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Abstract  

     Dendrite morphology has a significant effect on solute segregation and fluid flow in bulk metallic 
materials. Therefore, the detailed morphological evolution of dendrites is important to better understand 
these processes. Recently, three-dimensional (3D) dendrite morphology has been analyzed using interface 
shape distribution (ISD) maps that are spanned by the curvedness and shape factor of the local solid−liquid 
interface in an Al−Cu alloy. Data were collected through in-situ observations using synchrotron radiation 
imaging techniques [J.W. Gibbs et al.: Sci. Rep., 5 (2015) 11824]. This methodology is quite effective for 
describing 3D dendrites. In this study, we thoroughly investigated the morphological evolution and the 
related ISD map of free-growing equiaxed dendrites in an Al−3mass%Cu alloy using a quantitative phase-
field model. The ISD was found to differ depending on the degree of undercooling. Importantly, the results 
indicate the presence of a time-invariant feature after sufficient branching and growth of secondary arms, 
when the degree of undercooling is substantial enough to produce a bunch of branching. The time 
invariance is considered a universal feature of equiaxed dendrite growth.  
 
Keywords: solidification, equiaxed dendrite, phase-field model, time invariance 
 
 
1. Introduction 
 
     Dendrites are formed during casting processes, and their morphology strongly affects the various 
physical properties of materials [1]. The dendrite morphology has been characterized by the primary 
dendrite arm spacing (or PDAS) and secondary dendrite arm spacing (or SDAS), which can be easily 
obtained from solidified microstructures, but are not always sufficient predictors of key macroscopic fluid 
dynamics properties. For instance, permeability, which has been broadly employed to predict 
macrosegregation, cannot be reliably reproduced from knowledge of only PDAS and SDAS [2]. Thus, 
further detailed information about the morphology, such as the solid−liquid interface area, is crucial for 
accurately predicting the permeability [3, 4]. Furthermore, Ohno et al. have highlighted the importance of 
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a detailed description of the dendrite morphology to predict microsegregation [5]. Therefore, it is 
important to properly characterize and clarify the detailed morphology of dendrites. 
 
     In-situ observation is an effective approach to obtain detailed information on growing dendrites. 
Recently, the use of synchrotron radiation imaging techniques with image-processing techniques, such as 
a time-interlaced model-based iterative reconstruction (TIMBIR) methodology, has facilitated the 
observation of the growth processes of three-dimensional (3D) dendrites in bulk metallic materials [6]. 
Using this new observation technique, Gibbs et al. characterized the 3D dendrite morphology in an Al−Cu 
alloy in terms of the shape factor and the curvedness of the local solid−liquid interface in dendrites; in 
addition, they plotted an interface shape distribution (ISD) map of the results [7]. The ISD map provides 
the existing probability or frequency of a given local morphology of the interface in terms of the shape 
factor and curvedness. Hence, the ISD map represents the statistical nature of the local interface 
morphology in the 3D dendrites. Gibbs et al. investigated the growth morphology and the related ISD map 
for free-growing dendrites under continuous cooling conditions. Their analysis of the ISD map 
demonstrated that the morphology of the dendrite is not self-similar with the distance from the tip. Further 
investigation should be aimed at clarifying the ISD map under different cooling conditions, such as 
isothermal holding under multiple undercooling conditions, as well as the details of the time dependence 
of the ISD map. 
 
     Computer simulation is an effective approach for investigating the 3D morphology of growing 
dendrites in metallic materials. In general, the free-growing dendrites can be well investigated in computer 
simulations because the effects of the mold wall (computational domain boundary) and other dendrites on 
it can readily and explicitly be excluded or included in the analysis. In this study, therefore, the time 
evolutions of free-growing 3D dendrites during the isothermal solidification of an Al−Cu alloy and the 
related ISD maps were investigated using the quantitative phase-field model [8-11] (hereinafter QPFM), 
which is one of the most effective and reliable approaches to describe the microstructural evolution 
processes in alloy systems. Our particular focus is on the effects of the degree of undercooling on these 
processes. The remainder of this paper is organized as follows. First, Section 2 briefly describes the 
theoretical background of QPFM, a method of dendrite morphology analysis, and the computational 
conditions of the analysis. Section 3 presents the calculated dendrites with various degrees of undercooling 
and analyzes the morphologies in terms of the shape factor and curvedness. Finally, Section 4 summarizes 
the results and new findings obtained herein.  
      
 
2. Method 
 
2.1. Quantitative phase-field model 
 
     A phase-field model (PFM) has been widely used to simulate the solidification of metallic alloy 
systems. A complex microstructure can be simulated using a PFM without tracking the moving interfaces, 
where the interface between the solid and liquid phases is described by a continuous variation in the phase-
field variable that uses constant values assigned to each phase. However, the simulated results obtained 
from a conventional PFM depend on the interface thickness [8-11]. The QPFM was developed to 
overcome this issue, where the solution of the free-boundary problem is recovered in the thin-interface 
limit. This study used the QPFM developed by Ohno and Matsuura [10] and applied the calculation 
procedure described previously [12].  
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     In the QPFM, the phase-field variable 𝜙𝜙 takes +1 in the solid phase, −1 in the liquid phase, and varies 
from +1 to −1 within the solid−liquid interface. The time evolution equation of 𝜙𝜙 is given by [8, 10]: 
 
 

𝜏𝜏0[1 + (1 − 𝑘𝑘)𝑢𝑢]𝑎𝑎𝑠𝑠(𝒏𝒏)2
𝜕𝜕𝜙𝜙
𝜕𝜕𝜕𝜕

= 𝑊𝑊0
2∇ ∙ [𝑎𝑎𝑠𝑠(𝒏𝒏)2∇𝜙𝜙] + 𝑊𝑊0

2 �
𝜕𝜕
𝜕𝜕𝜕𝜕 �

|∇𝜙𝜙2|𝑎𝑎𝑠𝑠(𝒏𝒏)
𝜕𝜕𝑎𝑎𝑠𝑠(𝒏𝒏)

𝜕𝜕 �𝜕𝜕𝜙𝜙𝜕𝜕𝜕𝜕�
�

𝑟𝑟=𝑥𝑥,𝑦𝑦,𝑧𝑧

+ 𝜙𝜙(1 − 𝜙𝜙2)

− 𝜆𝜆(1 − 𝜙𝜙2)2𝑢𝑢   , 

(1)  

 
where 𝜏𝜏0  is the phase-field relaxation time, 𝑘𝑘  is the equilibrium partition coefficient, 𝑢𝑢  is the 
dimensionless local supersaturation, 𝑎𝑎𝑠𝑠(𝒏𝒏) is defined as shown in Eq. (2) below [13, 14], and  𝜕𝜕 is the 
time. 𝜏𝜏0 is defined as 𝜏𝜏0 = 𝑎𝑎2𝜆𝜆𝑊𝑊0

2/𝐷𝐷𝐿𝐿, where 𝑎𝑎2 = 0.6267, 𝜆𝜆 is a coupling constant, 𝑊𝑊0
  is the interface 

thickness, and 𝐷𝐷𝐿𝐿  is the solute diffusivity in the liquid phase. 𝜆𝜆  is given as 𝜆𝜆 = 𝑎𝑎1𝑊𝑊0
 /𝑑𝑑0  where 𝑎𝑎1 = 

0.8839 and 𝑑𝑑0 is the capillary length. 
 
 𝑎𝑎𝑠𝑠(𝒏𝒏) = 1 + 𝜀𝜀1 �𝑄𝑄 −

3
5�

+ 𝜀𝜀2 �3𝑄𝑄 + 66𝑆𝑆 −
17
7 �    , (2)  

 
where 𝒏𝒏 is a unit vector pointing to the crystal orientation; 𝜀𝜀1 and 𝜀𝜀2 are the anisotropy parameters; 𝑄𝑄 =
𝑛𝑛𝑥𝑥4 + 𝑛𝑛𝑦𝑦4 + 𝑛𝑛𝑧𝑧4; 𝑆𝑆 = 𝑛𝑛𝑥𝑥2𝑛𝑛𝑦𝑦2𝑛𝑛𝑧𝑧2; and 𝑛𝑛𝑖𝑖  are the Cartesian components of 𝒏𝒏. Furthermore, 𝑢𝑢 is defined as 𝑢𝑢 ≡
(𝑐𝑐𝐿𝐿 − 𝑐𝑐𝐿𝐿𝑒𝑒)/(𝑐𝑐𝐿𝐿𝑒𝑒 − 𝑐𝑐𝑆𝑆𝑒𝑒), where 𝑐𝑐𝐿𝐿 and 𝑐𝑐𝑆𝑆 are the liquid and solid concentrations, respectively, and 𝑐𝑐𝐿𝐿𝑒𝑒 and 𝑐𝑐𝑆𝑆𝑒𝑒 
are the equilibrium values. The time evolution of 𝑢𝑢 is given by 
 
 1 + 𝑘𝑘 − (1 − 𝑘𝑘)𝜙𝜙

2
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   , 

(3)  

 
where 𝐷𝐷𝑆𝑆 is the solute diffusivity in the solid phase, and 𝑞𝑞(𝜙𝜙) is defined as 
 
 

𝑞𝑞(𝜙𝜙) =
1
2
�(1 + 𝜙𝜙)𝑘𝑘

𝐷𝐷𝑆𝑆
𝐷𝐷𝐿𝐿

+ 1 − 𝜙𝜙�   . (4)  

 
The inverse of 𝑑𝑑0 is given by 
 
 1

𝑑𝑑0
=  
𝑅𝑅𝑇𝑇𝑚𝑚(1 − 𝑘𝑘)(𝑐𝑐𝐿𝐿𝑒𝑒 − 𝑐𝑐𝑆𝑆𝑒𝑒)

𝑣𝑣𝑚𝑚𝛾𝛾0
   , (5)  

 
where 𝑅𝑅 is the gas constant, 𝑇𝑇𝑚𝑚 is the melting temperature of the pure solvent, 𝑣𝑣𝑚𝑚 is the molar volume, 
and 𝛾𝛾0 is the average interfacial energy of the solid−liquid interface. The anisotropy of the interfacial 
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energy is incorporated through 𝜀𝜀1 and 𝜀𝜀2 (𝜀𝜀2 is set to zero in this study). Furthermore, as noted in Ref. 
[12], although some of the present authors have recently proposed a variational formulation of a QPFM, 
wherein the cross-coupling terms of 𝜙𝜙 and 𝑢𝑢 are derived naturally [11], the QPFM developed by Ohno 
and Matsuura [10] was employed herein to balance the computational cost with the numerical accuracy. 
To solve Eqs. (1) and (3) effectively and simultaneously, preconditioning [15] was employed.  
 
 
2.2. Computational conditions  
     
     Eqs. (1) and (3) are discretized using a second-order finite difference scheme, and time integration is 
performed using the first-order Euler scheme. To simulate the morphological evolution of free-growing 
dendrites in Al−3mass%Cu under isothermal conditions, an initial solid seed was placed at the origin of 
the system occupied by the liquid phase. To reduce the computational cost, only one-eighth of the system 
was considered because of the four-fold symmetry of the interfacial energy anisotropy. The zero-flux 
boundary (or mirror boundary) condition is employed on the 𝑥𝑥-𝑦𝑦, 𝑦𝑦-𝑧𝑧, and 𝑧𝑧-𝑥𝑥 planes at 𝑧𝑧 = 𝐿𝐿𝑠𝑠 (𝑧𝑧 = 0), 
𝑥𝑥 = 𝐿𝐿𝑠𝑠  (𝑥𝑥 = 0), and 𝑦𝑦 = 𝐿𝐿𝑠𝑠  (𝑦𝑦 = 0), respectively, where 𝐿𝐿𝑠𝑠  is the system size. We considered three 
different degrees of undercooling, 𝑢𝑢0 = −0.2, −0.3, and −0.4, which correspond to ∆𝑇𝑇 = 1.6, 2.8, and 4.2 
K, respectively. The simulations were performed in a computational domain of 5123 grid points with a 
grid spacing 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑦𝑦 = 𝑑𝑑𝑧𝑧 = 0.65 × 10-6, 0.50 × 10-6, and 0.35 × 10-6 m for 𝑢𝑢0 = −0.2, −0.3, and −0.4, 
respectively. The ratio of grid spacing to interface thickness (𝑑𝑑𝑥𝑥/𝑊𝑊0

 ) was set to 1.2. These values were 
chosen to strike a balance between the accuracy and computational costs of a preliminary study that 
investigated the effects of domain size and grid spacing on the time evolution of free-growing dendrites. 
It was confirmed that these calculation conditions ensure that interface thickness are much smaller than 
the minimum curvature radius of dendrite tip in [100] direction. Note that the grid spacing decreases with 
a large |𝑢𝑢0 | because the dendrite morphology becomes finer with increased undercooling. The physical 
parameters used in the calculations are listed in Table 1. All the computations for dendritic growth were 
accelerated using multiple graphics processing units. 
 
 
2.3. Characterization of morphology  
 
     The morphology of dendrites is characterized by the curvedness, C (also called “curvature” in Ref. [7]), 
and shape factor, S, of the local interface in a manner similar to that employed by Gibbs et al. [7]. These 
factors are defined and expressed as [16]: 
 
 

𝐶𝐶 = �𝜅𝜅1
2 + 𝜅𝜅22

2
    (6)  

 
and 
 
 𝑆𝑆 =

2
𝜋𝜋

tan−1
𝜅𝜅2 + 𝜅𝜅1 

𝜅𝜅2 − 𝜅𝜅1 
  , (7)  

 
where 𝜅𝜅1  and 𝜅𝜅2  are the maximum and minimum curvatures of the local interface, respectively. The 
relationship between these quantities and the morphology of the local interface is shown in Fig. 1. The 
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interface with 𝑆𝑆  = ±1, ±0.5, and 0 corresponds to spherical, cylindrical, and saddle point shapes, 
respectively, and the sign of S specifies the convex direction of the interface. C denotes the degree to 
which the interface is curved.  
 
     The principal curvatures 𝜅𝜅1  and 𝜅𝜅2  are related to the average curvature H (= (𝜅𝜅2 + 𝜅𝜅1 )/2) and the 
Gaussian curvature 𝐺𝐺 (= 𝜅𝜅2 𝜅𝜅1 ). In this study, H and G were computed as [17]: 
 
 𝐻𝐻 =

1
2|∇φ|3 �𝜑𝜑𝑥𝑥

2�𝜑𝜑𝑦𝑦𝑦𝑦 + 𝜑𝜑𝑧𝑧𝑧𝑧 � + 𝜑𝜑𝑦𝑦2(𝜑𝜑𝑥𝑥𝑥𝑥 + 𝜑𝜑𝑧𝑧𝑧𝑧 ) + 𝜑𝜑𝑧𝑧2�𝜑𝜑𝑥𝑥𝑥𝑥 + 𝜑𝜑𝑦𝑦𝑦𝑦 � − 2𝜑𝜑𝑦𝑦𝑧𝑧 𝜑𝜑𝑦𝑦 𝜑𝜑𝑧𝑧 

− 2𝜑𝜑𝑥𝑥𝑧𝑧 𝜑𝜑𝑥𝑥 𝜑𝜑𝑧𝑧 − 2𝜑𝜑𝑥𝑥𝑦𝑦 𝜑𝜑𝑥𝑥 𝜑𝜑𝑦𝑦 �    
(8)  

 
and 
 
 𝐺𝐺 =

1
|∇φ|4 �𝜑𝜑𝑥𝑥

2�𝜑𝜑𝑦𝑦𝑦𝑦 𝜑𝜑𝑧𝑧𝑧𝑧 − 𝜑𝜑𝑦𝑦𝑧𝑧2 � + 𝜑𝜑𝑦𝑦2(𝜑𝜑𝑥𝑥𝑥𝑥 𝜑𝜑𝑧𝑧𝑧𝑧 − 𝜑𝜑𝑥𝑥𝑧𝑧2 ) + 𝜑𝜑𝑧𝑧2�𝜑𝜑𝑥𝑥𝑥𝑥 𝜑𝜑𝑦𝑦𝑦𝑦 − 𝜑𝜑𝑥𝑥𝑦𝑦2 �

− 2𝜑𝜑𝑥𝑥 𝜑𝜑𝑦𝑦 �𝜑𝜑𝑥𝑥𝑦𝑦 𝜑𝜑𝑧𝑧𝑧𝑧 − 𝜑𝜑𝑥𝑥𝑧𝑧 𝜑𝜑𝑦𝑦𝑧𝑧 � − 2𝜑𝜑𝑥𝑥 𝜑𝜑𝑧𝑧 �𝜑𝜑𝑥𝑥𝑧𝑧 𝜑𝜑𝑦𝑦𝑦𝑦 − 𝜑𝜑𝑥𝑥𝑦𝑦 𝜑𝜑𝑦𝑦𝑧𝑧 �
− 2𝜑𝜑𝑦𝑦 𝜑𝜑𝑧𝑧 �𝜑𝜑𝑦𝑦𝑧𝑧 𝜑𝜑𝑥𝑥𝑥𝑥 − 𝜑𝜑𝑥𝑥𝑦𝑦 𝜑𝜑𝑥𝑥𝑧𝑧 ��   , 

(9)  

 
where 𝜑𝜑 = √2𝑊𝑊0

  log �1−𝜙𝜙
1+𝜙𝜙

� and 𝜑𝜑𝑖𝑖𝑖𝑖  represents the partial derivative of 𝜑𝜑 in terms of 𝑖𝑖- and 𝑗𝑗-axes.  
 
 
3. Results and Discussion 
     
     The time evolutions of the free-growing dendrites calculated for 𝑢𝑢0 = −0.2, −0.3, and −0.4 are shown 
in Fig. 2. Branching occurs under all conditions, and branches become much finer as |𝑢𝑢0 | increases (i.e., 
as the undercooling increases). Note that dendrite morphology is generally affected by heat transfer, fluid 
flow, and interactions with other dendrites and/or mold walls. The study of dendrite morphology growing 
without any of the above effects provides a basis for understanding dendrite structures growing under 
various conditions.  
 
     The free-growing dendrites shown in Fig. 2 were quantitatively analyzed in detail using the local shape 
factor S, curvedness C, and the ISD map. Figure 3 shows the result for 𝑢𝑢0 = −0.2, where local interfaces 
in 3D dendrites are colored according to the values of S and C in (a) and (b), respectively, and the ISD 
map is shown in (c). Here, (a-1) to (a-3) and (b-1) to (b-3) are magnified accordingly, and C in the ISD 
map is normalized by the average value of C at each time step, 〈𝐶𝐶〉. The temporal change in 〈𝐶𝐶〉 can be 
found in the Supplemental data. The reason for this normalization is explained later in this paper. In Figs. 
3 (a) and (b), the tips of primary and secondary arms always exhibit a spherical shape (𝑆𝑆 ≈ 1.0) with high 
curvedness. Note that the trunk of the primary arms and the root of secondary arms have a cylindrical 
shape of  𝑆𝑆 ≈ −0.5, while the edge of the secondary arms has 𝑆𝑆 ≈ +0.5 (see Fig. 3 (a-4)). In the ISD map 
of Fig. 3 (c), the probabilities at 𝑆𝑆 ≈ −0.5 and 0.5 increase with time. This suggests that a large portion of 
the interface has cylindrical shapes in this equiaxed dendrite. In addition, the probabilities of small 𝐶𝐶/〈𝐶𝐶〉 
(≈ 0.1-0.2) increase with time. This is ascribed to the increase in the flat surface area in the secondary 
dendrite arms (Fig. 3 (b-4)), which is known as a flattening of secondary dendrite arms and is consistent 
with past experiments [7]. This flattening is caused by interactions with the neighboring secondary 
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dendrite arms. Note that the interfaces with high curvedness can be found at both the edges and roots of 
the dendrite arms. 
 
     The results for 𝑢𝑢0 = −0.3 and −0.4 are shown in Figs. 4 and 5, respectively. Similar features of the 3D 
dendrite morphology observed for 𝑢𝑢0 = −0.2 (Figs. 3 (a) and (b)) can be seen in these cases as well. In 
Figs. 4 and 5, however, the dendrites grow not only in the preferential growth direction (i.e., <100>) but 
also in other growth directions, such as <111> and <110>, at the initial stage of evolution (Figs. 4 (a-2, b-
2) and 5 (a-2, b-2)). This is due to the large degree of undercooling. The dendrite growing in the <111> 
direction can be observed even in the late stage for 𝑢𝑢0 =  −0.4 (Figs. 5 (a-4, b-4)). Also, the large 
undercooling causes the growth of the tertiary dendrite arms from the sides of the secondary dendrite arms 
(Figs. 4 (b-4) and 5 (b-4)). Namely, frequency of branching is very high in cases of 𝑢𝑢0 = −0.3 and −0.4. 
This high frequency of branching decreases the existing probability at 𝑆𝑆 ≈ −0.5 because each arm mainly 
consists of interfaces with a positive value of S. Therefore, it results in a relatively small peak at 𝑆𝑆 ≈ −0.5 
compared to 𝑆𝑆 ≈ 0.5 for 𝑢𝑢0 = −0.4 (see Fig. 5 (c)). 
 
     The time evolutions of the ISD maps were also investigated in detail. The ISD maps for 𝑢𝑢0 = −0.3 
from 𝜕𝜕 = 0.4 𝜕𝜕max to 𝜕𝜕 = 𝜕𝜕max, where 𝜕𝜕max is 0.5 seconds (the maximum time of simulation), are shown 
in Fig. 6. The most important finding is that there is no significant change in the ISD maps after 𝜕𝜕 = 0.6 
𝜕𝜕max. Note that the dendrite grows substantially from 𝜕𝜕 = 0.6 𝜕𝜕max to 𝜕𝜕 = 𝜕𝜕max. For instance, the total 
volume of the solid increases by more than double from 0.6 𝜕𝜕max to 𝜕𝜕max. Notwithstanding, the ISD map 
for free-growing dendrites becomes time-invariant at the late stage of growth (or after sufficient branching 
and growth of secondary arms). The same time-invariant behavior is found for 𝑢𝑢0 = −0.4, whereas a slight 
change in the ISD map is observed for 𝑢𝑢0 = −0.2. (Details of the results are provided in the Supplemental 
data). It is expected that the time invariance should appear even for 𝑢𝑢0 = −0.2 when the calculation is 
carried out for a longer time in the larger computational system. These results indicate that the ISD map 
exhibits time-invariant features after sufficient branching and growth of the secondary arms in free-
growing dendrites. This means that the dominant interface shape and its relative size do not change with 
time for free-growing dendrites for any degree of undercooling considered here. The existence of time 
invariance was quantitatively checked by calculating Δ𝑃𝑃(𝐶𝐶, 𝑆𝑆) = 𝑃𝑃(𝐶𝐶, 𝑆𝑆) − 〈𝑃𝑃(𝐶𝐶, 𝑆𝑆)〉, where 𝑃𝑃(𝐶𝐶, 𝑆𝑆) is 
the probability in the ISD map and 〈𝑃𝑃(𝐶𝐶, 𝑆𝑆)〉 is the time-averaged probability after 𝜕𝜕 = 0.6 𝜕𝜕max . We found 
that the standard deviation of Δ𝑃𝑃(𝐶𝐶, 𝑆𝑆) takes less than 0.1 in the almost entire time range for 𝑢𝑢0 = −0.3 
and −0.4, which indicates the time invariance of ISD maps. The details can be found in Supplemental data. 
 
     It is important to note that the time invariance of ISD maps cannot be observed when the y-axis is set 
to C. In this case, the ISD maps clearly changed with time. This is because that C decreases as the size of 
microstructure increases with time. Time invariance appears only when C is normalized to 〈𝐶𝐶〉 . As 
mentioned in the introduction, the time invariance was not observed in the previous experimental work of 
ISD map [7]. This should be because the ISD map was obtained for continuous cooling condition in the 
experimental work [7], while the ISD maps in this work are calculated for isothermal solidification. This 
point will be investigated in a future work.   
 
     The probability distributions at 𝐶𝐶/〈𝐶𝐶〉 = 1.0 on the ISD maps for different degrees of undercooling are 
compared in Fig. 7. The results are shown for different volume fractions of solids (𝑓𝑓𝑣𝑣 = 0.23, 0.68, and 
1.14 %). The peaks of probability distributions appear at 𝑆𝑆 ≈ −0.5 and 0.5 in all cases. However, the peak 
height at 𝑆𝑆 ≈ −0.5 is significantly decreased when the degree of supercooling |𝑢𝑢0 | is large. The same 
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behavior was also observed for different values of 𝐶𝐶/〈𝐶𝐶〉 values (see Supplemental data). As described 
above, the decrease in the peak height originates from the high frequency of branching due to the large 
degree of undercooling. These results indicate that the detailed differences between dendrites growing 
under different cooling conditions can be expressed in the ISD map.  
 
    
4. Conclusion 
 
     The morphological evolution of free-growing dendrites in an Al−3 mass% Cu alloy was studied using 
a QPFM. The dendrites calculated for different degrees of undercooling were analyzed in terms of 
curvedness, C, and shape factor, S, of the local interface, and the temporal changes of the probability 
distribution for the local curvedness and shape factors were investigated. The details of the dendrite 
morphology are well characterized in the ISD map. It was found that the peaks of probability appear at 
𝑆𝑆 ≈ ± 0.5 for all cases, indicating that the dendrites mainly consist of an interface with cylindrical shapes. 
Importantly, the ISD maps exhibit time-invariant behavior for a large degree of undercooling when C is 
normalized by the average value at each time step 〈𝐶𝐶〉. This finding suggests that the dominant interface 
shape and its relative size do not change with time for the free-growing dendrite.  
 
     Note that free-growing dendrites under different undercooling conditions were considered in this work. 
In reality, a variety of factors affect the growth morphology, such as change in the temperature field, fluid 
flow, and interactions with other dendrites and/or mold walls. To advance our understanding, further 
research on these effects is required. The dendrite morphology growing under a constant cooling rate is 
currently under investigation, and the results will be reported soon. Furthermore,  
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Tables 
 

Table 1. Physical parameters used in the present study.  
 

Physical parameter Value 

Molar volume, 𝑣𝑣𝑚𝑚 [m3/mol] 1.0 × 10-6 
Average Interfacial energy, 𝛾𝛾0 [J/m2] 0.15 [18] 

Liquidus slope, 𝑚𝑚𝐿𝐿 [K/mol.fraction] −620 [19] 

Melting temperature of pure Al, 𝑇𝑇𝑚𝑚 [K] 933.25 

Liquid diffusivity, 𝐷𝐷𝐿𝐿 [m2/sec] 3.0 × 10-9 [20] 

Solid diffusivity, 𝐷𝐷𝑆𝑆 [m2/sec] 3.0 × 10-12 [20] 

Equilibrium partition coefficient, k [-] 0.14 [19] 

Anisotropy parameter, 𝜀𝜀1 [-] 0.08 [19] 
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Figures 
 

 
Fig. 1. Relation between morphology and shape factor and curvedness, where solid and liquid phases are 
shown in red and purple, respectively. 
 
 

 
 
Fig. 2. Time evolutions of free-growing dendrites calculated for (a) 𝑢𝑢0 = −0.2, (b) 𝑢𝑢0 = −0.3, and (c) 
𝑢𝑢0 =  −0.4. (a-1)/(b-1)/(c-1) to (a-4)/(b-4)/(c-4) are the snapshots at 0.0/0.0/0.0, 0.54/0.17/0.05, 
1.07/0.33/0.10, and 1.61/0.50/0.14 seconds, respectively. The initial seeds of dendrite are magnified in (a-
1), (b-1), and (c-1). 
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Fig. 3. Dendrite morphologies characterized by (a) shape factor and (b) curvedness with (c) the 
corresponding ISD maps for 𝑢𝑢0 = −0.2 at (a-1, b-1, and c-1) 0.03, (a-2, b-2, and c-2) 0.09, (a-3, b-3, and 
c-3) 0.60, and (a-4, b-4, and c-4) 1.61 seconds. The morphologies shown in (a-1)-(a-3) and (b-1)-(b3) are 
magnified ones.  
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Fig. 4. Dendrite morphologies characterized by (a) shape factor and (b) curvedness with (c) the 
corresponding ISD maps for 𝑢𝑢0 = −0.3 at (a-1, b-1, and c-1) 0.01, (a-2, b-2, and c-2) 0.02, (a-3, b-3, and 
c-3) 0.10, and (a-4, b-4, and c-4) 0.50 seconds. The morphologies shown in (a-1)-(a-3) and (b-1)-(b3) are 
magnified ones.  
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Fig. 5. Dendrite morphologies characterized by (a) shape factor and (b) curvedness with (c) the 
corresponding ISD maps for 𝑢𝑢0 = −0.4 at (a-1, b-1, and c-1) 0.003, (a-2, b-2, and c-2) 0.01, (a-3, b-3, and 
c-3) 0.04, and (a-4, b-4, and c-4) 0.14 seconds. The morphologies shown in (a-1)-(a-3) and (b-1)-(b3) are 
magnified ones.  
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Fig. 6. Time evolution of ISD map for 𝑢𝑢0 = −0.3 at (a) 0.4 𝜕𝜕max, (b) 0.6 𝜕𝜕max, (c) 0.8 𝜕𝜕max, and (d) 𝜕𝜕max, 
where 𝜕𝜕max = 0.50 seconds.   
 
 
 

 
Fig. 7. Time evolution of probability distribution at 𝐶𝐶/〈𝐶𝐶〉 = 1.0 at (a) fv = 0.23, (b) fv = 0.68, and (c) fv = 
1.14 %, where fv is the volume fraction of solid. The red, blue, and green lines correspond to the results 
for 𝑢𝑢0 = −0.2, −0.3, and −0.4, respectively. 


