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Chapter 1

Introduction

1.1 Background

In the past years, deep learning technologies have been developed rapidly and shown in-

creasing application potential for real-world problems. In the field of computer vision, deep

learning methods have made remarkable achievements, especially for the basic image recogni-

tion tasks such as image classification [1], object detection [2], and semantic segmentation [3].

However, there is still an obstacle to the applications of deep learning to a wide range of real-

world problems, label dependence for training the deep learning models. Typically, the deep

learning models with outstanding performance are trained on the basis of supervised learn-

ing, thereby heavily relying on a large amount of well-labeled data that are unavailable in

many real-world problems. Medical image analysis is a typical field facing such a problem,

where a large-scale well-labeled dataset of medical images is always hard to collect because

it requires specialized knowledge to annotate the medical images and it may be difficult to

share the medical images due to privacy concerns. Moreover, for the image recognition tasks

of which the aim is not simply classifying an image, such as object detection and semantic

segmentation, it may take a long time to precisely annotate an image. For example, in the

Cityscapes dataset [4], which consists of images of urban street scenes with fine pixel-level

annotations, it requires more than one and a half hours on average to annotate a single image.

Constructing a large-scale dataset for such tasks is expensive and can considerably improve
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the costs of applying the deep learning technologies. Therefore, it is necessary to mitigate the

label dependence for applying the deep learning technologies to a wide range of real-world

problems.

Studies for mitigating the label dependence have been done in various directions, such as

unsupervised learning, semi-supervised learning, weakly-supervised learning, unsupervised

domain adaptation, and model adaptation. The similarity of most of the studies is the use of

unlabeled data, while the rests of the problem settings are different. Unsupervised learning

tries to discover data structures and hidden patterns from totally unlabeled data for clustering

or analyzing the unlabeled data. Using only unlabeled data is ideal for getting rid of the label

dependence but can hardly be applied to real-world problems due to the high difficulty of the

extreme problem setting. Semi-supervised learning uses a dataset comprised of both labeled

and unlabeled data and aims to train a model with performance as close as possible to the

model trained with the fully-labeled dataset. As a result, the need for labeled data is reduced.

Weakly-supervised learning mitigates the label dependence by using weak supervisions to

train the models rather than using totally unlabeled data. In some literature, semi-supervised

learning is also categorized as one of the weakly-supervised learning problems, but here the

weak supervisions are used to refer to coarse-grained annotations, such as image-level labels

for object detection or semantic segmentation. By using the coarse labels, the annotation costs

of constructing the datasets can be greatly reduced. Unsupervised domain adaptation is similar

to semi-supervised learning in respect of using both labeled and unlabeled data but introduces

domain shifts between the labeled and unlabeled data. The domain shifts denote the differ-

ences in distribution between the training and test data that are assumed to be consistently

distributed in general machine learning problems. Unsupervised domain adaptation aims to

transfer the label knowledge from the labeled data (referred to as source domain) to the un-

labeled data (referred to as target domain), and therefore in some applications, it is possible

to use labeled data of a different domain as an alternative to constructing a labeled dataset

of the target domain. Model adaptation (also called source-data-free domain adaptation) is

a more challenging variant of unsupervised domain adaptation. Rather than transferring the
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knowledge from the source-domain data, model adaptation transfers the knowledge from a

pre-trained source-domain model without using the source-domain data. Model adaptation is

more practical than unsupervised domain adaptation because access to the pre-trained mod-

els is always easy to obtain while the source-domain data may be inaccessible due to privacy

policy or storage limitation.

1.2 Proposition in this Thesis

This thesis focuses on three of the above-mentioned study directions, semi-supervised learn-

ing, unsupervised domain adaptation, and model adaptation, which are promising for mitigat-

ing the label dependence in the real-world applications of deep learning. For semi-supervised

learning, because medical image analysis is one of the most promising application fields of

semi-supervised learning, this thesis proposes a pseudo-label-based semi-supervised learning

method to solve a problem of medical image analysis, chronic gastritis classification using

gastric X-ray images. For unsupervised domain adaptation, this thesis proposes several meth-

ods for two important computer vision tasks, object detection and semantic segmentation. For

the model adaptation, this thesis proposes the first solution to multi-source model adaptation

of semantic segmentation, where multiple pre-trained models of different source domains are

used for model adaptation. This thesis studies on model adaptation in the multi-source setting

because when more than one source domains are available it may be difficult to choose the

optimal one without accessing to the source-domain data, and using multiple source-domain

models is a natural solution. Moreover, this thesis solves a problem of the multi-source set-

ting, the strict requirement for label spaces. The previous multi-source setting requires the

label spaces of all the source domains to be equal to that of the target domain. However, this

requirement is so strict that the multi-source methods can be hardly applied to real-world prob-

lems. To improve the practicality, this thesis proposes a novel multi-source setting where the

requirement for the label spaces are relaxed. Specifically, in the relaxed multi-source setting,

the union set of the source-domain label spaces is required to be equal to the target-domain

label space, while the label spaces of the single source domains can be different subsets of the
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target-domain label space. For the new multi-source setting, this thesis also proposes the first

model adaptation method.

The methods proposed in this thesis are summarized as follows:

1. For chronic gastritis classification using gastric X-ray images, this thesis proposes a

semi-supervised learning method based on tri-training. Tri-training [5] is a pseudo-

label learning technique that improves the self-training by using multiple models to

improve the reliability of the pseudo labels. Moreover, Between-Class learning [6],

a data augmentation technique, is introduced for enhancement of the semi-supervised

learning performance.

2. For unsupervised domain adaptation of object detection, this thesis proposes a method

based on the adversarial learning which aligns the feature distributions of the source

domain and the target domain to reduce the domain shift. Compared to the previous

adversarial learning-based method [7], the adversarial learning in the proposed method

is guided to focus on foreground regions and poorly-aligned regions, thereby improving

the feature alignment performance.

3. For unsupervised domain adaptation of semantic segmentation, this thesis proposes a

method that performs symmetric adaptation with the adversarial learning. The symmet-

ric adaptation is to train two models with the adversarial learning using two symmetric

adversarial losses. Moreover, the proposed method uses the prediction consistency of

the two models to improve the reliability of the pseudo labels.

4. For unsupervised domain adaptation of semantic segmentation, this thesis proposes a

second method that uses a variational autoencoder [8] as a replacement of the adversarial

learning. The variational autoencoder is used to learn the output distribution of the

segmentation model and align the distributions between the source and target domains.

5. For unsupervised domain adaptation of semantic segmentation, this thesis proposes

a third method that learns intra-domain style-invariant representation. The proposed

method first trains a novel semantic-aware multimodal image-to-image translation model
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for obtaining images with diverse intra-domain styles and then trains the segmentation

model with a self-ensembling method based on consistency regularization.

6. For multi-source model adaptation of semantic segmentation, this thesis proposes a

method that aims to learn model-invariant features, i.e., features with similar distri-

butions from the pre-trained source-domain models. Once the feature distributions of

different source-domain models are aligned, the target-domain model harmonizes the

characteristics of the source domains and is thus more generalizable to the target do-

main.

7. For model adaptation of semantic segmentation in the new multi-source setting where

the requirement for the label spaces is relaxed, this thesis proposes a method that is con-

structed on the basis of the method 6 for the general multi-source setting. The method 6

is modified to adapt to the new multi-source setting, and the conception of learning the

model-invariant features remains unchanged.

1.3 Organization of this Thesis

This thesis is comprised of six chapters. The rest of this thesis is organized as follows.

In Chapter 2, related works of semi-supervised learning, unsupervised domain adaptation, and

model adaptation are presented, and the most representative ones are listed. Chapters 3, 4 and 5

present the methods for semi-supervised learning, unsupervised domain adaptation, and model

adaptation, respectively. In chapter 3, the semi-supervised learning method 1 for chronic gas-

tritis classification using gastric X-ray images is presented. Chapter 4 presents the method 2

for unsupervised domain adaptation of object detection and the methods 3, 4 and 5 for unsu-

pervised domain adaptation of semantic segmentation. Chapter 5 presents the methods 6 and

7 for multi-source model adaptation of semantic segmentation. For each method presented in

Chapters 3, 4 and 5, complete experiments are conducted for validating the effectiveness of

the proposed methods. Finally, Chapter 6 makes a conclusion of this thesis and discusses the

future directions.
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Chapter 2

Related Works

2.1 Introduction

This chapter presents related works of this thesis. Focusing on mitigating the label depen-

dence, this thesis presents studies on semi-supervised learning, unsupervised domain adapta-

tion, and model adaptation which is a variant of unsupervised domain adaptation. Therefore,

this chapter presents the previous works in the above three areas. Specifically, Section 2.2

presents the previous works of semi-supervised learning. Because the ideas of many semi-

supervised learning methods for natural images are also effective for medical images, and

methods for medical images may be customized according to the specific task, Section 2.2

presents only the semi-supervised learning methods for natural images. Section 2.3 presents

the previous works of unsupervised domain adaptation. Since the proposed methods of this

thesis for unsupervised domain adaptation tackle the tasks of object detection and semantic

segmentation, the previous methods for the two tasks are presented in Section 2.3.1 and Sec-

tion 2.3.2, respectively. Section 2.4 presents the previous works of model adaptation, mainly

focusing on those for semantic segmentation. Since model adaptation has been rarely studied

in the multi-source setting, Section 2.4 presents only the model adaptation methods for the

single-source setting.
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2.2 Semi-supervised Learning

Semi-supervised learning methods have been developed using various technologies, such as

generative models [9–11], entropy minimization [12, 13], and consistency regularization [14–

19]. Generative models are used for generating new samples that the task model can not rec-

ognize well, and the recognition performance of the model trained with the generated samples

is consequently improved. Entropy minimization tries to minimize the conditional entropy of

the model predictions so that the model becomes more confident and more accurate. Pseudo-

label learning can be regarded as a form of entropy minimization because the predictions are

enforced to be confident by using loss functions such as cross entropy. Consistency regulariza-

tion based on the smoothness assumption is the state-of-the-art technology of semi-supervised

learning. The regularization is typically on the basis of perturbations to the unlabeled samples,

while some methods also use the Mixup [20] augmentation technique. Due to the superior

performance of the consistency regularization-based methods, some representative ones of the

methods are listed and described as follows.

Reference [14]

The method proposed in the reference [14] uses normal perturbations such as Gaussian

noise to produce augmented copies and computes the differences between the predic-

tions of two augmented copies of the same original sample as the consistency regular-

ization loss. Specifically, the prediction of one of the augmented copies is the current

model’s prediction, and that of the other one can be either the current model’s prediction

or the temporal ensemble prediction which is a moving average of the history predic-

tions.

Reference [16]

The method proposed in the reference [16] replaces the normal perturbations in the

reference [14] with an adversarial learning-based perturbation. Specifically, the pertur-

bation is derived with the adversarial learning to make the prediction on the augmented

copy to most greatly deviate from the correct label. With the adversarial learning-based
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perturbation, the model’s robustness is enhanced; hence the model can perform better

on unseen samples.

Reference [19]

The method proposed in the reference [19] uses the Mixup [20] augmentation technique

to produce interpolation samples each of which is an interpolation of two different un-

labeled samples. The model makes predictions for the interpolation samples and the

original samples, and the consistency regularization loss is computed between the pre-

diction for the interpolation sample and the interpolation of the predictions for the two

original samples. The effectiveness of the interpolation-based consistency regularization

is even better than that of the perturbation-based one with the adversarial learning.

2.3 Unsupervised Domain Adaptation

Unsupervised domain adaptation methods have been extensively developed for image clas-

sification, of which the representative methods typically align the feature distributions of the

source domain and the target domain, measuring the distribution distance with the maximum

mean discrepancy [21] and the adversarial learning [22]. For object detection and seman-

tic segmentation, prevalent technologies are similar including adversarial learning, image-to-

image translation, and semi-supervised learning. The adversarial learning is used for the fea-

ture alignment, which trains a discriminator to recognize the domain of the features and trains

the task model to fool the discriminator. The image-to-image translation transfers the image

styles across domains to reduce the domain shift at the image level. Some semi-supervised

learning technologies can be also applied to unsupervised domain adaptation due to the sim-

ilar problem setting. In the rest of this section, the previous works on unsupervised domain

adaptation of object detection and semantic segmentation are presented respectively.
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2.3.1 Unsupervised Domain Adaptation of Object Detection

Previous methods on unsupervised domain adaptation of object detection are mainly pro-

posed for the prevailing two-stage object detector, Faster R-CNN [2]. Adversarial learning-

based methods [7,23–26] align the global-level and instance-level features. The previous meth-

ods [27, 28] use the unpaired image-to-image translation model CycleGAN [29] to generate

synthetic source-like target-domain images (or target-like source-domain images) for bridging

the domain gap. The semi-supervised learning technologies applied to the cross-domain object

detection include pseudo-label learning [30,31] and Mean-Teacher-based consistency regular-

ization [32, 33]. Some methods [34, 35] compute class-wise prototypes to estimate the source

and target distributions. Moreover, some methods [36, 37] introduce an auxiliary classifier to

explore the categorical information. Three representative methods are described as follows.

Reference [7]

The method proposed in the reference [7] attaches a gradient reversal layer before the

global-level and instance-level discriminators into which the backbone features and the

instance features are fed. The gradients are reversed during the backpropagation to

perform the adversarial learning at the global level and the instance level.

Reference [31]

The method proposed in the reference [31] introduces a collaborative training manner

on the basis of the adversarial learning. Specifically, the object detector consists of a

backbone network, a region proposal network (RPN) and a region proposal classifier

(RPC). The method uses the predictions of the RPC to produce pseudo labels for the

RPN and uses the predictions of the RPN to weight the entropy minimization loss of the

RPC. Moreover, the RPN and RPC are trained to maximize the prediction discrepancy

between the RPN and RPC while the backbone is trained to minimize the discrepancy

for better aligning the feature distributions.

Reference [35]
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The method proposed in the reference [35] produces class-wise prototype representa-

tions with the region proposals through graph-based information propagation. Then, the

model is trained with a contrastive loss that brings the prototypes of the same categories

closer and pushes the prototypes of different categories further from each other.

2.3.2 Unsupervised Domain Adaptation of Semantic Segmentation

Previous methods on unsupervised domain adaptation of semantic segmentation have sim-

ilar components to those for object detection, which include adversarial learning, image-to-

image translation, and semi-supervised learning. The adversarial learning can be performed

at either the intermediate feature level [38] or the segmentation output level [39]. For the

image-to-image translation which reduces the visual differences between the source and target

domains, CycleGAN [29] based on the generative adversarial network is most widely used,

and other technologies include style transfer [40, 41] and Fourier Transform [42]. The most

effective semi-supervised learning technology is the pseudo-label learning, which can be fur-

ther improved with class-balanced pseudo labels [43], uncertainty-based rectification [44], and

confidence-based regularization [45]. In addition, entropy minimization and Mean-Teacher-

based consistency regularization are also shown to be effective in the methods [46,47] and the

method [48], respectively. Three representative methods are described as follows.

Reference [39]

The method proposed in the reference [39] performs the adversarial learning at the out-

put level. Specifically, a discriminator is trained to recognize the domain of the seg-

mentation outputs, and the segmentation model is trained to make the discriminator

recognize the target-domain outputs as those of the source domain.

Reference [43]

The method proposed in the reference [43] tries to tackle the class imbalance problem

of the pseudo-label learning. The method uses confidence (i.e., probability) thresholds

to select reliable pseudo labels and improve the pseudo labels in terms of class balance
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by using an independent threshold for each class to ensure that enough pseudo labels of

the rare classes are selected.

Reference [49]

The method proposed in the reference [49] combines the adversarial learning, the pseudo-

label learning, and the image-to-image translation. The segmentation model is intro-

duced into the learning of the image-to-image translation model, and the learning of the

two models are conducted alternatively to promote each other, which is the novelty of

the method.

2.4 Modal Adaptation

To get rid of the dependence on the access to the source-domain data, model adaptation

which only requires the pre-trained source-domain model is obtaining more and more atten-

tions. The model adaptation methods have been developed for image classification so far, and

the other tasks such as semantic segmentation are not sufficiently studied. The ideas for model

adaptation of image classification include generating target-style data with generative mod-

els [50], using information maximization [51], aligning feature prototypes using the source

classifier [52], and distinguishing source-similar/dissimilar features with adversarial learn-

ing [53]. Recent methods also estimate the source-domain feature distribution with target-

domain anchors [54], explore domain-invariant parameters of the source-domain model [55],

and use knowledge distillation with Mixup-based regularization [56]. Unfortunately, for se-

mantic segmentation, the methods for image classification are less applicable and less effective

due to the greater difficulty of pixel-level classification.

For model adaptation of semantic segmentation, some methods try to estimate the unseen

source-domain distribution by using a Gaussian mixture model in the embedding space [57]

and training a generative model with the source-domain feature statistics [58]. Other ideas for

improving the model adaptation performance include uncertainty and prior distribution-aware

intra-domain adaptation [59], historical contrastive learning [60], and reducing prediction un-
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certainty of multiple classifiers [61]. Three of the methods are described as follows.

Reference [57]

The method proposed in the reference [57] estimates a prototypical distribution while

training the source-domain model and aligns the target-domain distribution with the

source-domain distribution in the embedding space using the estimated prototypical dis-

tribution while training the target-domain model. The prototypical distribution is mod-

eled as a Gaussian mixture model, and the source and target distributions are aligned in

the embedding space by minimizing the Sliced Wasserstein Distance.

Reference [61]

The method proposed in the reference [61] enhances the robustness of the backbone

network by attaching multiple auxiliary classifiers into which backbone features cor-

rupted by dropout are fed and reducing the uncertainty between the main and auxiliary

predictions. By enforcing the predictions of the auxiliary classifiers to be consistent

with those of the main classifier, the noise robustness of the feature representation is

enhanced, thereby improving the generalization.

Reference [60]

The method proposed in the reference [60] uses contrastive learning to learn instance-

discriminative target representations. The method obtains the features of the query sam-

ple with the current model and features of the key samples with a historical model. Like

other contrastive learning methods, a contrastive loss is used to pull the query close to

the positive keys while pushing it far from the negative keys.

2.5 Problems to Be Solved in this Thesis

This section clarifies the problems to be solved in this thesis. Since this thesis solves the

problem of the label dependence in three directions including semi-supervised learning, unsu-

pervised domain adaptation, and model adaptation, the specific problems to be solved in the

three directions are described respectively as follows.
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Previous studies on semi-supervised learning are mainly conducted with natural images

while semi-supervised learning for medical images is not studied sufficiently. It is expected to

validate whether the semi-supervised learning technologies are effective for the medical im-

ages. For chronic gastritis classification using gastric X-ray images, which is chosen as the

task in this thesis, the state-of-the-art technology, perturbation-based consistency regulariza-

tion, can be hardly applied because the gastric X-ray images are very fine-grained and the

perturbations such as Gaussian noise may corrupt the key details for the gastritis classifica-

tion. Therefore, pseudo-label learning seems to be the most appropriate way for the task.

However, the traditional pseudo-label learning that produces the pseudo labels with the model

itself faces a limitation. The model’s performance can be hardly improved by producing new

pseudo labels that are more accurate than the old ones with the newly trained model because

the model may become more confident in the incorrect predictions using the pseudo labels

produced by itself. Such a limitation is a huge obstacle to achieving progressive performance

improvements, and this thesis tries to solve the problem by introducing a tri-training mecha-

nism, where three heterogeneous models are trained and the pseudo labels for each model are

produced with the other two models.

For unsupervised domain adaptation, the problems to be solved in object detection and se-

mantic segmentation are different. First, for unsupervised domain adaptation of object detec-

tion, the global feature alignment of the previous method is unaware of two important informa-

tion: (1) whether the features are in background region or foreground region, and (2) whether

the features are well aligned or poorly aligned. Without the information, the feature alignment

pays equal attention to all the regions and is thus less effective. To solve this problem, this

thesis introduces a divergence-based guidance mechanism to make the feature alignment to

pay more attention to the foreground regions and poorly-aligned regions that are more sig-

nificant. Second, for unsupervised domain adaptation of semantic segmentation, this thesis

proposes three methods to solve three problems respectively: (1) noise in the pseudo labels,

(2) difficulty of training with the adversarial learning, and (3) neglect of diversity within the

target domain. For the first problem, this thesis proposes a method that performs symmetric
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adversarial learning to produce prediction similarity maps that are involved in the thresholds

to reduce the noise in the pseudo labels. As to the second problem, because the optimization

of the adversarial learning is always difficult and unstable, this thesis proposes an alternative

method based on variational autoencoder that can learn the feature distribution similarly and

is easier to perform than the adversarial learning. Finally, for the third problem, because the

previous methods do not consider the intra-domain diversity within the target domain, which

is significant for the generalization of the trained model, this thesis proposes a method that

learns intra-domain style-invariant features to improve the generalization in the target domain.

Almost all the studies on model adaptation are conducted in the single-source setting, while

multi-source model adaptation which can be practical in real-world applications is remained to

be studied. Therefore, this thesis proposes the first method for multi-source model adaptation

of semantic segmentation. Moreover, as mentioned in Section 1.2, the previous multi-source

setting is too strict to be applied to real-world problems. To make the methods for multi-source

model adaptation applicable to a wider range of scenarios, this thesis relaxes the requirement

for the label spaces and realizes model adaptation in the new multi-source setting.

2.6 Conclusion

This chapter has presented the related works of the thesis, including studies on semi-supervised

learning, unsupervised domain adaptation, and model adaptation. Moreover, this chapter has

clarified the problems to be solved in this thesis and briefly introduced the solutions.
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Chapter 3

Mitigation of Label Dependence with
Semi-supervised Learning

3.1 Introduction

This chapter proposes a semi-supervised learning method for mitigating the label depen-

dence in the task of chronic gastritis classification using gastric X-ray images. Chronic gas-

tritis is known as a factor that may cause gastric cancer, and clinicians can diagnose chronic

gastritis and identify the risk of gastric cancer with gastric X-ray images [62]. To reduce the

burden of reading many gastric X-ray images on clinicians, models that can automatically

recognize gastritis from the X-ray images is needed. Although the previous work [63] has

realized gastritis classification with a deep convolutional neural network (CNN), the method

is on the basis of supervised learning and thus depends on a large number of gastric X-ray

images being annotated by experts. For mitigating the label dependence of the gastritis clas-

sification with semi-supervised learning, as described in Section 2.5, the methods based on

perturbation-based consistency regularization are less useful because the perturbations may

corrupt the key details in the X-ray images. Therefore, we develop the method on the basis of

the pseudo-label learning which is applicable to a wider range of scenarios. General pseudo-

label learning trains the model with the pseudo labels produced with the model itself, and

the performance can be hardly improved by performing the pseudo-label learning iteratively.

To solve the problem, we introduce the tri-training architecture, where three heterogeneous
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models are trained and the pseudo labels for each model are produced with the other two mod-

els. Moreover, we use the Between-Class (BC) learning [6], a data augmentation strategy, to

enhance the semi-supervised learning performance.

3.2 Semi-supervised Learning Based on Tri-training for Chronic

Gastritis Classification

To classify the X-ray images as gastritis or non-gastritis, we construct a patch-based method.

Specifically, we crop the whole X-ray images into small patches and classify the patches into

three classes: gastritis patch, non-gastritis patch, and irrelevant patch (i.e., regions outside the

stomach). Then, we classify the whole X-ray image with a majority voting system that con-

siders only the patches classified as gastritis or non-gastritis of the X-ray image. We develop

our semi-supervised learning method on the basis of the tri-training architecture and equip

the method with a data augmentation strategy known as BC learning. The procedures of our

method are illustrated in Fig. 3.1.

3.2.1 Tri-training Architecture

Tri-training is a semi-supervised learning algorithm proposed by Zhou et al. [5] that aims

to improve the performance of discriminative models. Originally designed for traditional ma-

chine learning models like SVM and random forest [64], it can also be applied to deep learning

models. The core idea behind tri-training is to augment the labeled dataset by incorporating

unlabeled data along with their predicted labels. The algorithm begins by training three mod-

els using separate initial training sets. These models serve as a starting point for the iterative

process consisting of two steps. Firstly, each model’s training set is augmented by adding

unlabeled samples that are consistently classified as the same class by the other two models.

These unlabeled samples are assigned consistent predicted labels. Secondly, the three mod-

els are retrained using their respective augmented training sets obtained in the previous step.

Notably, tri-training introduces a unique augmentation architecture where the training set of
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Figure 3.1: Procedures of the proposed method. ‘L1’, ‘L2’ and ‘L3’ are training sets randomly
sampled from labeled data. ‘U1’, ‘U2’ and ‘U3’ are training sets with pseudo labels selected
from unlabeled data. Specifically, ‘U1’ consists of samples that are predicted as the same class
by ‘Model2’ and ‘Model3’, ‘U2’ consists of samples that are predicted as the same class by
‘Model1’ and ‘Model3’, and ‘U3’ consists of samples that are predicted as the same class
by ‘Model1’ and ‘Model2’. ‘y’ and ‘y′’ denote the ground truth label and the pseudo label,
respectively.
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each model is expanded based on the predictions of the other two models. This approach does

not rely on setting a probability threshold to select unlabeled samples. Instead, the consistent

predictions from two models are considered reliable enough for training, eliminating the need

for redundant hyper-parameters. The tri-training algorithm can be visualized using Fig. 3.1

and can be summarized in the following three steps.

• Step 1. We start by creating three training sets using the bootstrap method [65]. These

training sets are sampled from the labeled data. We then train three SVM classifiers

using these training sets. To extract the features for training the SVMs, we use the

Inceptionv3 network [66], which has been pre-trained on the Imagenet dataset [67].

• Step 2. Next, we use the three trained models (SVMs or CNNs) to predict the labels of

unlabeled samples. If two models classify an unlabeled sample into the same class, we

add that sample to the training set of the remaining model.

• Step 3. We now train three CNN classifiers using the augmented training sets obtained

from Step 2. After training, we repeat Step 2, and this iterative process is performed for

a certain number of times.

Note that we start with SVMs as the initial models due to the small size of the labeled dataset.

CNNs trained with a limited number of samples often suffer from overfitting and instability.

In Step 3, all the models trained with augmented training sets are CNNs. To increase diversity

and robustness, we employ three different network structures: ResNet [1], DenseNet [68], and

a basic architecture with convolutional and fully connected layers.

By augmenting the training sets with unlabeled data, even though there may be some noisy

samples with incorrect labels, the models trained on these augmented sets consistently outper-

form models trained solely on labeled data, especially when labeled data is scarce. With these

improved models, higher-quality augmented training sets are obtained, leading to further per-

formance improvements. The number of iterations can be determined based on the similarity

among the three models’ predictions for the unlabeled data.
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3.2.2 Data Augmentation with BC Learning

BC learning is a novel approach that improves the performance of CNNs for image classi-

fication [6]. In our semi-supervised learning method, we incorporate BC learning to augment

the training data. The BC learning method can be summarized as follows.

X = r X1 + (1 − r) X2 (3.1)

Y = r Y1 + (1 − r) Y2 (3.2)

Here, X1 and X2 are original image samples, Y1 and Y2 are one-hot label vectors of the samples,

and r is always a random ratio sampled from a uniform distribution of [0, 1] in the whole

training. The pair of X and Y is a new augmented sample for training.

Unlike other data augmentation methods that focus on the vicinity of individual samples,

BC learning generates samples between different samples, enabling modeling of feature dis-

tributions across classes. The constraints in Eq. (3.1) and Eq. (3.2) simultaneously decrease

the distance within the same class and increase the distance between different classes in the

feature distributions. Additionally, the positional relationship among feature distributions is

regulated, ensuring that the between-class samples do not cluster around decision boundaries

of other classes. By modeling these feature distributions, models trained with BC learning

demonstrate improved generalization and achieve better performance.

In our method, we generate samples between different classes and within the same class.

This is a departure from the original setting of BC learning, which achieved the best per-

formance with samples strictly between different classes. However, in our semi-supervised

learning method, we believe that this setting better accommodates training sets that may con-

tain some noise. To prevent further contamination of the augmented training sets, we employ

a sampling strategy where either X1 or X2 is sampled exclusively from the labeled data. It is

important to note that BC learning is only utilized for training CNNs since SVMs cannot be

trained with between-class labels.
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3.2.3 Experiments

3.2.3.1 Implementation Details

Figure 3.2 illustrates the architecture of the three CNNs. All networks were trained using

the Stochastic Gradient Descent (SGD) optimizer. The initial learning rate was set to 0.001.

During training, if the average loss of the last ten epochs decreased by less than 0.01 compared

to the previous ten epochs, the learning rate was reduced to 0.0001. If the loss decline became

less than 0.001, training was stopped. For CNNs without BC learning, cross-entropy loss was

used, while for CNNs with BC learning, Kullback-Leibler (KL) divergence loss was employed.

All CNNs were trained with a mini-batch size of 64. In the tri-training process, two iterations

were performed.

3.2.3.2 Dataset and Pre-processing

We conducted experiments using 815 gastric X-ray images obtained from The University

of Tokyo Hospital. The images had a resolution of 2048×2048 pixels and were from different

patients. For training, we used 200 images, consisting of 100 gastritis images and 100 non-

gastritis images. The remaining 615 images, comprising 140 gastritis images and 475 non-

gastritis images, were used for testing. The X-ray images are divided into a number of 35×35

patches with a resolution of 299×299 pixels with a stride of 50 pixels on both width and height.

The patches from annotated images are categorized as gastritis patches, non-gastritis patches

and irrelevant patches. The irrelevant patches are outside the stomach and do not affect on

diagnosis of gastritis/non-gastritis. Specifically, the patches from annotated gastritis images

are categorized as either gastritis patches or irrelevant patches, and the patches from annotated

non-gastritis images are categorized as either non-gastritis patches or irrelevant patches. As

a result, the patches cropped from the 200 images of training data include 45,127 gastritis

patches, 42,785 non-gastritis patches, and 48,385 irrelevant patches. Figure 3.3 shows some

examples of the gastric X-ray images. In Fig. 3.3, (a) and (b) are gastritis images and (c) and

(d) are non-gastritis images.
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Figure 3.2: Architectures of three CNNs used in the proposed method.
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(a) (b)

(c) (d)

Figure 3.3: Examples of gastric X-ray images: (a) and (b) are gastritis images and (c) and (d)
are non-gastritis images.
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3.2.3.3 Evaluation Method and Metrics

We evaluate gastric X-ray images by using all three models to classify patches within the

image. The predictions of the models are averaged to determine the final prediction for each

patch. Image categorization is then done through majority voting among patches predicted as

gastritis or non-gastritis, considering only highly confident patches to improve accuracy. Con-

fidence is measured by predicted probabilities, with a threshold of 0.7 used for stability. We

directly use the original patches for evaluation, without employing BC learning. Evaluation

metrics include sensitivity, specificity, and their harmonic mean. The metrics are defined as

follows:

Sensitivity =
TP

TP + FN
,Specificity =

TN
TN + FP

,

Harmonic mean =
2 × Sensitivity × Specificity

Sensitivity + Specificity
,

(3.3)

where TP, TN, FP and FN denote true positive, true negative, false positive and false negative,

respectively. In our evaluation, we consider both sensitivity and specificity as they have a

trade-off relationship. To assess overall performance, we use the harmonic mean of these two

metrics. In real-world clinical applications, the balance between sensitivity and specificity can

be adjusted by adapting the voting system. For instance, if higher sensitivity is prioritized, the

majority voting can be customized with a threshold-controlling approach, allowing gastritis

patches to win with a lower count compared to non-gastritis patches.

3.2.3.4 Experimental Results

We present the results of our method using different numbers of annotated images: 10, 20,

50, 100, and 200, in Table 3.1. The convergence process of our method with 100 annotated

images is shown in Table 3.2. In addition, we conducted two sets of comparison experiments.

Firstly, we compared our method with a modified version that excludes BC learning, called

tri-training without BC learning, to verify the effectiveness of BC learning. The results are

shown in Table 3.3. Furthermore, we compared our semi-supervised learning method with

supervised learning using CNNs without unlabeled data. The results of this comparison are
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shown in Table 3.4. The reported results are the mean and standard deviation of multiple runs.

The experiments were conducted with 3 runs for Table 3.1 and 8 runs for Table 3.2, Table 3.3,

and Table 3.4. In each run, annotated images were randomly sampled from the 200 images of

the training data, maintaining a 1:1 ratio between gastritis and non-gastritis images. In the case

of 200 annotated images, the models were trained using supervised learning with BC learning,

rather than tri-training.

Our method demonstrated high diagnostic performance for chronic gastritis, even with a

small number of annotated images, as shown in Table 3.1. Remarkably, our semi-supervised

learning method achieved comparable performance to supervised learning with only half of

the annotated images. Moreover, increasing the number of annotated images further improved

the performance. The convergence process with 100 annotated images is presented in Table

3.2, showing no significant performance improvement after the second iteration.

Table 3.3 and Table 3.4 present results using 100 annotated images, and we believe the

conclusions drawn from different numbers of annotated images will remain consistent. As

indicated in Table 3.3, our method, tri-training with BC learning, outperformed its ablated

version without BC learning when using 100 annotated images. This confirms that data aug-

mentation with BC learning significantly enhances the performance of our semi-supervised

learning method. Furthermore, as seen in Table 4.4, semi-supervised learning surpassed su-

pervised learning when using 100 annotated images, indicating the benefits of incorporating

unlabeled images. Additionally, BC learning also improved the performance of supervised

learning.

Table 3.1: Performances of our method using different numbers of annotated images.
Number of annotated images Sensitivity Specificity Harmonic mean

10 0.857 0.864 0.860 ± 0.025
20 0.855 0.889 0.870 ± 0.016
50 0.871 0.945 0.906 ± 0.016
100 0.922 0.907 0.914 ± 0.001
200 0.893 0.953 0.922 ± 0.001
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Table 3.2: Convergence process of our method when using 100 annotated images.
Model Sensitivity Specificity Harmonic mean

SVM 0.763 0.967 0.852 ± 0.022
CNN (first iteration) 0.892 0.910 0.901 ± 0.013

CNN (second iteration) 0.915 0.914 0.914 ± 0.009

Table 3.3: Comparison of tri-training with and without BC learning using 100 annotated im-
ages.

Method Sensitivity Specificity Harmonic mean

Tri-training with BC learning (our method) 0.915 0.914 0.914 ± 0.009
Tri-training without BC learning 0.812 0.963 0.880 ± 0.028

Table 3.4: Comparison of our method and supervised learning using 100 annotated images.
Method Sensitivity Specificity Harmonic mean

Our method 0.915 0.914 0.914 ± 0.009
Supervised learning with BC learning 0.891 0.919 0.903 ± 0.013

Supervised learning without BC learning 0.798 0.951 0.873 ± 0.018

3.3 Conclusion

In this chapter, we have proposed a semi-supervised learning method for chronic gastritis

classification using gastric X-ray images. Our method incorporates a tri-training architecture

and utilizes BC learning for data augmentation. The problem of the general pseudo-label learn-

ing is solved with the tri-training architecture in our method. The outstanding performance

achieved by our method demonstrates its effectiveness and potential for practical applications.
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Chapter 4

Mitigation of Label Dependence with
Unsupervised Domain Adaptation

4.1 Introduction

This chapter proposes several unsupervised domain adaptation (UDA) methods for mitigat-

ing the label dependence in two computer vision tasks, object detection and semantic seg-

mentation. Specifically, in Section 4.2, we propose an adversarial learning-based method for

UDA of object detection. As to UDA of semantic segmentation, we propose three methods,

including a method that performs symmetric adaptation, a method based on the variational au-

toencoder [8], and a method that learns intra-domain style-invariant representation, in Section

4.3, Section 4.4, and Section 4.5, respectively. All the methods proposed in this chapter solve

one of the problems clarified in Section 2.5 respectively.

4.2 Unsupervised Domain Adaptation of Object Detection Based

on Divergence-guided Feature Alignment

4.2.1 Introduction

A prevalent approach for UDA of object detection is to perform global feature alignment

with adversarial learning [7]. In the previous method of global feature alignment, domain ad-

versarial learning is performed between an object detector and a domain discriminator. The
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domain discriminator predicts domain labels for the feature maps extracted from the detec-

tor backbone, while the backbone is trained to fool the discriminator. However, this sim-

ple feature alignment approach overlooks important feature information that significantly im-

pacts the alignment process: foreground/background and well-aligned/poorly-aligned regions.

Firstly, aligning background features, which do not contain categorical information, is much

less meaningful for knowledge transfer compared to aligning foreground features. Thus, the

awareness of foreground/background regions becomes intuitively valuable for effective fea-

ture alignment. Additionally, being aware of well-aligned/poorly-aligned regions allows for

adaptive adjustment of the alignment process.

In this section, we present a novel approach for UDA of object detection, aiming to address

the aforementioned challenge. Our method focuses on adapting one-stage object detectors,

an area that has received limited attention so far. We introduce a guidance mechanism based

on divergence maps to facilitate the feature alignment with adversarial learning. To identify

cues related to foreground regions and poorly-aligned regions in the target domain, we employ

pixel-level adaptation to translate target-domain images into the source domain. By comparing

the classification results between source-like images and the original target-domain images,

we calculate divergence maps. The divergence maps serve as attention maps to guide the

feature alignment process by spatially weighting the losses of the discriminator. We assume

that foreground regions are emphasized in the divergence maps, and poorly-aligned features

exhibit larger prediction divergence compared to well-aligned features. By incorporating this

information, our method enables the feature alignment to effectively perceive the foreground

regions and poorly-aligned regions, leading to improved adaptation performance.

4.2.2 Preliminaries

4.2.2.1 Problem Definition

LetDs = (xs
i , y

s
i )i = 1ns denote the source domain, comprising ns images xs

i and their corre-

sponding object annotations ys
i . Similarly, let Dt = xt

ii = 1nt denote the target domain, which

contains nt unlabeled images xt
i and shares the same object categories as Ds. Our objective is
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to train an object detector that exhibits strong generalization capabilities to the target domain

by leveraging the label knowledge obtained from the source domain.

4.2.2.2 Base Object Detector

In this section, we develop our approach using the fully convolutional one-stage object

detector (FCOS) [69], which has demonstrated excellent performance in one-stage object de-

tection tasks. It’s worth noting that our method is not limited to FCOS and can be applied to

other popular one-stage detectors, such as SSD [70] and RetinaNet [71], as our approach does

not rely on any specific characteristics unique to FCOS. Here, we provide a brief overview of

the FCOS architecture.

The FCOS architecture comprises a backbone network denoted as B, which utilizes the

feature pyramid network (FPN) [72] to generate feature maps at different levels. Addition-

ally, FCOS includes a detection head denoted as H, responsible for object prediction on

these feature maps. Unlike anchor-based detectors such as Faster R-CNN [2], SSD [70],

and RetinaNet [71], FCOS eliminates the use of predefined anchor boxes and directly pre-

dicts the bounding boxes for objects at each location. The detection head is composed of three

branches: a classification branch for object category prediction, a regression branch for bound-

ing box regression, and a center-ness branch for filtering out low-quality bounding boxes. The

center-ness branch is trained to estimate the distance between a location and the center of the

corresponding object. Bounding boxes predicted at locations far from the object center are

considered low-quality and are down-weighted during the non-maximum suppression (NMS)

process. In the training of FCOS, three losses are utilized: a classification loss, a bounding

box regression loss, and a center-ness loss. More detailed information regarding these losses

can be found in the reference [69].

4.2.2.3 Global Feature Alignment

The previous approach for global feature alignment performs domain-adversarial learning

between the backbone network and a discriminator, aiming to minimize the distribution gap
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between the feature representations of the two domains. In the case of the FCOS object detec-

tor, global feature alignment can be achieved using the following procedure.

Given the multi-level feature maps {Bk(x)}Nl
k=1 extracted from the FCOS backbone network

B for an image x, where Nl represents the number of feature levels, a discriminator Dk (k =

1, 2, . . . ,Nl) is trained to predict domain labels for each feature level. The backbone network B

and discriminator Dk are connected through a Gradient Reversal Layer (GRL) [73]. The GRL

reverses the gradients derived from the domain classification loss and back-propagates these

reversed gradients towards the backbone network B. Consequently, the backbone features

Bk(x) become progressively domain-invariant through the adversarial training between B and

Dk. The domain classification loss for global feature alignment is defined as follows:

Lglo =

Nl∑
k=1

[Exs∼Ds logDk(Bk(xs)) + Ext∼Dt log(1 − Dk(Bk(xt)))]. (4.1)

Note that Dk generates spatial results for each location on the feature maps. However, for

simplicity, the spatial dimensions are omitted here. The training process is to optimize the

following objective function:

min
B,H

max
D
L(B,H,D) = Lfcos(B,H) + λLglo(B,D), (4.2)

where λ is a trade-off parameter.

4.2.3 Divergence-guided Feature Alignment

4.2.3.1 Motivation

The existing global feature alignment method discussed in Section 4.2.2.3 lacks attention

differentiation among different regions in an image, which can result in suboptimal alignment.

This is attributed to two key factors: (1) foreground features carry more crucial information

for domain adaptation than background features, and (2) within an image, there are both well-

aligned and poorly-aligned regions. The first factor is evident as the objective is to transfer

label knowledge for foreground objects. The second factor leads to inadequate alignment for

poorly-aligned features, as the training process tends to be dominated by well-aligned objects,
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which are usually more abundant among the target objects. To address these challenges, we

propose a divergence-based guidance mechanism that prioritizes alignment for foreground

regions and poorly-aligned regions on the feature maps. Figure 4.1 shows an overview of the

proposed method.
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Figure 4.1: An overview of the proposed method. Note that the feature alignment is performed
individually for feature maps at multiple levels (k = 1, 2, . . . ,Nl). However, the figure only
displays one level for simplicity and clarity.

4.2.3.2 Production of Divergence Maps with Pixel-level Adaptation

Pixel-level adaptation techniques, such as image-to-image translation models like Cycle-

GAN [29], have been effective in reducing visual differences between domains for domain

adaptation. However, domain translation can be challenging in real-world scenarios and may

only lead to limited improvements in detection performance. Instead of relying on pixel-level

adaptation to mitigate the domain shift, we propose a novel approach that leverages diver-

gence maps to identify cues for foreground regions and poorly-aligned regions on the feature

maps. The divergence maps measure the prediction divergence between images before and

after translation. Our conception is based on the observation that predictions for foreground

objects are more likely to be influenced by the translation process compared to background

contents, as foreground features contain richer categorical information. Additionally, features

of poorly-aligned regions are domain-specific and therefore more susceptible to the effects of



4 Mitigation of Label Dependence with Unsupervised Domain Adaptation 31

translation compared to the domain-invariant features of well-aligned regions. Consequently,

foreground regions and poorly-aligned regions exhibit higher prediction divergence and are

highlighted in the divergence maps.

In Figure 4.1 (a), we generate divergence maps for only target-domain images. For source-

domain images, we directly employ the ground-truth label maps as indicators of foreground

regions. To generate the divergence maps, we begin by translating the target-domain image xt

to the source domain using a pre-trained CycleGAN model G. Subsequently, we obtain the

classification outputs for xt and G(xt) as follows:

p′k = H′cls(B
′
k(xt)), pk = Hcls(Bk(G(xt))), (4.3)

where Hcls(·) is the multi-label prediction generated by the classification branch of H. Ad-

ditionally, H′cls(B
′k(·)) denotes a self-ensembling model of Hcls(Bk(·)). The self-ensembling

model, updated after each iteration as an exponential moving average (EMA) of the detector,

facilitates more stable and reliable predictions. Using the classification outputs pk and p′k, we

calculate the divergence map using the following equation:

m(h,w)
k =

Nc∑
i=1

||p(h,w,i)
k − p′(h,w,i)k ||22, (4.4)

where h,w, i are indices for the spatial dimensions and category dimension, respectively, and

Nc is the number of foreground object categories. The resulting mk is then normalized to the

range (0, 1). For any source-domain image xs, we generate a label map lk (k = 1, 2, . . . ,Nl),

wherein locations labeled as positive for any object category are assigned a value of 1, and

0 otherwise. Both mk and lk are further clipped with a minimum value of 0.05 to prevent

complete elimination of alignment for background regions.

Figure 4.2 illustrates an example of the resulting divergence maps generated by our method.

The divergence maps effectively highlight the objects present in the target image across differ-

ent feature levels. The left divergence map specifically emphasizes small-sized objects, as it is

computed based on predictions from low-level feature maps. Similarly, the middle and right

divergence maps highlight medium-sized and large-sized objects, respectively. The example

shown in Fig. 4.2 demonstrates the ability of our method to effectively emphasize foreground
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regions on the divergence maps, aligning with our initial assumption. Although there are no

definitive indicators for qualitative analysis of well-aligned and poorly-aligned regions, we

will further validate the effectiveness of our method in highlighting poorly-aligned regions

and its significance through quantitative experiments.

Target image Translated target image

Divergence maps at different feature levels
Low-level Middle-level High-level

Figure 4.2: An example of the produced divergence maps. The divergence maps depicted in
the figure were generated at different feature levels, specifically the first level, the third level,
and the fourth level, from left to right, of the total five feature levels available.

4.2.3.3 Feature Alignment Guided with Divergence Maps at Two Levels

The feature alignment process can be guided by the divergence maps mk and label maps lk

to highlight the alignment for foreground regions and regions with poor alignment. This is

illustrated in Fig. 4.1 (b). To be more specific, we incorporate mk and lk as weights for the

domain classification loss in Eq. (4.1), based on the feature alignment method described in

Section 4.2.2.3. The loss for our feature alignment guided by divergence is defined as follows:

Ldiv glo =

Nl∑
k=1

[Exs∼Ds lk ⊙ logDk(Bk(xs)) + Ext∼Dt mk ⊙ log(1 − Dk(Bk(xt)))], (4.5)

where “⊙” denotes the element-wise product. Lglo in Eq. (4.2) is replaced by Ldiv glo in the

objective function of our method.
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In contrast to two-stage detectors that rely on RoIPool [74] for extracting instance-level

features, FCOS takes a different approach by using a detection head comprising only con-

volutional layers to detect objects on the backbone feature maps. This allows us to obtain

instance-level feature maps that have the same spatial size as the backbone feature maps.

These instance-level feature maps are generated by concatenating the outputs of the second

last convolutional layers from both the classification branch and the regression branch. Ad-

ditionally, the divergence-guided alignment that is applied to the backbone features can also

be performed on the instance-level features in a similar manner. Since the feature alignment

at the instance level complements the alignment at the backbone level, we combine them by

jointly optimizing the final objective function, which is defined as follows:

min
B,H

max
Dglo,Dins

L(B,H,Dglo,Dins) = Lfcos(B,H)+λ(Ldiv glo(B,Dglo)+Ldiv ins(B,Dins)),(4.6)

where Dglo and Dins denote the discriminators for backbone features and instance-level features

respectively, and Ldiv ins is defined in a similar manner to Ldiv glo, replacing Bk(·) with the

instance-level features.

4.2.4 Experiments

4.2.4.1 Implementation Details

ResNet-50 [1] was employed as the backbone network for FCOS, and the discriminators

comprise four 3×3 convolutional layers. For the discriminators associated with the largest and

second largest feature maps, the outputs underwent downsampling by one and two convolu-

tional layers respectively, with a stride of 2. The weight maps were downsampled to match the

output size using max-pooling. During training, a stochastic gradient descent (SGD) optimizer

was used for 24,000 iterations, employing an initial learning rate of 0.01 and a mini-batch size

of 8 images. At iteration 18,000, the learning rate was reduced to 0.001. In the normal-to-

foggy scenario, the scale parameter of the GRL was set to 0.1, and the loss weight λ was set

to 1.0. In the other scenarios, the scale parameter of GRL was 0.01, and the loss weight λ was

0.1.
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4.2.4.2 Datasets and Adaptation Scenarios

• Normal-to-Foggy. In this scenario, we used the datasets Cityscapes [4] and Foggy

Cityscapes [75], where Cityscapes serves as the source domain and Foggy Cityscapes

as the target domain. Cityscapes is a dataset that focuses on street scenes, comprising

2,975 images for training and 500 images for validation. All the images in Cityscapes

were captured under clear weather conditions. On the other hand, Foggy Cityscapes is a

derivative of Cityscapes, consisting of synthetic images depicting foggy conditions. The

evaluation of the model was performed using the validation set of Foggy Cityscapes. The

object categories within both datasets include “person”, “rider”, “car”, “truck”, “bus”,

“train”, “motorcycle”, and “bicycle”.

• Cross-Camera. In this scenario, we used the datasets KITTI [76] and Cityscapes, where

KITTI serves as the source domain and Cityscapes as the target domain. Although

both datasets focus on street scenes, KITTI was captured using a distinct camera setup

compared to Cityscapes. The KITTI dataset consists of 7,481 images for training. Eval-

uation was conducted on the validation set of Cityscapes for five commonly encountered

categories, namely “person”, “rider”, “car”, “truck”, and “train”.

• Synthetic-to-Real. In this scenario, we used the datasets Synscapes [77] and Cityscapes,

where Synscapes serves as the source domain and Cityscapes as the target domain. Syn-

scapes is a synthetic dataset comprising 25,000 photo-realistic street scene images. For

evaluation, the validation set of Cityscapes was used, focusing on five common cate-

gories: “person”, “car”, “truck”, “bus”, and “train”.

4.2.4.3 Methods for Comparison

For comparisons, we conducted experiments involving three existing methods that are most

closely related to our method. These methods also employ adversarial learning to align the

features extracted from the backbone network. The first method, referred to as Global feature

alignment [7], as described in Section 4.2.2.3, aligns the backbone features without any addi-
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tional information. The second method, Center-aware alignment [78], incorporates the output

of the center-ness branch of FCOS into the feature alignment process to emphasize foreground

features. The third method, Uncertainty-aware alignment [79], employs prediction uncertainty

to assess the alignment quality and prioritizes the alignment of poorly-aligned features. In

contrast, our proposed method takes into account both foreground features and poorly-aligned

features through the utilization of a divergence-based guidance mechanism. It is worth men-

tioning that since the previous methods [7,79] were originally designed for Faster R-CNN, we

selectively retained only the alignment process for backbone features to adapt these methods

for FCOS.

Table 4.1: Adaptation performance of the proposed method and previous methods in three
scenarios. C → F: Cityscapes to Foggy Cityscapes. K → C: KITTI to Cityscapes. S → C:
Synscapes to Cityscapes.

Method
mAP

C → F K → C S → C
Source only 41.1 18.2 33.3
Global feature alignment [7] 49.9 19.0 36.7
Center-aware alignment [78] 50.6 19.8 38.3
Uncertainty-aware alignment [79] 50.8 20.6 37.6
Ours (Ldiv glo only) 51.9 21.2 38.7
Ours (Ldiv glo+Ldiv ins) 52.2 21.4 38.8

4.2.4.4 Experimental Results

The adaptation performance of the proposed method and three previous methods is pre-

sented in Table 4.1. Baseline results, obtained by training solely with source-domain data, are

also reported for comparison. Mean average precision (mAP) is used as the evaluation metric

for the common categories, with an intersection over union (IoU) threshold of 0.5.

As shown in Table 4.1, all the domain adaptation methods showed an improvement in de-

tection performance compared to the baseline of training solely with source data across the

three adaptation scenarios. Notably, the methods [78, 79] that incorporate additional guid-
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ance information for adaptation outperformed the general alignment method [7]. Remarkably,

our method, which solely conducts feature alignment at the backbone level (“Ldiv glo only”

in Table 4.1), achieved superior performance compared to all the previous methods that also

conduct feature alignment solely at the backbone level. This finding serves as evidence for the

effectiveness of guiding feature alignment with the divergence maps. Furthermore, by jointly

aligning features at both the backbone level and the instance level (“Ldiv glo+Ldiv ins” in Table

4.1), a slight improvement in performance was observed. This suggests the complementary

nature of feature alignment at the two levels.

4.2.5 Conclusion

In this section, we have presented an unsupervised domain adaptation approach specifically

designed for one-stage cross-domain object detection. Our method incorporates divergence

maps derived from target image predictions to guide the process of feature alignment. This

unique guidance mechanism enables our method to be attentive to both foreground regions and

poorly-aligned regions, leveraging this information to prioritize alignment for these specific re-

gions. Prior works have not explored this aspect, making our method a novel contribution in

the field. Experimental results in three representative adaptation scenarios validate the superi-

ority of our method compared to the previous methods.

4.3 Unsupervised Domain Adaptation of Semantic Segmentation

Based on Symmetric Adaptation Consistency

4.3.1 Introduction

For UDA of semantic segmentation, the technologies of image-to-image translation, adver-

sarial learning, and pseudo-label learning have been proved to be effective in the previous

works, and a combination of the three technologies can achieve the state-of-the-art perfor-

mance. Specifically, the previous method [49] first trains an image-to-image translation model

to reduce the domain shift at the image level, then trains the segmentation model with the
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adversarial learning which performs the domain adaptation at the feature level, and finally re-

trains the segmentation model with the pseudo labels produced with the adapted model. The

key to promoting the UDA performance is the quality of the pseudo labels which is improved

by the image-to-image translation and the adversarial learning in the previous method.

To further improve the pseudo-label learning, in this section, we propose a novel method

based on symmetric adaptation consistency. Specifically, we adopt a symmetrical training

scheme where two segmentation models are trained using adversarial learning. The key aspect

of this training scheme is calculating the pixel-wise cosine similarity between the predictions

of these two models in the target domain. The term “symmetrically” indicates that the ad-

versarial losses for both models are computed separately using the source domain and the

target domain. This similarity, referred to as symmetric adaptation consistency, is a crucial

component. We argue that predictions exhibiting higher consistency are more reliable because

the ensemble of symmetrically trained models is inherently more robust than a single model.

Therefore, by leveraging symmetric adaptation consistency, we can effectively filter out noise

present in the pseudo labels. By applying a threshold based on the average of symmetric

adaptation consistency and the probability values, we can obtain more accurate pseudo labels

compared to using only the probability values.

4.3.2 Overall Architecture

In the UDA setting, we are presented with a dataset S from the source domain, containing

segmentation labels YS, and a dataset T from the target domain, which lacks any labels. The

objective is to train a semantic segmentation model utilizing both S and T in order to achieve

comparable performance in the target domain as in the source domain.

Our method consists of two stages: image-to-image translation and feature-level domain

adaptation. Initially, images from the source domain undergo translation to resemble the target

domain using an image-to-image translation model. Subsequently, the semantic segmentation

model is trained using a combination of adversarial learning and pseudo-label learning. An

overview of our method is illustrated in Fig. 4.3.
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Figure 4.3: Overview of the proposed method. The “adv” in the right of the figure denotes
adversarial learning.

4.3.3 Image-to-image Translation with StarGAN

The purpose of the image-to-image translation is to minimize the visual differences between

the two domains, effectively performing domain adaptation at the pixel level. This process

helps alleviate the challenges faced during feature-level domain adaptation. Our image-to-

image translation model is constructed based on the StarGAN framework [80]. StarGAN is a

generative adversarial network consisting of a generator and a discriminator. In our method,

we train the translation model to establish a bidirectional mapping between the source and

target domains. By mapping between the domains, mismatches in characteristics such as

saturation and texture can be mitigated. The generator, denoted as G, takes an image x from

either domain and a conditional label c ∈ {Source, Target}, producing the translated image

G(x,c) in the domain c. On the other hand, the discriminator, denoted as D, receives the original

image x and the generated image G(x,c) as inputs. It outputs two terms: an adversarial term,

denoted as Dadv, representing the probability distribution of whether the input is a real image

or a fake image generated by G, and a classification term, denoted as Dcls, representing the

probability distribution of domain classification. In the following sections, we will introduce
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the respective loss functions associated with these components.

Adversarial loss To train the generator G and the discriminator D in an adversarial man-

ner, we employ the adversarial loss. The objective is for the discriminator to distinguish be-

tween the images generated by G and real images, while G aims to generate images that are

indistinguishable from real ones. The adversarial loss is defined as follows:

Ladv = Ex
[−log Dadv(x)

]
+ E(x,c)

[−log (1 − Dadv(G(x, c)))
]
, (4.7)

where the generator maximizes the latter term while the discriminator minimizes both.

Domain classification loss To train the generator G to generate images in a specific do-

main c, we utilize the domain classification loss. This loss is used to train G using the gener-

ated images and D using the real images. The objective of the discriminator D is to correctly

classify the domain label ĉ of the real image x. This is achieved by minimizing the following

classification loss:

LD
cls = E(x,ĉ)

[−log Dcls(ĉ|x)
]
, (4.8)

where Dcls(ĉ|x) is the probability distribution over domain labels predicted by D. G is trained

using the generated images by minimizing the following classification loss for G:

LG
cls = E(x,c)

[−log Dcls(c|G(x, c))
]
, (4.9)

and G can consequently generate images that are classified as the specified domain c by D.

Reconstruction loss To ensure that the translated images preserve their original contents,

we introduce a reconstruction constraint to the generator G. This constraint aims to reconstruct

the original image x when given the translated image G(x,c) and the corresponding original

domain label ĉ. This is achieved by minimizing the following reconstruction loss:

Lrec = E(x,c,ĉ) [∥x − G(G(x, c), ĉ)∥1] . (4.10)

Identical loss To enhance the preservation of original details in the translated images, we

introduce an additional identical loss. The identical loss is defined as follows:

Lide = E(x,ĉ) [∥x − G(x, ĉ)∥1] , (4.11)
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which encourages G to give an output with no changes from the original image if the specified

domain is the original domain.

Semantic consistency loss Given that the ultimate objective is semantic segmentation,

we incorporate an extra semantic consistency loss to improve the preservation of semantic

information. The semantic consistency loss is defined as follows:

Lsem = E(x,c) [∥M(x) −M(G(x, c))∥2] , (4.12)

where M is a semantic segmentation model trained with S.

Full objective function Combining all the above losses, we have the final loss functions

for G and D as follows:

LD = Ladv + λclsLD
cls, (4.13)

LG = −Ladv + λclsLG
cls + λrecLrec + λideLide + λsemLsem, (4.14)

where λcls, λrec, λide and λsem are loss weights.

After training the translation model using the aforementioned loss function, we use this

model to translate the source-domain dataset S into a new domain S′ that is visually similar

to the target domain.

4.3.4 Symmetric Feature-level Domain Adaptation

4.3.4.1 Motivation

In the feature-level domain adaptation, we align the feature distributions through adversarial

learning while leveraging pseudo-label learning to enhance performance. We train a discrimi-

nator Dda to classify the outputs of the segmentation model M as either belonging to the source

domain or the target domain. Conversely, M learns to deceive Dda in an adversarial manner.

However, unlike traditional adversarial learning, simply opposing the adversarial loss for M to

that of Dda is not sufficient because our objective is to align the feature distributions between

the two domains. Previous studies [39,49,81] have mainly focused on adapting the feature rep-

resentations of the target domain. In other words, they train M to generate outputs that are from
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the target domain and are classified as the source domain by Dda, thereby aligning the feature

distribution of the target domain with that of the source domain. However, we believe that

there is another approach: adapting the features of the source domain. As shown in Fig. 4.4,

both approaches involve bringing either the source or target domain closer to the other, resem-

bling two symmetric adaptation procedures. We argue that such an architecture is more robust

than unidirectional adaptation. Therefore, we propose training two models symmetrically and

considering the consistency of predictions when generating the pseudo-labels.

Source domain
(labeled)

Target domain
(unlabeled)

Adaptation

Source domain
(labeled)

Target domain
(unlabeled)

Adaptation

Figure 4.4: Illustration of the symmetric adaptation.

4.3.4.2 Pseudo-label Generation

We propose a symmetric training approach for two segmentation models, namely M1 and

M2, where each model is adapted with the source domain and the target domain, respectively.

These models are then used to generate pseudo labels. Averaging the predictions of both

models can enhance the accuracy of the pseudo labels. However, to demonstrate that the

improvement is not solely due to averaging the predictions, but rather a result of the proposed

symmetric adaptation consistency, we generate two separate sets of pseudo labels using each

model without performing the averaging step. To determine the confidence of the labels, we

measure a confidence mapMcon f i by averaging the probability mapMproba and the symmetric
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adaptation consistency mapMconsist as follows:

Mcon f i =
Mproba +Mconsist

2
. (4.15)

We exclude labels with a confidence level below 0.95 from the pseudo label sets. However, if

a class has more than half of its pixels excluded, we relax the constraint and ensure that at least

half of the assigned pixels for each class are included to maintain balance in the pseudo label

sets. We experimentally select the threshold of 0.95, as the number of included pixels starts to

decrease rapidly beyond this value. By iteratively performing the procedure of pseudo label

generation and new model training twice, our method achieves the best performance.

4.3.4.3 Training Losses

Supervised learning loss in the source domain Transferring label information from the

source domain to the target domain is achieved through supervised learning using the trans-

lated domain S′. We employ the cross-entropy loss to train the segmentation model M with

images xS′ ∈ S′ and one-hot labels yS′ ∈ YS′ . The loss can be written as follows:

Lseg s′ = E(xS′ ,yS′ )

− 1
HW

H∑
h=1

W∑
w=1

C∑
c=1

y(h,w,c)
S′ log M(xS′)(h,w,c)

 , (4.16)

where H, W, and C denote the height, width, and number of categories, respectively.

Pseudo-label learning loss in the target domain The subsequent pseudo-label learning

loss has a similar definition to the supervised learning loss, but is applied in different domains.

Lseg t = E(xT ,yT )

− 1
HW

H∑
h=1

W∑
w=1

C∑
c=1

y(h,w,c)
T log M(xT )(h,w,c)

 , (4.17)

where xT denotes the image of T , and yT ∈ YT denotes the pseudo label set.

Adversarial loss Dda and M engage in an adversarial learning process, where Dda aims

to classify M’s outputs, while M strives to generate outputs that are misclassified by Dda. The

loss functions are formulated as follows:

LDda
adv = ExS′

[−log Dda(M(xS′))
]
+ ExT

[−log (1 − Dda(M(xT )))
]
, (4.18)

LM
adv =

 ExS′
[−log (1 − Dda(M(xS′)))

]
if M = M1,

ExT
[−log Dda(M(xT ))

]
if M = M2,

(4.19)
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where Dda outputs the probability that the input belongs to the source domain. We employ two

separate discriminators for M1 and M2, although their loss functions are identical. To simplify

the presentation, we express them using a single equation.

Full objective function Equation (4.18) is the full loss function for training Dda, and the

full loss function for M is defined as follows:

LM = Lseg s′ +Lseg t + λadvLM
adv, (4.20)

where λadv is the loss weight.

4.3.5 Experiments

4.3.5.1 Implementation Details

We adopted the network architectures and training parameters of Stargan [80] for the image-

to-image translation model. As for the semantic segmentation model, we used the DeepLab

V2 [3] with ResNet101 [1] architecture. The discriminator architecture and training parame-

ters for both the segmentation model and the discriminator remained consistent with previous

works [39, 49].

4.3.5.2 Datasets and Adaptation Scenarios

We conducted experiments on the widely used domain adaptation scenario, specifically the

GTA5-to-Cityscapes scenario. In this setup, the GTA5 dataset [82] served as the source do-

main, while the Cityscapes dataset [82] served as the target domain. Here are the details of the

datasets.

The Cityscapes dataset consists of real-world urban scene images with a resolution of 2,048×1,024

pixels. It comprises a training set containing 2,975 images and a validation set containing 500

images. In our experiments, we used the validation set as the test data. The images were

resized to a resolution of 1,024×512 pixels.

The GTA5 dataset consists of 24,966 synthetic urban scene images collected from the GTA5

video game. The images have a resolution of 1,914×1,052 pixels. Nineteen common object
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categories are shared between the GTA5 and Cityscapes datasets. The images were resized to

a resolution of 1,280×720 pixels.

4.3.5.3 Experimental Results

We calculated the mean Intersection over Union (IoU) for the 19 categories and compared

our results with other state-of-the-art methods, as shown in Table 4.2. To ensure a fair compar-

ison, all the results reported in Table 4.2 were obtained using the DeepLab V2 with ResNet101

architecture. Among the methods listed in Table 4.2, BDL is the closest method to ours. They

share the same components as ours, except for the symmetric adaptation and consistency. In

Table 4.2, the “Single” result for our method represents the average mean IoU achieved by the

two models in our method when tested individually. This result serves as an indicator of the

performance of a single model in our method. The “Fusion” result is obtained by averaging the

predictions of the two models. According to Table 4.2, our method achieved the highest mean

IoU of 47.9 when using a single model for testing. Furthermore, by averaging the predictions

of the two models, our method achieved an additional improvement of 0.6, demonstrating the

robustness and effectiveness of the symmetric adaptation approach.

Table 4.2: Results of mean intersection over union (IoU) for GTA5-to-Cityscapes benchmark.
Method mIoU Method mIoU
AdaptSegNet [39] 41.4 Cycada [38] 42.7
DCAN [83] 41.7 ADVENT [46] 45.5
CLAN [81] 43.2 Patch-Align [84] 46.5
DISE [85] 45.4 BDL [49] 47.2
Ours (single) 47.9 Ours (fusion) 48.5

To demonstrate the effectiveness of incorporating the symmetric adaptation consistency, we

conducted additional ablation studies. We first compared the mean accuracy of all categories of

pseudo labels in the first iteration that are obtained using and not using the consistency. When

not using the consistency, the pseudo labels were filtered based solely on their probability,
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while ensuring that the number of pixels for each category remained the same as when using

the consistency. We also compared the final performances under these conditions. The results

are presented in Table 4.3. By considering the consistency, the mean accuracy of the pseudo

labels showed a notable improvement of 2.0. This improvement in the quality of the pseudo

labels had a positive impact on the final performance, with the mean IoU improved by 1.3.

These results provide further evidence of the effectiveness of incorporating the symmetric

adaptation consistency in our method.

Table 4.3: Results of mean intersection over union (IoU) for ablation study.
Method Accuracy of pseudo labels mIoU
Using consistency 72.6 48.5
Not using consistency 70.6 47.2

4.3.6 Conclusion

In this section, we have presented a novel symmetric domain adaptation architecture for

semantic segmentation, along with a method that incorporates the symmetric adaptation con-

sistency to enhance the adaptation performance. Through extensive ablation studies, we have

demonstrated the effectiveness of our approach. Our method outperformed previous methods

in the task of domain adaptation for semantic segmentation.

4.4 Unsupervised Domain Adaptation of Semantic Segmentation

Using Variational Autoencoder

4.4.1 Introduction

The adversarial learning is one of the most prevalent technologies for UDA of semantic seg-

mentation, which is also used in the method proposed in Section 4.3 of this thesis. Despite the

good performance, the optimization of the adversarial learning is always difficult and unstable
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due to the minimax game between the segmentation model and the discriminator. Therefore,

in this section, we propose a method in which the discriminator is replaced by a variational

autoencoder (VAE) and the training is performed in a non-adversarial manner. Our method

represents a pioneering attempt to leverage VAE in domain adaptation. More specifically, our

method employs a VAE model to capture the output distribution of the source domain, while

simultaneously updating the segmentation model to align the output distribution of the target

domain with the distribution learned by the VAE model. The segmentation model and the

VAE are trained simultaneously with a common loss in a non-adversarial manner, which is

more stable and easier to perform than the adversarial learning. Moreover, we show that the

VAE-based learning and the adversarial learning are complementary and the performance can

therefore be further improved by combining the two technologies.

4.4.2 Overall Architecture

The proposed method addresses the task of learning a semantic segmentation model M that

can accurately predict pixel labels for the target domain T , despite the absence of annotations

in T , while leveraging the pixel-wise annotations available in the source domain S. The key

objective of our method is to align the feature distributions of S and T . To accomplish this,

we employ a variational autoencoder V , which consists of an encoder Venc and a decoder

Vdec, to learn the output distribution of the segmentation model. Unlike adversarial learning-

based approaches that involve a minimax game between the segmentation model M and a

discriminator, our method trains M and V with a shared objective. In addition to the feature

alignment with the VAE, we introduce the adversarial learning and the pseudo-label learning

to further improve the performance.

4.4.3 VAE-based Feature Alignment

Figure 4.5 illustrates our VAE-based UDA method. Our method follows a two-step training

process: 1) updating V using the target domainT , and 2) updating M using both the source and

target domains while keeping V fixed. These steps are performed iteratively throughout the
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training process, gradually aligning the output distributions of the two domains. We provide a

detailed explanation of each step as follows.

𝑉"#$ update

𝐿&'(

𝑉)"$

𝑀

Source domain

𝑉"#$

update

𝐿&'(+

𝑉)"$

𝑀

Source domain Target domain

update

𝐿,-.

Update 𝑉 Update 𝑀

Back propagationData flow Latent z samplingSegmentation output

Figure 4.5: Illustration of our VAE-based UDA method. M is the segmentation model. V is
the variational autoencoder composed of encoder Venc and decoder Vdec.

4.4.3.1 Update of VAE

In our method, we employ a basic form of VAE. The VAE consists of an encoder, denoted

as Venc, and a decoder, denoted as Vdec. When given an input x from the source domain S,

the encoder Venc encodes the segmentation output y = M(x) into a latent distribution Venc(z|y),

which is typically modeled as a Gaussian distribution:

Venc(z|y) = N(µ(y),Σ(y)), (4.21)
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where µ(y) and Σ(y) are the distribution parameters estimated by the encoder. To regularize the

encoder, we impose a prior distribution p(z) = N(0, I) and minimize the Kullback-Leibler di-

vergence KL[Venc(z|y)||p(z)]. The decoder Vdec uses the reparameterization trick [8] to sample

a latent vector z from the distribution Venc(z|y) and reconstructs M(x) as follows:

y′ = Vdec(z), z ∼ Venc(z|y). (4.22)

The reconstruction output y′ is compared to the original segmentation output M(x) using an

L1 loss. The complete loss function for V is defined as follows:

Lvae = Ex∈S
[||y′ − M(x)||1 + λkldKL

[
Venc(z|M(x))||p(z)

]]
, (4.23)

where λkld is the weight for the regularization term of Venc(z|M(x)). By minimizing this equa-

tion, we can effectively learn the output distribution of the source domain S using the VAE.

4.4.3.2 Update of Segmentation Model

The semantic features learned solely from the source domain S may not be as informative

for the target domain T , resulting in a significant decrease in performance when applying

the learned model to T . To address this issue, we train the segmentation model M using both

domainsS andT . In the source domainS, M learns semantic features using pixel-wise ground

truth labels. On the other hand, in the target domainT , M aims to minimize the VAE loss while

keeping the parameters of V fixed. This objective is designed to align the output distribution of

T with the distribution learned by V . Since V learns the output distribution of S, this learning

objective indirectly encourages consistency between the output distributions of both domains.

By training with data from both domains, M acquires domain-invariant features, which helps

to mitigate the performance drop when applying the model to the target domain T .

We perform supervised learning with the source domain S by minimizing the cross-entropy

loss as follows:

Lsup = E(x,ygt)∈S

− 1
HW

H∑
h=1

W∑
w=1

C∑
c=1

y(h,w,c)
gt logM(x)(h,w,c)

 , (4.24)

where ygt denotes one-hot label, M(x) denotes the predicted probability distribution, H, W and

C denote the height, weight, and the number of classes, respectively.
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For feature alignment, we use a loss function similar toLvae but applied to the other domain:

LM
vae = Ex∈T

[||y′ − M(x)||1 + λkldKL
[
Venc(z|M(x))||p(z)

]]
. (4.25)

To train M, we combine these losses in a weighted sum:

LM = Lsup + λvaeLM
vae, (4.26)

where λvae is the loss weight. By optimizing M with this loss function, we facilitate the transfer

of semantic knowledge from the source domain S to the target domain T .

4.4.4 Integration with Adversarial Learning and Pseudo-label Learning

As our method using VAE is compatible with the UDA method based on the adversarial

learning, we incorporate an additional adversarial loss into our method. We adopt a represen-

tative adversarial learning method [39], which involves training a discriminator to distinguish

the domain of the segmentation output, and simultaneously training the segmentation model

to deceive the discriminator. To integrate this into our method, we introduce a discriminator D

and update the segmentation model M using both LM
vae and the following adversarial loss:

Ladv = Ex∈T
[−logD(M(x))

]
, (4.27)

where D(M(x)) represents the probability of the segmentation output belonging to the source

domain as recognized by the discriminator. The loss function for the discriminator D is defined

as follows:

LD = Ex∈S
[−logD(M(x))

]
+ Ex∈T

[−log(1 − D(M(x)))
]
. (4.28)

Pseudo labels serve as additional supervision in the unlabeled domainT and greatly enhance

the overall performance. To generate pseudo labels, we train the segmentation model M using

both the VAE loss and the adversarial loss. Subsequently, we utilize M to predict labels for

the data in T . These predicted labels are selected based on a probability threshold, and they

are utilized as pseudo labels. The training with pseudo labels is similar to supervised learning

with ground truth labels. The corresponding loss function is defined as follows:

Lpsl = E(x,ypsl)∈T

− 1
HW

H∑
h=1

W∑
w=1

C∑
c=1

y(h,w,c)
psl logM(x)(h,w,c)

 , (4.29)
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where ypsl is the pseudo label.

In our method, the final loss function for the segmentation model M is obtained by combin-

ing the VAE-based feature alignment, the adversarial learning, and the pseudo-label learning,

as defined in the following equation:

LM f inal = Lsup +Lpsl + λvaeLM
vae + λadvLadv, (4.30)

where λvae and λadv is loss weights.

4.4.5 Experiments

4.4.5.1 Implementation Details

Following our method proposed in Section 4.3, for the proposed method in this section,

we use the same segmentation network, DeepLab-v2 [3] network with ResNet-101 [1]. The

training parameters and the discriminator in the adversarial learning are also the same as those

in Section 4.3.5.1. The VAE architecture employed in our method consists of a total of 12

convolutional layers. The encoder component is comprised of 6 convolutional layers, with the

respective filter numbers being {64, 128, 256, 512, 512, 512}. Additionally, there is a linear

layer that projects the encoded features into a latent space. The convolutional layers have

a filter size of 4×4 and a stride of 2. On the other hand, the decoder mirrors the encoder’s

structure, mapping the latent vectors back to the output space of the segmentation model. The

dimensionality of the latent space is set to 2,048. For the optimization of the VAE, we utilize

the Adam optimizer with an initial learning rate of 10−3 and momentum values of 0.9 and 0.99.

The learning rate follows the same scheduling policy as the segmentation model. The weight

parameters λvae and λkld are set to 10−3 and 0.05, respectively.

4.4.5.2 Datasets and Adaptation Scenarios

We conducted experiments on two benchmark domain adaptation scenarios, GTA5-to-Cityscapes

and SYNTHIA-to-Cityscapes. GTA5 dataset [82] and SYNTHIA dataset [86] were used as the
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source domain, and Cityscapes dataset [82] was used as the target domain. The datasets are

described as follows.

The Cityscapes dataset is a real-world dataset comprising urban scene images with a res-

olution of 2,048×1,024 pixels. It consists of a training set containing 2,975 images and a

validation set with 500 images. For our experiments, we used the validation set as the test

data. The images were resized to a resolution of 1,024×512 pixels.

The GTA5 dataset is a collection of 24,966 synthesized urban scene images generated from

the GTA5 video game. These images have a resolution of 1,914×1,052 pixels. There are

nineteen common categories shared between the GTA5 dataset and the Cityscapes dataset.

The images were resized to a resolution of 1,280×720 pixels.

The SYNTHIA dataset is a synthetic dataset consisting of photo-realistic images depicting

various driving scenarios within a virtual city. We used the SYNTHIA-RAND-CITYSCAPES

subset, which contains 9,400 images with a resolution of 1,280×760 pixels. This subset shares

16 common categories with the Cityscapes dataset.

4.4.5.3 Experimental Results

The results of various state-of-the-art methods, including our method, in the GTA5-to-

Cityscapes scenario are presented in Table 4.4. The table displays the Intersection over Union

(IoU) values for each class as well as the mean IoU across all classes. Note that we did not

include the methods [38, 49, 87] which employ image-to-image translation models. These

methods involve two stages, namely image-to-image translation and segmentation, which fall

outside the scope of our comparison. Since our method incorporates both adversarial learn-

ing and pseudo-label learning, we conducted ablation studies to assess the effectiveness of

each component. In Table 4.4, we have included the results for “vae-based” which solely

performs VAE-based feature alignment as described in Section 4.4.3, and “adv-based” which

exclusively utilizes the adversarial learning-based method [39] outlined in Section 4.4.4. As

shown in Table 4.4, both “vae-based” and ‘adv-based” approaches achieved comparable per-

formances, with our VAE-based method slightly outperforming in terms of mean IoU. By
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combining the two methods (referred to as “vae+adv”), we observed an improvement in mean

IoU, underscoring the complementary nature of these approaches. Furthermore, the inclu-

sion of pseudo-label learning (indicated by “vae-based+psl” and “adv-based+psl”) resulted

in enhanced mean IoUs for both the “vae-based” and “adv-based” methods. Ultimately, by

integrating adversarial learning, pseudo-label learning, and VAE-based feature alignment, our

method (termed “vae+adv+psl”) achieved the highest mean IoU, surpassing all other methods

in the comparison.

The results in the SYNTHIA-to-Cityscapes scenario are presented in Table 4.5. Some com-

parative methods only reported performances for 13 classes, excluding the classes “wall”,

“fence” and “pole”. Therefore, we have included the mean IoUs for both 13 classes (denoted

as “mIoU*”) and 16 classes in the table. As shown in Table 4.5, our method achieved supe-

rior performance compared to most of the comparative methods in terms of both mean IoUs

for 13 classes and 16 classes. However, our method did obtain a slightly lower mean IoU

for 13 classes compared to SSF-DAN [88]. It is important to highlight that although SSF-

DAN outperformed our method by 0.8 in terms of mean IoU for 13 classes in the SYNTHIA-

to-Cityscapes scenario, our method demonstrated greater superiority over SSF-DAN in the

GTA5-to-Cityscapes scenario, with a difference of 1.6 in mean IoU. The results presented in

both Table 4.4 and Table 4.5 reaffirm that our method exhibits state-of-the-art performance and

remarkable robustness across different adaptation scenarios.
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Table 4.4: Results of intersection over union (IoU) for GTA5-to-Cityscapes benchmark.
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Table 4.5: Results of intersection over union (IoU) for SYNTHIA-to-Cityscapes benchmark.
“mIoU” is the mean IoU over all of the 16 categories, and “mIoU*” is that over 13 categories
excluding 3 categories marked by “*”. Results of “-” were not reported in the papers.
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4.4.6 Conclusion

In this section, we have proposed a VAE-based method for UDA of semantic segmentation.

Our method trains a VAE to perform feature alignment in the output space of the segmentation

model. Because our method performs the domain adaptation in a non-adversarial manner,

it is easier to train and more stable than the adversarial learning-based methods. Moreover,

our method can be combined with the adversarial learning and the pseudo-label learning for

further improvement. The effectiveness of our method has been confirmed by conducting the

experiments in two benchmark scenarios.

4.5 Unsupervised Domain Adaptation of Semantic Segmentation

Learning Intra-domain Style-invariant Representation

4.5.1 Introduction

Previous approaches to UDA in semantic segmentation have primarily focused on reducing

the differences between the source and target domains. However, an aspect that has received

insufficient attention is the fact that aligning feature distributions alone does not guarantee the

generalization ability of the trained model in the target domain. The distinct data distributions

and nontransferable features between the two domains make complete alignment unachiev-

able. Consequently, a model trained solely on supervision signals from the source domain

may not generalize well to the target domain. In this section, we address this issue by em-

phasizing the importance of learning intra-domain style-invariant representations for UDA in

semantic segmentation. The fundamental idea is that if the learned representation remains in-

variant to the diverse characteristics present in the target domain, such as brightness, saturation,

and texture variations, the segmentation model will perform well on unknown samples in the

target domain. Our objective is to learn this style-invariant representation by leveraging both

supervised learning with labeled data from the source domain and unsupervised learning with

unlabeled data from the target domain. To achieve this, we propose a self-ensembling method

that integrates supervised and unsupervised learning to obtain the intra-domain style-invariant
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representation.

As mentioned earlier, the presence of diverse intra-domain styles in images is crucial for

realizing our method. In our method, we achieve this by performing style translation on the

source-domain images to different target domain styles, while also diversifying the styles of the

target-domain images. To accomplish this task, we employ an existing multimodal unpaired

image-to-image (I2I) translation technique called multimodal unsupervised image-to-image

translation (MUNIT) [89]. However, during our experimentation, we encountered a crucial

requirement that the existing method failed to meet. Specifically, we needed to ensure the con-

sistency of semantic content in the translated results. To address this challenge, we propose a

semantic-aware MUNIT, which modifies the MUNIT architecture to enable content-consistent

translation. This is achieved by incorporating pixel-level semantic information as additional

guidance for the translation process.

4.5.2 Learning Intra-domain Style-invariant Representation with Self-ensembling

4.5.2.1 Overall Architecture

To transfer semantic knowledge at the pixel level from a labeled source-domain dataset S

(consisting of image-label pairs {xs, ys} ∈ S) to an unlabeled target-domain dataset T (contain-

ing images {xt} ∈ T ), we propose a self-ensembling method that aims to learn intra-domain

style-invariant representations. The self-ensembling architecture comprises two models: a

student model M and a teacher model M′ that have identical structures. The student model

is trained simultaneously using both labeled data from S and unlabeled data from T . Mean-

while, the teacher model is updated as an exponential moving average (EMA) of the student

model. This update is governed by the equation:

θ′k = αθ
′
k−1 + (1 − α)θk, (4.31)

where α denotes the EMA weight parameter, θ′k denotes the weights of M′ at training step k,

θ′k−1 at step k − 1, and θk denotes the weights of M at training step k. The student and teacher

models are updated alternately during the training process. Figure 4.6 provides an illustration
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of the self-ensembling architecture, which involves three main components: supervised learn-

ing using S, unsupervised learning using T , and pseudo-label learning using T (although not

depicted in Fig. 4.6).

𝑥 !

𝑥"#, 𝑥$# 𝑥"!, 𝑥$!

Teacher
𝑀!

Student
𝑀

ℒ%&' ℒ()*

Exponential moving 
Average (EMA)

𝑦#

𝑀(𝑥",$# ) 𝑀(𝑥",$! ) 𝑀,(𝑥!)

Figure 4.6: Illustration of the proposed self-ensembling method for learning intra-domain
style-invariant representation. Lsup is the supervised learning loss, and Lcon is the unsuper-
vised consistency loss.

4.5.2.2 Supervised Learning with the Source Domain

Given an image-label pair {xs, ys} from the source domain S, we employ a multimodal I2I

translation model to convert xs into the target domain, resulting in two translated images xs
1

and xs
2 with distinct intra-domain styles. Subsequently, we use these translated images along

with the corresponding label ys to compute the cross-entropy loss as follows:

Lsup = Exs,ys[− 1
2HW

∑
k

∑
h,w,c

ys(h,w,c)logM(xs
k)(h,w,c)], (4.32)
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where M(xs
k) represents the probability predicted by the model M for the image xs

k. The nota-

tion (h,w, c) refers to an element in channel c at spatial position (h,w), and H and W denote

the height and width of the image, respectively.

As the domain translation process is inherently imperfect, the student model acquires se-

mantic knowledge to some extent in the target domain through the aforementioned supervised

loss. Simultaneously, the learning of the intra-domain style-invariant representation is also

performed in the supervised learning. Since the ground truth label is available, there is no

need to impose an additional constraint, and the supervised loss inherently promotes consis-

tent predictions for both xs
1 and xs

2.

4.5.2.3 Unsupervised Learning with the Target Domain

Given a target-domain image xt, we utilize the multimodal I2I translation model once more

to generate two distinct copies, namely xt
1 and xt

2, that possess diversified styles within the

same domain as xt. In other words, the translation process solely focuses on altering the

intra-domain style of xt rather than changing its domain. Since there is no available ground

truth label, we employ the predictions of the teacher model M′ to compute an unsupervised

consistency loss as follows:

Lcon = Ext [
1
2

∑
k

||M(xt
k) − M′(xt)||2]. (4.33)

The consistency loss has two components. First, it involves ensuring the consistency be-

tween the predictions of M on xt
k and the predictions of the teacher model M′ on xt. Second,

it involves maintaining consistency between the predictions of M on xt
1 and xt

2. The first com-

ponent serves as a consistency term in semi-supervised learning, which compels the student

model to make predictions consistent with those of the teacher model. The teacher model,

having aggregated information from multiple student models, tends to be more accurate than

any individual student model. Hence, the teacher model’s predictions can be used as training

targets for the student model. Additionally, viewing the teacher model as an aggregation of

the student models, the consistency constraint encourages the student model to be smooth in

the vicinity of xt and leads to a shift of the decision boundary towards low-density regions.



4 Mitigation of Label Dependence with Unsupervised Domain Adaptation 59

This shift enhances the model’s reliability for the target domain, aligning with the “smooth-

ness assumption” of semi-supervised learning. However, unlike traditional consistency terms

in semi-supervised learning methods such as [14, 15], we sample from the vicinity of xt by

altering its intra-domain style rather than introducing trivial noise.

The second consistency component bears resemblance to the consistency between xs
1 and xs

2

in supervised learning using the source domain. Despite the absence of ground truth supervi-

sion signals in this consistency loss, both the predictions of xt
1 and xt

2 are encouraged to align

with the teacher model’s prediction M′(xt), thereby enforcing the learning of intra-domain

style-invariant representations.

4.5.2.4 Pseudo-label Learning with the Target Domain

Similar to the methods discussed in Section 4.3 and Section 4.4, we employ pseudo-label

learning once again to enhance the performance of UDA. Taking inspiration from [44], which

leverages prediction uncertainty estimation to rectify pseudo-label learning, we adopt a similar

rectification strategy. However, instead of using two classifiers as in [44] to estimate uncer-

tainty, we utilize the style-diversified images xt
1 and xt

2 for this purpose. The pseudo-label loss

is defined as follows:

Lpsl = Exp(−KLD(xt
1, x

t
2))L′sup + KLD(xt

1, x
t
2), (4.34)

where KLD(xt
1, x

t
2) represents the Kullback–Leibler (KL) divergence between M(xt

1) and M(xt
2),

while L′sup corresponds to the cross-entropy loss using pseudo labels, following the same for-

mat as Lsup.

In Eq. (4.34), the term KLD(xt
1, x

t
2) quantifies the inconsistency between the predictions of

model M for the style-diversified copies xt
1 and xt

2. When M produces divergent predictions

for a pixel in xt
1 and xt

2, it indicates ambiguity, and the model’s reliability for that pixel be-

comes uncertain due to the ambiguous predictions. Consequently, the pseudo labels assigned

to such pixels are noisier, prompting us to assign smaller weights to them in the form of

Exp(−KLD(xt
1, x

t
2)) within the cross-entropy loss L′sup using pseudo labels. Simultaneously,

to account for the training of pixels with smaller weights, we train the student model M to



4 Mitigation of Label Dependence with Unsupervised Domain Adaptation 60

minimize the KL divergence term KLD(xt
1, x

t
2), ensuring consistency in predictions for xt

1 and

xt
2. Consequently, the training of model M is influenced less by unreliable pseudo labels com-

pared to normal pseudo-label learning without rectification. The combined minimization of

both L′sup and KLD(xt
1, x

t
2) facilitates the learning of intra-domain style-invariant representa-

tions.

4.5.2.5 Training Procedure

The training process of the self-ensembling architecture consists of multiple steps. Initially,

the model is trained without pseudo-label learning using the following loss function:

Linit = Lsup + ωλconLcon, (4.35)

where λcon is the loss weight, and ω is a weight that gradually increases from zero to one

during the initial stage of training. Following this, pseudo labels are generated using the

trained model, and the training process incorporates pseudo-label learning using the following

loss function:

Lfinal = Lsup +Lpsl + ωλconLcon. (4.36)

In our method, we iteratively perform pseudo label generation and model training twice.

4.5.3 Multimodal Unpaired Image-to-image Translation

To generate style-diversified images for the intra-domain style-invariant representation learn-

ing, we employ an unpaired multimodal I2I translation model based on the MUNIT [89] archi-

tecture. While MUNIT has achieved success in domain transfer, it suffers from inconsistencies

in the translation results, particularly in terms of semantic content. This inconsistency can hin-

der the learning process as the goal is to learn style-invariant representations for consistent

semantic content. To address this issue, we adapt the MUNIT architecture by incorporating

pixel-level semantic information into the translation process. This semantic information acts

as additional guidance for the translation, improving the preservation of the original contents.
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We will describe the MUNIT architecture and the modifications made in our semantic-aware

MUNIT.

4.5.3.1 MUNIT Architecture

MUNIT is designed to learn disentangled representations that enable many-to-many map-

pings between two domains. It assumes that an image x can be decomposed and generated

from a content latent code fcont and a style latent code fsty. The content space is shared

across both domains, while the style space is specific to each domain. To extract the con-

tent code fcont = Econt(x) and style code fsty = Esty(x), two encoders, namely Econt and Esty,

are trained for each domain. Additionally, a decoder G is trained to generate the translated im-

age x′ = G( fcont, f ′sty), where f ′sty is sampled from a normal distribution N(0, I). Specifically,

for the source domain, the encoders and decoder are denoted as {Es
cont, Es

sty, Gs}, and for the

target domain, they are denoted as {Et
cont, Et

sty, Gt}.

The loss function of MUNIT consists of an adversarial loss and several reconstruction

losses. Here, we take the S-to-T translation as an example. Given a source domain image

xs, we aim to reconstruct the image using Gs based on its latent codes f s
cont = Es

cont(xs) and

f s
sty = Es

sty(xs). This reconstruction loss is formulated as follows:

Lx
recon = Exs[||xs −Gs( f s

cont, f s
sty)||1]. (4.37)

Additionally, after translating xs to the target domain as xs
s2t = Gt( f s

cont, f ′sty), we aim to recon-

struct the latent codes by encoding xs
s2t using the encoders of the target domain. This leads to

the following reconstruction losses:

Lcont
recon = Exs,xs

s2t
[|| f s

cont − Et
cont(xs

s2t)||2], (4.38)

Lsty
recon = Exs,xs

s2t
[|| f ′sty − Et

sty(xs
s2t)||2]. (4.39)

To ensure the realism of xs
s2t, we incorporate an adversarial loss using a domain-specific dis-

criminator Dt:

Ladv = Exs
s2t ,x

t [log(1 − Dt(xs
s2t)) + logDt(xt)]. (4.40)
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The final objective function for the S-to-T translation can be defined as:

min
E,G

max
D
L(E,G,D) = Ladv + λxLx

recon + λcLcont
recon + λsLsty

recon, (4.41)

where λx, λc and λs are hyper-parameters. The opposite T -to-S translation is learned simul-

taneously using the same approach.

4.5.3.2 Our Semantic-aware MUNIT

To address the challenge of preserving the original semantic contents in MUNIT, we pro-

pose incorporating pixel-level semantic information into the translation process. Since ground

truth labels are only available in the source domain, we cannot directly utilize them as se-

mantic information. Instead, we discovered that the predictions generated by a pre-trained

segmentation network, which can provide meaningful predictions for both domains, serve as

a suitable substitute for the labels. Consequently, we pre-train a segmentation network using

a simple UDA method [39] and utilize the network’s predictions as the semantic information.

While some information may be misleading due to potential inaccuracies in the predictions,

the predicted probability distribution can contain valuable latent information beyond the binary

representation of one-hot ground truth labels.

MUNIT employs the AdaIN [90] layer, a normalization layer with learnable parameters,

to apply the style code to the decoder network and generate stylized images. In our method,

both the style code and semantic information play a guiding role in the translation process.

Therefore, it is logical to incorporate them together through the normalization layer. However,

the AdaIN layer is designed to handle one-dimensional style codes and is not compatible with

pixel-level inputs. To overcome this limitation, we replace the AdaIN layer with a spatially-

adaptive instance normalization layer inspired by the work of Park et al. [91]. As illustrated

in Fig. 4.7, the concatenation of the style code and semantic information is processed by con-

volutional layers, learning pixel-level affine parameters for the normalization operation. The

spatially-adaptive instance normalization layer is used for all normalization layers in the de-

coders. By introducing the semantic information through the normalization layers, the trans-
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lation network becomes aware of the semantic meanings associated with each pixel, enabling

more accurate and appropriate image translation.

Concat(𝑓!"#, 𝑓!$% )
𝛾

𝛽

𝑓!"#: semantic information    𝑓!$% : style code    𝛾, 𝛽: affine parameters
𝑓&': input feature     𝑓()$ : output feature                 : conv layer

𝑓&'

𝑓()$

Normalize
⊗

⊕

Figure 4.7: Structure of the spatially-adaptive normalization layer. Concat( fsem, fsty) has been
resized to the spatial size of fin.

The training procedure for our semantic-aware MUNIT is identical to that of MUNIT.

In addition to the loss components mentioned in Section 4.5.3.1, we incorporate the cycle-

consistency loss and perceptual loss, similar to MUNIT. However, we make a modification

by replacing the VGG network with a segmentation network that has been pre-trained using a

UDA method [39]. This pre-trained segmentation network serves the dual purpose of provid-

ing semantic information and calculating the perceptual loss.

During the training of the self-ensembling model, we dynamically generate style-diversified

images, denoted as xs
k and xt

k (where k=1, 2), using the target-domain decoder Gt. Specifically,

xs
k represents target-domain-like images and is generated as follows:

xs
k = Gt(Es

cont(xs), fk,Mpre(xs)), (4.42)

where fk represents randomly sampled style codes from the normal distribution N(0, I), and

Mpre corresponds to the pre-trained segmentation model utilized for extracting semantic infor-

mation. Similarly, we generate xt
k without changing the domain as follows:

xt
k = Gt(Et

cont(xt), fk,Mpre(xt)). (4.43)
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4.5.4 Experiments

We performed the experiments on the same benchmarks, GTA5-to-Cityscapes and SYNTHIA-

to-Cityscapes, as those in Section 4.4. Details of the datasets have been provided in Section

4.4.5.2.

4.5.4.1 Implementation Details

In our semantic-aware MUNIT, the network architectures of the encoders and decoders are

identical to those of MUNIT [89], except for the normalization layers in the decoders. In

the decoders, we replaced the normalization layers with spatially-adaptive instance normal-

ization layers, which consist of three convolutional layers with 128 filters of size 3×3. For

optimization, we employed the Adam optimizer with the same parameter settings as MUNIT.

The hyperparameters λx, λc, and λs, as well as the weights assigned to the cycle-consistency

loss and perceptual loss, were set to 10, 1, 1, 10, and 0.1, respectively. All input images were

resized such that their longer side measures 1,024 pixels, while maintaining the original aspect

ratio.

We utilized two segmentation network architectures, namely Deeplab V2 [3] with ResNet101 [1]

and FCN-8s [92] with VGG16 [93]. The optimizer parameters provided by [49] were used for

optimization. Both structures were trained with a batch size of 1. For the segmentation net-

work, we set the EMA parameter α to 0.99 and the weight parameter λcon to 1. The ramp-up

parameter ω was defined as ω = Exp(−5(1 − k)2), where k linearly increases from zero to one

during the initial 20,000 training iterations. In our experiments, we found that applying color

jitter transformation as an additional intra-domain style augmenter was beneficial. Therefore,

we incorporated the color jitter transformation into the generated images.

4.5.4.2 Main Results and Comparison with Results of State-of-the-art Methods

Table 4.6 and Table 4.7 present the results of our method and eight recent state-of-the-art

methods. We summarize the common ideas found in the previous methods. Most methods,

with the exception of PIT and PCEDA, employed pseudo labels. To address the visual domain
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gap, BDL, FDA, LTIR, and PCEDA performed translation. Among these, FDA stood out by

utilizing a Fourier Transform-based translation approach. Another shared component among

BDL, RectPLL, SIM, and LTIR was the adoption of output-space adversarial learning. PIT

distinguished itself as a unique method by exploring the domain-invariant interactive relation

between image-level information and pixel-level information.

The results for the GTA5-to-Cityscapes benchmark are presented in Table 4.6. Our method

demonstrated the highest performance among all the methods, as shown in Table 4.6. Specifi-

cally, our mean Intersection over Union (IoU) scores were 1.8 and 1.6 higher than the second-

best methods for the two base structures, respectively. Additionally, our method outperformed

all other competitive methods in 7 categories for both structure settings. For the more chal-

lenging SYNTHIA-to-Cityscapes benchmark shown in Table 4.7, mean IoUs were calculated

across 13 categories and 16 categories, following the evaluation of previous studies. In the

ResNet101 setting, our method achieved superior performance compared to the second-best

method, with improvements of 2.2 and 1.1 in mean IoU scores for the respective category

settings. In the VGG16 setting, our method exhibited a slight advantage over the second-best

method, with improvements of 0.6 and 0.7 in mean IoU scores for the respective category

settings. Overall, our method achieved state-of-the-art results for both benchmarks.
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Table 4.6: Results of intersection over union (IoU) for GTA5-to-Cityscapes benchmark.

Method
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.8
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Table 4.7: Results of intersection over union (IoU) for SYNTHIA-to-Cityscapes benchmark.
“mIoU” is the mean IoU over all of the 16 categories, and “mIoU*” is that over 13 categories
excluding 3 categories marked by “*”. Results of “-” were not reported in the papers.

Method

Structure

road

sidewalk

building

wall

fence

pole

t-light

t-sign

vegetation

sky

person

rider

car

bus

motorcycle

bicycle

mIoU

mIoU*
B

D
L

[4
9]

ResNet101

86
.0

46
.7

80
.3

-
-

-
14

.1
11

.6
79

.2
81

.3
54

.1
27

.9
73

.7
42

.2
25

.7
45

.3
-

51
.4

C
A

G
-U

D
A

[9
4]

84
.7

40
.8

81
.7

7.
8

0.
0

35
.1

13
.3

22
.7

84
.5

77
.6

64
.2

27
.8

80
.9

19
.7

22
.7

48
.3

44
.5

52
.6

R
ec

tP
L

L
[4

4]
87

.6
41

.9
83

.1
14

.7
1.

7
36

.2
31

.3
19

.9
81

.6
80

.6
63

.0
21

.8
86

.2
40

.7
23

.6
53

.1
47

.9
54

.9
FD

A
[4

2]
79

.3
35

.0
73

.2
-

-
-

19
.9

24
.0

61
.7

82
.6

61
.4

31
.1

83
.9

40
.8

38
.4

51
.1

-
52

.5
SI

M
[9

5]
83

.0
44

.0
80

.3
-

-
-

17
.1

15
.8

80
.5

81
.8

59
.9

33
.1

70
.2

37
.3

28
.5

45
.8

-
52

.1
PI

T
[9

6]
83

.1
27

.6
81

.5
8.

9
0.

3
21

.8
26

.4
33

.8
76

.4
78

.8
64

.2
27

.6
79

.6
31

.2
31

.0
31

.3
44

.0
51

.8
LT

IR
[9

7]
92

.6
53

.2
79

.2
-

-
-

1.
6

7.
5

78
.6

84
.4

52
.6

20
.0

82
.1

34
.8

14
.6

39
.4

-
49

.3
PC

E
D

A
[9

8]
85

.9
44

.6
80

.8
9.

0
0.

8
32

.1
24

.8
23

.1
79

.5
83

.1
57

.2
29

.3
73

.5
34

.8
32

.4
48

.2
46

.2
53

.6
O

ur
s

91
.9

54
.6

81
.3

7.
2

1.
1

33
.8

29
.6

30
.0

78
.5

80
.0

61
.6

28
.9

82
.4

32
.8

37
.3

52
.6

49
.0

57
.1

B
D

L
[4

9]

VGG16

72
.0

30
.3

74
.5

0.
1

0.
3

24
.6

10
.2

25
.2

80
.5

80
.0

54
.7

23
.2

72
.7

24
.0

7.
5

44
.9

39
.0

46
.1

FD
A

[4
2]

84
.2

35
.1

78
.0

6.
1

0.
4

27
.0

8.
5

22
.1

77
.2

79
.6

55
.5

19
.9

74
.8

24
.9

14
.3

40
.7

40
.5

47
.3

PI
T

[9
6]

81
.7

26
.9

78
.4

6.
3

0.
2

19
.8

13
.4

17
.4

76
.7

74
.1

47
.5

22
.4

76
.0

21
.7

19
.6

27
.7

38
.1

44
.9

LT
IR

[9
7]

89
.8

48
.6

78
.9

-
-

-
0.

0
4.

7
80

.6
81

.7
36

.2
13

.0
74

.4
22

.5
6.

5
32

.8
-

43
.8

PC
E

D
A

[9
8]

79
.7

35
.2

78
.7

1.
4

0.
6

23
.1

10
.0

28
.9

79
.6

81
.2

51
.2

25
.1

72
.2

24
.1

16
.7

50
.4

41
.1

48
.7

O
ur

s
84

.6
40

.3
74

.5
0.

5
0.

1
27

.7
25

.4
25

.1
78

.0
81

.8
58

.0
19

.4
70

.5
24

.3
17

.7
41

.5
41

.8
49

.3



4 Mitigation of Label Dependence with Unsupervised Domain Adaptation 68

4.5.4.3 Supplementary Results and Analyses

Ablation study. Table 4.8 presents the results of an ablation study conducted to ana-

lyze the individual contributions of each component in our method. As a baseline, we ini-

tially trained the model using only the original source-domain images without any adapta-

tion. The baseline achieved mean IoU scores of 35.1 and 33.8 for GTA5-to-Cityscapes and

SYNTHIA-to-Cityscapes, respectively. Next, we introduced style-diversified source-domain

images, without incorporating the self-ensembling architecture. This inclusion significantly

improved the mean IoU scores to 46.9 and 40.5, attributed to the domain transfer and intra-

domain style diversification. By leveraging the target-domain images in conjunction with

the self-ensembling architecture, further enhancements were observed, resulting in mean IoU

scores of 48.1 and 42.1. Lastly, the integration of pseudo-label learning provided an addi-

tional boost, elevating the mean IoU scores to 52.4 and 49.0. Overall, each component of

our method contributed progressively to the improvement of the mean IoU scores for both the

GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes benchmarks.

Table 4.8: Results of ablation study for the components in our method with the ResNet101
structure.

Method
Components Mean IoU

Lsup Lcon Lpsl GTA5 SYNTHIA
Source only (non-adaptation) 35.1 33.8
Source only (style-diversified) ✓ 46.9 40.5
Self-ensembling ✓ ✓ 48.1 42.1
Self-ensembling + pseudo-label learning ✓ ✓ ✓ 52.4 49.0

Measures of style diversification. The intra-domain style diversification is a crucial as-

pect of our method, and thus we conducted a comparison of various style diversification mea-

sures, the results of which are presented in Table 4.9. Note that the results in Table 4.9 were

obtained using the self-ensembling architecture without incorporating pseudo-label learning.

The first measure we examined was color jitter, which involves modifying the brightness, con-
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trast, saturation, and hue of an image without altering its domain. Color jitter contributed to the

learning of intra-domain style-invariant representations; however, when used alone, it did not

yield satisfactory results in terms of UDA performance. To improve the UDA performance,

we employed CycleGAN [29], a one-to-one translation model, to translate the source-domain

images to the target domain before applying color jitter. This approach resulted in improved

performance for the GTA-to-Cityscapes benchmark but did not yield significant improvements

for the other benchmark. Comparing these methods to our base model, MUNIT, we found that

MUNIT slightly outperformed color jitter. Furthermore, applying color jitter after translation

with MUNIT did not lead to further improvements. In contrast, our semantic-aware version of

MUNIT, which we refer to as our I2I translation model, surpassed both the original MUNIT

and all the aforementioned measures. Additionally, a slight improvement was observed when

combining our I2I translation model with color jitter.

Table 4.9: Results for comparison of style diversification measures with the ResNet101 struc-
ture. “PM” denotes the measure used in the proposed method.

Style diversification measure
Mean IoU

GTA5 SYNTHIA
Color jitter 43.5 40.1
CycleGAN + color jitter 46.5 39.5
MUNIT 43.9 40.6
MUNIT + color jitter 43.2 40.7
Semantic-aware MUNIT 47.8 41.4
Semantic-aware MUNIT + color jitter (PM) 48.1 42.1

Number of sampled styles. To explore the potential impact of sampling more than two

style-diversified copies for each image, we conducted a study on the influence of the number

of sampled intra-domain styles. The objective was to determine if increasing the number of

sampled styles could further enhance the performance. Surprisingly, as shown in Table 4.10,

our method did not yield any significant improvement when the number of sampled styles

was increased. The results indicate that sampling two styles is sufficient for achieving style-
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invariant representation learning. Moreover, the lack of improvement with additional sampled

styles suggests that the performance gain observed with two styles was primarily attributed

to the proposed intra-domain style-invariant representation learning, rather than the presence

of double copies in a mini-batch. If the number of copies in a mini-batch were the determin-

ing factor, the performance would have been expected to improve further with four or eight

sampled styles. However, this was not the case, reinforcing the conclusion that the proposed

intra-domain style-invariant representation learning was the key contributing factor to the ob-

served performance improvements.

Table 4.10: Results of study on the influence of the number of sampled styles for one image
with the ResNet101 structure.

Number of sampled styles
Mean IoU

GTA5 SYNTHIA
1 42.4 38.6
2 48.1 42.1
4 48.0 41.9
8 48.1 42.0

Comparison of translation results. Figure 4.8 presents a visual comparison of the trans-

lation results between MUNIT and our semantic-aware MUNIT. The first row showcases the

translation results from GTA5 to Cityscapes, while the second row demonstrates the results of

intra-domain style diversification for a target-domain image. Notably, the semantic contents in

the sky region exhibit inconsistencies in MUNIT’s results. However, our method significantly

improves the consistency of semantic contents in the translated images, as clearly depicted in

Fig. 4.8.
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Original Image Results of MUNIT Results of ours

Figure 4.8: Translation results of MUNIT and the proposed semantic-aware MUNIT.

Hyper-parameter analyses. Figure 4.9 illustrates the results of our analyses for the hyper-

parameters λcon and α. The parameter λcon represents the weight assigned to the consistency

loss in the self-ensembling architecture, while α is the parameter controlling the EMA up-

dating for the teacher model. Without pseudo-label learning, our method achieved the best

performance when λcon was set to 1.0 and α was set to 0.99. Examining Fig. 4.9, it is evident

that using a small value of λcon (e.g., 0.2) or a large value of λcon (e.g., 2.0) significantly re-

duced the performance. On the other hand, the parameter α had only a minor impact on the

performance.
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Figure 4.9: Influence of hyper-parameters λcon and α on mean IoU. The experiments were con-
ducted without pseudo-label learning on GTA5-to-Cityscapes with the ResNet101 structure.

4.5.5 Conclusion

In this section, we have presented a novel concept of learning intra-domain style-invariant

representation for UDA in semantic segmentation. Based on this concept, we have developed

a method that aims to enhance generalization in the target domain. Our approach involves

training a semantic-aware multimodal I2I translation model to generate images with diverse

intra-domain styles and consistent semantic contents. These generated images are then utilized

to train the segmentation model using a self-ensembling architecture. Additionally, we incor-

porated pseudo-label learning to further improve the performance of our method, resulting

in state-of-the-art results on two benchmark datasets. Through comprehensive experiments

and analyses, we have demonstrated the effectiveness of our method in addressing UDA in

semantic segmentation.

4.6 Conclusion

In this chapter, we have presented several UDA methods for object detection and semantic

segmentation. Specifically, for UDA of object detection, to solve the problem of the global

feature alignment that is unaware of the foreground and poorly-aligned regions, in Section 4.2,

we proposed a divergence-guided feature alignment method that is aware of the information
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of the important regions and leverages the information to improve the feature alignment. As to

UDA of semantic segmentation, we proposed three methods to solve the problems mentioned

in Section 2.5. First, in Section 4.3, for the problem of noisy pseudo labels, we proposed a

method that performs symmetric domain adaptation and uses the symmetric adaptation consis-

tency to reduce the noise in the pseudo labels. Next, in Section 4.4, for the problem of difficulty

of training with the adversarial learning, we proposed a VAE-based method that trains a VAE

to learn the distribution of segmentation outputs as a replacement of the adversarial learning.

Finally, in Section 4.5, for the problem of neglect of the target domain’s style diversity, we pro-

posed a method with a novel concept of learning intra-domain style-invariant representation to

improve the generalization in the target domain.
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Chapter 5

Mitigation of Label Dependence with
Model Adaptation

5.1 Introduction

The chapter focuses on model adaptation, a variant of unsupervised domain adaptation

(UDA), which replaces the source-domain data with a pre-trained source-domain model and is

consequently applicable to a wider range of real-world scenarios. Previous methods on model

adaptation have been mainly developed for image classification which is much easier than

adaptation for a semantic segmentation model. Moreover, most previous studies have been

done in the single-source setting, while multi-source model adaptation (MSMA) has been

rarely studied. However, the problem setting of MSMA is meaningful because pre-trained

models of different domains are available in many real-world scenarios and choosing only the

optimal model may be difficult and wasteful. Therefore, in this chapter, we propose the first

method for MSMA of semantic segmentation, which harmonizes the different characteristics

of the source domains to improve the generalization in the target domain. Moreover, we note

a problem of the general multi-source setting, the too strict requirement for the label spaces to

be practical in real-world applications. To improve the practicality of MSMA, we propose a

new multi-source setting that relaxes the requirement for the label spaces by allowing the label

spaces of the source domains to be subsets of that of the target domain. The union set of the

source-domain label spaces is assumed to be equal to the target-domain label space, making
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it to still be a closed-set problem. With such a relaxed multi-source setting, there may be a

larger number of usable pre-trained models for MSMA in some scenarios, and the MSMA

method can be applied to a wider range of applications. We name the model adaptation in

the new multi-source setting as union-set multi-source model adaptation (US-MSMA). For

US-MSMA of semantic segmentation, we propose a method that is on the basis of the same

conception as the method for MSMA and more practical for real-world problems.

5.2 Multi-source Model Adaptation of Semantic Segmentation Learn-

ing Model-invariant Features

5.2.1 Introduction

In this section, we present an method for MSMA of semantic segmentation. Our method

leverages the diverse characteristics of pre-trained models from different source domains to

learn model-invariant features. The goal of model-invariant feature learning is to obtain target-

domain features that have similar distributions by harmonizing the model characteristics de-

rived from various source domains. This is achieved through latent adversarial learning be-

tween the backbone networks and classifiers of the adaptation models. By reducing domain

biases and harmonizing the model characteristics, our method enhances the generalization

ability of the source-domain models. The adaptation models benefit from the diverse char-

acteristics derived from the source domains, leading to the production of more generalized

features that perform well in the target domain. To create a unified model, we distill and in-

tegrate the knowledge from the adaptation models, resulting in a single model that combines

the strengths of the individual models.

5.2.2 Overall Architecture

Let {DS
i }ki=1 denote k labeled source domains, and let DT denote the unlabeled target domain.

It is assumed that {DS
i }ki=1 and DT share the same label set. Given unlabeled data {xT

i }ni=1 of

DT and source-domain models {MS
i }ki=1 pre-trained with {DS

i }ki=1, our objective is to train a
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segmentation model that can perform well in the target domain by transferring the source-

domain knowledge from {MS
i }ki=1 to the target domain.

In our method, we decompose the adaptation models {Mi}ki=1 into backbone networks {Bi}ki=1

and classifiers {Ci}ki=1, represented as Mi(·) = σ(Ci(Bi(·))), where σ(·) denotes the softmax

function. Our method comprises two stages. In Stage I, we perform alternate updates of

{Bi}ki=1 and {Ci}ki=1 using an adversarial learning framework to learn the model-invariant fea-

tures. In Stage II, we train a final integrated model by distilling the knowledge acquired from

the adaptation models trained in Stage I. Both Stage I and Stage II build upon the baseline

method with pseudo-label learning. Figure 5.1 provides an illustration of our method in the

context of two source domains.
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Figure 5.1: An overview of the proposed method showing the scenario of using two source-
domain models. The figure excludes the depiction of pseudo-label learning in Stage I.

5.2.3 Two-stage Multi-source Modal Adaptation

5.2.3.1 Baseline with Pseudo-label Learning

Pseudo-label learning has proven to be effective in unsupervised domain adaptation [43–

45, 49], and its importance is further amplified in model adaptation where supervisory signals
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from the source domain are absent. Hence, we adopt pseudo-label learning as the baseline

for our method. Specifically, we generate pseudo labels ypl by averaging the predictions from

{MS
i }ki=1 and assign them only to pixels that are predicted to belong to a specific category with

a probability higher than 0.9 or the median probability of the category. Subsequently, k models

{Mi}ki=1, initialized with the pre-trained weights of {MS
i }ki=1, are trained using the cross-entropy

loss defined as follows:

Lpl = ExT∈DT

k∑
i=1

− 1
HW

H,W,C∑
ypllogMi(xT ), (5.1)

where H, W, and C denote the height, width, and number of categories, respectively, and the

indices are omitted. In addition to the pseudo-label loss, which disregards pixels without a

pseudo label, we incorporate the maximum squares loss [47], which maximizes the prediction

confidence, into the training process:

Lms = ExT∈DT

k∑
i=1

− 1
HW

H,W,C∑
Mi(xT )2. (5.2)

5.2.3.2 Stage I: Model-invariant Feature Learning

The initial adaptation models {Mi}ki=1, which are initialized with the pre-trained weights of

{MS
i }ki=1, exhibit a bias towards the source domains. While learning with target-domain pseudo

labels helps alleviate this bias, it is insufficient to fully address the issue. The models {Mi}ki=1

trained solely with pseudo labels still retain biases and exhibit inadequate generalization due

to the presence of pseudo label noise. To mitigate the bias and enhance the generalization

capabilities of {Mi}ki=1, we propose a method called model-invariant feature learning. The

objective of this method is to obtain target-domain features from {Bi}ki=1 with similar distri-

butions. As a result of the disparities between the source domains, the pre-trained models

possess distinct characteristics and biases that are also inherited by {Mi}ki=1. This diversity

proves advantageous for the generalization of the model-invariant features. In our method, the

concept of model invariance and the similarity of feature distributions are manifested through

the prediction consistency of models that combine Bi and C j (i , j) from different adaptation

models.
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The model-invariant feature learning involves updating {Bi}ki=1 and {Ci}ki=1 in an alternating

manner using adversarial learning. During this process, {Bi}ki=1 are trained to generate model-

invariant features, while {Ci}ki=1 are trained to identify model-specific features from {Bi}ki=1.

Specifically, to identify model-specific features from B j, the features produced by both Bi and

B j are input into Ci, and the objective is to maximize the discrepancy between the outputs of

Ci by minimizing the following loss function:

Lcl = ExT∈DT

k∑
i=1

k∑
j=1, j,i

−||Ci(Bi(xT )) −Ci(B j(xT ))||1. (5.3)

As aforementioned, the model-invariant features should yield consistent predictions from Ci,

regardless of whether they are generated by Bi or not. In contrast, features from B j that re-

sult in inconsistent predictions compared to those of Bi are deemed domain-specific and can

be identified by maximizing the discrepancy as Eq. (5.3). Note that the domain-specific fea-

tures are not localized, but rather their domain-specific nature is assessed based on prediction

consistency.

Following that, the objective of training {Bi}ki=1 is to generate model-invariant features in

response to {Ci}ki=1. In typical adversarial learning manner, where the two adversaries are

trained with opposing losses, {Bi}ki=1 would be updated by maximizing the loss described in

Eq. (5.3). However, directly maximizing Eq. (5.3), which aims to enforce the consistency

between Ci(Bi(xT )) and Ci(B j(xT )), might result in excessive similarity among {Bi}ki=1. This

is undesirable because if the diversity of {Bi}ki=1 is entirely eliminated, the purpose of model-

invariant feature learning becomes meaningless. Consequently, instead of using the opposite

loss function to Eq. (5.3), we pursue domain invariance by training Bi to minimize the discrep-

ancy between the outputs of Ci and C j using the following loss function:

Lba = ExT∈DT

k∑
i=1

k∑
j=1, j,i

||Ci(Bi(xT )) −C j(Bi(xT ))||1. (5.4)

The objective of minimizing the loss Lba is to enforce domain-invariance of the features gen-

erated by Bi that result in inconsistent predictions from Ci and C j. This adversarial learning

between {Bi}ki=1 and {Ci}ki=1 is conducted in a latent manner, ensuring that domain-specific

features are transformed into domain-invariant ones.
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To further improve the domain-invariance of the features, we introduce a cross-model con-

sistency loss, which simultaneously updates {Bi}ki=1 and {Ci}ki=1. We recombine Bi and Ci from

one model Mi with those from another model M j. By minimizing the discrepancy between the

outputs of the two recombined models, Ci(B j(·)) and C j(Bi(·)), the domain-invariance of the

features are improved. The cross-model consistency loss is defined as follows:

Lcm = ExT∈DT

k∑
i=1

k∑
j=i+1

||C j(Bi(xT )) −Ci(B j(xT ))||1. (5.5)

Additionally, minimizing the cross-model consistency loss helps to harmonize the character-

istics of different adaptation models, ensuring that the trained {Mi}ki=1 exhibit similar perfor-

mance.

The optimization process for the model-invariant feature learning consists of three iterative

steps. In step 1, the entire models {Mi}ki=1 are updated by minimizing multiple loss functions,

including the baseline losses Lpl and Lms in Section 5.2.3.1, as well as the cross-model con-

sistency loss Lcm. In step 2, the classifiers {Ci}ki=1 are updated to minimize Lcl and also the

pseudo-label lossLpl which is introduced to prevent the degradation of performance of {Ci}ki=1.

In step 3, the backbone networks {Bi}ki=1 are updated to minimize Lba.

5.2.3.3 Stage II: Model Integration

While the models {Mi}ki=1 trained with the domain-invariant feature learning have similar

performance in the target domain, it is desirable to obtain a final model, denoted as Mfin, that

surpasses all individual models {Mi}ki=1 in terms of performance. To achieve this, we introduce

a model integration stage after Stage I. In this stage, we incorporate an integrated backbone

network, denoted as Bfin, which assimilates knowledge from {Bi}ki=1. Bfin is combined with

{Ci}ki=1 to form the final model Mfin, where Mfin(·) = 1
k
∑k

i=1 σ(Ci(Bfin(·))). Similar to {Mi}ki=1,

Mfin is trained using the pseudo-label loss and the maximum squares loss, as the following

equation:

Lfin = ExT∈DT − 1
HW

H,W,C∑
[ypllogMfin(xT ) + Mfin(xT )2], (5.6)
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where ypl denotes the pseudo labels, which are generated in the same way as in the baseline

but with {Mi}ki=1 trained in Stage I. Additionally, Bfin is trained to mimic the behavior of {Bi}ki=1

with a knowledge distillation loss defined as follows:

Lkd = ExT∈DT

k∑
i=1

1
HW

H,W,C∑
Mi(xT )log

Mi(xT )
σ(Ci(Bfin(xT )))

. (5.7)

During the update of Bfin, {Mi}ki=1 are kept frozen, and the knowledge distillation loss is em-

ployed to measure the Kullback-Leibler divergence between the predictions of Mi and the

model composed of Bfin and Ci. Furthermore, while updating {Ci}ki=1, the pseudo-label loss

Lpl (as defined in Eq. (5.1)) is used to prevent the performance degradation of {Mi}ki=1, with

{Bi}ki=1 being fixed during the update. By training Mfin with Lfin, Lkd, and Lpl, it can absorb

and integrate the knowledge from {Bi}ki=1, ensuring that it generalizes at least as well as any

individual model of {Mi}ki=1. Importantly, due to the simplicity of {Ci}ki=1, the inference time of

Mfin is almost equivalent to that of an individual model of {Mi}ki=1.

5.2.4 Experiments

5.2.4.1 Implementation Details

In our experiments, we employed Deeplab V2 [3] with ResNet101 [1] as the segmentation

network. Specifically, we used the ResNet101 backbone and the atrous spatial pyramid pool-

ing (ASPP) classifier as the backbones {Bi}ki=1 and the classifiers {Ci}ki=1, respectively. The

networks were trained using stochastic gradient descent (SGD) optimizer with an initial learn-

ing rate of 2.5×10−4. Throughout the training process, we applied the poly policy with a power

of 0.9 to decrease the learning rate. The mini-batch size was set to 1. The weights assigned to

all losses were set to 1.0, except for Lms which had a weight of 2.0.

5.2.4.2 Datasets and Adaptation Settings

For our experiments, we used the following datasets: Synscapes [77], GTA5 [82], Syn-

thia [86] as the source domains, and Cityscapes [4] as the target domain. The source domains
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(Synscapes, GTA5, and Synthia) consist of synthetic datasets that provide photo-realistic im-

ages of street scenes. On the other hand, Cityscapes is a real-world dataset containing street-

scene images. The label sets for Synscapes, GTA5, and Cityscapes consist of 19 common

categories, while Synthia shares a subset of 16 categories with the other datasets.

Our experiments were performed in four adaptation settings, each involving Cityscapes as

the target domain. In three of these settings, we selected two out of the three source domains,

while in the fourth setting, we used all three source domains. To be specific, we denoted

Synscapes as S , GTA5 as G, Synthia as T , and Cityscapes as C. The adaptation settings are as

follows: S +G → C, S + T → C, G + T → C, and S +G + T → C.

5.2.4.3 Methods for Comparison

Since our method is the first proposed solution for the problem of MSMA in semantic seg-

mentation, we could only compare it to existing methods designed for related problem settings.

In our evaluations, we considered two model adaptation methods: a single-source method for

segmentation proposed by Fleuret et al. [61], and a multi-source method for classification

proposed by Ahmed et al. [99]. Additionally, we compared our method to a UDA method pro-

posed by Tsai et al. [39], which utilizes source-domain data during training. The single-source

method [61] introduced an uncertainty reduction loss to enhance the robustness of learned

feature representations, while the multi-source method [99] for classification employed an en-

semble of multiple models with trainable weights. To ensure fair comparisons, we adapted

these two methods and implemented them using the same loss functions Lpl and Lms em-

ployed in our method. It’s important to note that we used the same pseudo-labels, generated

using multiple source-domain models, for the single-source method [61] as well. For the UDA

method [39], we trained it using data from multiple source domains, treating them as a single

domain during training.
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5.2.4.4 Experimental Results

The experimental results of all the adaptation settings are shown in Table 5.1. The mean In-

tersection over Union (IoU) for the common categories shared by the source domains and the

target domain is reported as the evaluation metric for each adaptation scenario. Our method in-

corporates a model integration stage exclusive to the full version, while the reported results for

other methods represent an average result across all trained models. As demonstrated in Table

5.1, our method achieved superior performance compared to other model adaptation methods

across all adaptation settings. The efficacy of each component of our method was validated

through ablation studies. Notably, comparing the baseline method with only pseudo-label

learning to the baseline method augmented with Stage I (model-invariant feature learning), it

is evident that Stage I significantly improved adaptation performance. Including the maximum

squares lossLms resulted in relatively smaller yet consistent enhancements in all settings when

combined with the model-invariant feature learning. Furthermore, the effectiveness of Stage

II (model integration) was also substantiated by comparing our method to a version without

Stage II. The improvements achieved through the model integration were relatively modest,

but our objective of attaining a final model surpassing the performance of all adaptation mod-

els trained in Stage I was achieved. In addition to the ablation studies, a comparison with

the single-source method [61] indicated that our method is more effective for the problem of

MSMA. In contrast to the multi-source method [99] employing model ensemble strategy, our

method exhibited superiority not only in terms of segmentation accuracy but also inference

speed, as it used only one backbone network during inference. Lastly, our method even out-

performed the UDA method [39] in three settings. These results demonstrate the promising

potential of using the pre-trained models as a substitute for data in the cross-domain knowledge

transfer.
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Table 5.1: Results of ablation studies and comparisons with other adaptation methods. “Lpl”,
“Lms”, “Stage I” and “Stage II” are the components of the proposed method. “UR” and “ME”
indicate the uncertainty reduction and the model ensemble proposed by the other methods.

M
et

ho
d

C
om

po
ne

nt
s

M
ea

n
Io

U
s

in
di
ff

er
en

ts
et

tin
gs

L
pl
L

m
s

St
ag

e
I

St
ag

e
II

U
R

M
E

S
+

G
S
+

T
G
+

T
S
+

G
+

T
B

as
el

in
e

✓
47

.5
50

.1
47

.0
52

.4
+
L

m
s

✓
✓

50
.1

52
.4

49
.0

54
.4

+
St

ag
e

I
✓

✓
50

.4
52

.3
49

.0
54

.2
+
L

m
s
+

St
ag

e
I

✓
✓

✓
52

.0
53

.2
49

.9
55

.0
+
L

m
s
+

St
ag

e
I+

St
ag

e
II

(o
ur

m
et

ho
d)

✓
✓

✓
✓

52
.4

53
.6

50
.5

55
.2

U
nc

er
ta

in
ty

re
du

ct
io

n
[6

1]
✓

✓
✓

49
.9

52
.5

49
.1

54
.4

W
ei

gh
te

d
co

m
bi

na
tio

n
[9

9]
✓

✓
✓

51
.9

52
.1

47
.8

54
.3

U
ns

up
er

vi
se

d
do

m
ai

n
ad

ap
ta

tio
n

[3
9]

51
.6

54
.0

47
.8

53
.7



5 Mitigation of Label Dependence with Model Adaptation 84

5.2.5 Conclusion

In this section, we have presented an innovative method for solving the problem of MSMA

in semantic segmentation which exhibits promising potential for practical applications. In

comparison to previous model adaptation methods, our method enhances adaptation perfor-

mance by using multiple source-domain models to acquire model-invariant features that pos-

sess greater generalizability to the target domain. Furthermore, we incorporated a model in-

tegration stage to obtain a final model that outperforms all the adapted models. Through

experiments across four adaptation settings, the effectiveness and superiority of our method

have been validated.

5.3 Union-set Multi-source Model Adaptation of Semantic Seg-

mentation Learning Model-invariant Features

5.3.1 Introduction

In this section, to improve the practicality of MSMA, we propose a generalized version of

MSMA called union-set multi-source model adaptation (US-MSMA). Specifically, we mod-

ify the multi-source setting in Section 5.2 with a relaxation of the requirements for the label

spaces. In our US-MSMA setting, the requirement is for the union of all the source-domain

label spaces, rather than the individual label spaces of each source domain, to be equal to the

label space of the target domain. This implies that the label space of each source domain is

expected to be a subset of the target-domain label space, but not necessarily identical to it. This

relaxation significantly expands the applicability of MSMA, making it more versatile. Addi-

tionally, it enables the selection of source domains from a larger pool of candidates, which can

potentially enhance adaptation performance. For instance, a high-performance model trained

in a source domain with high-quality labels for a subset of the target-domain classes can be

incorporated into the US-MSMA training process, thereby improving adaptation performance

specifically for those classes. The generalized multi-source setting aligns particularly well

with model adaptation, thanks to the cost-effectiveness associated with integrating pre-trained
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models.

For US-MSMA of semantic segmentation, we propose a two-stage approach that shares

similarities with the MSMA method discussed in Section 5.2. Our method, like the one for

MSMA, comprises a model adaptation stage and a model integration stage. During the model

adaptation stage, we focus on learning model-invariant features to align the diverse model

characteristics originating from various source domains. Subsequently, in the model integra-

tion stage, we leverage the knowledge distilled from the adapted models to train a final model.

5.3.2 Overall Architecture

Let {DS
i }ki=1 represent a collection of k labeled source domains with class sets {ΦS

i }ki=1, while

DT denotes the unlabeled target domain with its own class set ΦT . Unlike the general multi-

source setting where each of {ΦS
i }ki=1 must strictly matchΦT , our US-MSMA setting allows for

the assumption that the union of {ΦS
i }ki=1 is equivalent toΦT , expressed asΦS

1
∪
ΦS

2 · · ·
∪
ΦS

k =

ΦT . With access to unlabeled data {xT
i }ni=1 from DT and k pre-trained models {Mi}ki=1 trained

on {DS
i }ki=1 respectively, our objective is to develop a model capable of transferring knowledge

from {DS
i }ki=1 to DT and consequently achieve satisfactory performance in DT .

Figure 5.2 provides an overview of the proposed method, which encompasses two stages:

the model adaptation stage and the model integration stage. In Stage I, we perform the model

adaptation process by retraining the pre-trained source-domain models {Mi}ki=1 using the target

domain DT . To transfer source-domain knowledge to the target domain, we leverage self-

training techniques (not depicted in Fig. 5.2) by training {Mi}ki=1 with pseudo labels assigned

to the samples from DT . Additionally, we enhance the adaptation process through model-

invariant feature learning. Moving on to Stage II, we proceed to train a final model, denoted

as Mfin, by distilling and integrating the knowledge acquired from {Mi}ki=1 trained in Stage I.

As shown in Fig. 5.2, {Mi}ki=1 represents individual models composed of a backbone Bi and a

classifier Ci, while Mfin corresponds to an ensemble model consisting of an integration back-

bone Bfin and all the classifiers {Ci}ki=1. The classifiers of the ensemble model are combined

using a classifier ensemble strategy.
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Figure 5.2: An overview of the proposed method. For the ease of understanding, we show the
case of using two source-domain models. The pseudo-label learning of Stage I are omitted in
the figure.

During both I and II, we make predictions on the probability distribution across all target-

domain classes, denoted asΦT , using the classifiers {Ci}ki=1. However, since the source-domain

class sets {ΦS
i }ki=1 may not be equivalent to ΦT , it is possible that individual Ci may not pro-

vide predictions for the entire ΦT . Additionally, due to the potential variation in class sets, a

simple averaging of predictions from {Ci}ki=1 is not feasible. Therefore, we employ a classifier

ensemble strategy to obtain complete predictions by simultaneously combining and averaging

the outputs from {Ci}ki=1. Specifically, we compute the unnormalized logits of the complete

prediction by averaging the logits of each class over {Ci}ki=1 using the following equation:

lc(·) = 1∑k
i=1 1(c ∈ ΦS

i )

k∑
i=1

Ci,c(·), ∀c ∈ ΦT , (5.8)

where 1(·) represents the indicator function, and Ci,c(·) denotes the logits of class c predicted

by Ci if c ∈ ΦS
i , otherwise it is considered as zero. The calculated logits are subsequently

normalized using the Softmax function to obtain the predicted probability distribution within

the target-domain label space. This approach allows us to obtain predictions within the target-

domain label space by using classifiers {Ci}ki=1 with incomplete class sets, without the need
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to train a new classifier. The classifier ensemble operation is referred to as En(·) from here

onwards.

5.3.3 Stage I: Model Adaptation with Model-invariant Feature Learning

In Stage I, our model adaptation process builds upon pseudo-label learning and incorporates

model-invariant feature learning to enhance the adaptation performance. The objective of

model-invariant feature learning is to mitigate the domain biases inherent in {Mi}ki=1. As the

pre-trained {Mi}ki=1 exhibit diverse characteristics stemming from the source domains, we aim

to reduce the domain bias of each Mi by aligning the characteristics of {Mi}ki=1. To achieve

this, we train the backbones {Bi}ki=1 to generate features with similar distributions, referred to

as model-invariant features. This learning process involves three iterative steps: the initial

step for cross-model consistency and subsequent two steps for adversarial learning between

the backbones {Bi}ki=1 and the classifiers {Ci}ki=1, as depicted on the left side of Fig. 5.2. We

elaborate on each component of I as follows.

5.3.3.1 Pseudo-label Learning

To transfer the knowledge from the source domains to the target domain, we employ pseudo-

label learning for both individual models {Mi}ki=1 and ensemble models consisting of a back-

bone Bi (i = 1, . . . , k) and all the classifiers {Ci}ki=1. For this purpose, we utilize the pre-

trained {Mi}ki=1 to generate pseudo labels {yi}ki=1 in the source-domain label spaces, as well

as pseudo labels yT in the target-domain label space for each image in DT . To generate

pseudo labels in the target-domain label space, we combine and average the predictions of

{Mi}ki=1, but with a different approach than the classifier ensemble method described earlier,

as {Mi}ki=1 are independently pre-trained. Specifically, we first assign probability distribu-

tions predicted by {Mi}ki=1 over the target-domain label space as pi,c(·) = Mi,c(·) if c ∈ ΦS
i ,

and pi,c(·) = Mi,0(·)∑
c′∈ΦT 1(c′<ΦS

i )
otherwise. Here, Mi,c(·) represents the probability of class c pre-

dicted by Mi, and Mi,0(·) denotes the probability of the other classes not in ΦS
i . We then

average these probability distributions {pi}ki=1 and assign pseudo labels based on the average
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prediction. In the process of pseudo-label learning, we employ the cross-entropy loss function

CE(logits, target) to train {Mi}ki=1, as defined in the following equation:

Lpl = ExT∈DT

k∑
i=1

[CE(Ci(Bi(xT )), yi) + CE(En({C j(Bi(xT ))}kj=1), yT )], (5.9)

where En(·) denotes the classifier ensemble operation discussed in Section 5.3.2.

5.3.3.2 Cross-model Consistency

Based on the assumption that a backbone capable of producing model-invariant features

should be compatible with any classifier, we introduce a random recombination process for

{Bi}ki=1 and {Ci}ki=1 to create k new models {Cma(i)(Bi(·))}ki=1, where ma(i) represents the index

of the classifier matched with Bi. These recombined models are trained based on cross-model

consistency, which involves both overall consistency of ensemble predictions and per-class

consistency of logits generated by individual classifiers. For overall consistency, we apply

the classifier ensemble operation to predictions from the original models {Ci(Bi(·))}ki=1 and

the recombined models {Cma(i)(Bi(·))}ki=1, and minimize the discrepancy between the ensemble

predictions as follows:

Lcm
1 = ExT∈DT ||σ(En({Ci(Bi(xT ))}ki=1)) − σ(En({Cma(i)(Bi(xT ))}ki=1))||1, (5.10)

where σ(·) denotes the Softmax function. For per-class consistency, we train the recombined

models to produce logits that are consistent for each class. We compute the average logits for

each class and minimize the discrepancy between the output logits and the average logits using

the following equation:

Lcm
2 = ExT∈DT

k∑
i=1

ΦS
i∑

c

||Cma(i),c(Bi(xT )) − δc(xT )||1, (5.11)

where δc(·) represents the average logits for class c, calculated as:

δc(·) = 1∑k
i=1 1(c ∈ ΦS

i )

k∑
i=1

Cma(i),c(Bi(·)), (5.12)
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where Cma(i),c(·) represents the logits for class c produced by Cma(i) if c ∈ ΦS
ma(i), and zero

otherwise. By recombining and training the models using Lcm
1 and Lcm

2 for overall and per-

class consistency, respectively, the features generated by the backbones are enforced to have

similar distributions, thereby achieving model-invariant characteristics.

5.3.3.3 Adversarial Learning

To further enhance the learning of model-invariant features, we introduce adversarial learn-

ing between the backbones {Bi}ki=1 and the classifiers {Ci}ki=1, in addition to the cross-model

consistency. This adversarial learning process consists of two steps: training {Ci}ki=1 to detect

model-specific features and training {Bi}ki=1 to produce model-invariant features. These steps

are performed iteratively, with the parameters of {Bi}ki=1 ({Ci}ki=1) being frozen while updating

the parameters of {Ci}ki=1 ({Bi}ki=1).

To train Ci (i = 1, . . . , k), we input features from Bi and B j ( j , i) into Ci and aim to maxi-

mize the discrepancy between their predictions by minimizing the following loss function:

LC = ExT∈DT

k∑
i=1

[
k∑

j=1

−||Ci(Bi(xT )) −Ci(B j(xT ))||1 + CE(Ci(Bi(xT )), yi)], (5.13)

where we include a cross-entropy term to prevent the degradation of the recognition ability of

{Ci}ki=1 while maximizing the discrepancy. By updating Ci usingLC , we aim to detect domain-

specific features from B j that lead to inconsistent predictions compared to those obtained using

the features from Bi.

We train {Bi}ki=1 using a loss function that calculates the discrepancy between the output

logits and the average logits, considering features from each of the backbones separately. The

loss function is defined as follows:

LB = ExT∈DT

k∑
i=1

k∑
j=1

[

ΦS
j∑

c

||C j,c(Bi(xT )) − δi,c(xT )||1 + CE(C j(Bi(xT )), y j)], (5.14)

where δi,c(·) represents the average logits of class c using the features from Bi. It is computed

as:

δi,c(·) = 1∑k
j=1 1(c ∈ ΦS

j )

k∑
j=1

C j,c(Bi(·)). (5.15)
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By minimizing the L1-norm term ofLB, each backbone is trained to produce features that yield

per-class consistent logits across different classifiers, thereby promoting domain invariance.

However, since the L1-norm term only considers classes shared by multiple classifiers, we

include an additional cross-entropy term to ensure that each backbone is compatible with all

the classifiers during training.

In contrast to the typical adversarial learning, our method involves adversarial learning be-

tween two groups of backbones {Bi}ki=1 and classifiers {Ci}ki=1, rather than specific pairwise

opponents. Additionally, we employ a distinct loss function for training {Bi}ki=1, which differs

from the loss used for {Ci}ki=1. This divergence prevents excessive similarity among {Bi}ki=1 by

avoiding the direct minimization of the term ||Ci(Bi(xT )) − Ci(B j(xT ))||1 in LC . Our adver-

sarial learning method is designed to be compatible with cross-model consistency and further

strengthens the model-invariance of the learned features.

The training process of Stage I consists of three steps, which are repeated iteratively. In Step

1, both {Bi}ki=1 and {Ci}ki=1 are updated simultaneously using the loss Lpl from pseudo-label

learning, as well as the losses Lcm
1 and Lcm2 from cross-model consistency. Subsequently,

Step 2 updates {Ci}ki=1 using the loss function LC , while Step 3 updates {Bi}ki=1 using the loss

function LB.

5.3.4 Stage II: Model Integration with Knowledge Distillation

To achieve optimal performance without relying on any individual model, we introduce

the model integration stage, where the knowledge from {Mi}ki=1 is distilled and used to train

a final model Mfin. This final model consists of an integration backbone Bfin along with all

the classifiers {Ci}ki=1. The ensemble prediction, obtained by aggregating the predictions from

{Ci(Bfin(·))}ki=1, serves as the final prediction. During this stage, the parameters of the back-

bones {Bi}ki=1 remain frozen.

Similar to Stage I, the final model Mfin undergoes training using a loss function that update

both Bfin and {Ci}ki=1, as well as separate losses that update Bfin and {Ci}ki=1 individually. Firstly,

Bfin and {Ci}ki=1 are jointly trained by minimizing the cross-entropy loss CE(En({Ci(Bfin(·))}ki=1), yT )
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for the ensemble prediction using pseudo labels generated by {Mi}ki=1 trained in Stage I. Fol-

lowing this, Bfin is trained to mimic the behavior of {Bi}ki=1 using a knowledge distillation loss

defined as:

Lkd = ExT∈DT

k∑
i=1

KLD(Ci(Bfin(xT )),Ci(Bi(xT ))), (5.16)

where KLD(input, target) represents the Kullback–Leibler divergence. Additionally, to main-

tain compatibility among {Bi,Ci}ki=1, {Ci}ki=1 is trained by minimizing
∑k

i=1 CE(Ci(Bi(xT )), yi)

for individual classifier predictions. Through training with these aforementioned losses, Mfin

assimilates the knowledge acquired from {Mi}ki=1 in Stage I, resulting in superior performance

compared to any individual model of {Mi}ki=1. Furthermore, due to the lightweight nature

of {Ci}ki=1, the inference speed of Mfin is nearly equivalent to that of an individual model of

{Mi}ki=1.

5.3.5 Experiments

5.3.5.1 Implementation Details

The segmentation network and training parameters are the same as those used in the method

proposed in Section 5.2. All the losses were assigned equal weights of 1.0. Additionally,

we incorporated a maximum squares loss [47] as an additional component to complement the

losses Lpl and LB in Stage I, as well as the loss CE(En({Ci(Bfin(·))}ki=1), yT ) in Stage II, with

the aim of reducing prediction uncertainty.

5.3.5.2 Datasets and Adaptation Settings

We used multiple datasets for our experiments: Synscapes dataset [77], GTA5 dataset [82],

Synthia dataset [86], and Cityscapes dataset [4]. Among these, Synscapes, GTA5, and Synthia

serve as the source domains, while Cityscapes serves as the target domain. The source domains

consist of synthetic datasets with photo-realistic street scene images, while Cityscapes is a real-

world dataset comprising street-scene images. The label space is shared between Synscapes,

GTA5, and Cityscapes, containing 19 classes. Synthia, on the other hand, shares a subset of
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16 classes with the other datasets. Henceforth, we will refer to Synscapes, GTA5, and Synthia

as S , G, and T respectively.

We conducted comprehensive experiments by considering all possible combinations of the

source domains: S+G, S+T , G+T , and S+G+T . Additionally, our method is designed to

accommodate various label space configurations in the source domains, we therefore evalu-

ated our method in three distinct label space settings: non-overlapping, partly-overlapping,

and fully-overlapping. In the non-overlapping setting, the target-domain classes were divided

into subsets with no classes in common, and these subsets were assigned to the respective

source domains. In the partly-overlapping setting, the background classes were shared among

the domains, while the foreground classes were split between the source domains. Detailed

information regarding the class distributions for the non-overlapping and partly-overlapping

settings can be found in Table 5.2. In the fully-overlapping setting, most of the classes were

shared across all domains, with the exception of three classes (terrain, truck, train) that were

absent in Synthia. However, we still included these classes in the experiments with S+T and

G+T .
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Table 5.2: Class distributions of the non-overlapping setting and the partly-overlapping setting.
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5.3.5.3 Methods for Comparison

Given the absence of existing methods specifically designed for our problem setting, we

made slight modifications to three methods proposed for related problem settings to conduct

fair comparisons. These methods include a UDA method [39] for semantic segmentation,

a single-source model adaptation (SSMA) method [61] for semantic segmentation, and an

MSMA method [99] for image classification. For the UDA method based on adversarial learn-

ing, we employed domain-specific discriminators and classifiers for the source domains and
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trained a shared backbone. In both the UDA method and the SSMA method, we obtained

complete predictions by first aligning the predictions in the source-domain label spaces to the

target-domain label space and then averaging them, following the same procedure used to gen-

erate pseudo labels in our method. As for the MSMA method, which learns a set of weights

for combining models, we applied the same procedure of aligning each model’s prediction to

the target-domain label space and calculated a weighted average prediction using the learned

weights. To facilitate direct comparisons with the SSMA method and the MSMA method,

we trained these methods using the same maximum squares loss and cross-entropy loss with

identical pseudo labels to those employed in our method.

In the fully-overlapping setting, there are slight differences in the implementations compared

to the above description. Since the source domains and the target domain share the same

label space, we made some adjustments. For the SSMA method, instead of performing model

ensemble, we evaluated the independent performances of all the trained models and averaged

them to obtain the final performance. Regarding the MSMA method, there were no changes in

its evaluation since the weighted model ensemble is the core aspect of this method. As for the

UDA method, we used domain-specific discriminators as before, but only one classifier was

employed in this case.

5.3.5.4 Results in Non-overlapping Setting

The results in the non-overlapping setting are presented in Table 5.3. The evaluation metric

used was the mean Intersection over Union (IoU) across all the target-domain classes. In the

case of our incomplete method versions, where multiple models were trained without a final

model, we evaluated the ensemble models comprising a single backbone and multiple classi-

fiers independently and reported their average performance. As shown in Table 5.3, the per-

formance consistently improved with the inclusion of two key components: cross-model con-

sistency and adversarial learning, both of which contribute to model-invariant feature learning.

The introduction of the maximum squares loss in Stage I of our method further enhanced the

results. Finally, through the model integration in Stage II, we achieved the best performance,
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showing significant improvements compared to the baseline that relied solely on pseudo-label

learning. These results from the ablation study demonstrate the effectiveness of each compo-

nent in our method.

In the non-overlapping setting, our method achieved superior performance compared to

other adaptation methods, even with only Stage I. Furthermore, both the SSMA and MSMA

methods require inference with multiple models to obtain complete predictions, whereas our

method’s final model consists of only one backbone, resulting in significantly faster inference

times. The MSMA method failed in the non-overlapping setting because the weighted model

ensemble method is rendered meaningless without any shared classes.

Qualitative results are shown in Fig. 5.3, which displays two examples comparing our

method to source-domain models without adaptation using the source domains of S+G. The

figure illustrates that our method improved the segmentation of both background and fore-

ground classes. In the upper example, the predictions for sky, sidewalk, and vegetation showed

notable improvement after adaptation. Similarly, in the lower example, classes such as side-

walk, traffic sign, vegetation, and rider were segmented more accurately in the results obtained

using our method.

Table 5.3: Results in the non-overlapping setting. PSL: pseudo-label learning. CMC: cross-
model consistency. ADV: adversarial learning. MSL: maximum squares loss. MI: model
integration. PM: proposed method.

Method S+G S+T G+T S+G+T
PSL 42.3 38.8 35.8 40.4
PSL+CMC 43.2 39.1 36.1 40.6
PSL+CMC+ADV 44.0 39.8 36.4 41.5
PSL+CMC+ADV+MSL (=Stage I of PM) 45.8 41.4 37.2 42.1
PSL+CMC+ADV+MSL+MI (=PM) 46.6 42.3 37.9 44.2
SSMA [61] 43.5 40.6 37.0 41.9
MSMA [99] 30.2 26.0 20.7 22.7
UDA [39] 45.7 39.2 35.9 41.1



5 Mitigation of Label Dependence with Model Adaptation 96

Figure 5.3: Examples of the qualitative results of the proposed method and the source-domain
models without adaptation in the non-overlapping setting of S+G.

5.3.5.5 Results in Partly-overlapping Setting

In the partly-overlapping setting, we conducted experiments identical to those in the non-

overlapping setting, except for the inclusion of S+G+T . The results are presented in Table 5.4.

Similar to the findings in the non-overlapping setting’s ablation study, each component consis-

tently contributed to performance improvement. When compared to other adaptation methods,

our method once again achieved the best overall performance, as indicated in Table 5.4. How-

ever, unlike the non-overlapping setting, the version of our method with only Stage I did not

surpass the SSMA and UDA methods in performance. The presence of common classes in the

partly-overlapping setting provided significant benefits to the SSMA method through model

ensembling for obtaining complete predictions. However, this came at the cost of decreased

inference speed by several times. Similarly, with the existence of common classes, the MSMA

method achieved reasonable performance utilizing weighted model ensembling. The UDA

method closely approached our method’s performance in the S+G and S+T settings, but it

required access to the source-domain data.
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Table 5.4: Results in the partly-overlapping setting. PSL: pseudo-label learning. CMC: cross-
model consistency. ADV: adversarial learning. MSL: maximum squares loss. MI: model
integration. PM: proposed method.

Method S+G S+T G+T
PSL 44.2 44.0 39.1
PSL+CMC 46.0 44.8 39.6
PSL+CMC+ADV 46.6 45.2 40.6
PSL+CMC+ADV+MSL (=Stage I of PM) 47.4 45.9 42.2
PSL+CMC+ADV+MSL+MI (=PM) 48.3 47.2 43.5
SSMA [61] 47.2 46.3 42.7
MSMA [99] 46.5 44.1 41.9
UDA [39] 47.9 46.9 41.6

5.3.5.6 Results in Fully-overlapping Setting

We also conducted experiments in the fully-overlapping setting, which represents the gen-

eral multi-source model adaptation scenario. However, we did not perform experiments in

the S+G+T setting since introducing T did not lead to any improvements compared to the

performance in S+G due to the significantly larger domain gap between T and the target do-

main. The results in the fully-overlapping setting are presented in Table 5.5. Similar to the

other two settings, the ablation study results confirmed the effectiveness of each component

of our method. However, the maximum squares loss had minimal contributions in the fully-

overlapping setting. This can be attributed to the more accurate pseudo labels generated in

this setting, which reduced the significance of the maximum squares loss. When comparing

our method to other adaptation methods, our method consistently outperformed the SSMA

method. However, in the S+T setting, the UDA method achieved slightly better performance

than ours. Additionally, the MSMA method attained the same performance as our method in

S+G, using two source domains with closer domain gaps to the target domain. This indicated

that the efficiency of the weighted model ensemble is maximized when the source domains

share the same label space and exhibit similar domain gaps with the target domain. Overall,

our method provides the best cost-performance ratio, considering the inference speed and the
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requirement for access to source-domain data.

Table 5.5: Results in the fully-overlapping setting. PSL: pseudo-label learning. CMC: cross-
model consistency. ADV: adversarial learning. MSL: maximum squares loss. MI: model
integration. PM: proposed method.

Method S+G S+T G+T
PSL 47.6 45.7 44.0
PSL+CMC 49.4 46.6 44.7
PSL+CMC+ADV 50.9 47.7 45.7
PSL+CMC+ADV+MSL (=Stage I of PM) 51.0 47.8 45.7
PSL+CMC+ADV+MSL+MI (=PM) 51.7 48.7 46.2
SSMA [61] 49.8 47.6 45.5
MSMA [99] 51.7 47.2 44.2
UDA [39] 51.6 49.0 45.8

5.3.6 Conclusion

In this section, we have presented a novel problem called union-set multi-source model

adaptation, which offers broader applicability to practical scenarios compared to the general

multi-source setting by requiring the union of the source-domain label spaces to match the

target-domain label space. To tackle the problem of union-set multi-source model adaptation

for semantic segmentation, we proposed a method based on a novel learning strategy called

model-invariant feature learning. This strategy aims to enhance generalization in the target

domain by harmonizing the diverse characteristics of the source-domain models. Additionally,

we incorporated a model integration stage, which distills knowledge from the adapted models

and trains a final model with improved performance. Through comprehensive ablation studies,

we validated the effectiveness of each component of our method. Furthermore, extensive

experiments conducted in various settings demonstrated the superiority of our method over

previous adaptation methods.
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5.4 Conclusion

In this chapter, we have presented two methods for model adaptation of semantic segmenta-

tion in two different multi-source setting: a general multi-source setting where all the source-

domain label spaces are required to be equal to the target-domain label space, and a union-set

multi-source setting where only the union set of the source-domain label spaces is required

to be equal to the target-domain label space. The union-set multi-source setting, which is

first proposed in our study, is more practical in real-world applications than the general multi-

source setting. The methods for the two settings are developed on the basis of the same idea,

model-invariant feature learning, which harmonizes the model characteristics derived from dif-

ferent source domains to produce more generalizable features thereby performing better in the

target domain. Experimental results demonstrated the effectiveness of the proposed methods

and the superiority to the previous methods.
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Chapter 6

Conclusion

As a conclusion of this thesis, this chapter summarizes the proposition of this thesis and

shows future directions.

6.1 Summary of Proposition in this Thesis

In this thesis, we focused a common problem in applications of image recognition technolo-

gies, the dependence on labeled data. To mitigate the label dependence thereby improving the

practicality, we conducted studies in three directions: semi-supervised learning, unsupervised

domain adaptation, and model adaptation.

In Chapter 3, in the direction of semi-supervised learning, we proposed a tri-training based

semi-supervised learning method for chronic gastritis classification using gastric X-ray im-

ages. The method uses the tri-training architecture to improve the pseudo label generation and

can achieve high performance for gastritis diagnosis even with a small amount of labeled data.

In Chapter 4, in the direction of unsupervised domain adaptation, we proposed several meth-

ods for the two challenging and important tasks, object detection and semantic segmentation.

For unsupervised domain adaptation of object detection, we proposed a divergence-guided

feature alignment method. By introducing the divergence-based guidance mechanism, the

feature alignment is aware of foreground regions and poorly-aligned regions and can thus im-

prove the adaptation performance even more. For unsupervised domain adaptation of semantic

segmentation, we proposed three methods including a symmetric adaptation-based method, a
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variational autoencoder-based method, and a method based on the intra-domain style-invariant

representation learning. The first method performs symmetric domain adaptation via adversar-

ial learning and uses the symmetric adaptation consistency to reduce the noise in the pseudo

labels. The second method uses a variational autoencoder to align the distributions of the

source domain and the target domain, which can be used as an alternative to the adversar-

ial learning-based method of which the training is difficult and unstable. The third method

is developed on the basis of a novel conception of learning the intra-domain style-invariant

representation which aims to produce features invariant to the style diversity within the target

domain thereby improving the generalization.

In Chapter 5, in the direction of model adaptation, we proposed two methods for multi-

source model adaptation of semantic segmentation, of which one is for the general multi-

source setting and the other one for the union-set multi-source setting. The union-set multi-

source setting allows the label spaces of the source domains to be subsets of that of the target

domain and is thus applicable to a wider range of scenarios. The methods for the two settings

are both developed on the basis of a novel conception of model-invariant feature learning

which harmonizes the model characteristics derived from different source domains to produce

more generalizable features in the target domain.

The contributions of this thesis are the proposals of the methods in three different direc-

tions for mitigating the label dependence, which aim to improve the practicality of the deep

learning-based image recognition technologies. The methods solve the problems remained in

the previous studies, and the effectiveness of each method has been validated by conducting

extensive experiments.

6.2 Future Directions

As the directions of future studies, we think that applications of unsupervised domain adap-

tation and model adaptation in fields such as medical imaging are worth paying more attention

to. The domain shift problem is very common in medical images due to different scanners and

imaging protocols. In this thesis, we evaluate our methods for unsupervised domain adaptation
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and model adaptation with only street-scene images, and the effectiveness of the methods for

medical imaging applications remains to be validated. Moreover, for the multi-source model

adaptation methods presented in Chapter 5, because we used the same network structure for

all the source-domain models in all the experiments, the effectiveness of the methods using

different network structures has not been validated. Using source-domain models with differ-

ent structures is more practical in real-world applications, and it may be necessary to adapt the

proposed methods to the source-domain models with different structures.
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