

Title	Detection of sentinel lymph node with a novel near-infrared fluorescence spectrum system and indocyanine green fluorescence in patients with early breast cancer : First clinical experience
Author(s)	Ebihara, Yuma; Kato, Hiroaki; Narita, Yoshiaki; Abe, Masaru; Kubota, Reiko; Hirano, Satoshi
Citation	Photodiagnosis and photodynamic therapy, 40, 103061 https://doi.org/10.1016/j.pdpdt.2022.103061
Issue Date	2022-12
Doc URL	http://hdl.handle.net/2115/90945
Rights	© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	PPT 40 103061.pdf

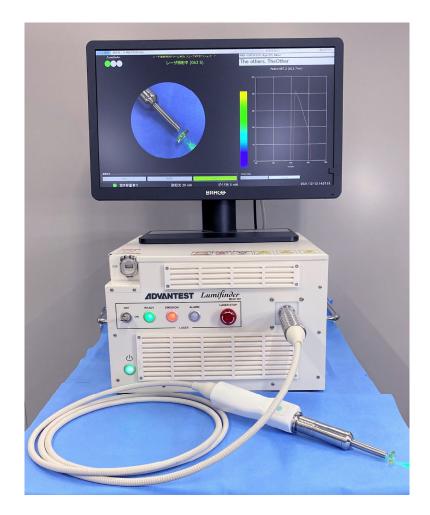
1 Case report

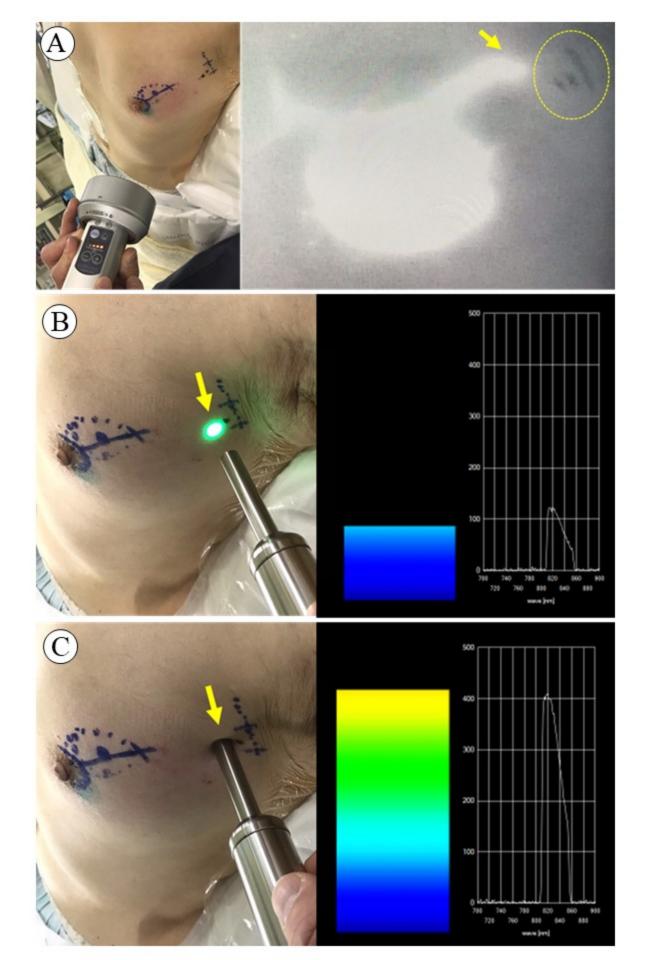
2	Detection of Sentinel lymph node with a novel near-infrared fluorescence spectrum system and
3	indocyanine green fluorescence in patients with early breast cancer: First clinical experience
4	
5	Yuma Ebihara PhD ^{1,2} , Hiroaki Kato PhD ³ , Yoshiaki Narita PhD ³ , Masaru Abe PhD ³ , Reiko Kubota
6	PhD ³ , Satoshi Hirano PhD ¹
7	
8	1 Department of Gastroenterological Surgery II, Faculty of Medicine, Hokkaido University, Sapporo,
9	Japan
10	2 Division of Minimally Invasive Surgery, Hokkaido University Hospital, Sapporo, Japan
11	3 Department of Thoracic Surgery, Teine Keijinkai Hospital, Sapporo, Japan
12	
13	Corresponding author
14	Yuma Ebihara,
15	Email: yuma-ebi@wc4.so-net.ne.jp
16	Division of Minimally Invasive Surgery, Hokkaido University Hospital, North 15 West 7, Kita-ku,
17	Sapporo 0608638, Hokkaido, Japan.
18	Telephone: +81 11 706 7714; Fax: +81 11 706 7158

1 Abstract

2	Background: Sentinel lymph node biopsy (SLNB) for early breast cancer is common, and many
3	studies have reported its usefulness with indocyanine green (ICG). However, in the case of sentinel
4	lymph node (SNs) identification using ICG, it is difficult to accurately identify the fluorescence signal
5	of SNs through the skin because of the weakening of the signal due to the intervening tissue thickness.
6	In this study, we examined whether fluorescence spectroscopy can detect weaker fluorescence signals
7	and accurately identify SNs that have accumulated ICG.
8	Methods: Six women with early breast cancer and clinically confirmed negative axillae were
9	recruited. The periareolar region was subcutaneously injected with ICG (1 ml, 5 mg/mL). The
10	identification rate of SNs in the skin was studied using the novel fluorescence spectroscopy
11	(Lumifinder TM , ADVANTEST, Tokyo, Japan).
12	Results: Lumifinder TM was able to identify 100% of SNs in the skin (6/6 patients). In addition, for
13	SNs identification in deeper axillary areas, pressing the probe tip against the body surface allows
14	clearer fluorescence observation.
15	Conclusion: Novel fluorescence spectroscopy (Lumifinder TM) may overcome the problem of
16	SLNB using ICG for breast cancer.
17	Key words

18 Sentinel lymph node biopsy, breast cancer, indocyanine green, fluorescence spectroscopy


1	The indocyanine green (ICG) fluorescence sentinel lymph node biopsy (SLNB) method for early
2	breast cancer is increasingly used in breast cancer centers because it is more accurate than blue dye
3	and avoids the administrative complications of radioisotopes [1]. However, the depth of tissue that can
4	be observed using ICG fluorescence is approximately 3-10 mm from the skin surface, and SNs may
5	not be identifiable from the skin surface [2]. The use of a novel fluorescence spectrum measurement
6	system (Lumifinder TM , ADVANTEST, Tokyo, Japan) (Fig.1) can measure a much weaker ICG
7	fluorescence signal and is expected to overcome the problems of SNs identification using ICG [3].
8	In this study the usefulness of Lumifinder TM in SLNB using ICG for early-stage breast cancer
9	was examined. Six female patients with early breast cancer and clinically confirmed negative axilla
10	were recruited from the Department of Breast Surgery of the Department of Thoracic Surgery of Teine
11	Keijinnkai Hospital between June 2021 and July 2021. The inclusion criteria were as follows: 1)
12	primary breast cancer confirmed by core needle biopsy, 2) absence of enlarged axillary lymph nodes
13	as verified by palpation or breast ultrasound examination, and 3) absence of distant metastasis. The
14	exclusion criteria were as follows: 1) pregnancy or lactation, 2) primary breast cancer confirmed by
15	open biopsy, 3) preoperative radiotherapy in the breast area, 4) history of axillary surgery, and 5)
16	allergy to iodine. Each dose of ICG consisted of 25 mg of the powdered form which was dissolved in
17	5 ml sterilized water originally prepared by the manufacturer, and the mass concentration of the
18	solution was 5 mg/ml. The peri-areolar region was subcutaneously injected with 1 ml indocyanine


1	green (ICG). After a 5-minute massage, SN stained with ICG was detected using Lumifinder TM from
2	the surface of the skin. This study was approved by the independent ethics committee of Teine
3	Keijinkai Hospital (3-022109-00), and informed consent was obtained from all patients.
4	The median age of the patients was 70 years (range, 64-82) years. The median operative
5	time was 132.5 min. (range, 95-165) and the median blood loss was 0 ml. The median time for SN
6	identification was 20 min. (range, 14-48) and the number of SN detected was 2.5 (range, 1-5). There
7	were no cases of postoperative complications (≥ Clavien-Dindo classification [4,5] II). The median
8	length of hospital stay after surgery was 4.5 days (range, 1-6 days). Lumifinder TM was able to identify
9	SNs in the skin at a detection rate of 100 % (6/6 patients). In observation from the skin, SNs could not
10	be identified with a handheld camera imaging device (PDE-NEO; Hamamatsu Photonics, Hamamatsu,
11	Japan) in all cases (Fig. 2). In addition, for identification of SNs in deeper axillary areas, pressing the
12	probe tip against the body surface facilitated clearer observation of fluorescence (Fig. 3). Currently,
13	SLNB must be performed using a viewing monitor instead of directly observing the operating field,
14	and a fluorescence imaging system with a near-infrared camera is required.
15	Novel fluorescence spectroscopy (Lumifinder TM) can overcome the problems of SLNB
16	using ICG for breast cancer, such as deeper SN identification from the skin and manipulation during
17	monitoring. This report will contribute to further improvements in the identification rate of SLNB
18	using ICG.

1 References

2	[1] Z. Wang, X. Yang, J. Wang, P. Liu, Y. Pan, C. Han, J. Pei, Real-time in situ navigation system with
3	indocyanine green fluorescence for sentinel lymph node biopsy in patients with breast cancer,
4	Front. Oncol. 11 (2021) May 5;11:621914. https://doi.org/10.3389/fonc.2021.621914,
5	http://www.ncbi.nlm.nih.gov/pubmed/34026607, PMC8133435.
6	[2] M. Weiler, T. Kassis, J.B. Dixon, Sensitivity analysis of near-infrared functional lymphatic
7	imaging, J. Biomed. Opt. 17 (2012) 066019. https://doi.org/10.1117/1.JBO.17.6.066019 M.
8	Weiler, T. Kassis, J.B. Dixon, Sensitivity analysis of near-infrared functional lymphatic imaging,
9	J. Biomed. Opt. 17 (2012) 066019. https://doi.org/10.1117/1.JBO.17.6.066019.
10	[3] Ebihara Y, Li L, Noji T, Kurashima Y, Murakami S, Shichinohe T, Hirano S. A novel laparoscopic
11	near-infrared fluorescence spectrum system with indocyanine green fluorescence overcomes
12	limitations of near-infrared fluorescence image-guided surgery. J Minim Access Surg. 24 (2021)
13	doi: 10.4103/jmas.JMAS_165_20. Epub ahead of print. PMID: 34045415.
14	[4] D. Dindo, N. Demartines, P.A. Clavien, Classification of surgical complications: a new proposal
15	with evaluation in a cohort of 6336 patients and results of a survey, Ann. Surg. 240 (2004) 205-
16	213. https://doi.org/10.1097/01.sla.0000133083.54934.ae.
17	[5] P.A. Clavien, J. Barkun, M.L. de Oliveira, et al, The Clavien-Dindo classification of surgical
18	complications: five-year experience, Ann. Surg. 250 (2009) 187–196.

1	https://doi.org/10.1097/SLA.0b013e3181b13ca2.
2	
3	
4	
5	Figure legends
6	Fig. 1: The fluorescence spectroscopy (Lumifinder TM , ADVANTEST, Tokyo, Japan). The system can
7	display the fluorescence spectrum in real-time, the fluorescence intensity is indicated by high and low
8	tones. The Y-axis is fluorescence intensity (a.u. arbitrary units) and the X-axis is wavelength (nm).
9	
10	Fig. 2: A; Sentinel lymph node biopsy for early breast cancer with handheld camera imaging device
11	(PDE-NEO; Hamamatsu Photonics, Hamamatsu, Japan). The identification of sentinel lymph nodes
12	from the skin with PDE-NEO. The interruption of lymphatic vessels is observed (Arrow). The circle
13	shows the axillary areas. B,C; Sentinel lymph node biopsy for early breast cancer with fluorescence
14	spectroscopy (Lumifinder TM , ADVANTEST, Tokyo, Japan). B; This system is capable of measuring
15	the spectrum of ICG fluorescence signal, and can measure the weaker fluorescence signal. And the
16	accurate identification of sentinel lymph nodes (SNs) from the skin was possible. C; It was possible
17	to press the probe against the skin and identify deeper axillary SNs.

