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Chapter 1

Introduction

The background and purpose of this thesis and the organization of this thesis are presented in

this chapter.

1.1 Background

Deep learning [4, 5] has experienced remarkable advancements and demonstrated remark-
able achievements in various domains, such as computer vision [f], natural language process-
ing [[], and speech recognition [8]. In recent years, prominent deep learning models, includ-
ing AlexNet [9], ResNet [[{], BERT [IT], Wave2vec [I2], ViT [I3], CLIP [I4], Stable Dif-
fusion [15], and ChatGPT [I6], have been developed and relied upon large-scale datasets for
training. However, working with such large datasets poses significant challenges in terms of
storage, transmission, and preprocessing [I7]. Additionally, training on large-scale datasets re-
quires extensive computational resources, often involving thousands of GPU hours to achieve
good performance [I[8]. To address these challenges, this thesis focuses on investigating data-
efficient learning methods.

Data-efficient learning is a subfield of machine learning that focuses on training models with
limited amounts of data while maintaining high performance [I9]. Traditional machine learn-
ing algorithms often require large datasets to generalize well and make accurate predictions.
However, in many real-world scenarios, collecting and labeling massive amounts of data can be
time-consuming, expensive, or even impractical [20]. Data-efficient learning aims to overcome

these limitations and develop methods that can effectively learn from small or scarce datasets.



One method of data-efficient learning is transfer learning [1], where a pre-trained model on a
large dataset is fine-tuned on a smaller target dataset. By leveraging the knowledge learned from
the larger dataset, the model can quickly adapt to the new task with fewer training examples. This
method has been successfully applied in various domains, including computer vision, natural
language processing, and speech recognition. Another method of data-efficient learning is active
learning [22], which involves selecting informative samples from a large pool of unlabeled data
and actively querying human experts to label those samples. The labeled samples are then used
to train a model, and the process iterates, gradually improving the model’s performance with a
minimal amount of labeled data. Active learning can significantly reduce the labeling effort and
achieve good performance with a small labeled dataset. Furthermore, techniques such as semi-
supervised learning [?3] and weakly supervised learning [?4] also contribute to data-efficient
learning. In semi-supervised learning, models are trained using a combination of labeled and
unlabeled data, where the unlabeled data provides additional information to improve the model’s
generalization. Weakly supervised learning, on the other hand, deals with tasks where only
partial or noisy supervision is available, allowing models to learn from imperfect labels or weak
annotations.

Data-efficient learning is a rapidly evolving field driven by the necessity to address real-world
problems with limited data availability. While existing methods can alleviate some of the chal-
lenges posed by large-scale datasets, they inherently possess limitations when applied to certain
scenarios. For instance, constructing new datasets requires careful consideration of their com-
plexity to effectively train neural networks. Moreover, existing methods may not be suitable for
situations involving extremely limited data or labels. Therefore, there is a need for exploring

stronger data-efficient learning methods to address these limitations.

1.2 Proposition in this Thesis

The purpose of this thesis is to construct new datasets more efficiently and to enhance the
learning capabilities of models when facing extremely limited data or labels. To achieve this
goal, the thesis proposes a novel data-efficient learning method consisting of the following three
stages. The first stage involves assessing the complexity of datasets by analyzing their charac-

teristics and properties. Understanding the complexities of a dataset allows researchers to make



well-informed choices regarding model architecture, training strategies, and data augmentation
techniques that are appropriate for that particular dataset. This stage plays a crucial role in op-
timizing the learning process and achieving superior performance with limited data. Building
upon the dataset complexity assessment, the second stage introduces the concept of dataset dis-
tillation. Dataset distillation leverages knowledge from a larger, labeled dataset to distill it into
a smaller, more compact dataset. The distilled dataset retains the most relevant information that
is essential for the target task. This stage can enhance data processing efficiency and avoid over-
fitting or noise from the large dataset. Lastly, the third stage explores self-supervised learning
as a data-efficient learning method. Self-supervised learning involves training models to solve
pretext tasks using unlabeled data, with labels generated automatically or through heuristics.
The learned representations from these pretext tasks can then be transferred to the target task,
effectively utilizing the large amounts of unlabeled data to improve performance. This stage can
reduce reliance on labeled data while still achieving competitive results. With the incorporation
of the three stages, the newly proposed data-efficient learning method can effectively address the
existing challenges.

The contributions of this thesis can be summarized as follows:

o The thesis introduces a new data-efficient learning method that encompasses three stages:
dataset complexity assessment, dataset distillation, and self-supervised learning. The pro-
posed method aims to construct new datasets with improved efficiency and enhance model

learning capabilities, particularly when dealing with severely limited data or labels.

e The effectiveness of the proposed method is evaluated on both natural image datasets and
medical image datasets. The proposed method extends the existing knowledge and tech-
niques in data-efficient learning and provides valuable insights for researchers and practi-

tioners working in this area.

1.3 Organization of this Thesis

The remainder of this thesis is organized as follows.
In Chapter 2, related works of data-efficient learning are presented and problems to be solved

are clarified.
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In Chapter 3, a dataset complexity assessment method based on spectral clustering is presented.
The training process of deep convolutional neural networks is iterative and time-consuming be-
cause of hyperparameter uncertainty and the domain shift introduced by different datasets, espe-
cially for complex medical datasets. Hence, it is meaningful to predict classification performance
by assessing the complexity of datasets effectively before training DCNN models. The proposed
method can evaluate the dataset’s complexity effectively before training DCNN models.

In Chapter 4, a method of generation of compressed gastric images based on soft-label dataset
distillation for efficient anonymous medical data sharing is presented. Sharing of medical data is
needed to enable the cross-agency flow of healthcare information and the construction of high-
accuracy computer-aided diagnosis systems. The proposed method not only compresses a whole
medical dataset into only one compressed soft-label patch image but also reduces the size of
a trained model to a few hundredths of its original size, which can improve the efficiency of
medical data sharing. The compressed images obtained after distillation have been completely
anonymized and therefore do not contain private information of the patients, which can improve
the security of medical data sharing. Furthermore, the proposed method can achieve high classi-
fication performance with only a small number of compressed images.

In Chapter 5, a self-supervised transfer learning method for COVID-19 detection from chest X-
ray images is presented. Under the global pandemic Coronavirus Disease 2019, computer-aided
diagnosis for COVID-19 fast detection and patient triage is becoming critical. The proposed
method can learn discriminative representations from chest X-ray images by combining transfer
learning and self-supervised learning. The method can achieve promising results on the largest
open COVID-19 chest X-ray dataset.

In Chapter 6, for boosting COVID-19 detection accuracy, a novel method based on self-
supervised learning and self-knowledge distillation is presented. This method is an extended
version of the method proposed in Chapter 6. The proposed method can use self-knowledge of
images based on similarities of their visual features. The proposed method can achieve promis-
ing results on the largest open COVID-19 chest X-ray dataset and another unbalanced COVID-19
chest X-ray dataset.

In Chapter 7, a self-supervised learning method for learning discriminative representations

from gastric X-ray images is presented. Manually annotating gastric X-ray images for gastri-
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tis detection is time-consuming and expensive because it typically requires expert knowledge.
The proposed method is based on a teacher—student architecture and cross-view and cross-model
losses, which can perform explicit self-supervised learning and learn discriminative representa-
tions from gastric X-ray images. The proposed method can achieve a high patient-level gastritis
detection performance with only a few annotations.

In Chapter 8, the conclusions of this thesis and the future directions are discussed.

The methods proposed in each chapter of the thesis correspond to the authors’ research achieve-
ments summarized at the end. In Chapter 3, the proposed method, [A-1], is an extension of the
method presented in [B-2]. Chapter 4 introduces the method proposed in [A-2], which builds
upon the method described in [B-1]. The method presented in Chapter 5, [A-3], is an extension
of the method discussed in [B-5]. In Chapter 6, the authors propose the method [A-4], which
extends the method outlined in [B-6]. Lastly, Chapter 7 introduces the method [A-5], which is

an extension of the method described in [B-7].
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Chapter 2

Related Works

2.1 Introduction

This chapter shows the research related to this thesis. Subsection P22 describes the related
works on dataset complexity assessment, subsection 3 shows the previous works on coreset
selection and dataset distillation, and subsection Z4 shows the previous works on dataset distilla-
tion. Next, subsection 73 clarifies the problems to be solved in this thesis. Finally, subsection I’

concludes this chapter.

2.2 Dataset Complexity Assessment Methods

Reference [23]
This study introduces a novel approach to assess dataset complexity by proposing twelve
descriptors: F1, F2, F3, N1, N2, N3, N4, L1, L2, L3, T1, and T2. These descriptors serve
different purposes in evaluating the complexity of a dataset. The first three descriptors,
F1, F2, and F3, focus on feature-based methods. F1 represents the maximum Fisher’s dis-
criminant ratio, quantifying the discriminative power of features in separating classes. F2
measures the interclass overlap of feature distributions, providing insights into the sepa-
rability of classes. F3 identifies the most efficient feature in separating classes by finding
the maximum value. The descriptors N1, N2, N3, and N4 are neighborhood methods that
examine the presence and density of classes within local neighborhoods. These descrip-
tors offer information about the arrangement and distribution of classes, contributing to the

overall complexity assessment. On the other hand, L1, L2, and L3 are linear methods that
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evaluate the potential linear separability of classes. These descriptors quantify whether
classes can be separated effectively through linear decision boundaries. Lastly, T1 and T2
represent topological methods. T1 measures the total number of hyperspheres that can be
fitted into the feature space of a class, providing insights into the topological complexity.
T2, on the other hand, divides the number of examples in the dataset by their dimension,

offering an indicator of the sparsity and dimensionality of the dataset.

Reference [26]
This paper introduces a novel distance measure for images, which can also be seen as a
complexity assessment method, termed IMage Euclidean Distance (IMED), which takes
into consideration the spatial relationships of pixels. Unlike the traditional Euclidean dis-
tance, IMED exhibits robustness to small perturbations in images. The proposed IMED
distance is further applied to image recognition tasks. To evaluate the effectiveness of the
IMED distance measure, experiments are conducted using the Face Recognition Technol-
ogy database and two state-of-the-art face identification algorithms. The results demon-
strate consistent performance improvements when the algorithms are embedded with the

new metric compared to their original versions.

Reference [27]
This research draws inspiration from the analysis of ill-posed regression problems by Elden
and the interpretation of linear discriminant analysis as a mean square error classifier. By
employing Singular Value Decomposition analysis, this study introduces a discriminatory
power spectrum as a means of assessing data complexity in undersampled classification
problems. The discriminatory power spectrum quantifies the concentration of discrimi-
natory power within the dataset. Through experimentation with five real-life biomedical
datasets of increasing difficulty, the research demonstrates the relationship between data

complexity and the performance of regularized linear classifiers.

Reference [28]
The complexity measures implemented in this study are derived from the descriptions
provided by [25]. While the initial definitions of these measures have been revised and

updated, some modifications have been made to adapt them to the specific context of this
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research. Originally, these measures were designed for two-class datasets and primarily
applied to problems with continuous attributes. Nominal or categorical attributes were
numerically encoded and treated as continuous, as most complexity measures rely on dis-
tance functions between attributes. This study has extended the majority of these measures
to handle multi-class datasets. This extension allows for a broader application of the com-
plexity measures to datasets with multiple classes. Additionally, this study implemented

the most relevant distance functions for both continuous and nominal attributes.

Reference [29]
This paper focuses on investigating the influence of noise on the complexity of classifica-
tion problems. The study aims to analyze the sensitivity of various complexity indices in
the presence of different levels of label noise. Geometric, statistical, and structural mea-
sures derived from the data are employed to characterize the complexity of a classification
dataset. By examining the behavior of these measures when noise is introduced into the
dataset, the researchers gain insights into the impact of noise on data complexity. The
experimental results demonstrate that certain complexity measures exhibit higher sensi-
tivity to the addition of noise compared to others. These findings highlight the potential
use of these sensitive measures in developing preprocessing techniques for noise identi-
fication and designing novel algorithms that are tolerant to label noise. Additionally, the
study presents preliminary results on a new noise identification filter that leverages two

complexity measures that demonstrated higher sensitivity to the presence of label noise.

Reference [3]
The proposed methodology in this study focuses on characterizing the overlap in feature
distribution among different classes in an image dataset. It specifically calculates the com-
plexity of the dataset by analyzing the eigenvalues of a Laplacian matrix, which is derived
from the similarity matrix representing the relationships between the classes. The size of
the Laplacian spectrum is utilized as a measure of dataset complexity, where a larger spec-
trum indicates a higher degree of overlap between classes. The method achieved SOTA

results in several datasets.

15



2.3 Coreset Selection and Dataset Distillation Methods

Reference [3(1]
In this paper, efficient algorithms for approximating the k-means and k-medians problems
in Euclidean metrics have been proposed to solve the coreset problem. To achieve a high-
quality approximation, it is crucial to compute a coreset that is as small as possible while
still capturing the essential characteristics of the input. In low-dimensional scenarios, core-
sets enable the development of approximation algorithms with a running time that is linear

or nearly linear, with an additional term depending only on the size of the coreset.

Reference [31]
This paper introduces a novel method to significantly reduce the size of a large set of data
points in a high-dimensional Euclidean space Rd to a small set of weighted points while
preserving the accuracy of various data analysis tasks performed on the reduced set. This
reduced set, commonly known as a coreset, provides approximate solutions for the original
set in tasks such as computing principal components or performing k-means clustering.
The proposed method is based on projecting the points onto a low-dimensional subspace
and reducing the cardinality of the projected points using established techniques. This
approach can be applied to various data analysis techniques, including k-means clustering,

principal component analysis, and subspace clustering.

Reference [32]
This paper introduces a novel training strategy called iCaRL to tackle the challenge of
catastrophic forgetting. Unlike previous approaches that were limited to fixed data repre-
sentations and incompatible with deep learning architectures, iCaRL enables class-incremental
learning. It achieves this by allowing the presence of training data for only a small number
of classes at any given time, while also providing the flexibility to progressively incorpo-

rate new classes into the learning process.

Reference [33]
To tackle the catastrophic forgetting issue, this paper proposes an incremental learning ap-
proach for deep neural networks. The proposed method leverages new data while utilizing

only a small exemplar set consisting of samples from the old classes. The method ac-
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complishes this by employing a loss function composed of two components: a distillation
measure to retain the knowledge acquired from the old classes, and a cross-entropy loss to
learn the new classes. Importantly, this approach enables end-to-end incremental training,

meaning the data representation and classifier are learned jointly.

Reference [34]
This paper proposed a framework called generalization-based data subset selection (Glis-
ter) for efficient and robust learning. Glister addresses the challenge of efficient and robust
training by formulating it as a mixed discrete-continuous bi-level optimization problem.
The objective is to select a subset of the training data that maximizes the log likelihood
on a held-out validation set. Glister introduces an iterative online algorithm. This algo-
rithm performs data selection iteratively while updating the model parameters, making it

applicable to any loss-based learning algorithm.

Reference [35]
This paper first introduced the concept of dataset distillation and presents an algorithm
that employs backpropagation through optimization steps to accomplish dataset distilla-
tion. Dataset distillation involves the synthesis of a compact dataset that enables models
trained on it to achieve high performance on a larger original dataset. The goal of a dataset
distillation algorithm is to take a large real dataset as input and generate a small synthetic
distilled dataset. The effectiveness of the distilled dataset is evaluated by testing models
trained on it using a separate real dataset. A high-quality distilled dataset has diverse ap-

plications, such as continual learning, privacy preservation, and neural architecture search.

2.4 Self-supervised Learning Methods

Reference [36]
This paper explores the problem of image representation learning in a self-supervised man-
ner, without the need for human annotation. The approach utilizes the concept of self-
supervision by training a convolutional neural network (CNN) to solve Jigsaw puzzles as
a pretext task. This pretext task does not require manual labeling, making it an effective

approach for learning representations. The trained CNN can then be repurposed for object
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classification and detection tasks. To ensure compatibility across tasks, the paper intro-
duces a context-free network (CFN), which is a siamese CNN. The CFN takes image tiles
as input and employs a mechanism that limits the receptive field or context of its early
processing units to one tile at a time. Remarkably, the CFN achieves comparable semantic
learning capabilities to AlexNet while utilizing fewer parameters. By training the CFN
on Jigsaw puzzles, the network learns a feature mapping of object parts and their spatial

arrangement.

Reference [37]
This paper introduces a novel approach to learning image features using CNN trained to
identify the 2D rotation applied to input images. Despite its simplicity, this task proves
to be highly effective in guiding semantic feature learning, as evidenced by comprehen-
sive qualitative and quantitative analyses. The proposed method is thoroughly evaluated
on diverse unsupervised feature learning benchmarks, consistently outperforming existing

techniques and achieving state-of-the-art results.

Reference [38]
The aim of self-supervised learning from images is to create meaningful image represen-
tations without relying on semantic annotations. While many existing pretext tasks in
self-supervised learning produce representations that are covariant with image transfor-
mations, This paper thinks that semantic representations should be invariant under such
transformations. To tackle this challenge, this paper introduces Pretext-Invariant Repre-
sentation Learning (PIRL), a method that learns invariant representations through pretext
tasks. Specifically, when applying PIRL to a popular pretext task involving solving jig-
saw puzzles, experimental results demonstrate a significant improvement in the semantic

quality of the learned image representations through PIRL.

Reference [39]
This paper introduces SimCLR, a straightforward framework for contrastive learning of
visual representations. Unlike existing methods, SImCLR avoids the need for specialized
architectures or a memory bank. To gain insights into the effective learning of representa-

tions through contrastive prediction tasks. The findings highlight the critical role of data
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augmentation composition, the benefits of introducing a learnable nonlinear transformation
between the representation and contrastive loss, and the advantages of larger batch sizes
and more training steps in contrastive learning compared to supervised learning. By lever-
aging these insights, SimCLR achieves significant improvements over previous methods

for self-supervised and semi-supervised learning on ImageNet.

Reference [41]
This paper introduces Momentum Contrast (MoCo) as an approach to unsupervised visual
representation learning. Viewing contrastive learning as a form of dictionary look-up,
MoCo constructs a dynamic dictionary using a queue and a moving-averaged encoder. This
allows the creation of a large and consistent dictionary on-the-fly, which greatly facilitates
contrastive unsupervised learning. MoCo achieves competitive results on the widely-used
linear protocol for ImageNet classification. Moreover, the learned representations in MoCo

exhibit strong transferability to downstream tasks.

Reference [41]
This paper presents Bootstrap Your Own Latent (BYOL), a novel approach to self-supervised
image representation learning. BYOL utilizes two neural networks: the online network and
the target network, which interact and learn from each other. Given an augmented view
of an image, the online network is trained to predict the target network representation of
the same image under a different augmented view. Concurrently, BYOL updates the target
network using a slow-moving average of the online network. Notably, BYOL achieves a
new state-of-the-art performance without relying on negative pairs, which are commonly

used in existing methods.

2.5 Problems to Be Solved in this Thesis

Based on the related research outlined, the problems to be solved in this thesis will be clarified.
The purpose of this study is to enhance the learning capabilities of models with limited data and
improve their performance. To achieve this goal, this thesis proposed corresponding methods in
dataset complexity assessment, dataset distillation, and self-supervised learning. The effective-

ness of these proposed methods is evaluated in the medical domain, where data availability is
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Figure 2.1: Research map of related researches.

often limited due to privacy concerns and the scarcity of expert annotations. By applying these
data-efficient learning methods to medical datasets, the thesis aims to demonstrate their efficacy
in improving the performance of models in real-world applications. Figure 21 shows a research

map of related research that summarizes the above.

2.6 Conclusion

This chapter explained the research related to this thesis. Furthermore, the problems to be

solved in this thesis are clarified.
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Chapter 3

Dataset Complexity Assessment Based

on Spectral Clustering

3.1 Introduction

Dataset complexity assessment aims to predict the performance of classification models on a
given dataset by calculating its complexity. This assessment not only helps in selecting appro-
priate classifiers but also aids in dataset reduction. Training deep convolutional neural networks
(DCNNSs) involves an iterative and time-consuming process due to hyperparameter uncertainty
and domain shift caused by different datasets. Therefore, it is crucial to effectively assess dataset
complexity before training DCNN models to predict classification performance accurately. In
this chapter, we propose a novel method called cumulative maximum scaled Area Under Lapla-
cian Spectrum (cmsAULS). This method demonstrates state-of-the-art performance in assessing
dataset complexity across six different datasets. By employing cmsAULS, we can achieve reli-
able predictions of classification performance, thus enabling efficient model training and selec-

tion.

3.2 Method

In subsection BXl, we provide a comprehensive explanation of the dimension reduction phase.
This step aims to reduce the dimensionality of the dataset while preserving its essential charac-
teristics and minimizing information loss. Moving forward, subsection B2 illustrates the pro-

cess of constructing a similarity matrix that captures the relationships between classes within the
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dataset. This matrix serves as the basis for evaluating the complexity of the dataset. Furthermore,
in subsection B23, we delve into the relationship between spectral clustering and dataset com-
plexity. Spectral clustering is utilized to identify underlying structures within the dataset, con-
tributing to the assessment of its complexity. Finally, subsection B2 outlines the methodology
for calculating the dataset complexity. This step involves incorporating the dimension reduction
results, similarity matrix, and spectral clustering information to obtain a comprehensive measure

of the dataset’s complexity.

3.2.1 Dimension reduction

To handle high-dimensional image data, it is necessary to transform them into a lower-dimensional
space while preserving their inherent characteristics. Let us consider an input data point x, and
its embedding is defined as ¥(x) € RY, where d represents the dimension of the downscaled
feature space. The function ¥ can encompass various dimension reduction methods, such as au-
toencoder [22], t-SNE [&3], or PCA [44]. These methods enable the transformation of the input

data x into a lower-dimensional representation.

3.2.2 Similarity matrix construction

The degree of overlap between classes serves as an indicator of the complexity of an im-
age dataset for classification tasks, as highlighted in prior work [B]. Accordingly, the proposed
method determines the dataset complexity by assessing the overlap between classes. Although
the dataset may contain multiple classes (n), our approach focuses on analyzing the overlap be-
tween any two classes. By considering a pair of classes ‘A and 8B, the goal is to compute the
overlap across the entire dataset. Drawing from the integral measure of the Gaussian mixture
model [45], the overlap between classes A and B refers to the collective region in the image
feature space where the conditional probability P(¥(x;) | B) exceeds P(y(x;) | A) for any y(x;)

belonging to class A. Based on this understanding, we can define the class overlap as follows:

fR [ min(Ps(x) | A), PGp(x) | B)) d(x), (3.1

where distributions P(y(x) | A) and P(¥(x) | B) represent the probability distributions of the

image feature y/(x) belonging to classes A and B, respectively. Directly calculating the integral
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in Eq. (1) can be highly complex and computationally intensive. However, leveraging the strong
correlation between class overlap and the similarity of data distributions, we can employ the

probability product kernel [46] as a surrogate for Eq. (1). The surrogate expression is as follows:

[, o1y P 187 auo, (32)

When the parameter p = 1, the inner product between the two distributions corresponds to the ex-
pectation of one distribution under the other. In other words, it represents either E p(y .z [P(¥/(x) |
B)] or Epyxs) [P(Y(x) | A)]. However, directly calculating the expectation becomes inefficient
when dealing with datasets containing a large number of images for classes A and B. To ad-
dress this challenge, we employ the Monte Carlo method [£7] to approximate the expectation
calculation. This method allows us to estimate the expectation by sampling from the respective

distributions. The approximation process is as follows:

M
1
Epwoim PO | B ~ — " pi(xn) | B). (3.3)
M m=1
In the proposed method, we select M samples y¥(x,,) (m = 1,2,---, M) randomly from class

A, and p(Y(x,) | B) represents the probability of ¥(x,,) belonging to class 8. By calculating
the expectation between all classes, we construct the similarity matrix X € R™", where n is the
number of classes in the dataset. Furthermore, we utilize a k-nearest estimator to approximate

p(W(xy,) | B) as follows:

K
PWxm) | B) = 7. 34

where the parameter K represents the number of neighbors of /(x,,) within class B. Furthermore,
we define E as the number of samples randomly selected from class 8B, and V represents the

volume of the hypercube that contains the k closest neighbors around y(x,,) within class 8.

3.2.3 Spectral clustering

In this section, we explore the relationship between spectral clustering and dataset complex-
ity. We utilize the calculated similarity matrix X, which contains comprehensive information

about the complexity of the entire dataset. To extract meaningful insights from X, we employ

24



spectral clustering theory [A8]. We consider an undirected similarity graph G, comprising nodes
and edges. The weight (w;; > 0) of an edge connecting nodes i and j represents their proximity
or similarity. These edge weights are stored in an n X n adjacency matrix W, where n denotes
the total number of nodes. The objective of spectral clustering is to partition G into a collection
of subgraphs {G1,--- ,G;, -+ ,Gj,- -+ ,G,} such that the weights of edges between different sub-
graphs are minimized. Mathematically, we aim to find a partition that satisfies G; N G; = @ for
alli # j,and Gy U ---,U,G, = G. To achieve this optimal partition, it is crucial to minimize
the cost of the cut between subgraphs, denoted as Cut(Gy,---,G,) = X w;; for i and j, which
means the cost is calculated as the sum of weights w;; for all edges connecting nodes in different
subgraphs.

Spectral clustering offers a solution to the partition problem by leveraging the Laplacian spec-
trum. To begin, we construct the Laplacian matrix L using the adjacency matrix W and the

degree matrix D:

L=D-W, (3.5)
n
j=1

The Laplacian matrix L possesses a spectrum comprising n eigenvalues Ay, A1, - -+, 4,—1, where

Ao = 0 and 4,41 > A;. The associated eigenvectors, corresponding to these eigenvalues, can be
viewed as indicator vectors that aid in partitioning the graph. Moreover, the magnitude of the
eigenvalues is indicative of the cost associated with the corresponding cut [49]. Consequently,
the eigenvectors associated with the smallest eigenvalues are those linked to partitions with the
minimum cost.

By mapping each dataset class index to a node in the spectral clustering framework, we can
effectively address the problem of dataset complexity assessment. The adjacency matrix W and
Laplacian matrix L are both square matrices of size n X n, where n represents the total number of
classes in the dataset. The weight w;; in the matrix W signifies the similarity between different
classes. Therefore, a complex dataset characterized by significant overlap between classes will
yield a Laplacian spectrum with larger eigenvalues. The magnitude of the eigenvalues in the

Laplacian spectrum reflects the similarity between classes and can serve as a measure of dataset
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complexity.

3.2.4 Dataset complexity calculation

To ensure the symmetry of the similarity matrix X derived from the Monte Carlo method, we

transform it into a symmetric similarity matrix W € R using the Bray Curtis distance [50]:

I X = Xl

W,=1-—£ %
ZZ:T Xig + Xjql

3.7

where X; and X; are the columns of the similarity matrix X. The value W;; represents the
similarity between class i and class j. Using the symmetric adjacency matrix W and the degree
matrix D, we then construct the Laplacian matrix L. The Laplacian matrix’s spectrum consists
of n eigenvalues Ag, Ay, -+, A,—1, where g = 0 and A;;; > A;. Considering the influence of
both the Area Under Laplacian Spectrum (AULS) and the gradient between adjacent eigenvalues
on the assessment performance, we propose a simple yet effective method called cmsAULS for
evaluating dataset complexity. It is defined as follows:

n-2
cmsAULS = Z cummax(AAQ);, 3.8)
i=0

Dt = A+ 4 A =4
- y _ , 39
i n—i 2 2(n —1) G2

where the function cummax represents the cumulative maximum value of a vector. A smaller
value of cmsAULS indicates a smaller overlap between classes in the dataset, while a larger value
indicates a higher degree of overlap. Importantly, the computational complexity of cmsAULS is
solely dependent on the calculation of the n X n size matrix and can be expressed as an asymptotic
time complexity of O(M - d*> - n*), where M is the number of selected samples and d is the
downscaled dimension.

The concept illustration for cmsAULS is depicted in Figure B2. In the extreme case shown
in Figure B7-(a), where two datasets have the same AULS, the evaluation of dataset complex-
ity should rely on the gradient of adjacent eigenvalues. On the other hand, when two datasets
exhibit an equal gradient between specific adjacent eigenvalues, as illustrated in Figure B2-(b),

the AULS becomes a more suitable measure for assessing dataset complexity. By considering
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Figure 3.2: Concept of the proposed method.

both the gradient between adjacent eigenvalues and the AULS, the cmsAULS achieves improved

assessment performance .

3.3 Experiments

In this section, we conducted several experiments to evaluate the effectiveness of cmsAULS. In
subsection B3], we provide an overview of the datasets used in our experiments. Subsequently,
in subsection B3, we compare cmsAULS with various benchmark and state-of-the-art methods
to assess its performance. Furthermore, in subsection B33, we investigate the combination of
pretrained DCNN feature extractors with cmsAULS to achieve a higher Pearson correlation.
Next, in subsection B34, we visualize the interclass distances of different datasets to verify
the effectiveness of the obtained similarity matrix. Finally, in subsection B39, we analyze the

influence of different reduced dimensions on the performance of cmsAULS.

3.3.1 Datasets

To evaluate the performance of cmsAULS, we utilized six types of 10-class image classifi-
cation datasets with varying levels of complexity, similar to those used in [B]. These datasets
include the well-known mnist [51]], svhn [82], and cifar10 [63]. NotMNIST [R4] is a dataset
similar to mnist but consists of alphabets extracted from publicly available fonts. Additionally,
stl10 [55] is a cifar10-inspired dataset where each class has fewer labeled training examples com-

pared to cifarl0, and the images are larger in size (96 X 96). Finally, compcars [56] is a dataset
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comprising 163 car makes with 1,716 car models. For our experiments, we selected the 10 most

frequent car makes and resized the images to 128 x 128, resulting in 500 samples per class.

3.3.2 Comparison with benchmark and the state-of-the-art methods

In this section, we evaluate the performance of cmsAULS by comparing it with several bench-
marks and state-of-the-art methods. To validate our approach in the dimension reduction phase,
we employ different techniques such as CNN autoencoder, t-SNE, and their combination. We
set the dimensions of the downscaled image feature to 128 and 3 using CNN autoencoder and
t-SNE, respectively. In the matrix construction phase, we carefully select the hyperparameters
M, E, and k, which are set to 100, 100, and 3, respectively. These choices effectively contribute
to calculating the complexity of the dataset. To assess the validity of cmsAULS, we compare it
with 10 different descriptors [25,28], CSG [3], and the AULS method. Furthermore, we evaluate
the performance of these methods by computing the Pearson correlation and p-value between the
error rates of three DCNN models (AlexNet [9], ResNet50 [[IT], and Xception [57]) and the com-
plexity of the dataset. This assessment allows us to determine the effectiveness of the proposed
methods in capturing the relationship between error rates and dataset complexity.

Table B presents the Pearson correlation and p-value between dataset complexity and the
test error rates of the six 10-class datasets. The complexity is calculated using various methods,
including N1, N2, N3, N4 (neighborhood methods), and cmsAULS. Among these methods, N1,
N2, N3, and N4 perform better than other benchmark methods but fall short of achieving a Pear-
son correlation of 0.8. In contrast, cmsAULS significantly outperforms all other methods, with
an average Pearson correlation of 0.96. These results demonstrate that the complexity calculated
by cmsAULS exhibits a strong positive correlation with DCNN test error rates. We refer to a
9-layer CNN autoencoder as CAE, and Comb. stands for the combination of CNN autoencoder
and t-SNE. Table B2 provides the network structure details of the 9-layer CNN autoencoder. The
architecture includes Convolution (Conv) layers, MaxPooling (MaxPool) layers, and Transposed
Convolution (TConv) layers. The number specified after Conv represents the kernel size used in
the corresponding convolution layer.

Table B3 reports the test error rates of three DCNN models on the six 10-class datasets. To

ensure fairness, we directly utilize the reported test error rates from [3]. Additionally, Table B4
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Table 3.2: The network structure of the 9-layer CNN autoencoder.

Layers Operator Resolution | Channels
1 Conv3 & MaxPool 32 %32 64
2 Conv3 & MaxPool 16 X 16 128
3 Conv3 & MaxPool 8 x 8 256
4 Conv3 & MaxPool 4 x4 256
5 Convl 4x4 8
6 TConv2 8 x 8 128
7 TConv?2 16 X 16 256
8 TConv2 32 %32 512
9 TConv2 64 x 64 512
10
—— stl10
-+- compcars
—|-= svhn
81 4= cifarl0
—— noOtMNIST
=+= mnist
v 67
E
g
o 44
2 -
0

Figure 3.3: Laplacian spectrum of the six 10-class datasets (Comb.).

displays the calculated complexity scores for the six 10-class datasets. Notably, simpler datasets,
such as mnist, exhibit lower complexity scores, whereas more complex datasets receive higher
scores. Figure visualizes the Laplacian spectrum of the six 10-class datasets. The figure
highlights the trend that datasets with higher test error rates tend to have larger Laplacian spectra.
This observation further supports the notion that dataset complexity influences the performance

of DCNN models.
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Table 3.3: Test error rates for three DCNN models on the six 10-class datasets [3].

Dataset AlexNet ResNet50 Xception

mnist 0.01 0.05 0.01
notMNIST 0.05 0.04 0.03
svhn 0.08 0.07 0.03
cifarl0 0.18 0.19 0.06
st110 0.69 0.63 0.69
compcars 0.70 0.88 0.86

Table 3.4: Complexity of the six 10-class datasets (Comb.).

Dataset cmsAULS CSG AULS

mnist 0.144 0.045 0.675
notMNIST 0.693 0.747  9.294
svhn 1.100 1.826 20.142
cifar10 1.224 2.043  22.112
st110 1914 3.546 49.134

compcars 3.170 3.840 58.353

3.3.3 The effectiveness of pretrained DCNN feature extractors

In this section, we aim to improve the Pearson correlation by incorporating pretrained DCNN
feature extractors with cmsAULS. Additionally, we evaluate the robustness of cmsAULS by cal-
culating the Pearson correlation between complexity and test error rates for five out of the six 10-
class datasets, with one dataset removed at a time. To leverage the powerful image classification
capabilities of ImageNet, we utilize EfficientNet [58] models trained with Noisy Student [6Y9] as
our feature extractors. Specifically, we employ EfficientNet-B4 extractors that have demonstrated
superior performance compared to other versions in our experiments. Noisy Student training is
a semi-supervised learning approach that excels even when abundant labeled data is available,
thereby enhancing the classification performance of supervised learning. Consequently, Effi-
cientNet models trained with Noisy Student tend to yield better feature representations for im-
ages. Building upon the successful performance of t-SNE in previous experiments, we combine
EfficientNet-B4 with t-SNE for dimensionality reduction of the extracted image features in this
experiment. By employing t-SNE, we can effectively reduce the dimensionality while preserving

the underlying structure and relationships within the data. This combined approach enables us to
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Figure 3.4: Laplacian spectrum of the six 10-class datasets (EfficientNet-B4 and t-SNE).

Table 3.5: Pearson correlation and p-value between the complexity and the test error rates of the
six 10-class datasets.

Method Evaluation AlexNet ResNet50 Xception

cmsAULS Corr 0.989 0.986 0.988
cmsAULS p-val <0.001 <0.001 <0.001
CSG Corr 0.956 0.965 0.948
CSG p-val 0.003 0.002 0.004
AULS Corr 0.942 0.913 0.898
AULS p-val 0.005 0.011 0.015

obtain a compact and meaningful representation of the image features.

Table B presents the Pearson correlation and p-value between dataset complexity and test er-
ror rates for the six 10-class image datasets. It is evident from the table that the proposed method
exhibits better correlation with all three DCNN models compared to CSG and AULS. Notably,
cmsAULS achieves the lowest p-value (j0.001), indicating reliable and statistically significant
assessment results. Figure B4 visualizes the Laplacian spectrum of the six 10-class datasets, uti-
lizing the combination of EfficientNet-B4 and t-SNE for dimensionality reduction of the image
features. As observed in Figure B3, we confirm that datasets with higher test error rates tend to
have larger Laplacian spectra. Table B-@ demonstrates the Pearson correlation between dataset

complexity and test error rates for the five 10-class datasets, with one dataset removed at a time.
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Table 3.6: Pearson correlation between the complexity and the test error rates of the five 10-class
datasets (excluding one of the six datasets).

Remove Method  AlexNet ResNet50 Xception
cmsAULS  0.988 0.992 0.996
mnist CSG 0.952 0.978 0.960

AULS 0.951 0.936 0.922

cmsAULS  0.988 0.985 0.987

notMNIST CSG 0.952 0.961 0.947
AULS 0.936 0.900 0.892

cmsAULS  0.992 0.991 0.991

svhn CSG 0.976 0.989 0.968
AULS 0.975 0.949 0.929

cmsAULS  0.989 0.987 0.991

cifar10 CSG 0.957 0.967 0.962
AULS 0.952 0.924 0.931

cmsAULS  0.994 0.988 0.984

stl10 CSG 0.973 0.957 0.939
AULS 0.921 0.893 0.859

cmsAULS  0.992 0.980 0.976

compcars CSG 0.937 0.924 0.887
AULS 0.908 0.894 0.845

The results reaffirm the robust performance of cmsAULS in the task of dataset complexity as-
sessment. Considering the results presented in Tables B3 and B, we can ascertain the validity
and robustness of cmsAULS. It is worth noting that the image features extracted by EfficientNet-
B4 exhibit greater similarity to the tested DCNN models (AlexNet, ResNet50, and Xception),

resulting in better performance compared to the CNN autoencoder.

3.3.4 Interclass distance visualization

In this section, we aim to visually assess the effectiveness of the obtained similarity matrix by
examining the interclass distance within different datasets. By analyzing the interclass distance,
we can validate the accuracy of the similarity matrix W;; that we have generated. We have previ-
ously demonstrated a strong Pearson correlation between the dataset complexity, as calculated by
our method, and the error rates of DCNN (Deep Convolutional Neural Network) models. How-

ever, we can further utilize the similarity matrix W;; to visualize the interclass distance present
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in a dataset. To accomplish this, we construct a dissimilarity matrix U;; = 1 — W;;. This dissim-
ilarity matrix reflects the dissimilarities or distances between different classes within the dataset.
Next, we employ multidimensional scaling (MDS) techniques to project the dataset’s interclass
distances onto a two-dimensional space.

In this section, we aim to visually verify the effectiveness of the obtained similarity matrix by
visualizing the interclass distance of different datasets. While we have already demonstrated the
high Pearson correlation between the dataset complexity calculated by our method and DCNN
test error rates, we can further utilize the similarity matrix W;; to visualize the interclass distance
within a dataset. To achieve this, we construct a dissimilarity matrix U;;, which is computed as
the complement of the similarity matrix, i.e., U;; = 1 — W;;. This dissimilarity matrix captures
the pairwise distances between classes in the dataset. We then apply multidimensional scaling
(MDS) to reduce the dimensionality of the dissimilarity matrix to two dimensions. By visual-
izing the interclass distance in a dataset using MDS, we gain insight into the arrangement and
relationships between different classes. This visualization provides further evidence of the effec-
tiveness of the obtained similarity matrix in capturing the intrinsic characteristics and structures

of the dataset.

3.3.5 The influence of the image feature’s dimension

In this section, we investigate the influence of different reduced dimensions on the perfor-
mance of cmsAULS. We conduct experiments using two widely used dimension reduction meth-
ods, namely t-SNE and PCA, with varying reduced dimensions. For t-SNE, we set the reduced
dimensions to 2 and 3, as they are commonly employed in visualization tasks. Additionally, we
employ PCA with reduced dimensions of 3 and 50, along with contribution rates of 0.90 and 0.95.
Table B77 presents the experimental results. It is evident from the table that when the reduced di-
mension is small (e.g., three dimensions), t-SNE achieves the best performance and outperforms
PCA by a significant margin. However, when using PCA with a reduced dimension set to 3 and a
contribution rate of 0.90, our method still achieves good performance while demonstrating faster
execution time. The results presented in Table B2 emphasize the importance of selecting ap-
propriate dimension reduction methods and determining the optimal reduced dimension for the

cmsAULS approach.
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Table 3.7: Pearson correlation and p-value between the complexity and the test error rates of the
six 10-class datasets with different reduced dimensions.

Method Evaluation AlexNet ResNet50 Xception

t-SNE (2d) Corr 0.511 0.402 0.401
t-SNE (2d) p-val 0.300 0.430 0.431
t-SNE (34d) Corr 0.969 0.961 0.950
t-SNE (34d) p-val 0.001 0.002 0.004
PCA (3d) Corr 0.291 0.362 0.298
PCA (34d) p-val 0.575 0.481 0.567
PCA (50d) Corr 0.784 0.877 0.813
PCA (50d) p-val 0.065 0.022 0.049
PCA (0.90) Corr 0.796 0.887 0.825
PCA (0.90) p-val 0.058 0.019 0.043
PCA (0.95) Corr 0.774 0.873 0.808
PCA (0.95) p-val 0.070 0.023 0.052

3.4 Conclusion

In this chapter, we introduce a novel method called cmsAULS, which aims to enhance the
assessment performance of image dataset complexity. We leverage the concept of Laplacian
spectrum size, derived from spectral clustering theory, as an indicator of class similarities within
a dataset, thereby enabling the assessment of dataset complexity. Our method focuses on two key
factors that impact the Laplacian spectrum size: the Average Unweighted Laplacian Similarity
(AULS) and the gradient between adjacent eigenvalues. By emphasizing these elements, our
method achieves superior assessment performance compared to existing methods in the field. As
aresult of our approach, we surpass the performance of state-of-the-art methods in the assessment
of dataset complexity across six different datasets. These findings highlight the effectiveness and
superiority of our proposed cmsAULS method in accurately evaluating the complexity of image

datasets.
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Chapter 4

Compressed Gastric Data Generation
Based on Soft-Label Dataset

Distillation

4.1 Introduction

This chapter introduces a novel approach for generating compressed gastric images using a
technique called soft-label dataset distillation. The primary objective is to facilitate the shar-
ing of medical data across different agencies and enable the development of highly accurate
computer-aided diagnosis (CAD) systems. Sharing medical data is crucial for seamless health-
care information exchange, but it poses challenges due to the large sizes of medical datasets, the
substantial memory requirements of deep convolutional neural network (DCNN) models, and
the need for patients’ privacy protection. These factors can impede the efficiency of medical
data sharing. To address these challenges, the proposed method focuses on distilling essential
information from medical image data and generating multiple compressed images that exhibit
different data distributions. This approach ensures anonymity in medical data sharing. Moreover,
the method incorporates a mechanism to extract significant parameters from DCNN models. By
doing so, it reduces the memory footprint required to store trained models, thereby enhancing the
efficiency of medical data sharing. The experimental results demonstrate the effectiveness of the
proposed method. It not only compresses an entire gastric image dataset into multiple soft-label
images but also significantly reduces the size of trained models to a fraction of their original

size. The proposed method has valuable implications for the sharing of medical data, enabling

37



Medical image data DCNN model

| e High efficiency

Important
parameters | e High security

ICompressed image | ® High accuracy

L o - - _ = = | — ———— —

\4
Medical data sharing

Figure 4.1: Overview of the proposed method.

efficient storage and transmission.

4.2 Method

Figure B provides an overview of the proposed method, which will be discussed in this
section. The first step is the training data preprocessing procedure, explained in section B2l
This section outlines the steps involved in preparing the training data for the proposed method.
Next, section B2 presents the details of the compressed gastric image generation algorithm.
This algorithm elaborates on how the compressed images with different data distributions are
generated, following the soft-label dataset distillation approach. Finally, in section BE273, the
full gastric image classification performance using gastric patches is explained. This section
describes how the proposed method can be applied to test the classification performance of full

gastric images by using gastric patches.

4.2.1 Training data preprocessing

In this section, we propose a method to preprocess the training data while taking into account

clinical settings. The full gastric X-ray images used in this research are depicted in Figure Bl
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Figure BEl(a) represents an example without gastritis (referred to as non-gastritis), while Fig-
ure EI(b) depicts an example with gastritis. Upon observing Figure B, it becomes evident that
a stomach without gastritis exhibits straight folds and a uniform mucosal surface pattern. Con-
versely, a stomach with gastritis displays non-straight folds and coarse mucosal surface patterns.
Our dataset comprises gastric X-ray images with high resolutions, typically 2,048 x 2,048 pixels.
In practical medical applications, working with high-resolution images can result in expensive
computing costs. To address this issue, we adopt a patch-based detection/classification method.
This approach enables effective utilization of pathology region and location information while
eliminating the need for costly computations. Following our previous works [b], we divide each
gastric X-ray image into patches for generating compressed gastric images.

To begin with, we partition each gastric X-ray image into multiple patches. Let Xrain € R4
represent a full gastric X-ray image in the training data. The corresponding label for X,y is
denoted as Yiin € 0, 1, where Yi,in = O indicates non-gastritis and Yy, = 1 indicates gastritis.
Specifically, the full gastric images are divided into H x W patches, where H and W represent

the number of patches in the vertical and horizontal directions, respectively. We define the patch-

G

o1+ Where G denotes the number of patch images, x, € R*d

based dataset as (X,y) = {xg, y¢}
represents an image patch and y, represents its corresponding label. We further annotate the

patch images into three categories: 7, N, and %«

e J: These patches are considered irrelevant as they lie outside the stomach region,

e N: These patches are extracted from X-ray images without gastritis (non-gastritis) and are

located within the stomach region,

e P: These patches are extracted from X-ray images with gastritis and are also located within

the stomach region.

To ensure accurate annotation, a radiological technologist manually processed the stomach region

annotations in this research.

4.2.2 Compressed gastric image generation

In this section, we will describe the process of generating compressed gastric images using

the soft-label dataset distillation. The framework of our method differs from the conventional
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Algorithm 1 Training phase
Input: 6: the random initial weights of a DCNN model; a: learning rate; K: batch size; T

training steps; M: the number of compressed images; ¥¢: initial value for §¥; @: initial value
for &
Output: X: compressed images; ¥: distilled labels; @: optimized learning rate; 6,: batch nor-

malization parameters

M
m=1

1: Initialize X = {%,}*_ | randomly, § = {7}, « §o, @ « @

2: for each training stept = 1 to 7 do

3:  Get a minibatch of training data:
(X, y1) = {xt,k,)’t,k}le

4:  Compute optimized weights with a gradient descent method:
Oopt < 0 — @ Vol(X,§,0)

5:  Evaluate the objective function on the minibatch of training data:
L=0x, Y1 gopt)

6:  Update distilled data:
Xe—X-aVzL,y—y-aVyL and@ « @ —-aVsL

7. if the DCNN model has batch normalization layers then

8: Save the batch normalization parameters as 6y,
9: end if
10: end for

neural network training and testing phases. Therefore, we will provide a brief overview of our
approach. In the training phase, our objective is to distill the information from a large dataset into
several compressed and anonymous images. This is achieved by utilizing a twice-differentiable
loss function and updating the images through gradient descent. The aim is to minimize the loss
function and extract the essential information from the dataset. In the test phase, we utilize the
optimized distilled images to evaluate the accuracy achieved during the training phase. These
images serve as a representation of the original dataset and are used to assess the effectiveness of
the training process.

Algorithm [0 presents the training phase of our approach. The input and output settings for this
phase are described below. In the training phase, we initialize the weights of a random DCNN
model as 6. The learning rate, batch size, and the number of training steps are denoted by «a, K,
and T, respectively. The total number of compressed images is represented by M. Additionally,
we have the initial value of distilled labels, o, and the initial value of the optimized learning
rate, &g. During the training phase, we obtain several outputs that are essential for the test phase.

These outputs include the compressed images X, the distilled labels ¥, the optimized learning rate
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@, and the batch normalization parameters 6. These outputs play a crucial role in evaluating the
performance of the trained model during the test phase.

We next show the details of the algorithm for generating compressed gastric images. In this

G

" ., where G
g=1

algorithm, we use a patch-based gastric training set denoted as (X,y) = {xg, e}
represents the number of training images. The variables x, and y, correspond to the gastric
image and its corresponding label, respectively. To parameterize the weights of a random DCNN
model, we use 6. Additionally, we define a twice-differentiable loss function, £(x,y, 8), which
represents the loss of the DCNN model on the entire training set (x,y). In our compressed gastric
image generation method, we aim to distill valuable information from the entire training set (X, y)
into a significantly smaller distilled dataset, denoted as (X, §) = {%, ym}nﬂle. Here, M represents
the number of compressed images, which is much smaller than G (M <« G). The variables X,
and y,, correspond to the distilled image and its corresponding distilled label, respectively.

In our compressed gastric image generation algorithm, we assign soft labels ¥ to the com-
pressed images X. These soft labels can be represented as probability distributions over different
categories, such as 7, N, and P, following the approach described by Hinton et al. in the concept
of distillation [BT]. Since the compressed images X are not samples from the actual distribu-
tion, we can have a significantly smaller number of compressed images compared to the original
training set. This compression allows us to capture the common features shared across different
categories of gastric patches effectively. By incorporating soft labels into the training process, we
introduce a form of regularization, which can improve the classification performance compared
to the original dataset distillation method [35]. This regularization helps to generalize the learned
knowledge and reduce overfitting. Moreover, it is possible to compress the entire gastric train-
ing set into just one compressed image with soft labels, achieving maximum compression while
still retaining the essential information. During the distilling process, the optimized weights are

computed according to the following equation:
Oopt < 0 — aVyl(X,y,0), 4.1

where 6, represents the optimized weights of the DCNN model. 6 denotes the initial weights,
and @ refers to the optimized learning rate. The loss function £(X, ¥, 6) quantifies the discrepancy

between the predictions outputted by the DCNN model with weights 6 and the ground truth labels
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¥ for the compressed dataset (X, ¥). This loss function should be twice-differentiable to enable
efficient optimization.
The objective function for our compressed gastric image generation method can be defined as

follows:

0" = arg min £(X, y, 0). 4.2)

Contrary to the general training goal of DCNNs, which aims to find the optimal parameters 6%,
our objective is to find the optimal compressed images X*, distilled labels ¥*, and optimized
learning rate &@*. These variables represent the compressed representation of the training set that
leads to the minimum empirical error when used with the derived weights 6,y The objective

function can be defined as:

¥, & = argmin L(X,§, @;0),

Ll

= arg min K(X, Y, gopt), (43)
= arg min £(x,y, 6 — aVl(X, §, 6)),
where (X, ¥, 0) is twice-differentiable, and L(X, ¥, &; 6) is differentiable.
To obtain the optimal compressed images, distilled labels, and optimized learning rate, we

update the compressed images X, distilled labels y and optimized learning rate @ at each distilling

step with a gradient descent method as follows:

—X- a/Vg.[:,

I

«—

—aVy L, (4.4)

Al
Al

a—a—-aVzl,

where Vi £, V3£ and V5L denote the gradients of £ based on X, § and &, respectively, and a
denotes the learning rate.

Next, we will describe the training process of the proposed algorithm. Initially, the compressed
images, denoted as X, are randomly initialized. The distilled labels, denoted as ¥, and the opti-
mized learning rate, denoted as @, are initialized with ¥o and &g, respectively. At each training
step ¢, a minibatch of training data (x;, y,) of size K is obtained. The distillation process involves

computing optimized weights. To enhance the distillation results, the distillation process can be
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Algorithm 2 Test phase
Input: 6: the random initial weights of a DCNN model; X: compressed images; §: distilled

labels; @: optimized learning rate; 6,,: batch normalization parameters
Output: Pred: predicted labels
. if the DCNN model does not have batch normalization layers then

—_

2:  Compute optimized weights with the distilled data:
Oopt < 0 — @ Vel(X,§,0)
3: else

4:  Compute optimized weights with the distilled data and batch normalization parameters:
Oopt < 0 — @ Vgl(X,§, Opn, 0)
5: end if
6: Predict the labels of the test data:
Pred = model (Xtest, Ytest» opt)

extended by performing multiple distill epochs and multiple distill steps. This involves comput-
ing optimized weights through sequential gradient descent steps on the distilled dataset, repeated

over a few epochs [62]. The sequential gradient descent steps can be defined as follows:

0i+1 — 9[ - dv@[é)(ia 57’ Hi)’ (45)

where i denotes the distill steps. The objective function is evaluated on the minibatch of training
data. The distilled data X, ¥, and @ are updated based on a gradient descent method. Finally, if
the DCNN model includes batch normalization layers in its architecture, the batch normalization
parameters are saved as .

Please note that the original dataset distillation method was designed for simple datasets such
as MNIST and CIFAR10, using simple networks that do not include batch normalization layers.
In the presence of batch normalization layers in a deep convolutional neural network (DCNN)
model, the mean and variance information of batches are treated as constant and assumed to re-
main unchanged during the gradient steps in the distillation process. As a result, the information
of batches cannot be distilled into the compressed images. However, it is sufficient to save only
the batch normalization parameters 6, to reproduce the classification performance during the
training phase. This feature is utilized in our method to reduce the sizes of the trained models.

Algorithm @ shows the test phase of our method. During the test phase, the procedure for
computing optimized weights and predicting labels depends on whether the DCNN model has

batch normalization layers or not. If the DCNN model does not have batch normalization layers,
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we utilize the saved compressed images X, distilled labels ¥, and optimized learning rate & to

compute the optimized weights 6y, as follows:
Oopt — 0 — @ Vel(X,§,0). (4.6)

On the other hand, if the DCNN model includes batch normalization layers, we can compute the

optimized weights using the distilled data and batch normalization parameters as follows:
Oopt 0 — @ Vol(X, ¥, bpn, 0). 4.7)

Once we obtain the optimized weights 6,5, we can use the trained model to predict the labels on

the test data (Xeest, Yiest) as follows:
Pred = model (Xiest, Yeest» Qopt), (4.8)

where Pred represents the predicted labels of the test data and can be used for the final full gastric

image classification.

4.2.3 Full gastric image classification

In this section, we will explain the process of estimating the label of a full gastric X-ray image
based on patches. First, when we have a test gastric image Xtest € R we divide it into H x W
patches, following the same procedure as that used for training data. These divided patches are
then inputted into a DCNN model with the optimized weights 6, allowing us to obtain predicted
labels (denoted as Pred) for each patch. Next, we calculate the numbers of patches for which the
predicted labels are in the categories N (non-gastritis) and % (gastritis), denoted as Num(/N) and
Num(P), respectively. Since the patches extracted from outside the stomach (denoted as 1) are
not relevant to the gastritis/non-gastritis prediction, they are not considered in the probability

calculation. Finally, we estimate the label of the full gastric X-ray image as follows:

1 if —um(®) 5

SN 2
Yiey = Num(N)+Num(P) i 4.9)

0 otherwise

where ¢ is a threshold. Note that if Y., = 1, the estimation result of the full gastric X-ray image

is gastritis, and if Y = 0, the estimation result is non-gastritis.

44



4.3 Experiments

In this section, we will present the results of three experiments to demonstrate the effectiveness
of our proposed method. In Section B3, we provide an overview of the experimental settings
used in our method. The effectiveness of dataset reduction is evaluated and presented in Sec-
tion B3, Furthermore, we demonstrate the effectiveness of model compression achieved by our
method in Section E33. Lastly, in Section B34, we show the minimum number of compressed

images required for different DCNN models as a measure of the efficiency of our approach.

4.3.1 Experimental settings

In our research, we utilized a medical dataset comprising gastric X-ray images obtained from
815 patients. Among these images, 240 were diagnosed as gastritis, while 575 were classified as
non-gastritis cases. The ground truth labels (gastritis/non-gastritis) for each image were deter-
mined based on the results of patient diagnoses from endoscopic and X-ray examinations. The
gastric X-ray images in the dataset had dimensions of 2,048 x 2,048 pixels and were grayscale
images. For the training phase, we utilized a subset of the dataset containing images from 200
patients, with an equal distribution of 100 gastritis and 100 non-gastritis images. The remaining
images from the dataset, comprising 140 gastritis and 475 non-gastritis images, were used as the
test data for evaluating the performance of our proposed method.

In the data preprocessing stage, we divided all the gastric X-ray images into multiple patches
with a size of 299 x 299 pixels and a sliding interval of 50 pixels. This patch size and sliding
interval were determined through experimental evaluation. For the training data, these patches
were labeled as 7, N, or £ by a radiological technologist. A patch was labeled as 7 if the
regions inside the stomach accounted for less than 1% of the patch. If the regions inside the
stomach accounted for more than 85% of the patch, it was labeled as either N (non-gastritis) or
P (gastritis). The remaining patches were discarded. Consequently, we obtained training data
consisting of patches labeled as 7, N, and P, with respective numbers of 48,385, 42,785, and
45,127 patches. During the training phase, these 7, N, and # patches were used to train the
DCNN models and generate compressed gastric images. For the test data, each of the remaining
615 gastric X-ray images was divided into 1,225 patches using the same procedure as the training

data.
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We conducted three experiments to evaluate the effectiveness of the proposed method. In all
experiments, we used the compressed images that demonstrated the best classification perfor-
mance for the patch-based training data. The performance evaluation was carried out on full
gastric X-ray images from the test data. Throughout the experiments, we set the threshold ¢ to
0.4, as it tended to yield better classification performance. The random initial weights 6 of all
DCNN models utilized in our experiments were initialized using the default Xavier initializer.
We employed the cross-entropy loss as the loss function. For evaluating the performance, we
employed the following evaluation indexes: sensitivity (Sen), specificity (Spe), and the harmonic

mean (HM) of Sen and Spe. The formulas for these indexes are as follows:

TP
= 4.1
Sen = I EN (4.10)
TN
Spe = 4.11
Pe = IN Y FP’ “.10)
2
HM = X Sen X Spe 4.12)
Sen + Spe

where TP, TN, FP, and FN represent the numbers of true positive, true negative, false positive,
and false negative, respectively. A higher sensitivity means maintaining a high ability to correctly
identify positive cases, while decreasing specificity may lead to a higher number of false posi-
tives. Calculating the harmonic mean (HM) between sensitivity and specificity holds equal value
as it balances the trade-off between these two metrics, providing a comprehensive evaluation of

the detection performance.

4.3.2 Demonstration of the effectiveness of dataset reduction

In this section, we demonstrate the effectiveness of dataset reduction using the proposed
method by comparing it with general network training. We used the ResNet18 [IU] architec-
ture for our experiments. First, we compared the dataset distillation approach with the original
dataset distillation method [35]. We set the number of compressed images to 3 (one image per
category) for soft-label dataset distillation (SLDD) and original dataset distillation (DD). Addi-

tionally, we used SLDD with only 1 distilled image. For SLDD (3), we initialized the soft labels
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Table 4.1: Comparison of dataset distillation (ResNet18) and ResNet18.

Method Sen Spe | HM
SLDD (3) 0.886 | 0.869 | 0.877
DD (3) 0.829 | 0.884 | 0.856

ResNet18 (9000) | 0.814 | 0.832 | 0.823
ResNet18 (6000) | 0.907 | 0.760 | 0.827
ResNet18 (3000) | 0.914 | 0.669 | 0.773

SLDD (1) 0.793 | 0.895 | 0.841

Dataset: Gastritis, Arch: ResNet18, Step: 9, LR: 0.0073

I: 76.1% I 11.2% I 11.2%
N: 77.3% N: 13.8%
P: 11

5% P:75.0%

Figure 4.2: Compressed image generated in SLDD (3).

with one-hot values of the original labels (7, N, and $). In SLDD (1), we initialized the soft
label with the label N, which tends to yield better classification performance. The distillation
process consisted of 3 epochs with a total of 9 distillation steps. DD (3) had the same settings
as SLDD (3) except for the fixed labels. During the training phase, we performed 400 epochs
for SLDD (3), DD (3), and SLDD (1), and saved the distilled results for testing and evaluation.
Since it is challenging for a DCNN model to learn from only a few images, we randomly selected
1,000, 2,000, and 3,000 images per category from the training data. We trained three ResNet18
models with these selected images until convergence, which served as the comparison methods
in our experiments.

The test results are presented in Table BE1. This table shows the classification performance of
the proposed method and ResNet18 trained on random subsets for full gastric X-ray images. The
ResNet18 model trained with 3,000 images per category (a total of 9,000 images) achieved an
HM score of 0.823. In contrast, SLDD (1), which distilled all of the training data into a single
compressed soft-label patch image for training, achieved an HM score of 0.841. Furthermore,

SLDD (3), which distilled all of the training data into three compressed soft-label images for
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Dataset: Gastritis, Arch: ResNet18, Step: 9, LR: 0.0618
| N P

Figure 4.3: Compressed image generated in DD (3).

Dataset: Gastritis, Arch: ResNet18, Step: 9, LR: 0.0020
I: 25.8%
N: 52.9%
P:21.3%

Figure 4.4: Compressed image generated in SLDD (1).

training, achieved an even higher HM score of 0.877 compared to DD (3). These results demon-
strate that the proposed method exhibits high classification performance with only a few com-
pressed gastric X-ray images, indicating the effectiveness of dataset reduction. Figures B2, B3
and B4 show examples of the compressed images used in our experiments. From these figures,
it is evident that the gastric images have been completely anonymized. Consequently, the gener-
ated compressed patch images contain no private patient information, thereby facilitating privacy

protection in the sharing of medical data.

4.3.3 Demonstration of the effectiveness of model compression

In this section, we investigate the model compression effectiveness of the proposed method
by comparing different DCNN models with and without batch normalization layers. Typically,
when a DCNN model includes batch normalization layers in its architecture, the information of
each batch is stored in the parameters. During the training phase, the mean and variance of the
batches are treated as constants and assumed to remain unchanged during the gradient steps. As
a result, the information of the individual batches cannot be effectively distilled into compressed
images. However, only the batch normalization parameters need to be saved in order to reproduce

the classification performance of the training phase. This characteristic allows us to compress the
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Table 4.2: Comparison of different models with batch normalization (bn) and without batch
normalization (no_bn).

Model Sen Spe HM
Googl.eNet (bn) 0.850 | 0.916 | 0.882
GoogleNet (no_bn) | 0.121 | 0.823 | 0.211
ResNet18 (bn) 0.836 | 0.905 | 0.869
ResNet18 (no_bn) | 0.600 | 0.844 | 0.701
AlexNet (bn) 0.793 | 0.884 | 0.836
AlexNet (no_bn) 0.786 | 0.861 | 0.822
VGG16 (bn) 0.907 | 0.926 | 0.916
VGG16 (no_bn) 0.936 | 0.897 | 0.916

Table 4.3: Memory footprints of different models. Memory denotes saving all of the parameters
of a model. Memory: denotes saving batch normalization parameters and distilled results.

Model Memory | Memory* | Compression rate
GoogLeNet | 22.83MB | 289.14KB 0.01266
ResNetl8 | 42.64MB | 250.23KB 0.00587
ResNet34 | 81.20MB | 287.99KB 0.00354
AlexNet | 217.44MB | 201.29KB 0.00093
VGG16 512.21MB | 402.01KB 0.00078
VGG19 532.46MB | 402.01KB 0.00076

size of the model that needs to be stored.

In this experiment, we utilized different models, namely GoogLeNet [63], ResNet18 [IU],
AlexNet [9], and VGG16 [64], both with and without batch normalization layers. To begin, we
compressed the images into three instances, with one image per category. We initialized the soft
labels using one-hot encoding based on the original labels. The distillation epochs and steps
were set to 1. During the training phase, we trained GoogleNet, ResNet18, and AlexNet for
400 epochs, while VGG16 was trained for 200 epochs. After each epoch, we saved the distilled

results and the batch normalization parameters for testing and evaluation purposes.
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Table 4.4: Comparison of the minimum number of compressed images of different models.

Model Sen Spe | HM
GoogLeNet (1) | 0.764 | 0.853 | 0.806
GoogLeNet (3) | 0.850 | 0.916 | 0.882

ResNetl18 (1) | 0.800 | 0.855 | 0.827
ResNet18 (3) | 0.836 | 0.905 | 0.869
ResNet34 (1) | 0.800 | 0.926 | 0.858
ResNet34 (3) | 0.893 | 0.899 | 0.896
AlexNet (1) | 0.671 | 0.895 | 0.767
AlexNet (3) | 0.793 | 0.884 | 0.836
VGG16 (1) 0.643 | 0.524 | 0.577
VGG16 (2) 0.921 | 0.926 | 0.923
VGG16 (3) 0.936 | 0.897 | 0.916
VGG19 (1) 0.614 | 0.891 | 0.727
VGG19 (2) 0.921 | 0.909 | 0.915
VGG19 (3) 0.921 | 0.933 | 0.927

4.3.4 Minimum number of compressed images

The test results are presented in Table B2, which demonstrates that models with batch nor-
malization layers exhibit superior classification performance. Additionally, we conducted exper-
iments using multiple models, and Table displays the maximum compression rates achieved
by different models. "Memory” refers to the memory required to store all the parameters of
the respective DCNN models, while "Memory*” indicates the memory needed to store batch
normalization parameters and distilled results. It is evident from Table that our proposed
method effectively reduces the memory size required to save trained models, highlighting the
model compression effectiveness. For instance, VGG19 can achieve a maximum compression
rate of 0.00076 by employing two compressed soft-label patch images. Moreover, we discovered
that the minimum number of compressed images achievable varies across different models, and
this characteristic is related to the maximum compression rate. Therefore, we will discuss the
minimum number of compressed images for different models in the next section. It is worth
noting that VGG16, for example, exhibits significantly lower test accuracy when the number of
compressed images is set to 1 compared to when it is set to 3 (one image per class). In other

words, VGG16 struggles to effectively distill pertinent information from the training data into a
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Table 4.5: Parameters of different models. Parameter denotes the number of model parameters.
Image denotes the minimum number of compressed images.

Model Parameter | Image
GooglLeNet | 5,984,915 1
ResNet18 11,176,963
ResNet34 | 21,285,123
AlexNet 57,000,643
VGG16 134,271,683
VGG19 139,581,379

DN DN | m= | = |

single compressed image.

In this section, we utilized various models, including Googl.eNet, ResNet18, ResNet34, AlexNet,
VGG16, and VGG19. We initially set the numbers of compressed images to the minimum val-
ues achievable by each model. For example, Googl.eNet had a minimum of 1 compressed im-
age, while VGG16 had a minimum of 2 compressed images. As a comparison, we also set the
numbers of compressed images to 3, corresponding to one image per category. For instance,
GoogleNet had 3 compressed images. The distillation epochs and steps were set to 1. During
the training phase, we performed 400 epochs for GoogLeNet, ResNet18, and AlexNet, while
ResNet34, VGG16, and VGG19 were trained for 200 epochs. After every epoch, we saved the
distilled results and batch normalization parameters for subsequent testing and evaluation.

The test results are presented in Tables B4 and B5. From Table B4, it is evident that GoogLeNet,
ResNet18, ResNet34, and AlexNet were successful in distilling valid information from the train-
ing data into only one compressed soft-label patch image. However, VGG16 and VGG19 were
unable to effectively distill valid information into a single compressed patch image. As the com-
pressed images were distilled using DCNN models, we believe that the minimum number of
compressed images is influenced by the number of parameters in the models. Thus, we provide
the parameter counts and minimum numbers of compressed images for different models in Ta-
ble BE3. The ”Parameter” column represents the number of parameters in each model, while the
”Image” column denotes the minimum number of compressed images achievable by the models.
Table B3 demonstrates that there is a correlation between the minimum number of compressed

images and the number of parameters in the models.
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4.4 Conclusion

In this chapter, we introduced a novel method for generating compressed gastric images using
soft-label dataset distillation. The aim of this method is to facilitate efficient and anonymous
sharing of medical data. Our proposed approach not only compresses an entire medical dataset
into a single compressed soft-label patch image but also reduces the size of the trained model
to a fraction of its original size. This results in improved efficiency when sharing medical data.
Importantly, the compressed images generated through distillation are completely anonymized
and do not contain any private information about the patients. This significantly enhances the se-
curity of medical data sharing, ensuring patient privacy is maintained. Furthermore, our method
achieves high classification performance even with a small number of compressed images. This
demonstrates the effectiveness and efficiency of our approach in compressing and sharing medi-

cal data without compromising accuracy.
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Chapter 5

Self-Supervised Transfer Learning for
Automatic COVID-19 Detection

5.1 Introduction

In the context of the global COVID-19 pandemic, there is a growing need for computer-aided
diagnosis systems that can quickly detect and triage COVID-19 cases using chest X-ray images.
In this chapter, we propose a novel learning scheme called self-supervised transfer learning for
COVID-19 detection from chest X-ray images. Recognizing that self-supervised learning alone
may not provide sufficient representations for the target dataset, we introduce transfer learning
from different datasets as a way to complement the limitations of self-supervised learning and
improve representation learning. We demonstrate that knowledge learned from natural images
through transfer learning can greatly benefit self-supervised learning on chest X-ray images,
leading to enhanced representation learning performance for COVID-19 detection. Our method
leverages the combination of transfer learning and self-supervised learning to acquire discrimi-
native representations from chest X-ray images. Through extensive experiments, we achieve re-
markable results on the largest available open COVID-19 chest X-ray dataset, with an HM score
of 0.985, an AUC of 0.999, and an accuracy of 0.953. To enhance interpretability, we utilize
the Grad-CAM++ visualization technique to generate visual explanations for different classes of
chest X-ray images using our proposed method. This approach increases the interpretability of

our model’s predictions and provides insights into the learned representations.
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Figure 5.1: Overview of the proposed method.
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5.2 Method

To address the limited representations learned by self-supervised learning on the target dataset [B3],
we propose a method that combines transfer learning from different datasets with self-supervised
learning to obtain more effective representations for COVID-19 detection from chest X-ray im-
ages. The core idea of our method is to leverage the knowledge learned from natural images
through transfer learning, which can compensate for the shortcomings of self-supervised learn-
ing and enhance representation learning performance. The transfer learning is performed in the
first stage of our method, where we conduct supervised pre-training on labeled natural images,
such as the widely used ImageNet dataset [66]. This step allows our model to learn meaningful
and discriminative representations from natural images. The second stage of our method fo-
cuses on self-supervised pre-training on unlabeled chest X-ray images. This process helps the
model learn specific features and patterns relevant to COVID-19 detection in chest X-ray im-
ages while leveraging the general knowledge obtained from the transfer learning stage. Finally,
in the third stage, we perform supervised fine-tuning on labeled chest X-ray images. This step
further refines the learned representations specifically for COVID-19 detection tasks. By com-
bining transfer learning from natural images and self-supervised learning on chest X-ray images,
our method is capable of learning highly discriminative representations that are well-suited for
final fine-tuning. An overview of our proposed method is depicted in Figure B. This combi-
nation of transfer learning and self-