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Optimal Reconstruction of Noisy Dynamics and Selection
Probabilities in Boolean Networks ⋆

Koichi Kobayashi a, Yuhu Wu b,⋆⋆,
aFaculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan,

bKey Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education, and School of
Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

In the analysis and control of complex systems, including gene regulatory networks, it is important to reconstruct a mathematical
model from a priori information and noisy experimental data. A Boolean network (BN) is well known as a mathematical
model of gene regulatory networks. Each state of BNs takes a binary value (0 or 1), and its update rule is given by a set of
Boolean functions. In this paper, we consider the optimal reconstruction problem of finding a probabilistic BN consisting of
the main dynamics and the noisy dynamics, by giving the main dynamics and the sample mean of the state obtained from
noisy experimental data. In the proposed method, the selection probability of the main dynamics is maximized. We show that
the optimal Boolean function of the noisy dynamics is a constant (0 or 1) map under no assumption on the structure of noisy
dynamics. Finally, as a biological application, the reconstruction of a PBN model of the lac operon networks of Escherichia
coli bacterium is addressed using the proposed approach.
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1 Introduction
Modeling, analysis, and control of complex systems

with nonlinear dynamics and complex constraints, such
as gene regulatory networks, have attracted much atten-
tion. In such cases, it is important to simplify the rele-
vant mathematical model. In the field of systems biology,
the Boolean network (BN) model, which is a discrete-
time discrete model, is frequently used (see, e.g., Akutsu
(2018); Imani and Braga-Neto (2018); Kim et al. (2020)).

In a BN, each state takes a binary value (0 or 1). The
time evolution of each state is expressed as Boolean func-
tions. Many studies related to the analysis and control of
BNs have been conducted (see, e.g., (Cheng et al., 2011a;
Fornasini and Valcher, 2013; Yerudkar et al., 2020; Weiss
et al., 2018; Zhong et al., 2020; Li et al., 2020a; Wu et al.,
2021; Zhu et al., 2020)). As an extended model of BNs, a
probabilistic BN (PBN) model is well known. In a PBN,
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the update rule for each state is randomly chosen from
the candidates of Boolean functions (see, e.g., Shmule-
vich et al. (2002); Meng et al. (2018)). Owing to the noise
present in gene regulatory networks, it is appropriate to
use a PBN. In recent years, the analysis and synthesis of
PBNs have been extensively investigated and exploited
(see, e.g., Kobayashi and Hiraishi (2011); Trairatphisan
et al. (2013); Toyoda and Wu (2021); Acernese et al.
(2020)).

One important problem in data science is the ex-
traction of information (e.g., the structure and the
dynamics) from the experimental data. For BNs and
PBNs, data-driven methods have been obtained (see,
e.g., Cheng et al. (2011b); Akutsu and Melkman (2018);
Melkman et al. (2017); Sun et al. (2020)). In data-driven
methods, the intrinsic noise in the experimental data
must be considered. From this viewpoint, the noisy
dynamics has been studied (see, e.g., Ching and Tam
(2017); Freilich et al. (2020)). A kind of parameterized
set was constructed in Li et al. (2020b), for the robust
stability and stabilization of Boolean networks with
function perturbation.

In this paper, we focus on the reconstruction problem
of the noisy dynamics in PBNs, when the main dynamics
and the sample mean of the state, by the data driven ap-
proach, are given. The main dynamics is given based on a
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priori information. The sample mean of the state is gen-
erated from noisy experimental data (see Section 2 for
further details). A previous study has proposed meth-
ods in the linear programming formulation that could
solve the aforementioned problem (Kobayashi and Hi-
raishi, 2016; Umiji et al., 2019). In those works, the PBN
was constructed as a combination of BNs with a cer-
tain selecting probability distribution. The candidates
of update dynamics of PBN include the main dynamics,
and the noisy dynamics, which is represented by mul-
tiple Boolean functions. Hence, the expression of noisy
dynamics was complicated. Furthermore, the linear pro-
gramming approach given in (Kobayashi and Hiraishi,
2016; Umiji et al., 2019) requires that the network struc-
ture of the noisy dynamics must be given in advance. In
the approach, proposed in this work, the prior informa-
tion about the network structure of the noisy dynamics
is not required compared to the previous approach. Our
approach is optimal owing to the following reasons: first,
the proposed solution guarantees the maximum choos-
ing probability of the main dynamics; second, it is proven
that the noisy dynamics is equivalently represented as a
constant mapping (0 or 1), which is a specific character-
istic of perturbed BNs, and not available for general con-
tinuous or discrete dynamical systems. Although PBNs
obtained by two existing methods (Kobayashi and Hi-
raishi, 2016; Umiji et al., 2019) and the proposed method
are equivalent in the sense that the same main dynam-
ics and the same sample mean of the state are used, the
PBN obtained by the proposed method is optimal owing
to the above two reasons.

To overcome the difficulty caused by the lack of net-
work structure information of the noisy dynamics, the
full representation structure matrix (FRSM) of the
Boolean function is introduced. An algorithm for de-
riving the noisy dynamics and estimating the selection
probability of the candidate dynamics is also proposed
based on the minimal representation structure matrix
(MRSM). The proposed method is demonstrated using
a simple example and a Lac operon networks application
(Veliz-Cuba and Stigler, 2011; Chen et al., 2018).

The main contributions of this paper are summarized
as follows:
i) The optimal solution for the reconstruction problem

of the noisy dynamics in PBNs is solved. We show
that the noisy dynamics are equivalently represented
as constant (0 or 1) maps under no assumption on
network structure of noisy dynamics.

ii) A computationally efficient algorithm for optimal re-
construction of the noisy dynamics is proposed based
on the network structure of the main dynamics.
This paper is organized as follows. In Section 2, a PBN

and the problem studied are explained. In Section 3, the
MRSM and FRSM are introduced, and the noisy dynam-
ics is investigated. In Section 4, the proposed method is
applied to a lac operon network. In Section 5, we provide
the conclusion of this study.

Notation: Let R denote the set of real numbers. Let
{0, 1}n denote the set of n-dimensional vectors whose el-

ements take either 0 or 1. For the matrix M , let Coli(M)
and Rowi(M) denote the i-th column and row of M ,
respectively. For the vector x, let [x]i denote the i-th
element of x. Let In denote the n-dimensional identity
matrix. For two matrices A ∈ Rm×n and B ∈ Rp×q,
the semi-tensor product (STP) of A and B is defined
by A ⋉ B = (A ⊗ Ic/n)(B ⊗ Ic/p), where ⊗ is the Kro-
necker product, and c is the least common multiple of
n and p. For r vectors y1, y2, . . . , yr and an ordered in-
dex set J = {j1, j2, . . . , js} ⊆ {1, 2, . . . , r}, with j1 <
j2 < · · · < js define ⋉j∈J yj := yj1 ⋉ yj2 ⋉ · · · ⋉ yjs .
For example, for r two-dimensional vectors y1, y2, . . . , yr
and J = {1, 5}, we can obtain ⋉j∈J yj = y1 ⋉ y5 =
[[y1]1[y5]1, [y1]1[y5]2, [y1]2[y5]1, [y1]2[y5]2]

⊤.
The i-th column of In is denoted by δin. The set of

δin is denoted by ∆n = {δin, i = 1, 2, . . . , n}. The ma-
trix A ∈ {0, 1}m×n is called a logical matrix if each col-
umn of A is given by some element of ∆m. The set of
m × n logical matrices is denoted by Lm×n. The ma-
trix L = [δi1n , δi2n , . . . , δisn ] is simply denoted by L =
δn[i1, i2, . . . , is]. Let 1n denote the n-dimensional col-
umn vector [1, 1, . . . , 1]⊤.
2 Preliminaries and Problem Formulation

A Boolean network (BN), which is a directed network
containing binary (Boolean) logical-valued state nodes
N = {1, 2, . . . , n}, can be represented by

xi(k + 1) = f (i)([xj(k)]j∈N (i)), i ∈ N , (1)

where x := [x1, x2, . . . , xn]
⊤ ∈ {0, 1}n is the state, and

k ≥ 0 is the update time. The set N (i) ⊆ N is the in-
degree index of the node i, and the update function f (i) :

{0, 1}|N (i)| → {0, 1} is a Boolean function consisting of
logical operators such as AND (∧), OR (∨), and NOT
(¬) with minimal representation. If xi(k+1) is uniquely
determined as 0 or 1, then N (i) = ∅.

Next, we explain a probabilistic Boolean network
(PBN) (see, e.g., Shmulevich et al. (2002) for further de-
tails). In a PBN, the update rule of state xi is regulated
by one Boolean function, which is randomly selected
from a set of Boolean functions. The dynamics of PBN
is described as

xi(k + 1) = f (i)(x(k)), i ∈ N , (2)

with a probability of f (i) choosing f
(i)
l is

c
(i)
l := Pr{f (i) = f

(i)
l }, (3)

where

f
(i)
l

(
[xj(k)]j∈N (i)

l

)
, l = 0, 1, . . . , q(i), (4)

denote the candidates of f (i). Then,
∑q(i)

l=0 c
(i)
l = 1 must

be satisfied. Notice that if q(i) = 0 for each i ∈ N , then
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the PBN (2)–(4) degenerate into a deterministic BN (1).
Finally, for PBN (2)–(4), the in-degree index N (i) of
node i ∈ N is defined by N (i) :=

⋃q(i)
l=0 N

(i)
l .

Complex systems, such as gene regulatory networks,
are affected by noises. Therefore, we must consider both
the main dynamics and the noisy dynamics. The main
dynamics is given based on a priori information, and
is dominant in a given system. Assume that the main
dynamics is expressed by the following BN:

xi(k + 1) = f
(i)
0 ([xj(k)]j∈N (i)), i ∈ N . (5)

To model the effect of the noise, we then introduce
the noisy dynamics. Suppose that the noisy dynam-
ics is represented by other BNs with some probability
distribution, but is not given in advance. The noisy
dynamics is derived from the main dynamics and
the sample mean of the state. The sample mean of
the current state, and the sample mean of the next
state are denoted by sk =

[
s
(1)
k , s

(2)
k , . . . , s

(n)
k

]⊤
, and

sk+1 =
[
s
(1)
k+1, s

(2)
k+1, . . . , s

(n)
k+1

]⊤
, respectively, which are

generated in the following way.
We sample (or observe) the BN process for enough

large N times, and at each observing time (step)
k1, k2, . . . , kN , with ki ≤ ki+1, i = 1, 2, . . . , N − 1, we
collect a sequential pair observed state values, i.e.,
the current state x(ki) = [x1(ki), x2(ki), . . . , xn(ki)]

⊤

and the next state x(ki + 1) = [x1(ki + 1), x2(ki +
1), . . . , xn(ki + 1)]⊤ of the BN. In this case, the sample
mean s

(i)
k of the i-th component of the current state,

and the sample mean s
(i)
k+1 of the i-th component of the

next state are respectively defined as 1 .

s
(i)
k =

1

N

N∑
j=1

xi(kj), s
(i)
k+1 =

1

N

N∑
j=1

xi(kj + 1), i ∈ N .

Thus, s(i)k and s
(i)
k+1 are derived based on the long-time

behavior, where subscript k + 1 of s(i)k+1 mainly stresses
that s(i)k+1 is the next state corresponding to the current
state s

(i)
k . The values of s(i)k and s

(i)
k+1 are not changed

over time.
From the Law of Large Numbers, a fundamental result

in statistics, the sample mean converges to the expected
value when the sample size is sufficiently large (see, e.g,
Ibe (2013)). Based on this fact, we assume E[xi(k)] =

s
(i)
k and E[xi(k + 1)] = s

(i)
k+1 in our problem settings.

1 In the case of the successive sampling case, i.e, continu-
ously picking up the sample from an observed time series, one
can deduce that s(i)k ≈ s

(i)
k+1, with enough sufficient sampling.

In the general case, we cannot guarantee that s
(i)
k ≈ s

(i)
k+1.

Based on the above discussion, we formulate the opti-
mal reconstruction problem of a BN with noisy dynam-
ics. First, the following two assumptions are formally
made for the system.
Assumption 2.1 The main dynamics (5) is given.
Assumption 2.2 The sample means of the current
state and the next state, i.e., s

(i)
k and s

(i)
k+1 are given,

respectively.
Next, the optimal reconstruction problem is given as

follows.
Problem 1 Consider a BN with noisy dynamics given
by a PBN. Under Assumption 2.1 and Assumption 2.2,
for each i ∈ N , find
(i) the number of candidates q(i),
(ii) probabilities c

(i)
l , l = 0, 1, . . . , q(i),

(iii) Boolean functions f
(i)
1 , f

(i)
2 , . . . , f

(i)
q(i)

maximizing c
(i)
0 subject to E[xi(k + 1)] = s

(i)
k+1,

E[xi(k)] = s
(i)
k and c

(i)
0 +

∑q(i)
l=1 c

(i)
l = 1.

Similar to previous work such as (Kobayashi and Hi-
raishi, 2016; Umiji et al., 2019), q(i) is not given, and is
a decision variable. In other words, q(i) cannot be speci-
fied in advance. In the above problem, the main dynam-
ics and the noisy dynamics are separated. As it is desir-
able for the selection probability of the main dynamics
to be higher, we consider maximizing c

(i)
0 . In this sense,

we call the optimal reconstruction problem. Moreover,
we remark that there is no assumption for the noisy dy-
namics.

3 Main Results
First, we explain the outline of the matrix representa-

tion for PBNs (see, e.g., Li and Sun (2011); Toyoda and
Wu (2021)), where the STP of the matrices is used. For
any x ∈ [0, 1], we define its corresponding vector expres-
sion as

x :=

[
x

1− x

]
. (6)

Based on the above definition, the logical vectors δ12 , and
δ22 represent Boolean values 1, and 0, respectively. In
addition, under expression (6), according to Theorem 3.2
of Cheng et al. (2011a), which points out that a logical
function can be represented in an algebraic form, we have
the following fact.
Lemma 3.1 For any given logical function in the mini-
mal representation form

y = f([xj ]j∈M), (7)

with [xj(k)]j∈M ∈ {0, 1}|M|, M ⊂ N , and y ∈ {0, 1},
there exist logical matrices A ∈ L2×2|M| , and A ∈ L2×2n

such that (7) can be rewritten in the following two multi-
linear forms as

y = A (⋉j∈Mxj) , (8)
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and
y = A (⋉j∈Nxj) . (9)

Matrix A ∈ L2×2|M| in (8), and A ∈ L2×2n in (9)
are called the minimal representation structure matrix
(MRSM), and the full representation structure matrix
(FRSM) of the logical equation (7), respectively. Notice
that the MRSM and FRSM of the logical function f
are uniquely determined by each other. Specially we can
give the following property by a simple calculation based
on the STP technique inspired by Lemma 16 of Cheng
(2014).
Proposition 3.1 The MRSM A, and the FRSM A of
the logical function (7) satisfy the following relations: if
M = N , then A = A, and if M ̸= N , then

A =

{
A
(
⋉t∈MDr[2

t−1, 2]
)
, if 1 /∈ M,

ADf [2, 2]
(
⋉t∈MDr[2

t−1, 2]
)
, if 1 ∈ M,

(10)

where the dummy state set M of f is defined as the
residual set M := N \M, and Df [p, q] = 1⊤

p ⊗ Iq and
Dr[p, q] = Ip ⊗ 1⊤

q are dummy matrices.
By this proposition, the relation between the MRSM
and the FRSM is clarified. This proposition is used in
the proof of Theorem 3.2.

Define the probability of the state xi(k) choosing 1 as

pi(k) := Pr{xi(k) = 1}, ∀i ∈ N , k ≥ 0. (11)

Then, the evolution dynamics of the distribution p(k) =
[p1(k), p2(k), . . . , pn(k)]

⊤ of x(k) is given by the follow-
ing fact.
Lemma 3.2 For a given PBN (2)–(4), the distribution
p(k) of x(k) satisfies the following equation:

pi(k + 1) =
(
δ12
)⊤ q(i)∑

l=0

c
(i)
l A

(i)

l (⋉j∈N pj(k)), (12)

where A
(i)

l ∈ L2×2n is the FRSM of f
(i)
l , l =

0, 1, . . . , q(i), i ∈ N .
Proof. According to definition (11), we have the follow-
ing equation:

pi(k + 1) =

2n∑
j=1

P
(i)
j Pr{x(k) = δj2n}, (13)

which follows from the law of total probability, where
P

(i)
j denotes the conditional probability of xi(k+1) given

x(k) as P
(i)
j = Pr

{
xi(k + 1) = 1

∣∣x(k) = δj2n
}
. For any

i ∈ N , j = 1, 2, . . . , 2n, define

Ω
(i)
j :=

{
l = 0, 1, . . . , q(i)

∣∣δ12 = A
(i)

l δj2n
}
. (14)

Then P
(i)
j =

∑
l∈Ω

(i)
j

c
(i)
l . Recalling that A

(i)

l ∈ L2×2n ,
we get{

δ12 = A
(i)

l δj2n ⇐⇒ (δ12)
⊤A

(i)

l δj2n = 1,

δ12 ̸= A
(i)

l δj2n ⇐⇒ (δ12)
⊤A

(i)

l δj2n = 0,

for each i ∈ N , l = 0, 1, . . . , q(i), and j = 1, 2, . . . , 2n,
which implies

P
(i)
j =

∑
l∈Ω

(i)
j

c
(i)
l =

q(i)∑
l=1

c
(i)
l (δ12)

⊤A
(i)

l δj2n . (15)

By (11), we have pi(k) =
[
Pr{xi(k) = δ12},Pr{xi(k) = δ22}

]⊤
,

which implies that for any j = 1, 2, . . . , 2n,

Pr{x(k) = δj2n} = (δj2n)
⊤ ⋉j∈N pj(k). (16)

Substituting the inequalities (15) and (16) into (13), we
have

pi(k + 1) =

2n∑
j=1

q(i)∑
l=0

c
(i)
l (δ12)

⊤A
(i)

l δj2n(δ
j
2n)

⊤ ⋉j∈N pj(k)

= (δ12)
⊤

q(i)∑
l=0

c
(i)
l A

(i)

l

2n∑
j=1

δj2n(δ
j
2n)

⊤ ⋉j∈N pj(k)

= (δ12)
⊤

q(i)∑
l=0

c
(i)
l A

(i)

l ⋉j∈N pj(k),

by noticing
∑2n

j=1 δ
j
2n(δ

j
2n)

⊤ = I2n , and complete the
proof of Lemma 3.2. 2

For any i ∈ N , and k ≥ 0, by observing

E[xi(k)] = δ12pi(k) + δ22(1− pi(k)) = pi(k),

the expected value E[xi(k+1)] of the next state is given
by the following result, as a direct consequence of Lemma
3.2.
Corollary 3.1 The evolution dynamics of expectation
of state x(k) of PBN (2)–(4) can be expressed by the
following equation, for any i ∈ N , and k > 0,

E[xi(k + 1)] =

q(i)∑
l=0

c
(i)
l A

(i)

l (⋉j∈NE[xj(k)]) . (17)

This representation is used in the proof of Theorem 3.1.
To further characterize the structure of logical matrix

A ∈ L2×2n , define index set I(A) for A as

I(A) :=
{
i ∈ {1, 2, . . . , 2n}

∣∣Coli(A) = δ12
}
. (18)
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Lemma 3.3 For any subdynamics xi(k + 1) =

f (i)([xj(k)]j∈N (i)) of node i with FRSM A
(i),

I(A(i)
) = ∅ ⇔ f (i) ≡ 0 and N (i) = ∅, (19)

I(A(i)
) = {1, 2, . . . , 2n} ⇔ f (i) ≡ 1 and N (i) = ∅. (20)

From this lemma, we can determine if f is a constant
mapping using index set I(A). This lemma is used in
the proof of Theorem 3.1.

Here, we present a simple example to illustrate the
evolution dynamics (17) and index set I(A).
Example 3.1 Consider a PBN with two states (N =
{1, 2}). Boolean functions and their selection probabili-
ties are given as follows:

f (1) =

{
f
(1)
1 = x1(k) ∧ ¬x2(k), c

(1)
1 = 0.8,

f
(1)
2 = ¬x1(k), c

(1)
2 = 0.2,

f (2) =


f
(2)
1 = x1(k) ∨ x2(k), c

(2)
1 = 0.5,

f
(2)
2 = x1(k), c

(2)
2 = 0.3,

f
(2)
3 = ¬x2(k), c

(2)
3 = 0.2,

where N (1) = N (2) = {1, 2}, q(1) = 1, and q(2) = 2.
Using the truth table, we derive the matrix representation
for each Boolean function. As an example, consider the
Boolean function f

(1)
1 . From the truth table, we can obtain

f
(1)
1 = 0 if (x1, x2) = (0, 0), (0, 1), (1, 1) and f

(1)
1 = 1

if (x1, x2) = (1, 0). Then, we can obtain MRSM A
(1)
1 =

δ2[2, 1, 2, 2], with I(A(1)

1 ) = {1}, where the first row of
matrix A

(1)
1 , [0, 1, 0, 0], corresponds to the truth table of

f
(1)
1 . In this case, the MRSM and the FRSM are the

same, i.e., A(1)
1 = A

(1)

1 holds. Next, consider the Boolean
function f

(1)
2 . From the truth table, we can obtain MRSM

A
(1)
2 = δ2[2, 1]. Noting M = {2}, from Proposition 3.1,

we can obtain the FRSM as follows:

A
(1)

2 = A
(1)
2 (I2 ⊗ 1⊤

2 ) = δ2[2, 2, 1, 1],

with I(A(1)

2 ) = {3, 4}. Similarly, we can obtain FRSM
A

(2)

1 = δ2[1, 1, 1, 2], A
(2)

2 = δ2[1, 1, 2, 2], and A
(2)

3 =
δ2[2, 1, 2, 1]. From Corollary 3.1, we can obtain the fol-
lowing matrix representation of the PBN:

E[x1(k + 1)] =

[
0 0.8 0.2 0.2

1 0.2 0.8 0.8

]
(⋉j∈NE[xj(k)]) ,

E[x2(k + 1)] =

[
0.8 1 0.5 0.2

0.2 0 0.5 0.8

]
(⋉j∈NE[xj(k)]) .

For the given sample mean s
(j)
k of the state xi, i ∈ N ,

define
QN := ⋉j∈N s

(j)
k . (21)

Then, noticing that s
(j)
k = [s

(j)
k , 1 − s

(j)
k ]⊤, and

s
(j)
k ∈ [0, 1] for each node i ∈ N , we easily deduce that∑2n

j=1 [QN ]j = 1, and [QN ]j ≥ 0, for any j = 1, . . . , 2n.
Thus, we have the following theorem as the main result.
Theorem 3.1 A solution of Problem 1 is given by the
following statements. For any i ∈ N ,

(i) If s
(i)
k+1 =

∑
j∈I(A(i)

0 )
[QN ]j, then q(i) = 0, with

c
(i)
0 = 1;

(ii) If s
(i)
k+1 <

∑
j∈I(A(i)

0 )
[QN ]j, then q(i) = 1, and

f
(i)
1 ≡ 0 with

c
(i)
0 =

(∑
j∈I(A(i)

0 )
[QN ]j

)−1

s
(i)
k+1; (22)

(iii) If s
(i)
k+1 >

∑
j∈I(A(i)

0 )
[QN ]j, then q(i) = 1, and

f
(i)
1 ≡ 1 with

c
(i)
0 =

(
1−

∑
j∈I(A(i)

0 )
[QN ]j

)−1

(1− s
(i)
k+1). (23)

Proof. According to Corollary 3.1, Problem 1 can
be rewritten as follows. Given A

(i)

0 ∈ L2×2n , and
s
(i)
k , s

(i)
k+1, i ∈ N , find the number of candidates

q(i), probabilities c
(i)
0 , c

(i)
1 , . . . , c

(i)
q(i), and matrices

A
(i)

1 , A
(i)

2 , . . . , A
(i)

q(i) maximizing c
(i)
0 subject to the fol-

lowing condition, for each i ∈ N ,

s
(i)
k+1 =

(
c
(i)
0 A

(i)

0 +

q(i)∑
l=1

c
(i)
l A

(i)

l

)
QN , (24)

where QN is given by (21), and A
(i)

l is the FRSM
of f

(i)
l , l = 0, 1, . . . , q(i). By observing that s

(i)
k+1 =

Row1

(
s
(i)
k+1

)
, (24) is equivalent to

s
(i)
k+1 =

q(i)∑
l=0

c
(i)
l Row1

(
A

(i)

l

)
QN (25)

= c
(i)
0

∑
j∈I(A(i)

0 )
[QN ]j +

q(i)∑
l=1

c
(i)
l

∑
j∈I(A(i)

l )
[QN ]j ,

where the second equation follows from that all of A(i)

l ,
l = 0, 1, . . . , q(i), i ∈ N are logical matrices in L2×2n .

First, consider the case of s(i)k+1 =
∑

j∈I(A(i)

0 )
[QN ]j .

From (25), we can obtain c
(i)
0 = 1 is optimal, as a trivial

solution. Hence, other candidates of Boolean functions
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are not required, which means there is no disturbance,
and consequently q(i) = 0.

Next, consider the case of s(i)k+1 <
∑

j∈I(A(i)

0 )
[QN ]j . In

this case,
∑

j∈I(A(i)

0 )
[QN ]j ̸= 0 holds from 0 ≤ s

(i)
k+1 ≤ 1.

Then, from (25), we can obtain

c
(i)
0 =

s
(i)
k+1∑

j∈I(A(i)

0 )
[QN ]j

−

∑q(i)
l=1 c

(i)
l

∑
j∈I(A(i)

l )
[QN ]j∑

j∈I(A(i)

0 )
[QN ]j

.

c
(i)
0 reaches the maximal value when the second term of

the right-hand side of the equation above is equal to zero,
which implies we can choose I(A(i)

l ) = ∅, for each l ̸= 0.

Then, according to Lemma 3.3, q(i) = 1 with f
(i)
1 ≡ 0.

Hence, we can obtain the statement (ii).
Finally, consider the case of s(i)k+1 >

∑
j∈I(A(i)

0 )
[QN ]j .

We consider maximizing c
(i)
0 of (25) subject to 0 ≤ c

(i)
0 ≤

1. That is,
∑q(i)

l=1 c
(i)
l must be minimized, since c

(i)
0 +∑q(i)

l=1 c
(i)
l = 1. To minimize

∑q(i)
l=1 c

(i)
l subject to 0 ≤

c
(i)
0 ≤ 1, the term

∑
j∈I(A(i)

l )
[QN ]j of the second term of

the right hand side of (25) must be maximized. Recalling∑2n

j=1 [QN ]j = 1, we have
∑

j∈I(A(i)

l )
[QN ]j reaches the

maximum point 1, when I(A(i)
) = {1, 2, . . . , 2n}. Hence,

applying again to Lemma 3.3, we have f (i) ≡ 1 with
q(i) = 1. Then, (25) can be rewritten as

s
(i)
k+1 = c

(i)
0

∑
j∈I(A(i)

0 )
[QN ]j + (1− c

(i)
0 ),

which deduces (23). This completes the proof. 2

Theorem 3.1 is used for analysis, based on full infor-
mation of FRSM. We comment on the computational
complexity for verifying Theorem 3.1. First, from the
definition of STP, the computational complexity for de-
riving QN is O(2n). Next, for each i ∈ N , consider com-
putation of

∑
j∈I(A(i)

0 )
[QN ]j . Since, in the extreme case

of f (i) ≡ 1 and N (i) = ∅, we have |I(A(i)

0 )| = 2n. Hence,
considering the n loops, the computational complexity
for verifying Theorem 3.1 is O(2n)+O(n2n) = O(n2n).

From the viewpoint of computation, it is desirable that
the size of matrices is small. By combining Theorem 3.1
with Proposition 3.1, we know that for each node i ∈ N ,
the indegree index N (i) is uniquely determined by the
main dynamics f

(i)
0 . Hence, we propose Algorithm 1 as

the algorithm with minimum calculations. One of the
advantages of Algorithm 1 is that the proposed method
can be used for comparatively large networks, because
the computational complexity can be reduced tremen-
dously, when using MRSM, instead of FRSM, especially
in the case of that the number of in-degree indexes is
much less than the number of nodes. In a similar way to
the computational complexity of Theorem 3.1, the com-

Algorithm 1 Optimal reconstruction of the noisy dy-
namics
Step 0. Initialization:
(i) Given main dynamics (5);
(ii) Collect s(i)k+1, s

(i)
k , i ∈ N ;

Step 1. For each i ∈ N , compute Q(i)
N = ⋉j∈N (i)s(j)(k);

Step 2. For each i ∈ N ,

(i) If s(i)k+1 =
∑

j∈I(A(i)
0 )

[
Q

(i)
N

]
j
, then c

(i)
0 = 1;

(ii) If s(i)k+1 <
∑

j∈I(A(i)
0 )

[
Q

(i)
N

]
j
, then f1(i) ≡ 0 with

c
(i)
0 =

(∑
j∈I(A(i)

0 )

[
Q

(i)
N

]
j

)−1

s
(i)
k+1;

(iii) If s(i)k+1 >
∑

j∈I(A(i)
0 )

[
Q

(i)
N

]
j
, then f1(i) ≡ 1 with

c
(i)
0 =

(
1−

∑
j∈I(A(i)

0 )

[
Q

(i)
N

]
j

)−1

(1− s
(i)
k+1).

putational complexity of Algorithm 1 can be obtained
as O(2|N

(i)|) + O(n2|N
(i)|) = O(n2|N

(i)|). Thus, using
Algorithm 1, the computational complexity can be re-
duced depending on the number of in-degree indexes.
Remark 3.1 In existing approaches such as Kobayashi
and Hiraishi (2016); Umiji et al. (2019), multiple pairs
of s(i)k+1 and s

(i)
k are considered simultaneously. This re-

quires solving a linear programming problem with the as-
sumption of the network structure of noisy dynamics in
advance. However, with the help of the separately char-
acterization of evolution dynamics of selection probabili-
ties given in Lemma 3.2, we can solve the reconstruction
problem without this assumption, as provided by Theo-
rem 3.1. From this theorem, we see that q(i) may be given
by at most q(i) = 1. We also see that the noisy dynamics
may be given by a constant mapping, and can be easily
derived.

Now, we state the following theorem, which provides
the correctness of Algorithm 1.
Theorem 3.2 The optimal c(i)0 in Theorem 3.1 is the
same as that in Algorithm 1.
Proof. According to Theorem 3.1, it is enough to prove
that ∑

j∈I(A(i)

0 )
[QN ]j =

∑
j∈I(A(i)

0 )

[
Q

(i)
N

]
j
. (26)

As an extension of Lemma 16 of Cheng (2014), we claim
that for any x ∈ Rp, y ∈ Rq, with

∑p
i=1 xi = 1, and∑q

i=1 yi = 1, we have

Df [p, q]⋉ x⋉ y = y, and Dr[p, q]⋉ x⋉ y = x. (27)

In fact, for any x ∈ Rp, with
∑p

i=1 xi = 1, we get
Df [p, q] ⋉ x = (1⊤

p ⊗ Iq) ⋉ x = Iq, which implies
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Df [p, q] ⋉ x ⋉ y = y. Consequently, Dr[p, q] ⋉ x ⋉ y =
Dr[p, q]W[q,p] ⋉ y ⋉ x = Df [q, p] ⋉ y ⋉ x = x, by
applying the properties W[q,p] ⋉ y ⋉ x = y ⋉ x, and
Dr[p, q]W[q,p] = Dr[q, p] of the swap matrix W[p,q] de-
fined by [Iq ⊗ δ1p, Iq ⊗ δ2p, . . . , Iq ⊗ δpp ] in Cheng et al.
(2011a).

We assume that N (i)

0 = {j1, j2, . . . , jm}, and N (i)
0 =

{l1, l2, . . . , ln−m}. Without loss of generality, we also as-
sume that j1 = 1. Then, according to Proposition 3.1,

A
(i)

0 QN = A
(i)

0 ⋉t∈N s
(t)
k

=ADf [2, 2]
(
⋉

t∈N (i)

0

Dr[2
t−1, 2]

)
⋉t∈N s

(t)
k

=ADf [2, 2]
(
⋉

t∈N (i)

0 \{jm}Dr[2
t−1, 2]

)
Dr[2

j−1, 2]

(⋉jm−1
t=1 s

(t)
k )s

(j)
k (⋉n

t=jm+1s
(t)
k )

=ADf [2, 2]
(
⋉

t∈N (i)

0 \{jm}Dr[2
t−1, 2]

)
(⋉jm−1

t=1 s
(t)
k )(⋉n

t=jm+1s
(t)
k )

= · · · · · ·
=ADf [2, 2]x1(k)xl2(k)⋉t∈N (i)

0 \{l1}
s
(t)
k

=A⋉
t∈N (i)

0

s(t)(k) = AQ
(i)
N ,

where the equations in (27) are repeatedly ap-
plied. Thus,

∑
j∈I(A(i)

0 )
[QN ]j = Row1

(
A

(i)

l QN

)
=

Row1

(
AQ

(i)
N

)
=

∑
j∈I(A(i)

0 )

[
Q

(i)
N

]
j

holds. 2

Using a simple example, we demonstrate the above
algorithm.
Example 3.2 Consider a PBN with three states. Sup-
pose that the main dynamics is given by


x1(k + 1) = ¬x3(k),

x2(k + 1) = x1(k) ∧ ¬x3(k),

x3(k + 1) = x1(k) ∨ x2(k).

From these Boolean functions, we see that N (1) = {3},
N (2) = {1, 3}, and N (3) = {1, 2} hold. Suppose also that
the sample mean for each i is given by s

(1)
k+1 = s

(1)
k = 0.8,

s
(2)
k+1 = s

(2)
k = 0.4, and s

(3)
k+1 = s

(3)
k = 0.7.

First, consider the case of x1. From Q
(1)
N = s(3)(k),

we can obtain Q
(1)
N = [0.7, 0.3]⊤. The matrix A

(1)
0 can be

derived as A
(1)
0 = δ2[2, 1]. From I(A(1)

0 ) = {2}, we can
obtain

∑
j∈I(A(1)

0 )

[
Q

(1)
N

]
j
= 0.3. From s

(1)
k+1 = 0.8 > 0.3,

condition (iii) in Step 2 of Algorithm 1 is satisfied. Hence,
we can obtain c

(1)
0 = (1− 0.8)/(1− 0.3) = 0.2857.

Next, consider the case of x2. From Q
(2)
N = s(1)(k) ⋉

Fig. 1. Network graph of Example 3.2, where → and → ex-
press the activation and inhibition relationship, respectively,
and dashed 99K indicates noise dynamics.

s(3)(k), we can obtain

Q
(2)
N =


0.8 · 0.7

0.8(1− 0.7)

(1− 0.8)0.7

(1− 0.8)(1− 0.7)

 =


0.56

0.24

0.14

0.06

 .

The matrix A
(2)
0 can be derived as A

(2)
0 = δ2[2, 1, 2, 2].

From I(A(2)
0 ) = {2}, we can obtain

∑
j∈I(A(2)

0 )

[
Q

(2)
N

]
j
=

0.24. From s
(2)
k+1 = 0.4 > 0.24, the condition (iii) in

Step 2 of Algorithm 1 is satisfied. Hence, we can obtain
c
(2)
0 = (1− 0.4)/(1− 0.24) = 0.7895.

Finally, consider the case of x3. From Q
(3)
N = s(1)(k)⋉

s(2)(k), we can obtain Q
(3)
N = [0.32, 0.48, 0.08, 0.12]⊤.

The matrix A
(3)
0 can be derived as A

(3)
0 = δ2[1, 1, 1, 2].

From I(A(2)
0 ) = {1, 2, 3}, we can obtain∑

j∈I(A(2)
0 )

[
Q

(2)
N

]
j
= 0.32 + 0.48 + 0.08 = 0.88.

From s
(3)
k+1 = 0.7 < 0.88, the condition (ii) in Step 2

of Algorithm 1 is satisfied. Hence, we can obtain c
(3)
0 =

0.7/0.88 = 0.7955. Thus, we can obtain the following
PBN with the network graph illustrated by Fig. 1:

f (1) =

{
f
(1)
1 = ¬x3(k), c

(1)
0 = 0.2857,

f
(1)
2 = 1, c

(1)
1 = 0.7143,

f (2) =

{
f
(2)
1 = x1(k) ∧ ¬x3(k), c

(2)
0 = 0.7895,

f
(2)
2 = 1, c

(2)
1 = 0.2105,

f (3) =

{
f
(3)
1 = x1(k) ∨ x2(k), c

(3)
0 = 0.7955,

f
(3)
2 = 0, c

(3)
1 = 0.2045.

From the obtained PBN, we can discuss the difference be-
tween the sample mean (i.e., data) and the mathematical
model (i.e., the Boolean function).

We compare the proposed method with the existing ap-
proach, given in Kobayashi and Hiraishi (2016); Umiji
et al. (2019). We focus on f (2). Using the method in
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Kobayashi and Hiraishi (2016), we can obtain q(2) = 4

and c
(2)
0 = 0.4391 (see Umiji et al. (2019)). From q(2) =

4, we see that the number of the candidates of Boolean
functions is redundant. Using the method in Umiji et al.
(2019), we can obtain q(2) = 1 and c

(2)
0 = 0.7143 (see

Umiji et al. (2019)). Hence, the value of c
(2)
0 in the

proposed method is larger than that in the method in
Umiji et al. (2019). Thus, the proposed method is better
than previously reported methods. PBNs obtained by three
methods are equivalent in the sense that these are gener-
ated from the same main dynamics and the same sample
mean (s(i)k+1 and s

(i)
k ). In the proposed method, the prob-

ability c
(i)
0 of selecting the main dynamics is maximized.

In this sense, a PBN obtained by the proposed method is
optimally reconstructed.
4 Application to Lac Operon Networks

In this section, the reconstruction of the PBN model
of the lac operon, which contains the genes that control
the transport and metabolism of lactose, is performed
as an application to practical gene regulatory networks.

Fig. 2 shows a graphical representation of the lac
operon network of the Escherichia coli bacterium. As
investigated in Chen et al. (2018), the update logics of
lac operon networks can be described by the following
Boolean equations:

fM = C ∧ ¬R ∧ ¬Rm,

fB = M,

fR = ¬A ∧ ¬Am,

fA = L ∧B,

fL = P ∧ Le ∧ ¬Ge,

fP = M,

fC = ¬Ge,

fRm
= (¬A ∧ ¬Am) ∨R,

fAm
= L ∨ Lm,

fLm = ((Lem ∧ P ) ∨ Le) ∧ ¬Ge,

(28)

where all the variables represent the concentration levels
of the corresponding gene products; 1 denotes “present”
or “high concentration” and 0 denote “absent” or “low
(basal) concentration.” M denotes the lac mRNA, B is
the β-galactosidase (LacZ), R is the repressor protein
(LacI), A is the allolactose, L is the lactose, P is the
transport protein (LacY; “lac permease”), and C is the
cAMP-CAP protein complex. There exist three Boolean
control variables, lactose Le, Lem and glucose Ge. The
subscript e represents extracellular concentration, and
m represents at least medium concentration in (28). For
more details of the biological justification of each update
function of (28), see Veliz-Cuba and Stigler (2011).

For convenience, we rename Boolean variables
(M,B,R,A,L, P,C,Rm, Am, Lm) as (x1, x2, x3, x4, x5,
x6, x7, x8, x9, x10), and change the parameters (Le, Lem,
Ge) to (u1, u2, u3).

In this example, we assume that ui(k) is given by

Fig. 2. Lac operon network in Escherichia coli.

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1 sk
(i)

sk+1
(i)

Fig. 3. Sample mean of the state.

u1(k) = u3(k) = 0 and u2(k) = 1. Consider setting the
state at time k as x(k) = [1, 1, 0, 1, 0, 0, 1, 1, 0, 0]⊤. We
suppose that setting x(k) is failed with the probability
0.3. According to this probability, 1000 samples of x(k)
were randomly generated. For each sample of x(k), the
next state x(k + 1) was calculated. From the obtained
samples, s(i)k and s

(i)
k+1 were generated as given in Table

1, see also Figure 3.
Next, we present the results of computation. Since

both x5(k + 1) = 0 and x7(k + 1) = 1 hold, we do not
need to investigate the dynamics of x5 and x7. In the
cases of x2, x6, and x10, the condition (i) in Step 2 of
Algorithm 1 is satisfied. Hence, q(2) = q(6) = q(10) = 0
holds. Finally, we consider the dynamics of x1, x3, x4,
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Table 1
Sample mean of states for the lac operon network (28).

i 1 2 3 4 5 6 7 8 9 10
Sample mean s

(i)
k 0.7080 0.6920 0.3050 0.7010 0.3110 0.2920 0.6850 0.7140 0.3080 0.2960

Sample mean s
(i)
k+1 0.1390 0.7080 0.2050 0.2140 0 0.7080 1 0.4460 0.5210 0.2920

x8, and x9. Then, we can obtain{
f
(1)
1 = x7(t) ∧ ¬x3(t) ∧ ¬x8(t), c

(1)
0 = 0.8862,

f
(1)
2 = 0, c

(1)
1 = 0.1138,{

f
(3)
1 = ¬x4(t) ∧ ¬x9(t), c

(3)
0 = 0.9823,

f
(3)
2 = 0, c

(3)
1 = 0.0177,{

f
(4)
1 = x5(t) ∧ x2(t), c

(4)
0 = 0.9230,

f
(4)
2 = 0, c

(4)
1 = 0.0770,{

f
(8)
1 = (¬x4(t) ∧ ¬x9(t)) ∨ x3(t), c

(8)
0 = 0.9828,

f
(8)
2 = 1, c

(8)
1 = 0.0172,{

f
(9)
1 = x5(t) ∨ x10(t), c

(9)
0 = 0.9985,

f
(9)
2 = 1, c

(9)
1 = 0.0015.

From these results, we see that for the data set used,
the dynamics on x1 is more sensitive to the noise than
those on x3, x4, x8, and x9. Thus, we can obtain useful
information from the proposed method.
5 Conclusion

In this paper, we proposed an optimal reconstruction
method of the noisy dynamics in BNs. We showed that
the noisy dynamics is derived as a constant under the as-
sumption that the main dynamics and the sample mean
of the state are given. As an application, we considered
a lac operon network.

One of the future efforts is to apply the proposed
method to experimental data sets. In this paper, we do
not consider the distribution of the noise. Detailed dis-
cussion about the distribution is one of the future efforts.
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