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Abstract: Multimodal learning of motion and text tries to find the correspondence between skeletal time-series data acquired
by motion capture and the text that describes the motion. In this field, good associations can realize both motion-to-text and
text-to-motion applications. However, the previous methods failed to associate motion with text, taking into account details of
descriptions, for example, whether to move the left or right arm. In this paper, we propose a motion-text contrastive learning
method for making correspondences between motion and text in a shared embedding space. We showed that our model outper-
forms the previous studies in the task of action recognition. We also qualitatively show that, by using a pre-trained text encoder,
our model can perform motion retrieval with detailed correspondences between motion and text.
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1 INTRODUCTION

Humans process sensory information by integrating mul-
tiple modalities, including vision, hearing, smell, touch, and
taste. In the research field of machine learning, the way to
effectively utilize such multimodal data in an integrated man-
ner has been developed as multimodal learning. Multimodal
learning is a method of learning how to process information
from multiple modalities so that tasks that are difficult to ac-
complish in a single modality can be performed.

Multimodal learning of motion and text tries to find the
correspondence between skeletal time-series data acquired by
motion capture and the text that describes the motion. In this
field, establishing good associations between motion and text
can realize both motion-to-text and text-to-motion applica-
tions. To achieve a multimodal understanding of motion and
text, motion and text must be associated with understandings
of their linguistic concepts and structures.

One of the multimodal learning tasks for motion and text
is text-to-motion generation. Text-to-motion generation is the
task of generating motions that reflect the textual representa-
tion of the input text. To generate motion that matches the
textual representation, the model needs to learn a shared em-
bedding of motion and text, and various methods have been
studied [1, 2]. However, conventional text-to-motion gen-
eration methods learn a one-to-one correspondence between
motion and text. Therefore, it is difficult to convert unseen
text into an appropriate embedding representation, and mo-
tion could not be generated from an unlearned text represen-
tation.

To overcome the problem of generalization for unseen
text, some previous works incorporated pre-trained text rep-
resentations. Tevet et al. used CLIP [3, 4] trained with a
large amount of image-text pair data and associated CLIP’s
high-quality text embedding representation with the motion
embedding representation [5]. As a result, they could gener-
ate motion that reflected the textual representation by predict-
ing the embedding of unseen text from the CLIP embedding
representation, even for text with various representations that
were not included in the training data. However, the authors
noted that it is difficult to generate motions considering mod-
ifiers, for example, to determine which arm is moved. It may
be because the textual representation in CLIP was obtained by
learning images and texts, not by learning the correspondence
between motions and texts. Therefore, it may be necessary to
learn the correspondence between the textual representations
of CLIP and motions that take detailed textual representation
into account.

In this paper, we propose a motion-text contrastive learn-
ing [6, 7, 8, 9] method for learning shared embedding repre-
sentations of motion and text. In our model, we use CLIP’s
pre-trained text encoder, but different from the previous stud-
ies, we additionally learn the correspondence between motion
and text through contrastive learning. We trained our model
on motion-text data, pairs of skeleton data captured by motion
capture, and text describing the motion. Then, we evaluated
our model on action recognition and motion retrieval tasks.
In addition, we qualitatively evaluated the abilities in motion
retrieval to recognize motion components, such as right and



left, and to infer correspondence between untrained motion
and text.

2 METHOD

The proposed model is shown in Fig. 1. The model con-
sists of encoders for both modalities of motion and text. The
encoders are trained by contrastive learning for obtaining a
shared embedding space of motion and text. The contrastive
learning is performed on sets of motion and text pairs. Given
a batch of n pairs of motion and text, each motion and text is
converted into a shared embedding by the encoders, respec-
tively. The encoders are optimized so that the similarity be-
tween paired embeddings becomes high and the non-paired
embedding motion and text become low. After the optimiza-
tion, the shared embeddings can be used for action recogni-
tion and motion retrieval based on the similarities between
embeddings.

2.1 Motion Encoder

The motion encoder consists of a graph convolutional net-
work [10]. The skeleton of the input motion data is repre-
sented by a graph whose nodes are joints of a human skele-
ton. The graph is then convolved in the temporal and spatial
directions for recognizing both the temporal and spatial con-
text of input motions [11]. An input fixed length motion is
converted to 512-dimensional embedding.

2.2 Text Encoder

We used CLIP’s text encoder [3] trained with image-text
pair data collected from the internet as the pre-trained model.
The text encoder consists of the transformer network, a model
for natural language processing with an attention mechanism
[12, 13]. It processes a series of words in the text and out-
puts 512-dimensional distributed embeddings for each word,
including [SOS] and [EOS] tokens which indicate the begin-
ning and end of the sentence. The representation correspond-
ing to the [EOS] token is used as the text embeddings for
contrastive learning.

2.3 Similarity in Shared Embedding Space

The motion and text input pairs are converted into embed-
dings by encoders. By calculating similarities for each possi-
ble combination between the batch of n motion and text pairs,
we obtain the similarity scores with size n x n. The similarity
score is calculated as cosine similarities between the embed-
dings of motion and text as follows:
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where M and T are batch inputs of motion and text, respec-
tively.

2.4 Loss Function

The encoders are optimized so that the similarity between
the embeddings of paired motion and text becomes high and
those of non-paired motion and text become low. The loss
function is designed such that the diagonal elements, which
correspond to similarities of the paired motion and text, be-
come close to 1 and the other elements become close to 0
[14, 15]. First, we calculate the cross-entropy errors in the
row direction of logits to obtain the loss;. Text loss loss; is
calculated as the average of cross entropies between logits
and target ¢ for each row.
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Second, we calculate the cross-entropy errors in the column
direction of logits to obtain the lossy,. Motion loss lossy, is
calculated as the average of cross entropies between logits
and target ¢ for each column.
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Finally, the average of loss, and loss; is taken as the final
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3 EXPERIMENTS

3.1 Setting

This study used the BABEL dataset [16], in which mo-
tions are paired with text describing the motion. The BA-
BEL dataset consists of 40 hours of mocap data, and the mo-
cap data consists of skeleton data with 21 joints [17, 18]. In
this study, motion data were downsampled to 30 fps, and the
length of the motion was set to 150 frames which corresponds
to five seconds because it is possible to identify what kind of
movement is enough in five seconds. Motions of less than
five seconds were repeated to be five seconds, and motions
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Fig. 1: Overview of our model. Motion-text input pair data are converted to embeddings by the encoders, and shared embedding
representations of motion and text are learned by contrastive learning.

of more than five seconds were split every five seconds. Each
motion is assigned an annotation describing the motion and
120 different action categories. There are recognition tasks to
recognize the action category of motion for class 60 (BABEL-
60) and class 120 (BABEL-120). The 48,978 data in the train-
ing set were used to train the model, and the 18,368 data in
the validation set were used for evaluation by action recogni-
tion and motion retrieval. The example of the data set, with
skeleton data every 0.1 seconds, is shown in Fig. 2.

The models were implemented by using PyTorch’s deep
learning framework. In this study, we used CTRGCN [19]
as a motion encoder for the baseline model. We also used
2sAGCN [20] to compare our results with those of previous
studies. The two models share the same structure. There
are composed of 10 blocks of graph convolution layers, and
the number of channels in each block is 64-64-64-64-128-
128-128-256-256-256. The temporal dimension is halved on
the 5th and 8th blocks by stride operation. After the graph
convolution block, the embedding is transformed into 512-
dimensional embeddings by 2-layer MLP. The GELU [21]
function was used as the activation function for the first
layer MLP. The output of the motion encoder is the layer-
normalized motion embedding [22, 23]. The transformer of
the text encoder used in this study was configured with 12 lay-
ers, 512 width, and 8 attention heads. In this study, we used
five models to evaluate our model: 2sAGCN(CE), 2sAGCN-
C(ours), CTRGCN(CE), CTRGCN-T(ours), and CTRGCN-
C(ours). The model trained using only cross-entropy is de-
noted “(CE)”. In this model, only the motion encoder is used,
not the text encoder. The motion encoder is trained by com-

puting cross-entropy with the motion encoder’s output and
the ground-truth action category. The model trained using
the contrastive loss of our method is denoted “(ours)”. The
text encoder with no pre-trained is denoted “-T” and the pre-
trained text encoder of CLIP is denoted “-C”. The models
were optimized by the SGD algorithm for 300 epochs with
amomentum of 0.9, a learning rate of 0.0001, a weight decay
0f 0.0001, and a batch size of 64. Below, we evaluate the per-
formances in action recognition and motion retrieval by the
trained model.

3.2 Skelton Based Action Recognition

First, we performed the 60-class and 120-class recognition
to test the model’s ability of action recognition. We trained
our model using the text of the action category assigned to
the motion as input to the text encoder. In this way, we can
evaluate the effect of contrastive learning independent of the
complexity of the text. The average of the results of five
training runs for each model is shown in Tab. 1. Top-1 is
the percentage of the highest predicted category that matches
the ground-truth category, Top-5 is the percentage of the pre-
dictions where the ground truth category is among the top 5
predicted categories, and Top-1-norm is the average of Top-1
values across categories.

The CTRGCN-C(ours) model using CLIP’s text encoder
was more accurate than the CTRGCN-T(ours) model using
the no pre-trained transformer. For this result, pre-trained
text encoders were found to be effective in performing action
recognition tasks with our method.
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Fig. 2: Examples of BABEL dataset [16]. The skeleton con-
sists of 21 joints, and each motion is assigned an annotation
that describes the motion and the action category that repre-
sents the type of motion.

Table 1: Top-1, Top-5, and Top-1-norm accuracy of the
skeleton-based action recognition for 60 and 120 classes.

action methods Top-1(%) Top-5(%) Top-1-norm(%)
2sAGCN(CE)[16] 40.27 72.65 24.01
2sAGCN-C(ours) 38.42 70.29 32.89
60 CTRGCN(CE) 41.47 73.84 27.32
CTRGCN-T/(ours) 38.14 65.29 31.20
CTRGCN-C(ours) 42.94 73.00 34.20
2sAGCN(CE)[16] 38.41 70.49 17.56
2sAGCN-C(ours) 37.48 69.40 28.94
120 CTRGCN(CE) 39.28 70.73 20.09
CTRGCN-T/(ours) 37.21 64.81 28.05
CTRGCN-C(ours) 40.96 72.10 30.78

The cross-entropy method and our method showed higher
values in Top-1 and Top-1-norm. In particular, the difference
between them can be found in the Top-1-norm. For exam-
ple, CTRGCN-C(ours) is 10 percentage points better than the
cross-entropy method CTRGCN(CE) for the 120-class Top-
1-norm. The reason for the difference in Top-1-norm accu-
racy is considered that the BABEL dataset is imbalanced data.
Figure 3a shows the number of data for each category. As
can be seen from Fig. 3a, the number of data among the cat-
egories is biased, with the highest number of categories hav-

ing 53 times more data than the lowest number of categories.
Figure 3b and 3¢ show the confusion matrix of the Top-1 cat-
egory predicted by the model and the grand truth category. In
the case of the cross-entropy method, the accuracy of Top-1
tends to decrease as the number of data decreases. On the
other hand, our method shows higher accuracies for the cat-
egories with a small amount of data than the cross-entropy
method.

To confirm whether the accuracy varies with the degree
of data imbalance, we examined the Top-1, Top-5, and Top-
I-norm metrics for different numbers of categories. Figure
4 shows the Top-1, Top-5, and Top-1-norm values when the
number of categories is increased in descending order by the
number of data. When the number of categories is 30 and the
bias in the number of data is small, the cross-entropy method
is superior for the Top-1 and Top-5. However, as the number
of categories increased and the bias of the data increased, our
method was superior to the cross-entropy baseline in all met-
rics. In particular, it significantly outperformed baselines in
the Top-1-norm metrics. This result indicates that contrastive
learning alleviates the problem of imbalance in the number of
data across categories.
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Fig. 4: Dependence of recognition performance on the num-
ber of categories. Top-1, Top-5, and Top-1-norm values are
shown. The results are shown by dashed lines for the cross-
entropy method and solid lines for our method.

3.3 Motion Retrieval

In this section, motion retrieval experiments were con-
ducted to verify the model’s ability to understand text rep-
resentations of motion. In this motion retrieval, the model
learns more detailed correspondence between the motion and
text than in the previous experiment by using annotations in-
stead of action categories as text. First, we trained the model
using annotation as the text corresponding to the motion. Af-
ter that, we performed a motion retrieval by calculating the
similarity between the query text and the motion of the re-
trieval target using the learned model. We used arbitrarily
query text, and all the validation set was used as the retrieval
target. Eight query texts were used, including text specifying
body parts and abstract text. The top three motions retrieved
by query text and the annotations assigned to the motions are
shown in Fig. 5.
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Fig. 3: Recognition accuracies across categories by cross entropy method (CE) and our method (ours) for imbalanced data. (b)
and (c) are the Top-1 metrics confusion matrices of the model trained by cross entropy and our model trained by contrastive
learning.
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Our model could retrieve highly relevant motions from
the text that include the target body part and moving direc-
tion, such as “right leg” and “left arm” (Fig. 5a, 5b). We
could also retrieve motions that involved moving the entire
body from simple query text without detailed descriptions of
the motion (Fig. 5c, 5d). Moreover, motions with a high
degree of similarity could be retrieved from abstract query
text, which does not include any descriptions to specify con-
crete movements (Fig. 5e, 5f). In addition, even though the
query texts of “sports”, “repeat”, and “cute” had never ap-
peared in the training data, motions that were consistent with
the meaning of these queries were retrieved (Fig. 5f, Sg,
5h). This result may be because our method can use the dis-
tributed representation of the pre-trained CLIP text encoder.
We also performed a motion retrieval using the model without
a pre-trained CLIP text encoder (CTRGCN-T(ours)). Figure
6 shows the retrieval results by CTRGCN-T(ours). Since the
model was not pre-trained to learn the correspondence be-
tween the text “sports” and the motion, motions with low rel-
evance were retrieved. The results indicate that our model
incorporates the understanding in both concrete and abstract
levels of text representation for motion. The text understand-
ing by the pre-trained text encoder was associated with mo-
tions through contrastive learning and reasonable motion re-
trievals were achieved. Furthermore, by applying the pre-
trained distributed representation to the motion, it was possi-
ble to associate even untrained motion-text pairs.

“ pick up bottle with left hand ”

“hop "

“clean area”

Fig. 6: Result of motion retrieval by query text “play sports”
in the model using a transformer that has not been pre-trained
(CTRGCN-T(ours)).

Motion can also be retrieved by measuring the similarity
between the query text and the annotation assigned to the
motion. We also performed motion retrieval by the query
text and annotation to investigate the difference between re-
trievals by motion and by annotation. Table 2 shows the an-
notations assigned to the top three motions retrieved by mo-
tion and retrieved by annotation. The annotation similarity
rank between query text and annotations of the retrieval mo-

tions is also shown. The retrieval results by motion and text
have relatively lower similarity ranks than the retrieval re-
sults by annotation. This means that the motion that cannot
be retrieved by the similarity of annotation can be retrieved.
This was achieved by learning the correspondence between
motion and text through contrastive learning.

Finally, the accuracy of the motion retrieval was evaluated
using the action category. Motion retrieval was performed
using the action category as query text, such as “walk” and
“stand”, and it was evaluated whether the action category of
the retrieved motion matched the action category as the query
text (Tab. 3). Top-N is the percentage of the predictions
where the ground truth category is among the top N predicted
categories retrieved by the query text. We found that models
with high accuracy in action recognition also had high ac-
curacy in motion retrieval. This indicates that the accuracy
of motion retrieval is correlated with the accuracy of action
recognition.

4 DISCUSSION

In skeleton-based action recognition, our method signif-
icantly outperformed the cross-entropy method on the Top-
I-norm metric. This is because our method can recognize
even small categories of imbalanced data. The reason why
the model was effective for imbalanced data is due to the
use of contrastive learning. Other studies suggest that con-
trastive learning is an effective approach for dealing with im-
balanced image data [24, 25, 26]. Our study also showed that
contrastive learning is effective for imbalanced motion data
while the previous studies tested the effectiveness on image
data. Data-level approaches such as under-sampling are also
effective for imbalanced data, but require a large amount of
data. Thus, the contrastive learning used in our method has
more favorable properties for motion data, with less amount
of data than images due to the need for motion capture equip-
ment for collection.

In motion retrieval, our model was able to associate con-
crete and abstract textual representations with motion. We
also found that our model was able to infer correspondences
even for untrained motion-text pairs. This is presumably
because our model could obtain a high-quality embedding
representation of motion by learning correspondences with
a high-quality embedding representation of the pre-trained
text. The use of distributed representations of pre-trained text
is very effective in multimodal learning of motion and text
[2, 27], and this study demonstrates its usefulness. Tevet et
al. showed that by using CLIP’s text encoder, the unique em-
bedding representations of CLIP [4], such as "YMCA” and
”Spiderman in action!”, can be associated with motion [5].
Furthermore, by learning the correspondence between motion
and text through contrastive learning, our method solves the



Table 2: The annotation assigned to the motion and annotation similarity rank retrieved by query text. The results retrieved by

motion and the results retrieved by annotation are shown.

annotation assigned to motion annotation similarity rank

move right leg
move right leg
. move around move legs kick
move right leg .
rotate right leg
right knee bends
swing right leg forward and backwards
move left arm
put left arm back
put left arm back
move left arm .
circle left arm forward
circle left arm backward
clean with left hand
high jump
high jump
L high jump
high jump high jump
Jjump
forward jump
bend over
bend over
bend over bend over
bow
reach to floor both hands
bends down
strum an instrument
play guitar
play an instrument play the p¥an0
strum guitar
strum an instrument
strum instrument
play basketball
play basketball
play sports it 3
run forward
right hand dribble 4320
do soccer stunts
step back
step back
step back
repeat the same movement .
hop on right foot
tpose
jump jacks series
dance move forward
dance around
dance around
cute movement - . .
animal behavior series
act like a rat
dance

query text retrieval method

annotation

motion

annotation

motion

annotation

motion

annotation

motion

annotation




Table 3: Top-1 to Top-100 accuracy of motion retrieval for 60 and 120 classes.

action methods Top-1(%) Top-5(%) Top-10(%) Top-20(%) Top-50(%) Top-100(%)
2sAGCN-C(ours) 31.67 85.00 95.00 98.33 100.0 100.0
60 CTRGCN-T(ours) 26.67 70.00 78.33 83.33 93.33 100.0
CTRGCN-C(ours) 43.33 91.67 96.67 98.33 100.0 100.0
2sAGCN-C(ours) 20.83 65.83 75.83 79.17 85.00 90.83
120 CTRGCN-T(ours) 16.67 51.67 65.00 70.83 75.00 84.17
CTRGCN-C(ours) 25.00 70.83 80.00 83.33 91.67 93.33

problem of not understanding the moving direction of previ-
ous studies. Although we did not perform the text-to-motion
generation task in this study, our model, which learned the
shared embedding representation of motion and text through
contrastive learning, can be transferred to the generation task.

Our model still has many limitations and potential im-
provements. We found that it is difficult to understand words
that describe the speed of movement, such as “fast” and
“slow”. In addition, we fixed the motion length to five sec-
onds in this study, so there was no validation for motions
longer than five seconds with combinations of multiple move-
ments. Besides, it is known that contrastive learning is more
efficient when trained on large data sets [3, 6, 15]. Therefore,
it will be necessary to increase the number of data to bring
the model’s accuracy to a practical level.

5 CONCLUSION

In this paper, we propose a motion-text contrastive learn-
ing method for learning shared embedding representations
of motion and text. In our experiments of action recogni-
tion and motion retrieval, we found that our model learned
high-quality embedding representation to make correspon-
dence between motion and text through contrastive learning.
In action recognition, our model could recognize even the
action category with a small number of data in the imbal-
anced motion dataset. In motion retrieval, by learning the
correspondence between actions and text made it possible to
retrieve the motion with high similarity to concrete and ab-
stract query text from a large amount of data. Furthermore,
the model could associate untrained motion-text pairs using
the pre-trained text embedding representation.
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