Usable_E[r[k]]-model.pue[r[k]]+model.due[r[k]]-Trip_Gap[j, r[k]]-Max_E[r[k]]-model.ee[r[k], j] <= 0) 

 

  solver = pyEnv.SolverFactory("glpk") 

  solver.solve(model, timelimit= 300)  # timelimit (15 nodes = 1200, 30 nodes = 2400, 60 nodes = 3600) tee = True, 

  #print("PFE-i: ", np.array(list(model.pfe.get_values().items()))[:,1].astype(int)) 

  #print("PLBE-i: ", np.array(list(model.plbe.get_values().items()))[:,1].astype(int)) 

  #print("DLBE-i: ", np.array(list(model.dlbe.get_values().items()))[:,1].astype(int)) 

  #print("PUE-i: ", np.array(list(model.pue.get_values().items()))[:,1].astype(int)) 

  #print("DUE-i: ", np.array(list(model.due.get_values().items()))[:,1].astype(int)) 

  #print(np.array(list(model.ud.get_values().items()), dtype=object)[:,1].reshape(n,n_sce).astype(int)) 

  #service_level = np.array(list(model.ud.get_values().items()), dtype=object)[:,1].reshape(-1,1).astype(int) 

  #print(len(service_level), len(service_level[service_level>0])) 

  return np.round_(pyEnv.value(model.objective), decimals=5) 

# Combine Driving Distance Cost and Penalty Cost for ACO 

def Routing_(x): 

    x = np.array(x).astype(int) 

    total_cost = route_length(x) + float(get_penalty_cost(x)) 

    #print(np.round_(total_cost, decimals=3)) 

    return np.round_(total_cost, decimals=3) 

 

for i_i in range(0, 30): 
  np.random.seed(123) 

  print('#######################') 

  print(' Result of Group', i_i) 

  ### Actual Data ### 

  #Trip_Gap = np.array([list(Actual_trip[i_i])]) 

  ### TripGap Sampling ## 
  Trip_Gap = sampling_tg(predict_tg[i_i], predict_std[i_i], 5, 100) 

  ### Trip Gas as Seasonal HA ## 24:Daily and 168:Weekly 
  #Trip_Gap = seasonal_ha(my_date[i_i], b_b, 5, 168) 

  aca = ACA_TSP(Routing_, n_dim=35, size_pop=90, max_iter=20, distance_matrix=dist_matrix) 

  best_x, best_y = aca.run() 
  print(' best_x:', best_x, '\n', 'best_y:', best_y) 

  print(np.min(aca.generation_best_Y)) 
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