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Abstract: Multimodal learning of motion and text tries to find the correspondence between skeletal time-series data acquired

by motion capture and the text that describes the motion. In this field, good associations can realize both motion-to-text and

text-to-motion applications. However, the previous methods failed to associate motion with text, taking into account details of

descriptions, for example, whether to move the left or right arm. In this paper, we propose a motion-text contrastive learning

method for making correspondences between motion and text in a shared embedding space. We showed that our model outper-

forms the previous studies in the task of action recognition. We also qualitatively show that, by using a pre-trained text encoder,

our model can perform motion retrieval with detailed correspondences between motion and text.
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1 INTRODUCTION

Humans process sensory information by integrating mul-

tiple modalities, including vision, hearing, smell, touch, and

taste. In the research field of machine learning, the way to

effectively utilize such multimodal data in an integrated man-

ner has been developed as multimodal learning. Multimodal

learning is a method of learning how to process information

from multiple modalities so that tasks that are difficult to ac-

complish in a single modality can be performed.

Multimodal learning of motion and text tries to find the

correspondence between skeletal time-series data acquired by

motion capture and the text that describes the motion. In this

field, establishing good associations between motion and text

can realize both motion-to-text and text-to-motion applica-

tions. To achieve a multimodal understanding of motion and

text, motion and text must be associated with understandings

of their linguistic concepts and structures.

One of the multimodal learning tasks for motion and text

is text-to-motion generation. Text-to-motion generation is the

task of generating motions that reflect the textual representa-

tion of the input text. To generate motion that matches the

textual representation, the model needs to learn a shared em-

bedding of motion and text, and various methods have been

studied [1, 2]. However, conventional text-to-motion gen-

eration methods learn a one-to-one correspondence between

motion and text. Therefore, it is difficult to convert unseen

text into an appropriate embedding representation, and mo-

tion could not be generated from an unlearned text represen-

tation.

To overcome the problem of generalization for unseen

text, some previous works incorporated pre-trained text rep-

resentations. Tevet et al. used CLIP [3, 4] trained with a

large amount of image-text pair data and associated CLIP’s

high-quality text embedding representation with the motion

embedding representation [5]. As a result, they could gener-

ate motion that reflected the textual representation by predict-

ing the embedding of unseen text from the CLIP embedding

representation, even for text with various representations that

were not included in the training data. However, the authors

noted that it is difficult to generate motions considering mod-

ifiers, for example, to determine which arm is moved. It may

be because the textual representation in CLIPwas obtained by

learning images and texts, not by learning the correspondence

between motions and texts. Therefore, it may be necessary to

learn the correspondence between the textual representations

of CLIP and motions that take detailed textual representation

into account.

In this paper, we propose a motion-text contrastive learn-

ing [6, 7, 8, 9] method for learning shared embedding repre-

sentations of motion and text. In our model, we use CLIP’s

pre-trained text encoder, but different from the previous stud-

ies, we additionally learn the correspondence betweenmotion

and text through contrastive learning. We trained our model

onmotion-text data, pairs of skeleton data captured bymotion

capture, and text describing the motion. Then, we evaluated

our model on action recognition and motion retrieval tasks.

In addition, we qualitatively evaluated the abilities in motion

retrieval to recognize motion components, such as right and



left, and to infer correspondence between untrained motion

and text.

2 METHOD

The proposed model is shown in Fig. 1. The model con-

sists of encoders for both modalities of motion and text. The

encoders are trained by contrastive learning for obtaining a

shared embedding space of motion and text. The contrastive

learning is performed on sets of motion and text pairs. Given

a batch of n pairs of motion and text, each motion and text is

converted into a shared embedding by the encoders, respec-

tively. The encoders are optimized so that the similarity be-

tween paired embeddings becomes high and the non-paired

embedding motion and text become low. After the optimiza-

tion, the shared embeddings can be used for action recogni-

tion and motion retrieval based on the similarities between

embeddings.

2.1 Motion Encoder

The motion encoder consists of a graph convolutional net-

work [10]. The skeleton of the input motion data is repre-

sented by a graph whose nodes are joints of a human skele-

ton. The graph is then convolved in the temporal and spatial

directions for recognizing both the temporal and spatial con-

text of input motions [11]. An input fixed length motion is

converted to 512-dimensional embedding.

2.2 Text Encoder

We used CLIP’s text encoder [3] trained with image-text

pair data collected from the internet as the pre-trained model.

The text encoder consists of the transformer network, a model

for natural language processing with an attention mechanism

[12, 13]. It processes a series of words in the text and out-

puts 512-dimensional distributed embeddings for each word,

including [SOS] and [EOS] tokens which indicate the begin-

ning and end of the sentence. The representation correspond-

ing to the [EOS] token is used as the text embeddings for

contrastive learning.

2.3 Similarity in Shared Embedding Space

The motion and text input pairs are converted into embed-

dings by encoders. By calculating similarities for each possi-

ble combination between the batch of nmotion and text pairs,

we obtain the similarity scores with size n×n. The similarity

score is calculated as cosine similarities between the embed-

dings of motion and text as follows:

Tf = TextEncoder(T) (1)

Mf = MotionEncoder(M) (2)

Te =
Tf

‖Tf‖
(3)

Me =
Mf

‖Mf‖
(4)

logits = Te ·M>
e (5)

where M and T are batch inputs of motion and text, respec-

tively.

2.4 Loss Function

The encoders are optimized so that the similarity between

the embeddings of paired motion and text becomes high and

those of non-paired motion and text become low. The loss

function is designed such that the diagonal elements, which

correspond to similarities of the paired motion and text, be-

come close to 1 and the other elements become close to 0

[14, 15]. First, we calculate the cross-entropy errors in the

row direction of logits to obtain the losst. Text loss losst is

calculated as the average of cross entropies between logits

and target t for each row.

t =


1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

 (6)

yi,j =
exp(logits[i,j])∑n

i′=1 exp(logits[i′,j])
(7)

losst = − 1

n

n∑
i=1

n∑
j=1

ti,j log yi,j (8)

Second, we calculate the cross-entropy errors in the column

direction of logits to obtain the lossm. Motion loss lossm is

calculated as the average of cross entropies between logits

and target t for each column.

yj,i =
exp(logits[j,i])∑n

i′=1 exp(logits[j,i′])
(9)

lossm = − 1

n

n∑
i=1

n∑
j=1

tj,i log yj,i (10)

Finally, the average of lossm and losst is taken as the final

loss.

loss =
(losst + lossm)

2
(11)

3 EXPERIMENTS

3.1 Setting

This study used the BABEL dataset [16], in which mo-

tions are paired with text describing the motion. The BA-

BEL dataset consists of 40 hours of mocap data, and the mo-

cap data consists of skeleton data with 21 joints [17, 18]. In

this study, motion data were downsampled to 30 fps, and the

length of the motion was set to 150 frames which corresponds

to five seconds because it is possible to identify what kind of

movement is enough in five seconds. Motions of less than

five seconds were repeated to be five seconds, and motions



Fig. 1: Overview of our model. Motion-text input pair data are converted to embeddings by the encoders, and shared embedding

representations of motion and text are learned by contrastive learning.

of more than five seconds were split every five seconds. Each

motion is assigned an annotation describing the motion and

120 different action categories. There are recognition tasks to

recognize the action category ofmotion for class 60 (BABEL-

60) and class 120 (BABEL-120). The 48,978 data in the train-

ing set were used to train the model, and the 18,368 data in

the validation set were used for evaluation by action recogni-

tion and motion retrieval. The example of the data set, with

skeleton data every 0.1 seconds, is shown in Fig. 2.

The models were implemented by using PyTorch’s deep

learning framework. In this study, we used CTRGCN [19]

as a motion encoder for the baseline model. We also used

2sAGCN [20] to compare our results with those of previous

studies. The two models share the same structure. There

are composed of 10 blocks of graph convolution layers, and

the number of channels in each block is 64-64-64-64-128-

128-128-256-256-256. The temporal dimension is halved on

the 5th and 8th blocks by stride operation. After the graph

convolution block, the embedding is transformed into 512-

dimensional embeddings by 2-layer MLP. The GELU [21]

function was used as the activation function for the first

layer MLP. The output of the motion encoder is the layer-

normalized motion embedding [22, 23]. The transformer of

the text encoder used in this studywas configuredwith 12 lay-

ers, 512 width, and 8 attention heads. In this study, we used

five models to evaluate our model: 2sAGCN(CE), 2sAGCN-

C(ours), CTRGCN(CE), CTRGCN-T(ours), and CTRGCN-

C(ours). The model trained using only cross-entropy is de-

noted “(CE)”. In this model, only the motion encoder is used,

not the text encoder. The motion encoder is trained by com-

puting cross-entropy with the motion encoder’s output and

the ground-truth action category. The model trained using

the contrastive loss of our method is denoted “(ours)”. The

text encoder with no pre-trained is denoted “-T” and the pre-

trained text encoder of CLIP is denoted “-C”. The models

were optimized by the SGD algorithm for 300 epochs with

a momentum of 0.9, a learning rate of 0.0001, a weight decay

of 0.0001, and a batch size of 64. Below, we evaluate the per-

formances in action recognition and motion retrieval by the

trained model.

3.2 Skelton Based Action Recognition

First, we performed the 60-class and 120-class recognition

to test the model’s ability of action recognition. We trained

our model using the text of the action category assigned to

the motion as input to the text encoder. In this way, we can

evaluate the effect of contrastive learning independent of the

complexity of the text. The average of the results of five

training runs for each model is shown in Tab. 1. Top-1 is

the percentage of the highest predicted category that matches

the ground-truth category, Top-5 is the percentage of the pre-

dictions where the ground truth category is among the top 5

predicted categories, and Top-1-norm is the average of Top-1

values across categories.

The CTRGCN-C(ours) model using CLIP’s text encoder

was more accurate than the CTRGCN-T(ours) model using

the no pre-trained transformer. For this result, pre-trained

text encoders were found to be effective in performing action

recognition tasks with our method.



Fig. 2: Examples of BABEL dataset [16]. The skeleton con-

sists of 21 joints, and each motion is assigned an annotation

that describes the motion and the action category that repre-

sents the type of motion.

Table 1: Top-1, Top-5, and Top-1-norm accuracy of the

skeleton-based action recognition for 60 and 120 classes.

action methods Top-1(%) Top-5(%) Top-1-norm(%)

60

2sAGCN(CE)[16] 40.27 72.65 24.01

2sAGCN-C(ours) 38.42 70.29 32.89

CTRGCN(CE) 41.47 73.84 27.32

CTRGCN-T(ours) 38.14 65.29 31.20

CTRGCN-C(ours) 42.94 73.00 34.20

120

2sAGCN(CE)[16] 38.41 70.49 17.56

2sAGCN-C(ours) 37.48 69.40 28.94

CTRGCN(CE) 39.28 70.73 20.09

CTRGCN-T(ours) 37.21 64.81 28.05

CTRGCN-C(ours) 40.96 72.10 30.78

The cross-entropy method and our method showed higher

values in Top-1 and Top-1-norm. In particular, the difference

between them can be found in the Top-1-norm. For exam-

ple, CTRGCN-C(ours) is 10 percentage points better than the

cross-entropy method CTRGCN(CE) for the 120-class Top-

1-norm. The reason for the difference in Top-1-norm accu-

racy is considered that the BABELdataset is imbalanced data.

Figure 3a shows the number of data for each category. As

can be seen from Fig. 3a, the number of data among the cat-

egories is biased, with the highest number of categories hav-

ing 53 times more data than the lowest number of categories.

Figure 3b and 3c show the confusion matrix of the Top-1 cat-

egory predicted by the model and the grand truth category. In

the case of the cross-entropy method, the accuracy of Top-1

tends to decrease as the number of data decreases. On the

other hand, our method shows higher accuracies for the cat-

egories with a small amount of data than the cross-entropy

method.

To confirm whether the accuracy varies with the degree

of data imbalance, we examined the Top-1, Top-5, and Top-

1-norm metrics for different numbers of categories. Figure

4 shows the Top-1, Top-5, and Top-1-norm values when the

number of categories is increased in descending order by the

number of data. When the number of categories is 30 and the

bias in the number of data is small, the cross-entropy method

is superior for the Top-1 and Top-5. However, as the number

of categories increased and the bias of the data increased, our

method was superior to the cross-entropy baseline in all met-

rics. In particular, it significantly outperformed baselines in

the Top-1-norm metrics. This result indicates that contrastive

learning alleviates the problem of imbalance in the number of

data across categories.

Fig. 4: Dependence of recognition performance on the num-

ber of categories. Top-1, Top-5, and Top-1-norm values are

shown. The results are shown by dashed lines for the cross-

entropy method and solid lines for our method.

3.3 Motion Retrieval

In this section, motion retrieval experiments were con-

ducted to verify the model’s ability to understand text rep-

resentations of motion. In this motion retrieval, the model

learns more detailed correspondence between the motion and

text than in the previous experiment by using annotations in-

stead of action categories as text. First, we trained the model

using annotation as the text corresponding to the motion. Af-

ter that, we performed a motion retrieval by calculating the

similarity between the query text and the motion of the re-

trieval target using the learned model. We used arbitrarily

query text, and all the validation set was used as the retrieval

target. Eight query texts were used, including text specifying

body parts and abstract text. The top three motions retrieved

by query text and the annotations assigned to the motions are

shown in Fig. 5.



(a) Number of data per category sorted in descending order

(b) CE (c) ours

Fig. 3: Recognition accuracies across categories by cross entropy method (CE) and our method (ours) for imbalanced data. (b)

and (c) are the Top-1 metrics confusion matrices of the model trained by cross entropy and our model trained by contrastive

learning.



(a) move right leg (b) move left arm

(c) high jump (d) bend over

(e) play an instrument (f) play sports

(g) repeat the same movement (h) cute movement

Fig. 5: Visualization of the top three motions retrieved by the query text (a) to (h) with the annotations assigned to the motions.



Our model could retrieve highly relevant motions from

the text that include the target body part and moving direc-

tion, such as “right leg” and “left arm” (Fig. 5a, 5b). We

could also retrieve motions that involved moving the entire

body from simple query text without detailed descriptions of

the motion (Fig. 5c, 5d). Moreover, motions with a high

degree of similarity could be retrieved from abstract query

text, which does not include any descriptions to specify con-

crete movements (Fig. 5e, 5f). In addition, even though the

query texts of “sports”, “repeat”, and “cute” had never ap-

peared in the training data, motions that were consistent with

the meaning of these queries were retrieved (Fig. 5f, 5g,

5h). This result may be because our method can use the dis-

tributed representation of the pre-trained CLIP text encoder.

We also performed amotion retrieval using themodel without

a pre-trained CLIP text encoder (CTRGCN-T(ours)). Figure

6 shows the retrieval results by CTRGCN-T(ours). Since the

model was not pre-trained to learn the correspondence be-

tween the text “sports” and the motion, motions with low rel-

evance were retrieved. The results indicate that our model

incorporates the understanding in both concrete and abstract

levels of text representation for motion. The text understand-

ing by the pre-trained text encoder was associated with mo-

tions through contrastive learning and reasonable motion re-

trievals were achieved. Furthermore, by applying the pre-

trained distributed representation to the motion, it was possi-

ble to associate even untrained motion-text pairs.

Fig. 6: Result of motion retrieval by query text “play sports”

in the model using a transformer that has not been pre-trained

(CTRGCN-T(ours)).

Motion can also be retrieved by measuring the similarity

between the query text and the annotation assigned to the

motion. We also performed motion retrieval by the query

text and annotation to investigate the difference between re-

trievals by motion and by annotation. Table 2 shows the an-

notations assigned to the top three motions retrieved by mo-

tion and retrieved by annotation. The annotation similarity

rank between query text and annotations of the retrieval mo-

tions is also shown. The retrieval results by motion and text

have relatively lower similarity ranks than the retrieval re-

sults by annotation. This means that the motion that cannot

be retrieved by the similarity of annotation can be retrieved.

This was achieved by learning the correspondence between

motion and text through contrastive learning.

Finally, the accuracy of the motion retrieval was evaluated

using the action category. Motion retrieval was performed

using the action category as query text, such as “walk” and

“stand”, and it was evaluated whether the action category of

the retrieved motion matched the action category as the query

text (Tab. 3). Top-N is the percentage of the predictions

where the ground truth category is among the top N predicted

categories retrieved by the query text. We found that models

with high accuracy in action recognition also had high ac-

curacy in motion retrieval. This indicates that the accuracy

of motion retrieval is correlated with the accuracy of action

recognition.

4 DISCUSSION

In skeleton-based action recognition, our method signif-

icantly outperformed the cross-entropy method on the Top-

1-norm metric. This is because our method can recognize

even small categories of imbalanced data. The reason why

the model was effective for imbalanced data is due to the

use of contrastive learning. Other studies suggest that con-

trastive learning is an effective approach for dealing with im-

balanced image data [24, 25, 26]. Our study also showed that

contrastive learning is effective for imbalanced motion data

while the previous studies tested the effectiveness on image

data. Data-level approaches such as under-sampling are also

effective for imbalanced data, but require a large amount of

data. Thus, the contrastive learning used in our method has

more favorable properties for motion data, with less amount

of data than images due to the need for motion capture equip-

ment for collection.

In motion retrieval, our model was able to associate con-

crete and abstract textual representations with motion. We

also found that our model was able to infer correspondences

even for untrained motion-text pairs. This is presumably

because our model could obtain a high-quality embedding

representation of motion by learning correspondences with

a high-quality embedding representation of the pre-trained

text. The use of distributed representations of pre-trained text

is very effective in multimodal learning of motion and text

[2, 27], and this study demonstrates its usefulness. Tevet et

al. showed that by using CLIP’s text encoder, the unique em-

bedding representations of CLIP [4], such as ”YMCA” and

”Spiderman in action!”, can be associated with motion [5].

Furthermore, by learning the correspondence betweenmotion

and text through contrastive learning, our method solves the



Table 2: The annotation assigned to the motion and annotation similarity rank retrieved by query text. The results retrieved by

motion and the results retrieved by annotation are shown.

query text retrieval method annotation assigned to motion annotation similarity rank

move right leg

annotation

move right leg 1

move right leg 2

move around move legs kick 3

motion

rotate right leg 24

right knee bends 369

swing right leg forward and backwards 948

move left arm

annotation

move left arm 1

put left arm back 2

put left arm back 3

motion

circle left arm forward 150

circle left arm backward 84

clean with left hand 520

high jump

annotation

high jump 1

high jump 2

high jump 3

motion

high jump 2

jump 32

forward jump 57

bend over

annotation

bend over 1

bend over 2

bend over 3

motion

bow 203

reach to floor both hands 8337

bends down 39

play an instrument

annotation

strum an instrument 1

play guitar 2

play the piano 3

motion

strum guitar 1667

strum an instrument 1

strum instrument 421

play sports

annotation

play basketball 1

play basketball 2

hit 3

motion

run forward 338

right hand dribble 4320

do soccer stunts 97

repeat the same movement

annotation

step back 1

step back 2

step back 3

motion

hop on right foot 1719

tpose 14529

jump jacks series 13042

cute movement

annotation

dance move forward 1

dance around 2

dance around 3

motion

animal behavior series 1445

act like a rat 9195

dance 93



Table 3: Top-1 to Top-100 accuracy of motion retrieval for 60 and 120 classes.

action methods Top-1(%) Top-5(%) Top-10(%) Top-20(%) Top-50(%) Top-100(%)

60

2sAGCN-C(ours) 31.67 85.00 95.00 98.33 100.0 100.0

CTRGCN-T(ours) 26.67 70.00 78.33 83.33 93.33 100.0

CTRGCN-C(ours) 43.33 91.67 96.67 98.33 100.0 100.0

120

2sAGCN-C(ours) 20.83 65.83 75.83 79.17 85.00 90.83

CTRGCN-T(ours) 16.67 51.67 65.00 70.83 75.00 84.17

CTRGCN-C(ours) 25.00 70.83 80.00 83.33 91.67 93.33

problem of not understanding the moving direction of previ-

ous studies. Although we did not perform the text-to-motion

generation task in this study, our model, which learned the

shared embedding representation of motion and text through

contrastive learning, can be transferred to the generation task.

Our model still has many limitations and potential im-

provements. We found that it is difficult to understand words

that describe the speed of movement, such as “fast” and

“slow”. In addition, we fixed the motion length to five sec-

onds in this study, so there was no validation for motions

longer than five secondswith combinations ofmultiplemove-

ments. Besides, it is known that contrastive learning is more

efficient when trained on large data sets [3, 6, 15]. Therefore,

it will be necessary to increase the number of data to bring

the model’s accuracy to a practical level.

5 CONCLUSION

In this paper, we propose a motion-text contrastive learn-

ing method for learning shared embedding representations

of motion and text. In our experiments of action recogni-

tion and motion retrieval, we found that our model learned

high-quality embedding representation to make correspon-

dence between motion and text through contrastive learning.

In action recognition, our model could recognize even the

action category with a small number of data in the imbal-

anced motion dataset. In motion retrieval, by learning the

correspondence between actions and text made it possible to

retrieve the motion with high similarity to concrete and ab-

stract query text from a large amount of data. Furthermore,

the model could associate untrained motion-text pairs using

the pre-trained text embedding representation.
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