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Chapter 1

Introduction

1.1 Background

Epistemic logic was invented in the 1950s and 1960s as a form of modal logic by von

Wright [60] and Hintikka [21]. In the 1980s and 1990s, it was studied extensively by

several computer scientists [8, 29]. From the point of view of logic, multi-agent epistemic

logic is a type of modal logic with a modal operator Ka parameterized by agent a, where

the expression Kaϕ is interpreted as “an agent a knows that a proposition ϕ is the case.”

In multi-agent epistemic logic, Kaϕ is interpreted in a relational structure called the

Kripke frame. A Kripke frame is a pair of a set of states (possible worlds) and a family

(Ra)a∈Agt of binary relations on the set, indexed by an agent where Agt is a set of agents.

Each state represents a possible situation and wRav means that a state v is epistemically

possible (indistinguishable) for an agent a in a state w. Under this setting, “Kaϕ is true

in a state w.” is defined as “ϕ is true in a state v for every state v satisfying wRav,” that

is, “ϕ is true in a state v for every state v that is epistemically possible for an agent a in a

state w.” By the nature of knowledge as understood by computer scientists, the operator

Ka is usually required to satisfy the following axioms:

• (K) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ) (knowledge is deductively closed or closed under

modus ponens).

• (T) Kaϕ→ ϕ (a known proposition is a fact).

• (4) Kaϕ→ KaKaϕ (if someone knows something, he/she knows that he/she knows

it).

• (5) ¬Kaϕ → Ka¬Kaϕ (if someone does not know something, he/she knows that

he/she does not know it).

7
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These are collectively referred to as S5 axioms. The reason why (5) is considered valid in

computer science is described as follows:

[F]or some artificial agents, dealing with finite information, like only a finite

set P of propositional atoms and a finite set of formulas that it knows, the

truth of this axiom [the axiom (5)] may be argued (informally) like this: if

the artificial agent does not know a formula, then this formula does not follow

from the agent’s finite information, and the agent is able to detect this, so that

it knows that it does not know the formula. Also, in some cases, the validity

of the axiom follows directly from the special kind of models that is used in

applications - as in the case of using epistemic logic in distributed systems,

cf. Halpern and Moses (1990) [the paper [17]] and Meyer and van der Hoek

(1995) [the book [29]]. ([28, p.188])

As there are multiple agents, knowledge ascribed to a group of agents, not a single

agent, is conceivable in multi-agent epistemic logic, and has been an important subject

for the researchers in the field [8, 29]. The simplest group knowledge is the one called

“everyone knows.” This concept is represented by the modal operator EG where G is

a group of agents. For example, the expression E{a,b,c}ϕ indicates that Kaϕ, Kbϕ, and

Kcϕ are true. Another notion of group knowledge is common knowledge, which is the

most well-studied. The concept is represented by the modal operator CG; intuitively, the

meaning of CGϕ is an infinite conjunction “EGϕ ∧ EGEGϕ ∧ EGEGEGϕ ∧ · · · ”. That is,

common knowledge is knowledge publicly known to all the members of the group.

Another notion of group knowledge, which is the subject of this thesis, is that of dis-

tributed knowledge. In the context of epistemic logic, the notion of distributed knowledge

became known by Halpern and Moses’ [17]. Roughly speaking, distributed knowledge

is knowledge potentially held by a group. For example, suppose that an agent a knows

that if p then q and suppose that an agent b knows that p. Then, the group {a, b} can

be said to potentially know q, which is the distributed knowledge of {a, b}. According

to Ågotnes and Wáng [1, Section 1], “distributed knowledge is the knowledge of a third

party, someone ‘outside the system’ who somehow has access to the epistemic states of all

the group members”. Fagin et al. [8, p. 3] provides an intuitive description of distributed

knowledge: “a group has distributed knowledge of a fact ϕ if the knowledge of ϕ is dis-

tributed among its members, so that by pooling their knowledge together the members

of the group can deduce ϕ.” At first glance, this seems clearer than the explanation by

Ågotnes and Wáng described above. Ågotnes et al. [1] state, however, that the aforemen-

tioned intuitive description is inappropriate in an illustrative example given in [1, Section
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1].

Formally, distributed knowledge is expressed as a modal operator DG, parameterized

by a group of agents. DGϕ holds at a state w, by the standard definition, if and only if:

ϕ holds at all states v such that v can be reached in a single step from w for all agents in

G, that is, wRav for all agents a ∈ G.

Contrary to what the name suggests, distributed knowledge is generally not distributed

in a group G under the aforementioned definition, in the sense that a proposition ϕ cannot

always be deduced from pieces of knowledge owned by each member of G, even when DGϕ

is true. This is expressed by van der Hoek et al.’s [58], in their own words, as “the principle

of full communication does not hold for distributed knowledge.” van der Hoek et al. and

Gerbrandy [58, 14] present sufficient conditions for the Kripke model for the principle of

full communication to be valid, and Roelofsen [44] presents the necessary and sufficient

condition.

For the completeness theorem, which is an important type of theorem in logic which

assures that the notion of validity in semantics and the notion of provability in proof

theory are logically equivalent, the literature [7, 56, 18, 57, 8, 29, 14, 61] are known.

Recently, Wáng and Ågotnes [62] provide a new detailed proof of the completeness of

epistemic logic with distributed knowledge.

We describe more direct background for the content of this thesis below. So far, the

study of distributed knowledge is mainly model-theoretic [1, 44, 14, 58]; proof-theoretic

studies have not been pursued actively. In modern logic, the study of proof theory is

conducted mainly using the proof system called “sequent calculus.” In sequent calculus,

one can express an inference between “sequents”. A sequnt is a pair of finite multi-

sets of formulas Γ and ∆ denoted by “Γ ⇒ ∆,” which reads as “if all formulas in Γ

hold then some formulas in ∆ hold.” To the best of the author’s knowledge, the existing

sequent calculi for logic with distributed knowledge are presented only in [16, 39, 15]. The

first one by Hakli and Negri [16] contains a natural G3-style (without structural rules)

formalization, in which each formula has a label designating the state where the formula

holds. The second one by Pliuškevičius and Pliuškevičienė [39] contains a Gentzen-style

sequent calculus for S4 distributed knowledge logic which is simpler than the one we are

interested in, in that the operator is not parameterized by group G. The third one by

Giedra [15] contains Gentzen-style and Kanger-style sequent calculi for S5 distributed

knowledge logic with the same type of operator as the second one.

Moreover, epistemic logic as a whole has been studied mainly in the classical setting,

whereas several types of intuitionistic epistemic logics have been proposed from different

perspectives. Several philosophical logicians have proposed intuitionistic epistemic logics
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[63, 42, 3] to analyze Fitch’s knowability paradox [9], from the verificationist perspective.

Another type of intuitionistic epistemic logic [22] is proposed for the analysis of distributed

computing in the sense of [20, 45]. The intuitionistic aspect of the logic is required

to describe the property of asynchronous communication among agents in distributed

computing.

Jäger and Marti [23] formulate intuitionistic epistemic logic with distributed knowl-

edge for the first time, to the best of the author’s knowledge, and prove the semantic

completeness of Hilbert systems of intuitionistic K and KT with distributed knowledge.

A formula of the logic is interpreted in the Kripke model with a preorder � for the

intuitionistic aspect of the logic and relations (Ri)1≤i≤l for agents ag1 · · · agl, where a con-

dition �;Ri ⊆ Ri is satisfied for each i. Here, the composition R;S of relations R and

S is defined as R;S := {(x, z) | there exists y such that xRy and ySz}. In the proof

of the semantic completeness, a notion of “pseudo-model,” where distributed knowledge

operators are interpreted as plain modal operators, is used as in the standard proof of the

semantic completeness of the epistemic logic with distributed knowledge based on clas-

sical logic. However, the way a pseudo-model is transformed into an intended model is

different from the standard proof where the transformation is conducted via an operation

of “tree unraveling”. Instead of tree unraveling, Jäger and Marti introduce an operation

called “strict extension” [23, Definition 4.4] which transforms a given pseudo-model into

another pseudo-model by indexing the set of states of the original pseudo-model by the

relations of the original pseudo-model. Relations in the strict extension are defined such

that the intended model, equivalent to the strict extension, can be constructed from the

strict extension. Aside from [23], Su et al. [50] also develop intuitionistic epistemic logic

with distributed knowledge, although their logic is based on the system IEL [3], which is

quite different in its sprit from the basic epistemic logic introduced in Section 1.3.

Recently, dynamic epistemic logic has played a significant role in the study of epistemic

logic. It is used to study changes in agents’ knowledge caused by an event or action. Public

announcement logic [38], through which one can express the change in agents’ knowledge

caused by the truthful public announcement of a proposition, is the simplest dynamic

epistemic logic [59]. It can be used to analyze problems in which the influence of publicly

conducted announcements or publicly observed actions on agents’ knowledge matters,

such as in the Muddy Children Puzzle [59, Section 4.10].

Since [38], many expansions and variants of public announcement logic have been

studied. Public announcement logic based on intuitionistic logic [25, 4, 32] is one of

such studies. According to [25], intuitionistic public announcement logic can be useful

when dealing with changes in constructive knowledge. They expand the intuitionistic
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modal logic IK [47, 48] and MIPC [41] with public announcement operators. Public

announcement logic expanded with distributed knowledge has also been studied [19, 61,

10]. [61] develops a public announcement logic with distributed knowledge PAD and a

public announcement logic with distributed knowledge and common knowledge PACD,

which are based on S5 epistemic logic, establishes the completeness of the logics, and

examines the expressivity and computational complexity of the logics.

However, public announcement logic with distributed knowledge based on intuitionistic

logic has not yet been studied.

1.2 Contributions

1.2.1 Sequent Calculus of Distributed Knowledge

In Chapter 2, Gentzen-style sequent calculi (without label) are proposed for five kinds

of multi-agent epistemic propositional logics with distributed knowledge operators, pa-

rameterized by groups, which are reasonable generalization of sequent calculi for basic

epistemic (modal) logic. The cut elimination theorem for four of them is further proved.

Using the method described in [26], the Craig interpolation theorem is also established

for the four systems, in which not only the condition of propositional variables but also

that of agents is considered. This is a new result for logic on distributed knowledge, as

far as the author knows. The Craig interpolation theorem does not hold for some expan-

sions of basic modal logic [53]. Thus, the result suggests that the logics with distributed

knowledge are “good” expansions of basic modal logic in this sense.

1.2.2 Distributed Knowledge over Intuitionistic Logic

In Chapter 3, intuitionistic epistemic logics with distributed knowledge are developed

based on [23]. Our logics are different from the one in [23] in the following respects:

First, in our logics, the distributed knowledge operator is parameterized by a group,

that is, a subset of all agents, whereas [23] deals with only the distributed knowledge of

all agents. Second, we handle more axioms than in [23] in proposing intuitionistic K,

KT, KD, K4, K4D, and S4 with distributed knowledge. One point to note here is

that axioms (K), (T), and (4) in our logics are simply a DG-versions of the respective

axioms in the basic modal logic. However, our axiom (D) is restricted to a single agent

(i.e., ¬D{a}⊥). This is because the seriality for each Ra is generally not preserved under

taking teh intersection among a group (refer to [2]), whereas reflexivity and transitivity

are always preserved. For proof of the semantic completeness, the method based on the
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concept of tree unraveling (of a pseudo-model) is adopted, unlike [23]. This is because

it is not obvious if the method using “strict extension” in [23] can be generalized to the

logic with distributed knowledge that is parameterized by group. Our method is similar

to the one in [62], in that there is no “folding” step which is included in the completeness

proofs in e.g., [7, 61]. Moreover, we also show the semantic completeness with respect to

more restricted classes of Kripke frames than the ordinary one, which are characterized

by the notion of “stability.” A Kripke frame F = (W,6, (Ra)a∈Agt), where a preorder 6 is

included for the intuitionistic aspect of the logic in question, is called stable if 6;Ra ⊆ Ra

and Ra;6⊆ Ra hold for any a ∈ Agt (this is equivalent to 6;Ra;6⊆ R). This notion of

stability is adopted from [46, 49] by Sano and Stell, and Stell et al. In their work, stability

is introduced in the context of defining a binary relation on hypergraphs. The same notion

is also studied in Wolter and Zakharyaschev’s [64] as �-frame, in order to define a natural

Gödel transformation from an intuitionistic modal logic to a classical-logical poly-modal

logic. In our study, the notion of stability is introduced because Kripke frame should be

stable in order for the intuitionistic public announcement logic with distributed knowledge

introduced in Chapter 4 to be sound. To show this, first we prove the strong completeness

with respect to the suitable class of frames including nonstable ones, by constructing a

model called “tree unraveling.” Then, we make the tree unraveling model stable by the

operation called stabilization. Notably, the operation of stabilization is compatible with

tree unraveling by certain property of it (Proposition 3.42). In addition, cut-free sequent

calculi are proposed for our logics, based on the idea introduced in Chapter 2 and the

Craig interpolation theorem is proven using Maehara’s method [26, 35]. The decidability

of the sequent calculi are further established by the standard argument [11, 12] on a

cut-free derivation of a sequent, whereas [23] does not show this for their Hilbert systems.

1.2.3 Public Announcement with Intuitionistic Distributed Knowl-

edge

In Chapter 4, intuitionistic public announcement logics with distributed knowledge are de-

veloped based on the intuitionistic epistemic logics with distributed knowledge developed

in Chapter 3. The intuitionistic epistemic logics with distributed knowledge developed in

Chapter 3 are expanded with a public announcement operator except the ones having the

axiom (D) and its semantic strong completeness is proved by a standard argument using

a reduction axiom [59]. Note that a reduction axiom for the distributed knowledge is not

sound for the class of all frames, which are defined to enjoy the condition 6;Ra ⊆ Ra.

This means that we must restrict our attention to a subclass of frames. As mentioned
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earlier, the condition for the restriction is called “stability.”

By naturally transforming the reduction axioms into inference rules, sequent calculi of

the logics are also developed, and the cut-elimination and Craig interpolation theorems

are proved. The inductive proof of the cut-elimination theorem is made possible by

using the complexity function for a formula, which is introduced in the argument of the

completeness proof, as a measure for cut formula, instead of the ordinary complexity

measure used in the cut-elimination theorem for other logics.

In the following three sections, the commonly known definitions and facts that form

the basis of this study are summarized.

1.3 Basic Epistemic Logic

In this section, the standard multi-agent epistemic logic is explained. The logic introduced

is essentially the same as basic modal logic with an operator � because we only consider

knowledge of single agent here. The description is based on [6, 8, 59].

1.3.1 Language

We denote by Agt a finite set of agents. We call a nonempty subset of Agt “group” and

denote it by G,H, etc. Let Prop be a countable set of propositional variables and Form

be the set of formulas defined inductively by the following clauses:

Form 3 ϕ ::= p ∈ Prop | ⊥ | ¬ϕ | ϕ→ ϕ | Kaϕ.

It is noted that ∧ and ∨ are defined in the same way as in the classical propositional logic.

That is, ϕ ∧ ψ := ¬(ϕ → ¬ψ) and ϕ ∨ ψ := ¬ϕ → ψ. We also define > as ⊥ → ⊥. We

define
∧

Γ :=
∧
ϕ∈Γ ϕ for a finite nonempty set Γ of formulas, and

∧
∅ := >. We define∨

Γ :=
∨
ϕ∈Γ ϕ for a finite nonempty set Γ of formulas, and

∨
∅ := ⊥.

1.3.2 Kripke Semantics

We introduce Kripke semantics for multi-agent epistemic logic here. Let W be a possibly

countable set of states, (Ra)a∈Agt be a family of binary relations on W , indexed by agents,

and V be a valuation function Prop→ P(W ). We call a pair F = (W, (Ra)a∈Agt) a frame

and a tuple M = (W, (Ra)a∈Agt, V ) a model. For a model M = (W, (Ra)a∈Agt, V ) and a

state w ∈ W , a pair (M,w) is called a pointed model. Satisfaction relation M,w |= ϕ on
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pointed models and formulas are defined recursively as follows:

M,w |= p iff w ∈ V (p),

M,w |= ⊥ Never,

M,w |= ¬ϕ iff M,w 6|= ϕ,

M,w |= ϕ→ ψ iff M,w 6|= ϕ or M,w |= ψ,

M,w |= Kaϕ iff for all v ∈ W , if (w, v) ∈ Ra then M, v |= ϕ.

Given a frame F = (W, (Ra)a∈Agt), we say that a formula ϕ is valid in F (notation: F |= ϕ)

if (F, V ), w |= ϕ for every valuation function V and every w ∈ W . Moreover, a formula ϕ

is valid in a class F of frames (notation: F  ϕ) if F |= ϕ for every F ∈ F. Let us say that

a set Γ of formulas defines a class F of frames if, for every frame F , F ∈ F is equivalent

to: F |= ϕ for all ϕ ∈ Γ. Based on the notion of satisfaction, the relation of semantic

consequence is defined as follows.

Definition 1.1 ([6, Definition 1.35]). A formula ϕ is a semantic consequence of Γ in a

frame class F if for all frame F ∈ F, a valuation V on F , a state w ∈ |F |, if (F, V ), w |= Γ,

then (F, V ), w |= ϕ, where “(F, V ), w |= ∆” means that (F, V ), w |= ψ for all ψ ∈ ∆. We

write it as “Γ |=F ϕ”.

1.3.3 Hilbert Systems

We review the known Hilbert system for epistemic logics with Ka operators. Hilbert

system H(K) is defined as in the following table.

Hilbert System H(K)

(Taut) all instantiations of propositional tautologies

(K) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

(MP) From ϕ→ ψ and ϕ infer ψ

(Nec) From ϕ infer Kaϕ

Additional Axiom Schemes

(T) Kaϕ→ ϕ

(D) ¬Ka⊥
(4) Kaϕ→ KaKaϕ

(5) ¬Kaϕ→ Ka¬Kaϕ

Definition 1.2. Let X be a set and R ⊆ X ×X. The binary relation R is:

• reflexive if wRw for any w ∈ X.
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• serial if for any w ∈ X, there exists v ∈ X such that wRv.

• transitive if wRv and vRu jointly imply wRu for any w, v, u ∈ X.

• Euclidean if wRv and wRu jointly imply vRu for any w, v, u ∈ X.

For additional axioms schemes, we note that (T), (D), (4) and (5) define the class

of reflexive, serial, transitive and Euclidean frames, respectively (here, e.g., a “reflexive”

frame means that Ra is reflexive for all agents a ∈ Agt). Hilbert systems H(KT), H(KD),

H(K4), H(K4D), H(S4), and H(S5) are defined as axiomatic expansions of H(K) with

(T), (D), (4), (4) and (D), (T) and (4), and (T) and (5), respectively). In any axiom

system H(X) (X ∈ {K,KT,KD,K4,K4D,S4,S5}), (MP) and (Nec) is called “inference

rule” and the rest are called “axioms”. The notion of proof and provability is defined as

follows.

Definition 1.3 ([59, Definition 2.17]). Let ϕ be a formula. A proof for ϕ within H(X) is

a finite sequence (ϕi)
m
1 of formulas such that

1. ϕm = ϕ.

2. every ϕi in the sequence is

(a) either an instance of one of the axioms

(b) or else the result of the application of one of the inference rules to one or more

formulas in the sequence that appear before ϕi.

A formula ϕ is provable in H(X) (notation: `H(X) ϕ) if there exists a proof for ϕ within

H(X).

We also define derivability relation between a set Γ of formulas and a formula ϕ as

below.

Definition 1.4 ([6, p.36]). A formula ϕ is derivable from Γ in a logic X if `H(X)

∧
Γ′ → ϕ

for some finite set Γ′ which is a subset of Γ. We write it as “Γ `H(X) ϕ”.

We introduce a class of frames corresponding to each logic, in order to state soundness

of our axiomatization.

Definition 1.5. A class of frames F(X) is defined as follows:

• F(K) is the class of all frames.

• F(KT) is the class of all frames such that Ra is reflexive (a ∈ Agt).
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• F(KD) is the class of all frames such that Ra is serial (a ∈ Agt).

• F(K4) is the class of all frames such that Ra is transitive (a ∈ Agt).

• F(K4D) is the class of all frames such that Ra is transitive and serial (a ∈ Agt).

• F(S4) is the class of all frames such that Ra is reflexive and transitive (a ∈ Agt).

• F(S5) is the class of all frames such that Ra is reflexive and Euclidean (a ∈ Agt).

For Hilbert systems H(K), H(KT), H(KD), H(K4), H(K4D), H(S4), and H(S5), the

following soundness and completeness results hold.

Theorem 1.6 (soundness, [6, p.193]). Let X be any of K, KT, KD, K4, K4D, S4, and

S5. If `H(X) ϕ, then F(X) |= ϕ.

Theorem 1.7 (strong completeness, [6, Theorem 4.23, 4.27, 4.28, 4.29]). Let X be any

of K, KT, KD, K4, K4D, S4, and S5. Then, if Γ |=F(X) ϕ, then Γ `H(X) ϕ.

1.3.4 Sequent Calculi

We describe the sequent calculus of the basic epistemic logic, obtained by expanding the

sequent calculus LK [11, 12] of classical propositional logic. We refer to [35, 52, 40].

A sequent is a pair of finite multi-sets of formulas Γ and ∆ denoted by “Γ ⇒ ∆”,

whose reading is “If all formulas in Γ hold then some formulas in ∆ hold.” If Γ = ∅,
“⇒ ∆” means “Some formulas in ∆ hold (without assumptions).” If ∆ = ∅, “Γ ⇒”

means “Assuming that all formulas in Γ hold leads to a contradiction.” Let X be any of

K, KT, KD, K4, K4D, S4, and S5. We denote by G(X), the sequent calculus consisting

of axioms, structural rules, propositional logical rules, and logical rules for Ka of X in

Table 1.1 [52]. We note that when n = 0, e.g., in the rule (K) of Table 1.1, the multi-set

is regarded as the empty multi-set and that KaΓ := {Kaϕ | ϕ ∈ Γ}.
A sequent Γ ⇒ ∆ is derivable in each calculus G(X) if there exists a finite tree of

sequents, whose root is Γ⇒ ∆ and each node of which is inferred by some rule (including

axioms) in G(X). We write it as `G(X) Γ ⇒ ∆. It is well-known that for each logic X,

the provability of formula (or sequent) is equivalent between H(X) and G(X).

Theorem 1.8 (Equipollence). Let X be any of K, KT, KD, K4, K4D, S4, and S5.

Then, the following hold.

1. If `H(X) ϕ, then `G(X)⇒ ϕ.

2. If `G(X) Γ⇒ ∆, then `H(X)

∧
Γ→

∨
∆, where

∧
∅ := > and

∨
∅ := ⊥.



17

Table 1.1: Sequent Calculi for K, KT, KD, K4, K4D, S4, and S5
Axioms

ϕ⇒ ϕ (Id) ⊥ ⇒ (⊥)

Structural Rules

Γ⇒ ∆
Γ⇒ ∆, ϕ

(⇒ w) Γ⇒ ∆
ϕ,Γ⇒ ∆

(w ⇒)
Γ⇒ ∆, ϕ, ϕ
Γ⇒ ∆, ϕ

(⇒ c)
ϕ, ϕ,Γ⇒ ∆
ϕ,Γ⇒ ∆

(c⇒)

Γ⇒ ∆, ϕ ϕ,Π⇒ Σ
Γ,Π⇒ ∆,Σ

(Cut)

Propositional Logical Rules

ϕ,Γ⇒ ∆
Γ⇒ ∆,¬ϕ (⇒ ¬)

Γ⇒ ∆, ϕ
¬ϕ,Γ⇒ ∆

(¬ ⇒)

ϕ,Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(⇒→)

Γ1 ⇒ ∆1, ϕ ψ,Γ2 ⇒ ∆2

ϕ→ ψ,Γ1,Γ2 ⇒ ∆1,∆2
(→⇒)

Logical Rules for Ka of K

ϕ1, . . . , ϕn ⇒ ψ

Kaϕ1, . . . , Kaϕn ⇒ Kaψ
(K)

Logical Rules for Ka of KT

ϕ1, . . . , ϕn ⇒ ψ

Kaϕ1, . . . , Kaϕn ⇒ Kaψ
(K)

ϕ,Γ⇒ ∆
Kaϕ,Γ⇒ ∆

(K ⇒)

Logical Rules for Ka of KD

ϕ1, . . . , ϕn ⇒ ψ

Kaϕ1, . . . , Kaϕn ⇒ Kaψ
(K) Γ⇒

KaΓ⇒
(KKD)

Logical Rules for Ka of K4

ϕ1, . . . , ϕn, Kaϕ1, . . . , Kaϕn ⇒ ψ

Kaϕ1, . . . , Kaϕn ⇒ Kaψ
(⇒ KK4)

Logical Rules for Ka of K4D

ϕ1, . . . , ϕn, Kaϕ1, . . . , Kaϕn ⇒ ψ

Kaϕ1, . . . , Kaϕn ⇒ Kaψ
(⇒ KK4)

Γ, KaΓ⇒
KaΓ⇒

(⇒ KK4D)

Logical Rules for Ka of S4

Kaϕ1, . . . , Kaϕn ⇒ ψ

Kaϕ1, . . . , Kaϕn ⇒ Kaψ
(⇒ KS4)

ϕ,Γ⇒ ∆
Kaϕ,Γ⇒ ∆

(K ⇒)

Logical Rules for Ka of S5D

Kaϕ1, . . . , Kaϕn ⇒ Kaψ1, . . . , Kaψm, χ

Kaϕ1, . . . , Kaϕn ⇒ Kaψ1, . . . , Kaψm, Kaχ
(⇒ KS5)

ϕ,Γ⇒ ∆
Kaϕ,Γ⇒ ∆

(K ⇒)
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For the logics except S5, we can show the cut-elimination theorem, which is regarded

as an important theorem concerning sequent calculi.

Theorem 1.9 (Cut-Elimination, [52, Corollary 2.4]). Let X be any of K, KT, KD, K4,

K4D, and S4. Then, the following holds: If `G(X) Γ ⇒ ∆, then `G−(X) Γ ⇒ ∆, where

G−(X) denotes a system “G(X) minus the cut rule”.

The cut elimination theorem does not hold for G(S5), because the application of

(Cut) rule in the following derivation cannot be eliminated, as pointed out by Onishi and

Matsumoto in [33, footnote 3 on p.116].

p⇒ p (Id)

¬p, p⇒ (¬ ⇒)

Ka¬p, p⇒
(K ⇒)

p⇒ ¬Ka¬p
(⇒ ¬)

Ka¬p⇒ Ka¬p
(Id)

⇒ ¬Ka¬p,Ka¬p
(⇒ ¬)

⇒ Ka¬Ka¬p,Ka¬p
(⇒ KS5D)

¬Ka¬p⇒ Ka¬Ka¬p
(¬ ⇒)

p⇒ Ka¬Ka¬p
(Cut)

⇒ p→ Ka¬Ka¬p
(⇒→)

Based on the cut-elimination theorem, Craig interpolation theorem can be shown by the

method developed by Maehara [26, 35].

Theorem 1.10 (Craig Interpolation Theorem, cf. [35, Thorem 41]). Let X be any of

K, KT, KD, K4, K4D, and S4. Given that `G(X) ϕ ⇒ ψ, there exists a formula χ

satisfying the following conditions:

1. `G(X) ϕ⇒ χ and `G(X) χ⇒ ψ.

2. Prop(χ) ⊆ Prop(ϕ) ∩ Prop(ψ).

1.4 Public Announcement Logic over Basic Epistemic

Logic

We describe the standard public announcement logic here. The description is based on

[59, 5].

1.4.1 Language

We expand the syntax of the basic epistemic logic with the public announcement operator

and define the set of all formulas of the expanded syntax as:

Form+ 3 ϕ ::= p | ⊥ | ¬ϕ | ϕ→ ϕ | Kaϕ | [ϕ]ϕ,
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Figure 1.1: Msrl and Mp
srl

where p ∈ Prop.

1.4.2 Kripke Semantics

Definition 1.11 ([59, Definition 4.7]). Let M = (W, (Ra)a∈Agt, V ) and ϕ, ψ ∈ Form+.

The satisfaction relation M,w |= ϕ is defined as the basic epistemic logic except:

M,w |= [ϕ]ψ iff M,w |= ϕ implies Mϕ, w |= ψ,

where Mϕ := (JϕKM , (Rϕ
a )a∈Agt , V

ϕ) (a model updated from M by ϕ) is defined as follows:

• JϕKM := {w ∈ W |M,w |= ϕ},

• Rϕ
a := Ra ∩ (JϕKM × JϕKM),

• V ϕ(p) := V (p) ∩ JϕKM .

Intuively speaking, the operation (−)ϕ means “the publicly conducted act of elimi-

nating the possibility of ϕ’s being false”. Therefore, by this operation, agents can know

more. It is easy to show the following.

Proposition 1.12 ([5, Public Announcement Closure Theorem]). Let M = (W, (Ra)a∈Agt, V )

and ϕ ∈ Form+. If Ra is reflexive (transitive, or Euclidean), then so is Rϕ
a .

This proposition assures us that the operation (−)ϕ is well-defined on reflexive (transitive,

or Euclidean) model.

Remark 1.13. Seriality is not preserved under (−)ϕ. A counterexample is depicted in

Figure 1.1. The model Msrl on the left is defined as: Msrl := ({w, v}, Ra, V ), where

Agt = {a}, Prop = {p}, Ra := {(w, v), (v, v)}, and V (p) = {w}. The model Msrl is serial,

but Mp
srl on the right is not because Rp

a = ∅. Hence, the corresponding axiom (D) is not

in consideration below.

The notion of semantic consequence is defined the same as the basic epistemic logic.
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1.4.3 Hilbert Systems

The axioms in Table 1.2 are for the expansion with the public announcement operator.

For X ∈ {K,KT,K4,S4,S5}, we call the axiom system expanded from H(X) by all the

axioms in Table 1.2, H(X)+. The notions of proof, provability, and derivability are defined

in the same way as H(X).

Table 1.2: Axioms for Public Announcement Operator

([]p) [ϕ]p↔ (ϕ→ p) ([]⊥) [ϕ]⊥ ↔ (ϕ→ ⊥)
([]¬) [ϕ]¬ψ ↔ (ϕ→ ¬[ϕ]ψ) ([]→) [ϕ](ψ → χ)↔ ([ϕ]ψ → [ϕ]χ)
([]K) [ϕ]Kaψ ↔ (ϕ→ Ka[ϕ]ψ) ([][]) [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ

Proposition 1.14 ([59, Proposition 4.22]). The axioms in Table 1.2 are valid with respect

to the class of all frames.

Hence, we have the soundness theorem for H(X)+.

Theorem 1.15 (soundness, [59, Theorem 4.51]). Let ϕ ∈ Form+. If `H(X)+ ϕ, then

F(X) ϕ.

Proof. Obvious from Theorem 1.6 and Proposition 1.14.

Theorem 1.16 (strong completeness, cf. [59, Theorem 7.26]). Let X be K, KT, K4, or

S4 and Γ ∪ {ϕ} ⊆ Form+. If Γ F(X) ϕ, then Γ `H(X)+ ϕ.

Proof. Obvious from the reduction technique described in [59, Section 7.4] and Theorem

1.7.

1.5 Intuitionistic Logic

We describe intuitionistic propositional logic here. The description is based on [55, 35].

1.5.1 Language

Let Prop be a countable set of propositional variables and Form be the set of formulas

defined inductively by the following clauses:

Form 3 ϕ ::= p | ⊥ | ϕ→ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ,

where p ∈ Prop. We define ¬ϕ as ϕ→ ⊥ and > as ⊥ → ⊥.
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1.5.2 Kripke Semantics

We introduce Kripke semantics for intuitionistic logic.

Definition 1.17 (frame, model, satisfaction relation). A tuple F = (W,6) is a frame if:

W is a set of states, and 6 is a preorder on W . A pair M = (F, V ) is a model if F is a

frame, and a valuation function V : Prop→ P(W ) satisfies the heredity condition, i.e., if

w ∈ V (p) and w 6 v, then v ∈ V (p). We denote an underlying set of states of a frame

F or a model M by |F | or |M |. For a model M = (W,6, V ) and a state w ∈ W , a pair

(M,w) is called a pointed model. Satisfaction relation M,w  ϕ on pointed models and

formulas is defined recursively as follows:

M,w  p iff w ∈ V (p),

M,w  ⊥ Never,

M,w  ϕ→ ψ iff for all v ∈ W, if w 6 v then M, v 6 ϕ or M, v  ψ,

M,w  ϕ ∧ ψ iff M,w  ϕ and M,w  ψ

M,w  ϕ ∨ ψ iff M,w  ϕ or M,w  ψ

The property of heredity is carried over to any formula.

Proposition 1.18 (heredity, [55, Lemma 6.3.4]). If M,w  ϕ and w 6 v, then M, v  ϕ.

Given a frame F = (W,6), we say that a formula ϕ is valid in F (notation: F  ϕ)

if (F, V ), w  ϕ for every valuation function V and every w ∈ W . Moreover, a formula ϕ

is valid (notation:  ϕ) if F  ϕ for any frame F .

Definition 1.19 (semantic consequence, [55, p.168]). A formula ϕ is a semantic conse-

quence of Γ if for all frame F , a valuation V on F , a state w ∈ |F |, if (F, V ), w  Γ, then

(F, V ), w  ϕ. We write it as “Γ  ϕ”.

1.5.3 Hilbert System

Table 1.3: Axioms and Rules for H(Int)
Axioms and Rules for Intuitionistic Logic

(k) ϕ→ (ψ → ϕ) (∧e1) (ϕ ∧ ψ)→ ϕ
(s) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (∧e2) (ϕ ∧ ψ)→ ψ
(∨i1) ϕ→ (ϕ ∨ ψ) (∧i) ϕ→ (ψ → (ϕ ∧ ψ))
(∨i2) ψ → (ϕ ∨ ψ) (⊥) ⊥ → ϕ
(∨e) (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ)) (MP) From ϕ and ϕ→ ψ, infer ψ
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The Hilbert system H(Int) for propositional intuitionistic logic is constructed from

axioms and rules shown in Table 1.3. Derivability is defined as follows.

Definition 1.20. Let Γ ∪ {ϕ} be a set of formulas. A proof for ϕ from Γ within H(Int)

is a finite sequence (ϕi)
m
1 of formulas such that

1. ϕm = ϕ.

2. every ϕi in the sequence is

(a) either an instance of one of the axioms

(b) or a member of Γ

(c) or else the result of the application of the inference rule (MP) to two formulas

in the sequence that appear before ϕi.

A formula ϕ is derivable from Γ in H(Int) (notation: Γ `H(Int) ϕ) if there exists a proof

for ϕ from Γ within H(Int).

We have the following theorems.

Theorem 1.21 (soundness, [55, Theorem 6.3.6]). If `H(Int) ϕ, then  ϕ.

Theorem 1.22 (strong completeness, [55, Theorem 6.3.10]). If Γ  ϕ, then Γ `H(Int) ϕ.

1.5.4 Sequent Calculus

A sequent of the sequent calculus LJ [11, 12] for propositional intuitionistic logic is a pair

of finite multisets of formulas Γ and ∆ denoted by “Γ ⇒ ∆”, where #∆ ≤ 1. Here #Σ

denotes the number of elements in the multiset Σ. A sequent Γ ⇒ ∆ is derivable in LJ

if there exists a finite tree of sequents, whose root is Γ ⇒ ∆ and each node of which is

inferred by some rule (including axioms) in LJ. We write it as `LJ Γ⇒ ∆.

We note that H(Int) and LJ are equipollent in the following sense.

Theorem 1.23 (Equipollence, [54, Theorem 2.4.2, 3.3.1]). 1. If `H(Int) ϕ, then `LJ⇒ ϕ.

2. If `LJ Γ⇒ ∆, then `H(Int)

∧
Γ→

∨
∆, where

∧
∅ := > and

∨
∅ := ⊥.

We have the cut-elimination theorem for LJ.

Theorem 1.24 (Cut-Elimination, [13, ‘Hauptsatz’ in p.38], [35, Theorem 2]). If `LJ Γ⇒
∆, then `LJ− Γ⇒ ∆, where LJ− denotes a system “LJ minus the cut rule”.

We also have the Craig interpolation theorem by the Maehara method [26, 35].
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Table 1.4: Sequent Calculus LJ
Axioms

ϕ⇒ ϕ (Id) ⊥ ⇒ (⊥)

Structural Rules

Γ⇒
Γ⇒ ϕ

(⇒ w) Γ⇒ ∆
ϕ,Γ⇒ ∆

(w ⇒)
ϕ, ϕ,Γ⇒ ∆
ϕ,Γ⇒ ∆

(c⇒)

Γ⇒ ϕ ϕ,Π⇒ Σ
Γ,Π⇒ Σ

(Cut)

Propositional Logical Rules

ϕ,Γ⇒ ψ

Γ⇒ ϕ→ ψ
(⇒→)

Γ1 ⇒ ϕ ψ,Γ2 ⇒ ∆

ϕ→ ψ,Γ1,Γ2 ⇒ ∆
(→⇒)

Γ⇒ ϕ Γ⇒ ψ

Γ⇒ ϕ ∧ ψ (⇒ ∧)
ϕ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(∧ ⇒1)

ψ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(∧ ⇒2)

Γ⇒ ϕ

Γ⇒ ϕ ∨ ψ (⇒ ∨1)
Γ⇒ ψ

Γ⇒ ϕ ∨ ψ (⇒ ∨2)
ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

ϕ ∨ ψ,Γ⇒ ∆
(∨ ⇒)

Theorem 1.25 (Craig Interpolation Theorem, [35, Theorem 35]). Given that `LJ ϕ⇒ ψ,

there exists a formula χ satisfying the following conditions:

1. `LJ ϕ⇒ χ and `LJ χ⇒ ψ.

2. Prop(χ) ⊆ Prop(ϕ) ∩ Prop(ψ).
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Chapter 2

Proof Theory of Distributed

Knowledge

This chapter is organized as follows. Section 2.1 provides the necessary preliminaries

of distributed epistemic logics. We fix our language and give semantic definition of a

distributed knowledge operator DG. We also introduce the known Hilbert system of

epistemic logics with distributed knowledge. In Section 2.2, we propose Gentzen-style

sequent calculi for the logics defined in Section 2.1. We also establish the equipollence

results between the sequent calculi and the Hilbert systems introduced in Section 2.1

(Theorem 2.3). In Section 2.3, we prove our main technical results, Cut Elimination

Theorem (Theorem 2.4) and Craig Interpolation Theorem (Theorem 2.9).

The author’s contribution is as follows. The sequent calculus for KD was constructed

by the author’s supervisor, Katsuhiko Sano. The author constructed the sequent calculi

for KTD, K4D, and S4D under the advice of his supervisor and the sequent calculus for

S5D by himself. The author proved the cut elimination theorem and Craig interpolation

theorem for KD, KTD, K4D, and S4D.

The content of this chapter is based on [30].

2.1 Overview of Epistemic Logics with Distributed

Knowledge Operators

2.1.1 Language

We denote a finite set of agents by Agt. We call a nonempty subset of Agt “group” and

denote it by G,H, etc. Let Prop be a countable set of propositional variables and Form

25
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be the set of formulas defined inductively by the following clauses:

Form 3 ϕ ::= p | ⊥ | ¬ϕ | ϕ→ ϕ | DGϕ,

where p ∈ Prop and G is a group. It is noted that ∧ and ∨ are defined in the same way as

in the classical propositional logic. That is, ϕ ∧ ψ := ¬(ϕ→ ¬ψ) and ϕ ∨ ψ := ¬ϕ→ ψ.

We also define > as ⊥ → ⊥. We also define the epistemic operator Kaϕ (read “agent

a knows that ϕ”) as D{a}ϕ. As noted above, an expression of the form D∅ϕ is not a

well-formed formula, since we have excluded ∅ from our definition of groups.

2.1.2 Kripke Semantics

We introduce the ordinary Kripke semantics for multi-agent epistemic logic here. Let

W be a possibly countable set of states, (Ra)a∈Agt be a family of binary relations on

W , indexed by agents, and V be a valuation function Prop → P(W ). We call a pair

F = (W, (Ra)a∈Agt) a frame and a tuple M = (W, (Ra)a∈Agt, V ) a model. For a model

M = (W, (Ra)a∈Agt, V ) and a state w ∈ W , a pair (M,w) is called a pointed model.

Satisfaction relation M,w |= ϕ on pointed models and formulas are defined recursively as

follows:

M,w |= p iff w ∈ V (p),

M,w |= ⊥ Never,

M,w |= ¬ϕ iff M,w 6|= ϕ,

M,w |= ϕ→ ψ iff M,w 6|= ϕ or M,w |= ψ,

M,w |= DGϕ iff for all v ∈ W , if (w, v) ∈
⋂
a∈GRa then M, v |= ϕ.

It is noted from our definition of Kaϕ := D{a}ϕ that the satisfaction of Kaϕ at a state w

of a model M is given as follows:

M,w |= Kaϕ iff for all v ∈ W , if (w, v) ∈ Ra then M, v |= ϕ.

Given a frame F = (W, (Ra)a∈Agt), we say that a formula ϕ is valid in F (notation: F |= ϕ)

if (F, V ), w |= ϕ for every valuation function V and every w ∈ W . Moreover, a formula

ϕ is valid in a class F of frames if F |= ϕ for every F ∈ F. Let us say that a set Γ of

formulas defines a class F of frames if, for every frame F , F ∈ F is equivalent to: F |= ϕ

for all ϕ ∈ Γ.
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2.1.3 Hilbert Systems

We review the known Hilbert system for epistemic logics with DG operators (cf. [8]).

Hilbert system H(KD) is defined as in the following table.

Hilbert System H(KD)

(Taut) all instantiations of propositional tautologies

(Incl) DGϕ→ DHϕ (G ⊆ H)

(K) DG(ϕ→ ψ)→ (DGϕ→ DGψ)

(MP) From ϕ→ ψ and ϕ infer ψ

(Nec) From ϕ infer DGϕ

Additional Axiom Schemes

(T) DGϕ→ ϕ

(4) DGϕ→ DGDGϕ

(5) ¬DGϕ→ DG¬DGϕ

For additional axioms schemes, we note that (T), (4) and (5) define the class of reflexive,

transitive and Euclidean frames, respectively (here, e.g., a “reflexive” frame means that

Ra is reflexive for all agents a ∈ Agt). Hilbert systems H(KTD),H(K4D), H(S4D), and

H(S5D) are defined as axiomatic expansions of H(KD) with (T), (4), (T) and (4), and

(T) and (5), respectively). Given any Hilbert system X above, the notion of provability

is defined the same as Definition 1.3.

For Hilbert systems H(KD), H(KTD), H(S4D) and H(S5D), the following soundness

and completeness results are known [8, 62] (we cannot find any explicit reference on

H(K4D), private communication by Thomas Ågotnes).

Fact 2.1 ([8, Theorem 3.4.1], [62, Theorem 15]). Each of Hilbert systems H(KD), H(KTD),

H(S4D) and H(S5D) is sound and complete with regard to the class of frames defined by

additional axiom schemes.

2.2 Sequent Calculi

A sequent is a pair of finite multi-sets of formulas Γ and ∆ denoted by “Γ ⇒ ∆”, whose

reading is “if all formulas in Γ hold then some formulas in ∆ hold.” We now propose our

sequent calculi for the logics for distributed knowledge as in Table 2.1. Axioms, structural

rules and propositional logical rules are common to LK [11, 12] and the rest are new. We

note that when n = 0, e.g., in the rule (D) of Table 2.1, the multi-sets {ϕ1, . . . , ϕn} and

{DG1ϕ1, . . . , DGnϕn} are regarded as the empty multi-set and
⋃n
i=1Gi =

⋃
∅ = ∅. A
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Table 2.1: Sequent Calculi for KD, KTD, K4D, S4D, and S5D
Axioms

ϕ⇒ ϕ (Id) ⊥ ⇒ (⊥)

Structural Rules

Γ⇒ ∆
Γ⇒ ∆, ϕ

(⇒ w) Γ⇒ ∆
ϕ,Γ⇒ ∆

(w ⇒)
Γ⇒ ∆, ϕ, ϕ
Γ⇒ ∆, ϕ

(⇒ c)
ϕ, ϕ,Γ⇒ ∆
ϕ,Γ⇒ ∆

(c⇒)

Γ⇒ ∆, ϕ ϕ,Π⇒ Σ
Γ,Π⇒ ∆,Σ

(Cut)

Propositional Logical Rules

ϕ,Γ⇒ ∆
Γ⇒ ∆,¬ϕ (⇒ ¬)

Γ⇒ ∆, ϕ
¬ϕ,Γ⇒ ∆

(¬ ⇒)

ϕ,Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(⇒→)

Γ1 ⇒ ∆1, ϕ ψ,Γ2 ⇒ ∆2

ϕ→ ψ,Γ1,Γ2 ⇒ ∆1,∆2
(→⇒)

Logical Rules for DG of KD

ϕ1, . . . , ϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

Logical Rules for DG of KTD

ϕ1, . . . , ϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

ϕ,Γ⇒ ∆
DGϕ,Γ⇒ ∆

(D ⇒)

Logical Rules for DG of K4D

ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(⇒ DK4D)

Logical Rules for DG of S4D

DG1ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(⇒ DS4D)

ϕ,Γ⇒ ∆
DGϕ,Γ⇒ ∆

(D ⇒)

Logical Rules for DG of S5D

DG1ϕ1, . . . , DGnϕn ⇒ DH1ψ1, . . . , DHmψm, χ (
⋃n
i=1Gi ∪

⋃m
j=1Hj ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DH1ψ1, . . . , DHmψm, DGχ
(⇒ DS5D)

ϕ,Γ⇒ ∆
DGϕ,Γ⇒ ∆

(D ⇒)
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sequent Γ⇒ ∆ is derivable in each calculus G(X) if there exists a finite tree of sequents,

whose root is Γ⇒ ∆ and each node of which is inferred by some rule in G(X). We write

it as `G(X) Γ ⇒ ∆. We introduce a notion of “principal formula” for a proof described

later. A principal formula is defined for each inference rule, except for the axioms and

(Cut) rule and is informally expressed as “a formula, on which the inference rule acts”.

A principal formula of the structural rules, the rules for → and the rule (D ⇒) is a

formula appearing in the lower sequent, which is not contained in Γ,∆,Γ1,Γ2,∆1, or ∆2.

A principal formula of the rules for DG operator other than (D ⇒) is every formula in

the lower sequent.

Remark 2.2. The idea underlying the rule (D) is similar to that of an inference rule

called “R12” described in [43, section 4]. Sequent calculi G(KTD),G(K4D), G(S4D), and

G(S5D) are constructed based on the known sequent calculi for KT,K4,S4, and S5,

respectively (the reader is referred to subsection 1.3.4).

We note that for any epistemic logic X with distributed knowledge under considera-

tion, H(X) and G(X) are equipollent in the following sense, and hence that each system

G(X) deserves its own name.

Theorem 2.3 (Equipollence). Let X be any of KD, KTD, K4D, S4D, and S5D. Then,

the following hold.

1. If `H(X) ϕ, then `G(X)⇒ ϕ.

2. If `G(X) Γ⇒ ∆, then `H(X)

∧
Γ→

∨
∆, where

∧
∅ := > and

∨
∅ := ⊥.

Proof. We show the case of KD and S5D because the case of KD is the simplest and the

case of S5D is the most non-trivial. The other cases can be similarly shown. Here we

focus on item 2 alone because item 1 is trivial in both cases.

(X = KD) We show item 2 by induction on the structure of the derivation for the

sequent Γ ⇒ ∆. We deal with the case for the rule (D) only, since the other cases are

well-known to be true. Suppose we have a derivation

D
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

.

We show `H(X)

∧n
i=1DGiϕi → DGψ. We have `H(X)

∧n
i=1 ϕi → ψ as the induction hypoth-

esis for the derivation D. From this, we can infer by necessitation `H(X) DG(
∧n
i=1 ϕi → ψ).

By this and axiom (K), we have `H(X) DG(
∧n
i=1 ϕi)→ DGψ, which is equivalent to `H(X)
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∧n
i=1DGϕi → DGψ. Therefore, it suffices to show that `H(X)

∧n
i=1DGiϕi →

∧n
i=1DGϕi,

which is equivalent to `H(X)

∧n
i=1 DGiϕi → DGϕi for any i ∈ {1, . . . , n}. This is evident

because we have a propositional tautology `H(X)

∧n
i=1 DGiϕi → DGiϕi and the axiom

(Incl) `H(X) DGiϕi → DGϕi.

(X = S5D) We show item 2 by induction on the structure of the derivation for the

sequent Γ⇒ ∆. We deal with the case for the rules (⇒ DS5D) and (D ⇒) only, since the

other cases are well-known to be true.

First, we show the case of (⇒ DS5D). Suppose we have a derivation

D
DG1ϕ1, . . . , DGnϕn ⇒ DH1ψ1, . . . , DHmψm, χ (

⋃n
i=1Gi ∪

⋃m
j=1Hj ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DH1ψ1, . . . , DHmψm, DGχ
(⇒ DS5D)

.

We show `H(X)

∧n
i=1DGiϕi →

∨m
j=1DHjψj ∨ DGχ. We have `H(X)

∧n
i=1 DGiϕi →∨m

j=1DHjψj ∨ χ as the induction hypothesis for the derivation D. From this, we can

infer by necessitation `H(X) DG(
∧n
i=1DGiϕi →

∨m
j=1 DHjψj ∨ χ). By this and axiom

(K), we have `H(X) DG(
∧n
i=1DGiϕi) → DG(

∨m
j=1DHjψj ∨ χ), which is equivalent to

`H(X)

∧n
i=1DGDGiϕi → DG(

∨m
j=1DHjψj ∨ χ). Therefore, it suffices to show that `H(X)∧n

i=1DGiϕi →
∧n
i=1DGDGiϕi and `H(X) DG(

∨m
j=1DHjψj ∨ χ) →

∨m
j=1 DHjψj ∨ DGχ.

First, we show the former. This is equivalent to `H(X)

∧n
i=1 DGiϕi → DGDGiϕi for any

i ∈ {1, . . . , n}. This is easily shown by `H(X) DGiϕi → DGiDGiϕi and the axiom (Incl)

`H(X) DGiDGiϕi → DGDGiϕi. Next, we show the latter, i.e., `H(X) DG(
∨m
j=1 DHjψj∨χ)→∨m

j=1DHjψj ∨DGχ. This is easily shown to be equivalent to `H(X) DG(
∨m
j=1DHjψj ∨χ)∧∧m

j=1 ¬DHjψj → DGχ through propositional tautologies. Then, it suffices to show that

`H(X) DG(
∨m
j=1DHjψj ∨ χ) ∧

∧m
j=1 ¬DHjψj → DG((

∨m
j=1DHjψj ∨ χ) ∧

∧m
j=1 ¬DHjψj)

and `H(X) DG((
∨m
j=1 DHjψj ∨ χ) ∧

∧m
j=1 ¬DHjψj) → DGχ. The former is easily ob-

tained through the axiom (K) from `H(X)

∧m
j=1 ¬DHjψj → DG(

∧m
j=1 ¬DHjψj), which is

shown by the axioms (5), (Incl), and (K). The latter, i.e., `H(X) DG((
∨m
j=1 DHjψj ∨ χ) ∧∧m

j=1 ¬DHjψj)→ DGχ is easily obtained through the axiom (K) from `H(X) (
∨m
j=1DHjψj∨

χ) ∧
∧m
j=1 ¬DHjψj → χ, which is the case because the antecedent (

∨m
j=1 DHjψj ∨ χ) ∧∧m

j=1 ¬DHjψj is equivalent to χ ∧
∧m
j=1 ¬DHjψj through propositional tautologies.

Second, we show the case of (D ⇒). Suppose we have a derivation

D
ϕ,Γ⇒ ∆

DGϕ,Γ⇒ ∆
(D ⇒)

.
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We show `H(X) DGϕ ∧
∧

Γ →
∨

∆. We have `H(X) ϕ ∧
∧

Γ →
∨

∆ as the induction

hypothesis for the derivation D. Then, it suffices to show that `H(X) DGϕ∧
∧

Γ→ ϕ∧
∧

Γ,

which is obvious by the axiom (T) `H(X) DGϕ→ ϕ.

2.3 Main Proof-Theoretic Results

2.3.1 Cut-Elimination

The cut elimination theorem does not hold for G(S5D), because the application of (Cut)

rule in the following derivation cannot be eliminated [33].

p⇒ p (Id)

¬p, p⇒ (¬ ⇒)

D{a}¬p, p⇒
(D ⇒)

p⇒ ¬D{a}¬p
(⇒ ¬)

D{a}¬p⇒ D{a}¬p
(Id)

⇒ ¬D{a}¬p,D{a}¬p
(⇒ ¬)

⇒ D{a}¬D{a}¬p,D{a}¬p
(⇒ DS5D)

¬D{a}¬p⇒ D{a}¬D{a}¬p
(¬ ⇒)

p⇒ D{a}¬D{a}¬p
(Cut)

⇒ p→ D{a}¬D{a}¬p
(⇒→)

Therefore, we establish the cut elimination theorem for our sequent calculi except for

G(S5D).

Theorem 2.4 (Cut-Elimination). Let X be any of KD, KTD, K4D, and S4D. Then,

the following holds: If `G(X) Γ⇒ ∆, then `G−(X) Γ⇒ ∆, where G−(X) denotes a system

“G(X) minus the cut rule”.

Following [24, Section 9.3] and [36, Section 2.2], we consider a system G∗(X), in which

the cut rule is replaced by the “extended” cut rule defined as:

Γ⇒ ∆, ϕn ϕm,Σ⇒ Θ
Γ,Σ⇒ ∆,Θ

(ECut)
,

where ϕn denotes the multi-set of n-copies of ϕ and n,m ≥ 0. Since (ECut) is the same

as (Cut) when we set n = m = 1, it is obvious that if `G(X) Γ⇒ ∆, then `G∗(X) Γ⇒ ∆,

so it suffices to show the following.

Lemma 2.5. Let X be any of KD, KTD, K4D, and S4D. Then, the following holds: If

`G∗(X) Γ⇒ ∆, then `G−(X) Γ⇒ ∆.

Proof. Let X be any of KD, KTD, K4D, and S4D. Suppose `G∗(X) Γ ⇒ ∆ and fix one

derivation for the sequent. To obtain an (ECut)-free derivation of Γ ⇒ ∆, it is enough
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to concentrate on a derivation whose root is derived by (ECut) and which has no other

application of (ECut). Let us suppose that D has the following structure:

L
Γ⇒ ∆, ϕn

(ruleL) R
ϕm,Σ⇒ Θ

(ruleR)

Γ,Σ⇒ ∆,Θ
(ECut)

,

where the derivations L and R has no application of (ECut) and ruleL and ruleR are

meta-variables for the name of rule applied there. Let the number of logical symbols

(including DG) appearing in ϕ be c(D) and the number of sequents in L and R be w(D).

We show the lemma by double induction on (c(D), w(D)). If n = 0 or m = 0, we can

derive the root sequent of D without using (ECut) by weakening rules. So, in what follows

we assume n,m > 0. Then, it is sufficient to consider the following four cases following

[37, proof of Theorem 2.3], [24, Section 9.3], and [36, Section 2.2]: 1

1. ruleL or ruleR is an axiom.

2. ruleL or ruleR is a structural rule.

3. ruleL or ruleR is a logical rule and a cut formula ϕ is not principal (in the sense

we have specified in Section 2.2) for that rule.

4. ruleL and ruleR are both logical rules (including (D)) for the same logical symbol

and a cut formula ϕ is principal for each rule.

We omit case 1 and case 2 in the proof since this is well-known in the proof for LK (cf.

[36, pp.28-29, Theorem 2.2]). For the same reason, the cases concerning propositional

logical rules are also not treated. Therefore, we treat case 3 and case 4 involving DG for

each logic X.

(X = KD) There is no case to be considered in case 3. As case 4, we consider the case

where both ruleL and ruleR are rules (D). In that case, the given derivation D has the

following structure.

L′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

R′
ψm, ψ1, . . . , ψm ⇒ χ (G ∪

⋃m
j=1Hj ⊆ H)

(DGψ)m, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ DHχ
(ECut)

1In case 4, we assume the condition for both rule applications, because if the one of the two rule
applications does not satisfy the condition, the whole derivation should be categorized into one of the
rest cases.
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The derivation D can be transformed into the following derivation E : 2

L′
ϕ1, . . . , ϕn ⇒ ψ

R′
ψm, ψ1, . . . , ψm ⇒ χ

ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ
(ECut)

(
⋃n
i=1Gi ∪

⋃m
j=1 Hj ⊆ H)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

.

We call E ′ its subderivation whose root sequent is ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ. The

derivation E ′ have no application of (ECut) and c(E ′) < c(D). Hence, by induction

hypothesis, there exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Re-

placing the derivation E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ as required.

(X = KTD) As case 3, the case involving the rule (D ⇒) should be considered. If

ruleL = (D ⇒), the derivation D has the following structure.

L′
ψ,Γ⇒ ∆, ϕn

DGψ,Γ⇒ ∆, ϕn
(D ⇒) R

ϕm,Σ⇒ Θ
(ruleR)

DGψ,Γ,Σ⇒ ∆,Θ
(ECut)

This can be transformed into the following derivation E :

L′
ψ,Γ⇒ ∆, ϕn

R
ϕm,Σ⇒ Θ

(ruleR)

ψ,Γ,Σ⇒ ∆,Θ
(ECut)

DGψ,Γ,Σ⇒ ∆,Θ
(D ⇒)

The subderivation E ′ whose root is ψ,Γ,Σ⇒ ∆,Θ has no application of (ECut) except the

lowermost one, c(E ′) = c(D), and w(E ′) < w(D). Hence, by induction hypothesis, there

exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Replacing the derivation

E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent DGψ,Γ,Σ⇒ ∆,Θ.

If ruleR = (D ⇒), the derivation D has the following structure.

L
Γ⇒ ∆, ϕn

(ruleL)

R′
ϕm, ψ,Σ⇒ Θ

ϕm, DGψ,Σ⇒ Θ
(D ⇒)

Γ, DGψ,Σ⇒ ∆,Θ
(ECut)

2Note that the condition
⋃n

i=1Gi∪
⋃m

j=1Hj ⊆ H in E can be obtained by the conditions
⋃n

i=1Gi ⊆ G
and G ∪

⋃m
j=1Hj ⊆ H in D through “cutting” G.
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This can be transformed into the following derivation E :

L
Γ⇒ ∆, ϕn

(ruleL) R′
ϕm, ψ,Σ⇒ Θ

Γ, ψ,Σ⇒ ∆,Θ
(ECut)

Γ, DGψ,Σ⇒ ∆,Θ
(D ⇒)

The subderivation E ′ whose root is Γ, ψ,Σ⇒ ∆,Θ has no application of (ECut) except the

lowermost one, c(E ′) = c(D), and w(E ′) < w(D). Hence, by induction hypothesis, there

exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Replacing the derivation

E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent Γ, DGψ,Σ⇒ ∆,Θ.

In case 4, the derivation D has either the same structure as the case where X = KD

or the following structure.

L′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

R′
ψ, (DGψ)m−1,Σ⇒ Θ

(DGψ)m,Σ⇒ Θ
(D ⇒)

DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(ECut)

This can be transformed into the following derivation E :

L′
ϕ1, . . . , ϕn ⇒ ψ

L
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

R′
ψ, (DGψ)m−1,Σ⇒ Θ

DG1ϕ1, . . . , DGnϕn, ψ,Σ⇒ Θ
(ECut)

ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(ECut)

...
(D ⇒)

DG1ϕ1, . . . , DGnϕn, DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(D ⇒)

...
(c⇒)

DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(c⇒)

The subderivation E1 whose root is DG1ϕ1, . . . , DGnϕn, ψ,Σ ⇒ Θ has no application of

(ECut) except the lowermost one, c(E1) = c(D), and w(E1) < w(D). Hence, by induction

hypothesis, there exists an (ECut)-free derivation Ẽ1 having the same root sequent. Name

E2, the derivation obtained by replacing the derivation E1 by Ẽ1 in the subderivation whose

root is ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn,Σ ⇒ Θ. The derivation E2 has no application of

(ECut) except the lowermost one and c(E2) < c(D). Hence, by induction hypothesis,

there exists an (ECut)-free derivation Ẽ2 having the same root sequent. Thus, we obtain

an (ECut)-free derivation for the sequent DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ.
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(X = K4D) There is no case to be considered in case 3. In case 4, the derivation D has

the following structure.

L
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

R
(DGψ)m, DH1ψ1, . . . , DHmψm ⇒ DHχ

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ DHχ
(ECut)

,

where L and R are of the following form.

L ≡

L′
ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(⇒ DK4D)

R ≡

R′
ψm, ψ1, . . . , ψm, (DGψ)m, DH1ψ1, . . . , DHmψm ⇒ χ (G ∪

⋃m
j=1 Hj ⊆ H)

(DGψ)m, DH1ψ1, . . . , DHmψm ⇒ DHχ
(⇒ DK4D)

The derivation D can be transformed into the following derivation E :

L′

ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn ⇒ ψ

E1
ψm, ψ1, . . . , ψm, DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ χ

ϕ1, . . . , ϕn, ψ1, . . . , ψm, DG1ϕ1, . . . , DGnϕn, DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ χ
(ECut)

...

(c⇒)

ϕ1, . . . , ϕn, ψ1, . . . , ψm, DG1
ϕ1, . . . , DGn

ϕn, DH1
ψ1, . . . , DHm

ψn ⇒ χ
(c⇒)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ
(⇒ DK4D )

,

where

E1 ≡

L
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

R′
ψm, ψ1, . . . , ψm, (DGψ)m, DH1ψ1, . . . , DHmψm ⇒ χ

ψm, ψ1, . . . , ψm, DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ χ
(ECut)

.

Note that
⋃n
i=1Gi ∪

⋃m
j=1 Hj ⊆ H is satisfied at the last rule application in E . The

subderivation E1 has no application of (ECut) except the lowermost one, c(E1) = c(D),

and w(E1) < w(D). Hence, by induction hypothesis, there exists an (ECut)-free deriva-

tion Ẽ1 having the same root sequent. Name E2, the derivation obtained by replacing the

derivation E1 by Ẽ1 in the subderivation whose root is

ϕ1, . . . , ϕn, ψ1, . . . , ψm, DG1ϕ1, . . . , DGnϕn, DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ χ. The

derivation E2 has no application of (ECut) except the lowermost one and c(E2) < c(D).

Hence, by induction hypothesis, there exists an (ECut)-free derivation Ẽ2 having the same

root sequent. Thus, we obtain an (ECut)-free derivation for the sequent

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ.
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(X = S4D) We omit case 3 since the case to be considered is the same as KTD. In case
4, one of the possible structures of the derivation D is the following.

L′
DG1

ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n
i=1 Gi ⊆ G)

DG1
ϕ1, . . . , DGnϕn ⇒ DGψ

(⇒ DS4D )

R′
(DGψ)m, DH1

ψ1, . . . , DHmψm ⇒ χ (G ∪
⋃m
j=1Hj ⊆ H)

(DGψ)m, DH1
ψ1, . . . , DHmψm ⇒ DHχ

(⇒ DS4D )

DG1
ϕ1, . . . , DGnϕn, DH1

ψ1, . . . , DHmψn ⇒ DHχ
(ECut)

The derivation D can be transformed into the following derivation E :

L
DG1

ϕ1, . . . , DGn
ϕn ⇒ DGψ

R′

(DGψ)m, DH1
ψ1, . . . , DHm

ψm ⇒ χ

DG1
ϕ1, . . . , DGn

ϕn, DH1
ψ1, . . . , DHm

ψn ⇒ χ
(ECut)

(
⋃n

i=1Gi ∪
⋃m

j=1Hj ⊆ H)

DG1
ϕ1, . . . , DGn

ϕn, DH1
ψ1, . . . , DHm

ψm ⇒ DHχ
(⇒ DS4D )

.

The subderivation E ′ whose root sequent is DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ χ

has no application of (ECut) except the lowermost one, c(E ′) = c(D), and w(E ′) < w(D).

Hence, by induction hypothesis, there exists an (ECut)-free derivation Ẽ ′ having the same

root sequent. Replacing the derivation E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation

for the sequent DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ.

The other possible structure of the derivation D is the following:

L′
DG1ϕ1, . . . , DGnϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(⇒ DS4D)

R′
ψ, (DGψ)m−1,Σ⇒ Θ

(DGψ)m,Σ⇒ Θ
(D ⇒)

DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(ECut)

This can be transformed into the following derivation E :

L′
DG1ϕ1, . . . , DGnϕn ⇒ ψ

L
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

R′
ψ, (DGψ)m−1,Σ⇒ Θ

DG1ϕ1, . . . , DGnϕn, ψ,Σ⇒ Θ
(ECut)

DG1ϕ1, . . . , DGnϕn, DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(ECut)

...
(c⇒)

DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(c⇒)

The subderivation E1 whose root is DG1ϕ1, . . . , DGnϕn, ψ,Σ ⇒ Θ has no application of

(ECut) except the lowermost one, c(E1) = c(D), and w(E1) < w(D). Hence, by induction

hypothesis, there exists an (ECut)-free derivation Ẽ1 having the same root sequent. Name

E2, the derivation obtained by replacing the derivation E1 by Ẽ1 in the subderivation

whose root is DG1ϕ1, . . . , DGnϕn, DG1ϕ1, . . . , DGnϕn,Σ ⇒ Θ. The derivation E2 has no

application of (ECut) except the lowermost one and c(E2) < c(D). Hence, by induction
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hypothesis, there exists an (ECut)-free derivation Ẽ2 having the same root sequent. Thus,

we obtain an (ECut)-free derivation for the sequent DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ.

2.3.2 Craig Interpolation Theorem

As an application of the cut elimination theorem, Craig interpolation theorem can be de-

rived, using a Maehara method described in [26] (application of the method to basic modal

logic can also be found in [35]). To state a main lemma for proving Craig Interpolation

Theorem, some definitions are needed.

Definition 2.6 (Partition). A partition for a sequent Γ⇒ ∆ is defined as a tuple 〈(Γ1 :

∆1); (Γ2 : ∆2)〉, such that the multi-set union of Γ1 and Γ2 (∆1 and ∆2) is equal to Γ (∆,

respectively).

Definition 2.7. For a formula ϕ, Prop(ϕ) is defined as the set of propositional vari-

ables appearing in ϕ. For a multi-set of formulas Γ, Prop(Γ) is defined as
⋃
ϕ∈Γ Prop(ϕ).

Similarly, Agt(ϕ) is defined as the set of agents appearing in ϕ and Agt(Γ) as
⋃
ϕ∈Γ Agt(ϕ)

The following is a key lemma for Craig Interpolation Theorem.

Lemma 2.8. Let X be any of KD, KTD, K4D, and S4D. Suppose `G(X) Γ⇒ ∆. Then,

for any partition 〈(Γ1 : ∆1); (Γ2 : ∆2)〉 for the sequent Γ ⇒ ∆, there exists a formula ϕ

called “interpolant”, satisfying the following:

1. `G(X) Γ1 ⇒ ∆1, ϕ and `G(X) ϕ,Γ2 ⇒ ∆2.

2. Prop(ϕ) ⊆ Prop(Γ1,∆1) ∩ Prop(Γ2,∆2).

3. Agt(ϕ) ⊆ Agt(Γ1,∆1) ∩ Agt(Γ2,∆2).

Proof. We prove the case of KD by induction on the structure of a derivation for Γ⇒ ∆,

because the other cases can be shown by the same idea. Fix the derivation and name it

D. By the cut-elimination theorem (Theorem 2.4), we can assume that D is cut-free. We

treat only the case of (D) below (for other cases, the reader is referred to [35]). Suppose

D is of the form
E

ϕ1, . . . , ϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

.

There are the following two partitions of DG1ϕ1, . . . , DGnϕn ⇒ DGψ:

(a) a partition 〈(DG1ϕ1, . . . , DGkϕk : ∅); (DGk+1
ϕk+1, . . . , DGnϕn : DGψ)〉.

(b) a partition 〈(DG1ϕ1, . . . , DGkϕk : DGψ); (DGk+1
ϕk+1, . . . , DGnϕn : ∅)〉.
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For case (a), induction hypothesis on E for a partition 〈(ϕ1, . . . , ϕk : ∅); (ϕk+1, . . . , ϕn : ψ)〉
is used. That is, we have derivations for ϕ1, . . . , ϕk ⇒ χ and χ, ϕk+1, . . . , ϕn ⇒ ψ for some

formula χ. If k > 0, we can choose D⋃k
i=1 Gi

χ as a required interpolant, because we have

the following derivations:

I.H.
ϕ1, . . . , ϕk ⇒ χ (

⋃k
i=1 Gi ⊆

⋃k
i=1 Gi)

DG1ϕ1, . . . , DGkϕk ⇒ D⋃k
i=1Gi

χ
(D)

I.H.
χ, ϕk+1, . . . , ϕn ⇒ ψ (

⋃k
i=1 Gi ∪

⋃n
i=k+1Gi =

⋃n
i=1 Gi ⊆ G)

D⋃k
i=1 Gi

χ,DGk+1
ϕk+1, . . . , DGnϕn ⇒ DGψ

(D)

Furthermore, the interpolant enjoys the condition 2 and 3 by the induction hypothesis

and simple calculation. If k = 0, we can choose χ (equivalent to >) as an interpolant.

Next, consider case (b). By induction hypothesis on E for a partition 〈(ϕ1, . . . , ϕk :

ψ); (ϕk+1, . . . , ϕn : ∅)〉, we have derivations for ϕ1, . . . , ϕk ⇒ ψ, χ and χ, ϕk+1, . . . , ϕn ⇒
for some formula χ. If k < n, we can choose ¬D⋃n

i=k+1 Gi
¬χ as a required interpolant,

because we have the following derivations:

I.H.
ϕ1, . . . , ϕk ⇒ ψ, χ

¬χ, ϕ1, . . . , ϕk ⇒ ψ
(¬ ⇒)

(
⋃n
i=k+1 Gi ∪

⋃k
i=1Gi =

⋃n
i=1 Gi ⊆ G)

D⋃n
i=k+1Gi

¬χ,DG1ϕ1, . . . , DGkϕk ⇒ DGψ
(D)

DG1ϕ1, . . . , DGkϕk ⇒ DGψ,¬D⋃n
i=k+1Gi

¬χ (⇒ ¬)

I.H.
χ, ϕk+1, . . . , ϕn ⇒
ϕk+1, . . . , ϕn ⇒ ¬χ (⇒ ¬) (

⋃n
i=k+1Gi ⊆

⋃n
i=k+1Gi)

DGk+1
ϕk+1, . . . , DGnϕn ⇒ D⋃n

i=k+1Gi
¬χ (D)

¬D⋃n
i=k+1Gi

¬χ,DGk+1
ϕk+1, . . . , DGnϕn ⇒

(¬ ⇒)

Furthermore, the interpolant enjoys the condition 2 and 3 by the induction hypothesis and

a simple calculation. If k = n, we can choose χ (equivalent to ⊥) as an interpolant.

Theorem 2.9 (Craig Interpolation Theorem). Let X be any of KD, KTD, K4D, and

S4D. Given that `G(X) ϕ⇒ ψ, there exists a formula χ satisfying the following conditions:

1. `G(X) ϕ⇒ χ and `G(X) χ⇒ ψ.

2. Prop(χ) ⊆ Prop(ϕ) ∩ Prop(ψ).

3. Agt(χ) ⊆ Agt(ϕ) ∩ Agt(ψ).

We note that not only the condition for propositional variables but also the condition

for agents can be satisfied. By the third condition, it is assured, for example, that there
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exists an interpolant without any DG operator for a pair of formulas ϕ and ψ such that

`G(X) ϕ⇒ ψ and Agt(ϕ) ∩ Agt(ψ) = ∅.

Proof. When we set Γ := ϕ and ∆ := ψ, and take a partition 〈(ϕ : ∅); (∅ : ψ)〉, Lemma

2.8 proves Craig Interpolation Theorem.
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Chapter 3

Intuitionistic Epistemic Logic with

Distributed Knowledge

This chapter is organized as follows. In Section 3.1, we introduce syntax and semantics

for intuitionistic epistemic logic with distributed knowledge to be made dynamic and the

notion of stability of Kripke frame. Section 3.2 defines Hilbert systems of the logics, and

states soundness results. In Section 3.3, strong completeness of the Hilbert systems of

the logics with respect to the suitable classes of stable frames is shown, via a notion of

“pseudo-model”. In Section 3.4, we introduce sequent calculi for the logics and prove the

cut-elimination theorem, Craig interpolation theorem, and decidability.

The author’s contribution is as follows. The definition of tree unraveling in the case

of IK was determined through discussions with the author’s supervisor. The definition of

tree unravelings in the case of the logics other than IK was found by the author on his own,

based on the case of IK. The author proved the strong completeness theorem with respect

to the class of stable Kripke frames, using the notion of stabilization presented by the

supervisor. The sequent calculi are defined by the author based on the suggestion by the

supervisor. The cut elimination theorem, Craig interpolation theorem, and decidability

are shown by the author.

The content of this chapter is based on [31].

3.1 Syntax and Semantics

We denote a finite set of agents by Agt. We call a nonempty subset of Agt “group” and

denote it by G,H, etc. We denote by Grp the set of all groups, i.e., the set ℘(Agt) \ {∅}
of all non-empty subset of Agt. Let Prop be a countable set of propositional variables and

41
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Form be the set of formulas defined inductively by the following clauses:

Form 3 ϕ ::= p | ⊥ | ϕ→ ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | DGϕ,

where p ∈ Prop and G ∈ Grp. We read DGϕ as “ϕ is distributed knowledge among a

group G”. We define ¬ϕ as ϕ → ⊥, ϕ ↔ ψ as ϕ → ψ ∧ ψ → ϕ, > as ⊥ → ⊥, and the

epistemic operator Kaϕ (read “agent a knows that ϕ”) as D{a}ϕ. As noted above, an

expression of the form D∅ϕ is not a well-formed formula, since we have excluded ∅ from

our definition of groups.

We introduce Kripke semantics for intuitionistic multi-agent epistemic logic with dis-

tributed knowledge, along the lines of [23]. 1

Definition 3.1 (frame, model). A tuple F = (W,6, (Ra)a∈Agt) is a frame if: W is a set

of states, 6 is a preorder on W , (Ra)a∈Agt is a family of binary relations on W indexed

by agents, and 6;Ra ⊆ Ra (for all a ∈ Agt), where S1;S2 := {(x, z) | there exists y such

that xS1y and yS2z}.
A pair M = (F, V ) is a model if F is a frame, and a valuation function V : Prop →

P(W ) satisfies the heredity condition, i.e., if w ∈ V (p) and w 6 v, then v ∈ V (p). We

denote an underlying set of states of a frame F or a model M by |F | or |M |.
For a model M = (W,6, (Ra)a∈Agt, V ) and a state w ∈ W , a pair (M,w) is called a

pointed model.

The following notion of stability is needed in intuitionistic public announcement logic

with distributed knowledge introduced later.

Definition 3.2 (stable). Let ≤ be a preorder on a set X. A relation R ⊆ X×X is called

stable with regard to ≤ if 6;R ⊆ R and R;6⊆ R. We say a frame F = (W,6, (Ra)a∈Agt)

is stable if each Ra is stable with regard to 6. We name the class of all stable frames ST.

Proposition 3.3. Let X be a set, R be a binary relation on X, and ≤ be a preorder on

X.

1. R is stable with regard to ≤ iff ≤;R;≤⊆ R.

2. If R is reflexive and transitive, then ≤;R ⊆ R implies R;≤⊆ R.

Proof. • (item 1) Left-to-right: It is evident that (≤;R);≤⊆ R;≤⊆ R. Right-to-left:

It is evident that ≤;R ⊆≤;R;≤⊆ R and that R;≤⊆≤;R;≤⊆ R.

1There are other possible ways to build a model with a time-like relation like 6 in our definition and
a relation for modalities like Ra in our definition. For example, in the system LORA in [65], a time-like
relation T is internalized in a possible world.
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w v

a, b

a, c

a, c a, b

Figure 3.1: Example of frame

• (item 2) By reflexivity and transitivity of R, we have R;≤⊆ R;≤;R ⊆ R;R ⊆
R.

Due to item 1, we can show that for a certain tuple (W,6, (RG)G∈Grp), RG is stable

with regard to 6 for any G ∈ Grp by checking whether 6;RG;6⊆ RG for any G ∈ Grp.

Satisfaction relation M,w  ϕ on pointed models and formulas is defined recursively as

follows:

M,w  p iff w ∈ V (p),

M,w  ⊥ Never,

M,w  ϕ→ ψ iff for all v ∈ W, if w 6 v then M, v 6 ϕ or M, v  ψ,

M,w  ϕ ∧ ψ iff M,w  ϕ and M,w  ψ

M,w  ϕ ∨ ψ iff M,w  ϕ or M,w  ψ

M,w  DGϕ iff for all v ∈ W, if (w, v) ∈
⋂
a∈GRa then M, v  ϕ.

It is noted from our definition of Kaϕ := D{a}ϕ that the satisfaction of Kaϕ at a state w

of a model M is given as follows:

M,w  Kaϕ iff for all v ∈ W , if (w, v) ∈ Ra then M, v  ϕ.

As is the case with ordinary intuitionistic logic, we have the following heredity property

for a formula.

Proposition 3.4 (heredity). If M,w  ϕ and w 6 v, then M, v  ϕ

Proof. By induction on ϕ. For the case where ϕ ≡ DGψ, it is noted that the condition

6;Ra ⊆ Ra of a frame implies that 6;
⋂
a∈GRa ⊆

⋂
a∈GRa. For the rest cases, the reader

is referred to [55, Lemma 6.3.4].

Example 3.5. Figure 3.1 is an example of a frame. The preorder is depicted by a dotted

arrow. Note that we omit reflexive arrows for the preorder. If a valuation is defined

by, for example, V (p) = {v} for any p ∈ Prop, V satisfies the heredity condition. In

this model, it can be seen that different groups have different distributed knowledge even

at the same state. Indeed, D{a,b}p is true at w, but D{a,c}p is false at w. We can see
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Figure 3.2: Example of stable model Mstable

that seriality for each agent’s relation is not always preserved under taking intersection

among a group. Namely, Rb and Rc are serial but Rb ∩ Rc is not in the example. This

is why we should restrict (D) axiom to ¬D{a}⊥, as defined in Table 3.1. Figure 3.2 is an

example of a stable model named Mstable used later in the explanation of the extension

to public announcement logic. From this model too, it can be seen that different groups

have different distributed knowledge even at the same state. Indeed, D{b,c}¬p is true at

v, but D{a,b}¬p is false at v.

Given a frame F = (W,6, (Ra)a∈Agt), we say that a formula ϕ is valid in F (notation:

F  ϕ) if (F, V ), w  ϕ for every valuation function V and every w ∈ W . Moreover, a

formula ϕ is valid in a class F of frames (notation: F  ϕ) if F  ϕ for every F ∈ F.

Definition 3.6. A formula ϕ is a semantic consequence of Γ in a frame class F if for all

frame F ∈ F, a valuation V on F , a state w ∈ |F |, if (F, V ), w  Γ, then (F, V ), w  ϕ.

We write it as “Γ F ϕ”.

3.2 Hilbert Systems

Hilbert systems for intuitionistic epistemic logics with DG operators are constructed from

axioms and rules shown in Table 3.1.

A Hilbert system H(IK) consists of axioms and rules for intuitionistic logic, axioms (Incl)

and (K), and a rule (Nec). Hilbert systems H(IKT), H(IKD), H(IK4), H(IK4D), and

H(IS4) are defined as axiomatic expansions of H(IK) with (T), (D), (4), (4) and (D),

and (T) and (4), respectively. Let X be any of IK, IKT, IKD, IK4, IK4D, and IS4 in

what follows. The notion of provability in each system is defined the same as Definition

1.3, and the fact that a formula ϕ is provable in H(X) is denoted by “`H(X) ϕ”. We also

define derivability relation between a set Γ of formulas and a formula ϕ as below.

Definition 3.7. A formula ϕ is derivable from Γ in a logic X if `H(X)

∧
Γ′ → ϕ for some

finite set Γ′ which is a subset of Γ. We write it as “Γ `H(X) ϕ”.
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Table 3.1: Axioms and Rules for Hilbert Systems
Axioms and Rules for Intuitionistic Logic

(k) ϕ→ (ψ → ϕ) (∧e1) (ϕ ∧ ψ)→ ϕ
(s) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) (∧e2) (ϕ ∧ ψ)→ ψ
(∨i1) ϕ→ (ϕ ∨ ψ) (∧i) ϕ→ (ψ → (ϕ ∧ ψ))
(∨i2) ψ → (ϕ ∨ ψ) (⊥) ⊥ → ϕ
(∨e) (ϕ→ χ)→ ((ψ → χ)→ ((ϕ ∨ ψ)→ χ)) (MP) From ϕ and ϕ→ ψ, infer ψ

Axioms and Rules for H(IK)

(Incl) DGϕ→ DHϕ (G ⊆ H) (K) DG(ϕ→ ψ)→ (DGϕ→ DGψ)
(Nec) From ϕ, infer DGϕ

Additional Axioms for DG operators

(T) DGϕ→ ϕ (D) ¬D{a}⊥ (4) DGϕ→ DGDGϕ

We introduce a class of frames corresponding to each logic, in order to state soundness

of our axiomatization.

Definition 3.8. A class of frames F(X) is defined as follows:

• F(IK) is the class of all frames.

• F(IKT) is the class of all frames such that Ra is reflexive (a ∈ Agt).

• F(IKD) is the class of all frames such that Ra is serial (a ∈ Agt).

• F(IK4) is the class of all frames such that Ra is transitive (a ∈ Agt).

• F(IK4D) is the class of all frames such that Ra is transitive and serial (a ∈ Agt).

• F(IS4) is the class of all frames such that Ra is reflexive and transitive (a ∈ Agt).

Reflexivity, seriality, and transitivity are defined in Definition 1.2.

We can prove the following soundness theorem by induction on ϕ. Note that axioms

(T) and (4) are valid in reflexive and transitive frames, respectively, because if Ra is

reflexive or transitive for any a ∈ G,
⋂
a∈GRa is also reflexive or transitive, respectively.

Theorem 3.9 (soundness). If `H(X) ϕ, then F(X)  ϕ.

Proof. It is eveident from the proofs of Theorem 1.6, Theorem 1.21, and Fact 2.1. We

show the validity of the axiom (Incl) in the case of X = IK, for example. Suppose

G ⊆ H. We show F(IK)  DGϕ→ DHϕ. Take any frame F , and any valuation V on F
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and any state w ∈ |F |. Suppose (F, V ), v  DGϕ for any v such that w 6 v. We show

(F, V ), v  DHϕ. Take any u such that (v, u) ∈
⋂
a∈H Ra. Since

⋂
a∈H Ra ⊆

⋂
a∈GRa, we

have (F, V ), u  ϕ by the supposition, as required.

We remark on the other cases. To show the validity of the axiom (T) ((D), and (4)),

the property of reflexivity (seriality, and transitivity, respectively) is used.

The soundness theorem with regard to the corresponding class of stable frames also

trivially holds.

Corollary 3.10. If `H(X) ϕ, then F(X) ∩ ST  ϕ.

Proof. It is obvious from the fact that F  ϕ implies F∩ST  ϕ for any class F of frames

and any formula ϕ.

3.3 Semantic Completeness

In the present section, we explain a proof of two kinds of the strong completeness theorems

of our logic. Let Γ be a set of formulas and ϕ be a formula. We firstly show the ordinary

strong completeness theorem stated as follows.

Theorem 3.11. Let X be any of IK, IKT, IKD, IK4, IK4D, and IS4. Then, if

Γ F(X) ϕ, then Γ `H(X) ϕ.

Then, we also show the completeness with regard to the corresponding class of stable

frames for the sake of the completeness proof for the PAL extension:

Theorem 3.12. Let X be any of IK, IKT, IKD, IK4, IK4D, and IS4. Then, if

Γ F(X)∩ST ϕ, then Γ `H(X) ϕ.

We show this based on the proof of Theorem 3.11, by way of the method called

stabilization. Note that any frame F ∈ F(IS4) is stable due to item 2 of Proposition 3.3,

that is, F(IS4) = F(IS4) ∩ ST, which means that Theorems 3.11 and 3.12 are equivalent

for IS4.

As in [7], we show Theorem 3.11 via the notion of “pseudo-model”, which is Kripke

model with relations for a group, not a single agent. The reason why the notion of

pseudo-model is introduced is that the ordinary canonical model with relations for a

single agent only does not work when proving the completeness of a logic with distributed

knowledge, which is a consequence of the fact that a logic with distributed knowledge is

more expressive than the basic epistemic logic introduced in Section 1.3 (the reader is

referred to [44, Section 4]).
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wa, b

Figure 3.3: Example of pseudo-frame

Definition 3.13 (pseudo-frame, pseudo-model). A tuple F = (W,6, (RG)G∈Grp) is a

pseudo-frame if:

1. 6;RG ⊆ RG for any G ∈ Grp, and

2. RH ⊆ RG if G ⊆ H (called “inclusion condition”).

A pair M = (F, V ) is a pseudo-model if F is a pseudo-frame, and a valuation function

V : Prop → P(W ) satisfies the heredity condition, i.e., if w ∈ V (p) and w 6 v, then

v ∈ V (p).

Definition 3.14 (pseudo-satisfaction relation). For a pseudo-model M , a state w ∈ |M |,
and a formula ϕ, a pseudo-satisfaction relation M,w ps ϕ is defined the same as the

satisfaction relation , except for the clause for DGϕ: that is,

M,w ps DGϕ iff for all v ∈ W, if (w, v) ∈ RG then M, v ps ϕ.

Namely, in a pseudo-model, an operator DG is treated like a primitive box operator,

parameterized by a group.

Considering the definition of satisfaction relation for DGϕ, a pseudo-frame can be

seen as a frame in the sense of Definition 3.1 if the following “intersection condition” is

satisfied.

Definition 3.15 (intersection condition). Let F = (W,6, (RG)G∈Grp) be a pseudo-frame.

The condition “RG =
⋂
a∈GR{a} for any group G” is called intersection condition.

See that this condition is not always satisfied by way of the following example:

Example 3.16. Figure 3.3 is an example of a pseudo-frame. We name it Fex. Here,

we set Agt := {a, b}. Note that {a} is written as “a” and R{a,b} is defined as ∅ here.

Since R{a,b} = ∅, the condition of “RH ⊆ RG if G ⊆ H” is self-evidently satisfied, i.e.,

R{a,b} ⊆ R{a} and R{a,b} ⊆ R{b}. Note that the intersection condition is false for a group

{a, b}, because R{a} ∩ R{b} 6⊆ R{a,b}. Any frame can be regarded as a pseudo-frame with

only relations for singleton groups, as in Fex.
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In order to show Theorem 3.11, we first construct a canonical pseudo-model satisfying

truth lemma (subsection 3.3.1), and then transform it into another pseudo-model enjoy-

ing the intersection condition without changing satisfaction, by a method called “tree

unraveling” (subsection 3.3.2).

3.3.1 Canonical Pseudo-Model

We define a canonical pseudo-model of our logics and state some properties of it in the

present subsection. Since DG operators are interpreted as primitive box-like operators

indexed by a group in a pseudo-model, a canonical pseudo-model defined here is essentially

the same as the canonical model of intuitionistic epistemic logics without distributed

knowledge, which is described in detail e.g., in [27, Chapter 1]. Let X be any of IK,

IKT, IKD, IK4, IK4D, and IS4 below.

Definition 3.17 (consistent, prime, theory). A set Γ of formulas is:

• X-consistent if Γ 6`H(X) ⊥.

• prime if ϕ1 ∨ ϕ2 ∈ Γ implies ϕ1 ∈ Γ or ϕ2 ∈ Γ.

• an X-theory if Γ `H(X) ϕ implies ϕ ∈ Γ.

The following are useful and well-known properties of a consistent and prime theory.

Lemma 3.18. Let a set Γ of formulas be an X-theory.

1. Γ `H(X) ϕ iff ϕ ∈ Γ.

2. If {ϕ, ϕ→ ψ} ⊆ Γ, then ψ ∈ Γ.

3. ⊥ 6∈ Γ, if Γ is X-consistent.

4. ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ.

5. ϕ ∨ ψ ∈ Γ iff ϕ ∈ Γ or ψ ∈ Γ, if Γ is prime.

Proof. (item 1) The left-to-right is evident since Γ is X-theory. We show the right-to-left.

Suppose ϕ ∈ Γ. Then Γ `H(X) ϕ is the case because `H(X) ϕ→ ϕ.

(item 2) Suppose {ϕ, ϕ → ψ} ⊆ Γ. Then, by item 1, we have Γ `H(X) ϕ and Γ `H(X)

ϕ → ψ, that is, `H(X)

∧
Γ1 → ϕ and `H(X)

∧
Γ2 → (ϕ → ψ) for some finite

sets Γ1,Γ2 ⊆ Γ. Then we have `H(X)

∧
(Γ1 ∪ Γ2) → ϕ and `H(X)

∧
(Γ1 ∪ Γ2) →

(ϕ → ψ), which jointly entail `H(X)

∧
(Γ1 ∪ Γ2) → (ϕ ∧ (ϕ → ψ)). Since
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we have `H(X) (ϕ ∧ (ϕ → ψ)) → ψ as an intuitionistic theorem, we obtain

`H(X)

∧
(Γ1 ∪ Γ2) → ψ, which means that Γ `H(X) ψ. Since Γ is X-theory,

ψ ∈ Γ.

(item 3) Suppose ⊥ ∈ Γ for contradiction. Then, by item 1, Γ `H(X) ⊥. However, this

contradicts with X-consistency of Γ.

(item 4) First, we show the left-to-right. Suppose ϕ ∧ ψ ∈ Γ. By item 1, it suffices to

show Γ `H(X) ϕ and Γ `H(X) ψ. It is the case that Γ `H(X) ϕ, because we have

`H(X) ϕ ∧ ψ → ϕ as an axiom. Γ `H(X) ψ can be similarly shown. Next, we

show the right-to-left. Suppose ϕ ∈ Γ and ψ ∈ Γ. By item 1, it suffices to show

Γ `H(X) ϕ ∧ ψ, which is the case because we have `H(X) ϕ ∧ ψ → ϕ ∧ ψ as an

intuitionistic theorem.

(item 5) The left-to-right is the case by primeness of Γ. We show the right-to-left. Sup-

pose ϕ ∈ Γ or ψ ∈ Γ. By item 1, it suffices to show Γ `H(X) ϕ∨ψ. First, assume

ϕ ∈ Γ. Then Γ `H(X) ϕ ∨ ψ is the case because we have `H(X) ϕ→ ϕ ∨ ψ as an

axiom. Similarly, Γ `H(X) ϕ ∨ ψ is the case by `H(X) ψ → ϕ ∨ ψ when assuming

ψ ∈ Γ.

Lemma 3.19 (Lindenbaum, [27, Lemma 1.16]). Let Γ ∪ {ϕ} be a set of formulas. If

Γ 6`H(X) ϕ, then there is an X-consistent and prime X-theory Γ+ such that Γ ⊆ Γ+ and

Γ+ 6`H(X) ϕ.

Definition 3.20. A canonical pseudo-model MX = (WX,6X, (RX
G)G∈Grp, V

X) is defined

as follows:

• WX := {Γ ∈ P(Form) | Γ is an X-consistent and prime X-theory}.

• Γ 6X ∆ iff Γ ⊆ ∆.

• ΓRX
G∆ iff D−1

G Γ ⊆ ∆, where D−1
G Γ := {ϕ ∈ Form | DGϕ ∈ Γ}.

• V X(p) := {Γ ∈ WX | p ∈ Γ}.

The definition is well-defined and a canonical pseudo-model is always stable:

Proposition 3.21. MX is a stable pseudo-model.

Proof. First, we show the stability of RX
G , that is, 6X;RX

G ;6X⊆ RX
G (cf. item 1 of

Proposition 3.3). Suppose that Γ(6X;RX
G ;6X)∆. Then, there are sets Θ and Π such that

Γ ⊆ Θ, ΘRX
GΠ, and Π ⊆ ∆. To show that ΓRX

G∆, assume that ϕ ∈ D−1
G Γ. Since Γ ⊆ Θ,
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ϕ ∈ D−1
G Θ. Then, ϕ ∈ ∆ since ΘRX

GΠ and Π ⊆ ∆. Next, we show that RX
H ⊆ RX

G if

G ⊆ H. Assume that ΓRX
H∆ and ϕ ∈ D−1

G Γ, i.e., DGϕ ∈ Γ. We show that ϕ ∈ ∆ Since

DGϕ → DHϕ is an axiom in any H(X) and hence DGϕ → DHϕ ∈ Γ, we have DHϕ ∈ Γ

by item 2 of Lemma 3.18. Then, by ΓRX
H∆, ϕ ∈ ∆. It is obvious that V X satisfies the

heredity condition.

Lemma 3.22. Let a set Γ of formulas be an X-theory. Then, we have:

1. If ϕ→ ψ 6∈ Γ, then Γ ∪ {ϕ} 6`H(X) ψ.

2. If DGψ 6∈ Γ, then D−1
G Γ 6`H(X) ψ.

Proof. (item 1) We show the contraposition. Suppose Γ∪{ϕ} `H(X) ψ. Then, there exists

a finite subset Γ′ of Γ such that `H(X)

∧
Γ′ → ψ. First, assume ϕ 6∈ Γ′. Then, it turns out

that Γ `H(X) ψ. Since we also have Γ `H(X) ψ → (ϕ → ψ), Γ `H(X) ϕ → ψ is obtained.

Then, ϕ → ψ ∈ Γ because Γ is an X-theory. Next, assume ϕ ∈ Γ′. Put ∆ := Γ′ − {ϕ}.
Since `H(X) (

∧
Γ′ → ψ) ↔ (

∧
∆ → ϕ → ψ), we have Γ `H(X) ϕ → ψ. Then, ϕ → ψ ∈ Γ

because Γ is an X-theory.

(item 2) We show the contraposition. D−1
G Γ `H(X) ψ. Then, there exists a finite subset

∆ of D−1
G Γ such that `H(X)

∧
∆ → ψ. By axiom (K), we have `H(X)

∧
DG∆ → DGψ,

which means that Γ `H(X) DGψ. Then, DGψ ∈ Γ because Γ is an X-theory.

Lemma 3.23 (Truth Lemma). Let a set Γ of formulas be an X-consistent and prime

X-theory. Then, ϕ ∈ Γ if and only if MX,Γ ps ϕ.

Proof. By induction on ϕ.

(the case of ϕ ≡ p) Obvious by the definition.

(the case of ϕ ≡ ⊥) Obvious by item 3 of Lemma 3.18.

(the case of ϕ ≡ ψ1 → ψ2) First, we show the left-to-right. Assume ψ1 → ψ2 ∈ Γ. To

show MX,Γ ps ψ1 → ψ2, fix any ∆ such that Γ 6X ∆, i.e., Γ ⊆ ∆ and suppose that

MX,∆ ps ψ1. The goal is to show that MX,∆ ps ψ2. By the induction hypothesis,

we have ψ1 ∈ ∆. Further, we have ψ1 → ψ2 ∈ ∆ by the assumption and Γ ⊆ ∆. Then,

we use item 2 of Lemma 3.18 to obtain ψ2 ∈ ∆, which is equivalent to the goal by the

induction hypothesis.

Next, we show the right-to-left by contraposition. Assume ψ1 → ψ2 6∈ Γ. The goal is

to show that MX,Γ 6ps ψ1 → ψ2, that is, to find an X-consistent and prime X-theory ∆

such that Γ 6X ∆, i.e., Γ ⊆ ∆, MX,∆ ps ψ1, and MX,∆ 6ps ψ2. Applying item 1 of
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Lemma 3.22 to the assumption, we have Γ∪{ψ1} 6`H(X) ψ2. Then, by Lemma 3.19, we can

find an X-consistent and prime X-theory ∆ such that Γ∪{ψ1} ⊆ ∆ and ∆ 6`H(X) ψ2. We

show ∆ satisfies the three desired conditions. First, Γ ⊆ ∆ is obvious. Second, we show

MX,∆ ps ψ1. Clearly, we have ψ1 ∈ ∆, which gives MX,∆ ps ψ1 by the induction

hypothesis. Third, we show MX,∆ 6ps ψ2. By ∆ 6`H(X) ψ2 and item 1 of Lemma 3.18,

we have ψ2 6∈ ∆, which gives MX,∆ 6ps ψ2 by the induction hypothesis.

(the case of ϕ ≡ ψ1 ∨ ψ2) Obvious by item 5 of Lemma 3.18.

(the case of ϕ ≡ ψ1 ∧ ψ2) Obvious by item 4 of Lemma 3.18.

(the case of ϕ ≡ DGψ) First, we show the left-to-right. Assume DGψ ∈ Γ and fix

any ∆ ∈ WX such that ΓRX
G∆, i.e., D−1

G Γ ⊆ ∆. Clearly, ψ ∈ ∆, and by the induction

hypothesis, we have MX,∆ ps ψ.

Next, we show the contraposition of the right-to-left. Assume DGψ 6∈ Γ. By item 2 of

Lemma 3.22 and Lemma 3.19, there is an X-consistent and prime X-theory ∆ such that

D−1
G Γ ⊆ ∆ and ∆ 6`H(X) ψ. By item 1 of Lemma 3.18 and induction hypothesis, we have

MX,∆ 6ps ψ, which shows MX,Γ 6ps DGψ.

For each axiom, the canonical pseudo-model satisfies the corresponding property on

relations for DG.

Proposition 3.24. 1. If X has the axiom (T), RX
G is reflexive in MX.

2. If X has the axiom (D), RX
{a} is serial in MX.

3. If X has the axiom (4), RX
G is transitive in MX.

Proof. Items 1 and 3 can be shown the same as in the case of the basic classical-logical

modal logic (the reader is referred to [6, Theorems 4.27 and 4.28]). We show item 2. Fix

any X-consistent and prime X-theory Γ. The aim is to find an X-consistent and prime

X-theory ∆ such that D−1
{a}Γ ⊆ ∆. By Lemma 3.19, it suffices to show D−1

{a}Γ 6`H(X) ⊥.

Assuming the contrary, we have `H(X)

∧n
i=1 ϕi → ⊥ for some ϕi ∈ D−1

{a}Γ. By (Nec),

(K), and intuitionistic propositional tautologies, `H(X)

∧n
i=1D{a}ϕi → D{a}⊥. Since

D{a}ϕi ∈ Γ, it means Γ `H(X) D{a}⊥. However, we also have Γ `H(X) ¬D{a}⊥ by the

assumption, which leads to contradiction by items from 1 to 3 of Lemma 3.18.
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3.3.2 Tree Unraveling

If the canonical pseudo-model satisfies the intersection condition, we can regard it as a

model, and the completeness proof is done. However, the canonical pseudo-model does

not satisfy the intersection condition. A counterexample in the classical-logical setting is

described in [57, proof for Φ3a of Proposition 3.13]. The counterexample is induced from

a certain (classical) Kripke model, so the counterexample works in our setting too, by

defining a preorder in the model as a mere identity relation.

Hence, we introduce a method called “tree unraveling”, which transforms a pseudo-

model into another pseudo-model satisfying the intersection condition
⋂
a∈GR{a} = RG

(i.e., a model in the sense of Definition 3.1). Our definitions below are intuitionistic

generalizations of definitions proposed in [7] over classical logic.

Definition 3.25. Let M = (W,6, (RG)G∈Grp, V ) be a pseudo-model. A pseudo-model

M ′ = (W ′,6′, (R′G)G∈Grp, V
′) is a generated submodel of M if:

• W ′ ⊆ W .

• 6′=6 ∩(W ′ ×W ′).

• R′G = RG ∩ (W ′ ×W ′).

• If w ∈ W ′ and w 6 w′ then w′ ∈ W ′.

• If w ∈ W ′ and wRGw
′ then w′ ∈ W ′.

• V ′(p) = V (p) ∩W ′ for any p ∈ Prop.

For X ⊆ |M |, we define MX as the smallest generated submodel containing X. If M =

MX , we say that M is generated by X.

Proposition 3.26. Let M = (W,6, (RG)G∈Grp, V ) be a pseudo-model and

M ′ = (W ′,6′, (R′G)G∈Grp, V
′) be a generated submodel of M . Then, for any w ∈ W ′ and

formula ϕ, M ′, w ps ϕ iff M,w ps ϕ.

Proof. By induction on the structure of ϕ. The cases of ϕ ≡ ψ → χ and ϕ ≡ DGψ are

shown. The other cases are obvious.

(the case of ϕ ≡ ψ → χ) First, we show the left-to-right. Assume M ′, w ps ψ → χ.

Take any v ∈ W satisfying w 6 v and suppose M, v ps ψ. We show M, v ps χ.

Since M ′ is a generated submodel of M , we have v ∈ W ′. Hence, by the induction
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hypothesis, M ′, v ps ψ, which entails M ′, v ps χ under the assumption. Then, again by

the induction hypothesis, we have M, v ps χ as required.

Next, we show the right-to-left. Assume M,w ps ψ → χ. Take any v ∈ W ′ satisfying

(w, v) ∈6 ∩(W ′×W ′) and suppose M ′, v ps ψ. M ′, v ps χ By the induction hypothesis,

M, v ps ψ is obtained, which entails M, v ps χ under the assumption. Then, again by

the induction hypothesis, we have M ′, v ps χ as required.

(the case of ϕ ≡ DGψ) First, we show the left-to-right. Assume M ′, w ps DGψ. Take

any v ∈ W satisfying wRGv. We show M, v ps ψ. Since M ′ is a generated submodel of

M , we have v ∈ W ′. Hence, by the assumption, M ′, v ps ψ, which entails M, v ps ψ by

the induction hypothesis, as required.

Next, we show the right-to-left. Assume M,w ps DGψ. Take any v ∈ W ′ satisfying

(w, v) ∈ RG ∩ (W ′ ×W ′). We show M ′, v ps ψ. By the the assumption, M, v ps ψ is

obtained, which entails M ′, v ps ψ by the induction hypothesis, as required.

w

Fex

7→a, b

〈w, a, w〉〈w〉

〈w,6, w〉

〈w, b, w〉

〈w,6, w, a, w〉

...

...

...

a

b

a

Figure 3.4: Tree unraveling of Fex

Definition 3.27. Let M = (F, V ) be a pseudo-model generated by w ∈ W , where

F = (W,6, (RG)G∈Grp).

• We put w0 := w and define Finpath(F,w) as

{〈w0, L1, w1, L2, · · · , Ln, wn〉 | n ≥ 0, Li ∈ {6, RG}G∈Grp, wi−1Liwi for all 1 ≤ i ≤ n } .
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w

F ′ex

7→a, b, ab

〈w, a, w〉〈w〉

〈w,6, w〉

〈w, b, w〉

〈w,6, w, a, w〉

〈w,6, w, ab, w〉

...

...

...

...

a

b

a, b, ab

a

Figure 3.5: Tree unraveling of F ′ex
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We call an element of Finpath(F,w) “a path (from a state w)” and denote it by
−→u ,−→v , etc.

• For −→u = 〈w0, L1, w1, L2, · · · , Ln−1, wn−1, Ln, wn〉 ∈ Finpath(F,w),

body(−→u ) := 〈w0, L1, w1, L2, · · · , Ln−1, wn−1〉 and tail(−→u ) := wn.

• We say that paths −→u ,−→v ∈ Finpath(F,w) satisfy a relation −→u 4 −→v if and only if
−→v ≡ −→u _〈6, w′〉, where _ means concatenation of two tuples.

• We say that paths −→u ,−→v ∈ Finpath(F,w) satisfy a relation −→uRG
−→v if and only if

−→v ≡ −→u _〈RH , w
′〉 and G ⊆ H.

• A valuation function V : Prop→ P(Finpath(F,w)) is defined by:

V(p) = {−→u ∈ Finpath(F,w) | tail(−→u ) ∈ V (p)} .

Take Fex in Figure 3.3 as an example. The set Finpath(Fex, w) of paths on Fex and 4

and RG on this set are drawn in Figure 3.4. The point is that the a-arrow and b-arrow on

w in Fex are transformed into two arrows with different destinations, so that the condition

“R{a} ∩ R{b} = R{a,b}” is not satisfied in Fex but becomes satisfied in Finpath(Fex, w).

However, as it is, (Finpath(Fex, w),4, (RG)G∈Grp) is not a pseudo-frame, since 4 itself is

not a preorder and the condition “6;RG ⊆ RG” is not satisfied because, for example,

there is no a-arrow from 〈w〉 to 〈w,6, w, a, w〉. Therefore, a preorder and relations for

DG on Finpath(F,w) in general should be defined as follows.

A pseudo-frame F ′ex and its tree unraveling in Figure 3.5 is another example. Here, we

set Agt := {a, b}, and R{a,b} is represented by “ab”. It is noted that there are an a-arrow,

a b-arrow, and an ab-arrow from 〈w〉 to 〈w,6, w, ab, w〉. It can be seen that the definition

of RG assures the inclusion condition defined in Definition 3.13.

Definition 3.28. Let R ⊆ X ×X be a binary relation on X. The reflexive (transitive,

or reflexive and transitive) closure of R is defined and denoted as follows, respectively:

• R◦ := R ∪ Id, where Id := {(x, x) | x ∈ X},

• R+ :=
⋃
n≥1R

n,

• R∗ :=
⋃
n≥0R

n,

where Rn :=

n︷ ︸︸ ︷
R; · · · ;R for n ≥ 1 and R0 := Id.
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Definition 3.29 (Tree Unraveling). Let M = (F, V ) be a pseudo-model generated by

w ∈ W , where F = (W,6, (RG)G∈Grp). Tree unravelings of a pointed pseudo-model

(M,w) are defined as follows:

1. Tree(M,w) := (Finpath(F,w),4∗, (4∗;RG)G∈Grp,V).

2. Tree◦(M,w) := (Finpath(F,w),4∗, (4∗;R◦G)G∈Grp,V).

3. Tree+(M,w) :=

(
Finpath(F,w),4∗,

(
(4∗;R+

G)
+
)
G∈Grp

,V
)

.

4. Tree∗(M,w) :=
(

Finpath(F,w),4∗, ((4∗;R∗G)∗)G∈Grp ,V
)

.

The following is an useful proposition for proving several properties of tree unraveling.

Proposition 3.30. Let R,R1, · · · , Rn be binary relations on a set X.

1. If R1 ⊆ R2, then R;R1 ⊆ R;R2.

2. If R1 ⊆ R2, then R1;R ⊆ R2;R.

3. If R1 ⊆ R2, then Rn
1 ⊆ Rn

2 for all n ∈ N, in particular, R+
1 ⊆ R+

2 and R∗1 ⊆ R∗2.

4. R;
⋂
i∈I Ri ⊆

⋂
i∈I(R;Ri).

5. (
⋂
i∈I Ri);R ⊆

⋂
i∈I(Ri;R).

6.
(⋂

i∈I Ri

)n ⊆ ⋂
i∈I R

n
i for all n ∈ N. In particular,

(⋂
i∈I Ri

)+ ⊆
⋂
i∈I R

+
i and(⋂

i∈I Ri

)∗ ⊆ ⋂i∈I R
∗
i .

Proof. 1. Suppose R1 ⊆ R2 and x(R;R1)y. we have xRz and zR1y for some z ∈ X.

From the latter and the supposition, we have zR2y, which entails x(R;R2)y in

conjunction with xRz.

2. The same as item 1.

3. Assume R1 ⊆ R2 and show Rn
1 ⊆ Rn

2 by induction on n ∈ N. If n = 0, it is

obvious. We show Rk+1
1 ⊆ Rk+1

2 , assuming Rk
1 ⊆ Rk

2 . From I.H. and item 1, we have

Rk+1
1 ⊆ R1;Rk

2 . By the assumption and item 2, we have R1;Rk
2 ⊆ Rk+1

2 . Then, we

obtain Rk+1
1 ⊆ Rk+1

2 .

4. Assume x(R;
⋂
i∈I Ri)y. Then, we can find z ∈ X such that xRz and zRiy for any

i ∈ I. The element z ∈ X obviously makes “x
(⋂

i∈I(R;Ri)
)
y” true.

5. The same as item 4.
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6. We show
(⋂

i∈I Ri

)n ⊆ ⋂i∈I R
n
i by induction on n. If n = 0, it is obvious. For the

step case, we have the following:(⋂
i∈I Ri

)n+1
= (
⋂
i∈I Ri)

n;
⋂
i∈I Ri

(I.H. and 2)

⊆
(⋂

i∈I R
n
i

)
;
⋂
i∈I Ri

(5)

⊆
⋂
i∈I

(
Rn
i ;
⋂
j∈I Rj

) (4)

⊆⋂
i∈I
⋂
j∈I (Rn

i ;Rj) =
⋂
i∈I

(
Rn+1
i ∩

⋂
j 6=i (R

n
i ;Rj)

)
⊆
⋂
i∈I R

n+1
i .

Proposition 3.31. All the tree unravelings of a pointed pseudo-model (M,w) defined in

Definition 3.29 are pseudo-models.

Proof. The condition 1 “6;RG ⊆ RG for any G” of pseudo-frame is obvious by the

transitivity of4∗. That is, by4∗;4∗⊆4∗, we have4∗; (4∗;RG) = (4∗;4∗);RG ⊆ 4∗;RG

for Tree(M,w).

It is seen from items 1 and 3 of Proposition 3.30 that it suffices to show “RH ⊆ RG,

when G ⊆ H”, in order to make sure the condition 2 “RH ⊆ RG if G ⊆ H” of pseudo-

frame. Suppose −→uRH
−→v , i.e., −→v is of the form −→u _〈RH′ , w

′〉 and H ⊆ H ′. We thus have

G ⊆ H ′ by the assumption, and hence −→uRG
−→v . We show V is hereditary. Take any

p ∈ Prop and suppose −→u ∈ V(p) and −→u 4∗ −→v . By the former, we have tail(−→u ) ∈ V (p).

By the latter, it is easily seen that tail(−→u ) 6 tail(−→v ). Since V is hereditary, it turns out

that tail(−→v ) ∈ V (p), which means −→v ∈ V(p).

Also, note that Tree•(M,w) is: a reflexive pseudo-model if • = ◦, a transitive pseudo-

model if • = +, and a reflexive and transitive pseudo-model if • = ∗ , which is easily seen

from the definition of the relation for DG in each tree unraveling. Moreover, seriality is

inherited from an original pseudo-model:

Proposition 3.32. 4∗;R{a} and
(
4∗;R{a}+

)+
are serial if R{a} is serial.

Proof. Assume that R{a} is serial. It is sufficient to show that R{a} is serial, since 4∗ is

reflexive. Take −→u ∈ Finpath(F,w). Since R{a} is serial, tail(−→u )R{a}x for some x ∈ W .

Therefore,
(−→u ,−→u _〈R{a}, x〉

)
∈ R{a}.

The following two propositions are used in the proof of Proposition 3.35.

Proposition 3.33. Let F = (W,6, (RG)G∈Grp) be a pseudo-frame and take w ∈ W .

We refer to RG and 4 on Finpath(F,w) collectively as “tree relation” and denote such

relation by R,S,R1,R2, etc. The following hold for tree relations.

1. If −→uR−→v , then −→u = body(−→v ).

2. If (−→u ,−→v ) ∈ (R1; · · · ;Rm); (S1; · · · ;Sn) (m ≥ 0, n ≥ 1), then the only bodyn(−→v )

satisfies the conditions (−→u , bodyn(−→v )) ∈ (R1; · · · ;Rm) and (bodyn(−→v ),−→v ) ∈ (S1; · · · ;Sn),

where bodyn(−→v ) means

n︷ ︸︸ ︷
body(· · · (body(−→v ))).
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3. If (R1; · · · ;Rm) ∩ (S1; · · · ;Sn) 6= ∅, then n = m.

4. R1; · · · ;Rm;
⋂
i∈I(S(i,1); · · · ;S(i,ni)) =

⋂
i∈I
(
R1; · · · ;Rm;S(i,1); · · · ;S(i,ni)

)
5.
⋂
i∈I
(
S(i,1); · · · ;S(i,ni)

)
;R1; · · · ;Rm =

⋂
i∈I
(
S(i,1); · · · ;S(i,ni);R1; · · · ;Rm

)
Proof. • (item 1) Item 1 is obvious by the definition of RG and 4.

• (item 2) We show item 2 by induction on n. If n = 1, there exists
−→
t such that

−→u (R1; · · · ;Rn)
−→
t and

−→
t S1
−→v . By item 1,

−→
t = body(−→v ).

Since (R1; · · · ;Rm); (S1; · · · ;Sn) = (R1; · · · ;Rm;S1); (S2; · · · ;Sn),
−→u (R1; · · · ;Rm;S1)bodyn−1(−→v ) and bodyn−1(−→v )(S2; · · · ;Sn)−→v hold by I.H. Then,
−→u (R1; · · · ;Rm)bodyn(−→v ) is obtained from the former.

• (item 3) Item 3 is obvious from item 2.

• (item 4) We show item 4. By item 3, if ni is not constant, the equation is equiv-

alent to ∅ = ∅. So, we assume ni is constant and call it n. The left-to-right is

obvious from item 4 of Proposition 3.30. We show the converse. Asuume (−→u ,−→v ) ∈⋂
i∈I
(
R1; · · · ;Rm;S(i,1); · · · ;S(i,n)

)
, i.e., (−→u ,−→v ) ∈

(
R1; · · · ;Rm;S(i,1); · · · ;S(i,n)

)
for all i. By item 2, (−→u , bodyn(−→v )) ∈ (R1; · · · ;Rm) and (bodyn(−→v ),−→v ) ∈ (S(i,1); · · · ;S(i,n))

for all i. Then, we have (−→u ,−→v ) ∈ R1; · · · ;Rm;
⋂
i∈I(S(i,1); · · · ;S(i,n)).

• (item 5) Item 5 is shown similarly to item 4.

Proposition 3.34. Let G1, G2 ∈ Grp. Then, RG1 ∩RG2 = RG1∪G2.

Proof. The right-to-left is obvious by the fact that Tree(M,w) is a pseudo-model, so we

concentrate on the left-to-right. Assume (−→u ,−→v ) ∈ RG1 ∩ RG2 , i.e. −→v ≡ −→u _〈RH , w
′〉,

where Gi ⊆ H for i = 1, 2. Here, G1 ∪G2 ⊆ H holds, so we have −→uRG1∪G2

−→v .

Proposition 3.35. All the tree unravelings of a pointed pseudo-model (M,w) defined in

Definition 3.29 satisfy the intersection condition defined in Definition 3.15. That is:

1. In Tree(M,w),
⋂
a∈G(4∗;R{a}) = 4∗;RG holds for any G ∈ Grp.

2. In Tree◦(M,w),
⋂
a∈G(4∗;R◦{a}) = 4∗;R◦G holds for any G ∈ Grp.

3. In Tree+(M,w),
⋂
a∈G

(
4∗;R+

{a}

)+

=
(
4∗;R+

G

)+
holds for any G ∈ Grp.

4. In Tree∗(M,w),
⋂
a∈G

(
4∗;R∗{a}

)∗
= (4∗;R∗G)∗ holds for any G ∈ Grp.
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Proof. First, we show that (RG)G∈Grp satisfies the intersection condition, i.e.,
⋂
a∈GR{a} =

RG for any G ∈ Grp. We show by induction on the cardinarity ]G of a group G. If ]G = 1,

the equation trivially holds. Let ]G = 2 and suppose G = {a, b}. Then, by Proposition

3.34, R{a}∩R{b} = R{a,b}. Let ]G > 2 and suppose G = {a, b}∪G′. Then, by Proposition

3.34 and I.H.,
⋂
c∈GR{c} = R{a} ∩ R{b} ∩

⋂
c∈G′R{c} = R{a,b} ∩ RG′ = R{a,b}∪G′ = RG.

Thus, we obtain
⋂
a∈GR{a} = RG for any G ∈ Grp. We show each item based on this

equation.

• (item 1) From this equation, we have4∗;
⋂
a∈GR{a} = 4∗;RG. So, it suffices to show⋂

a∈G(4∗;R{a}) = 4∗;
⋂
a∈GR{a}. The right-to-left is the case by 4 of Proposition

3.30. We show the left-to-right. Suppose −→u
⋂
a∈G(4∗;R{a})−→v . That is, we have

−→u (4∗;R{a})−→v for all a ∈ G. Then, we can take
−→
ta such that −→u4∗−→ta and

−→
taR{a}−→v ,

depending on a ∈ G. Actually, however, according to 1 of Proposition 3.33, we have
−→
ta = body(−→v ), regardless of a ∈ G. Therefore, body(−→v ) satisfies −→u4∗body(−→v ) and

body(−→v )R{a}−→v for all a ∈ G, which entails −→u (4∗;
⋂
a∈GR{a})

−→v .

• (item 2) From “
⋂
a∈GR{a} = RG”, we have

(⋂
a∈GR{a}

)◦
= R◦G. It is easy to see

that
(⋂

a∈GR{a}
)◦

=
⋂
a∈GR◦{a}. Then, we obtain

⋂
a∈GR◦{a} = R◦G, which en-

tails 4∗;
⋂
a∈GR◦{a} = 4∗;R◦G. Therefore, our goal is to show that 4∗;

⋂
a∈GR◦{a} =⋂

a∈G4
∗;R◦{a}. We haveR◦{a} = R{a}∪Id, where Id := {(−→u ,−→u ) | −→u ∈ Finpath(F,w)},

and, for any binary relations R and S, R; (S1∪S2) = R;S1∪R;S2, as easily checked.

Using these and
⋂
a∈G(4∗;R{a}) = 4∗;

⋂
a∈GR{a} shown in the proof of item 1, we

have:

4∗;
⋂
a∈G

R◦{a} = 4∗;
⋂
a∈G

(R{a} ∪ Id)

= 4∗; (
⋂
a∈G

R{a} ∪ Id)

= (4∗;
⋂
a∈G

R{a}) ∪ (4∗; Id)

= (
⋂
a∈G

4∗;R{a}) ∪ (4∗; Id)

=
⋂
a∈G

(
4∗;R{a}∪ 4∗; Id

)
=

⋂
a∈G

(
4∗; (R{a} ∪ Id)

)
=

⋂
a∈G

(
4∗;R◦{a}

)
.

• (item 3) By applying the same operations to the both sides of the equation
⋂
a∈GR{a} =
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RG, we have
(
4∗;

(⋂
a∈GR{a}

)+
)+

=
(
4∗;R+

G

)+
. So, the goal is to show⋂

a∈G

(
4∗;R+

{a}

)+

=
(
4∗;

(⋂
a∈GR{a}

)+
)+

. We divide the goal into three parts:(⋂
a∈GR{a}

)+
=
⋂
a∈GR

+
{a}, 4

∗;
⋂
a∈GR

+
{a} =

⋂
a∈G

(
4∗;R+

{a}

)
, and(⋂

a∈G

(
4∗;R+

{a}

))+

=
⋂
a∈G

(
4∗;R+

{a}

)+

. We firstly prove
(⋂

a∈GR{a}
)+

=
⋂
a∈GR

+
{a}.

It suffices to show that
(⋂

a∈GR{a}
)n

=
⋂
a∈GRn

{a} for all n. We show it by induc-

tion on n. The case of n = 0 is already treated in the proof for item 2. As for the

step case, we have the following sequence of equations:(⋂
a∈G

R{a}

)n+1

=

(⋂
a∈G

R{a}

)n

;
⋂
b∈G

R{b}

(I.H.)
=

(⋂
a∈G

Rn
{a}

)
;
⋂
b∈G

R{b}

(5 of Prop. 3.33)
=

⋂
a∈G

(
Rn
{a};

⋂
b∈G

R{b}

)
(4 of Prop. 3.33)

=
⋂
a∈G

(⋂
b∈G

(
Rn
{a};R{b}

))

=
⋂
a∈G

(
Rn+1
{a} ∩

⋂
b 6=a

(
Rn
{a};R{b}

))
=

⋂
a∈G

Rn+1
{a} ∩

⋂
a∈G

⋂
b6=a

(
Rn
{a};R{b}

)
.

We show
⋂
a∈GR

n+1
{a} ∩

⋂
a∈G

⋂
b 6=a

(
Rn
{a};R{b}

)
=
⋂
a∈GR

n+1
{a} to complete the step

case. The left-to-right is obvious. Suppose −→u
⋂
a∈GR

n+1
{a}
−→v . Then, by item 2

of Proposition 3.33, −→uRn
{a}body(

−→v ) and body(−→v )R{a}−→v for all a ∈ G. The path

body(−→v ) obviously makes “−→u
(⋂

a∈G
⋂
b 6=a

(
Rn
{a};R{b}

))−→v ” true. Second, we show

4∗;
⋂
a∈GR

+
{a} =

⋂
a∈G

(
4∗;R+

{a}

)
. The left-to-right is evident. We show the oppo-

site. Assume (−→u ,−→v ) ∈
⋂
a∈G

(
4∗;R+

{a}

)
, i.e., −→u

(
4∗;R+

{a}

)−→v for all a ∈ G. By

the definition of 4 and RG, it can be seen that
−→
ta satisfying −→u4∗−→ta and

−→
taR+

{a}
−→v

is constant regardless of a ∈ G, and determined from the form of −→v . We name

it
−→
t . This path

−→
t obviously establishes −→u4∗;

⋂
a∈GR

+
{a}
−→v . Third, we show(⋂

a∈G

(
4∗;R+

{a}

))+

=
⋂
a∈G

(
4∗;R+

{a}

)+

. The left-to-right is the case by item 6 of

Proposition 3.30. We show the right-to-left. Suppose (−→u ,−→v ) ∈
⋂
a∈G

(
4∗;R+

{a}

)+

,

i.e., (−→u ,−→v ) ∈
(
4∗;R+

{a}

)+

for all a ∈ G. By the definition of 4 and RG, −→v should



61

be of the following form:

−→v ≡ −→u _〈 6, w1,1, · · · , w1,l1−1,6, w1,l1 , H1,1, u1,1, · · · , u1,n1−1, H1,n1 , u1,n1 ,
...

6, wi,1, · · · , wi,li−1,6, wi,li , Hi,1, ui,1, · · · , ui,ni−1, Hi,ni , ui,ni ,
...

6, wm,1, · · · , wm,lm−1,6, wm,lm , Hm,1, um,1, · · · , um,nm−1, Hm,nm , um,nm〉
(3.1)

It is noted that RHi,j is denoted by Hi,j for the sake of simplicity, that li (the number

of 6 in in the i-th section) can be 0 for any i ∈ {1, · · · ,m}, and that the symbols

wi,j and ui,k (j ∈ {1, · · · , li}, k ∈ {1, · · · , ni}, i ∈ {1, · · · ,m}) denote states in |M |.
By the definition of R{a}, a ∈ Hi,j (i = 1, · · · ,m and j = 1, · · · , ni) for any a ∈ G.

Hence, it is obvious by the form of −→v that (−→u ,−→v ) ∈
(⋂

a∈G

(
4∗;R+

{a}

))m
.

• (item 4) By applying the same operations to the both sides of the equation
⋂
a∈GR{a} =

RG, we have
(
4∗;

(⋂
a∈GR{a}

)∗)∗
= (4∗;R∗G)∗. So, the goal is to show

⋂
a∈G

(
4∗;R∗{a}

)∗
=(

4∗;
(⋂

a∈GR{a}
)∗)∗

. We divide the goal into three parts:
(⋂

a∈GR{a}
)∗

=
⋂
a∈GR∗{a},

4∗;
⋂
a∈GR∗{a} =

⋂
a∈G

(
4∗;R∗{a}

)
, and

(⋂
a∈G

(
4∗;R∗{a}

))∗
=
⋂
a∈G

(
4∗;R∗{a}

)∗
.

First, we have
(⋂

a∈GR{a}
)∗

=
⋂
a∈GR∗{a} because it is shown in the proof for item 3

that
(⋂

a∈GR{a}
)n

=
⋂
a∈GRn

{a}. Second, we show4∗;
⋂
a∈GR∗{a} =

⋂
a∈G

(
4∗;R∗{a}

)
.

Under the equation R∗{a} = R+
{a}∪ Id, the equation R; (S1∪S2) = R;S1∪R;S2 used

in the proof for item 2 and the equation 4∗;
⋂
a∈GR

+
{a} =

⋂
a∈G

(
4∗;R+

{a}

)
shown

in the proof for item 3, we have:

4∗;
⋂
a∈G

R∗{a} = 4∗;
⋂
a∈G

R+
{a} ∪ Id

= 4∗;
⋂
a∈G

R+
{a}∪ 4

∗; Id

=
⋂
a∈G

(
4∗;R+

{a}

)
∪ 4∗; Id

=
⋂
a∈G

(
4∗;R+

{a}∪ 4
∗; Id

)
=

⋂
a∈G

(
4∗;R∗{a}

)
.

Third, we show
(⋂

a∈G

(
4∗;R∗{a}

))∗
=
⋂
a∈G

(
4∗;R∗{a}

)∗
. This is equivalent to(⋂

a∈G

(
4∗;R∗{a}

))+

=
⋂
a∈G

(
4∗;R∗{a}

)+

because Id is a subset of the both side.

The left-to-right is the case by item 6 of Proposition 3.30. We show the right-to-left.
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Suppose (−→u ,−→v ) ∈
⋂
a∈G

(
4∗;R∗{a}

)+

, i.e., (−→u ,−→v ) ∈
(
4∗;R∗{a}

)+

for all a ∈ G.

Then, as in the proof for item 3, −→v should be of the the same form as (3.1), except

that each ni can be 0. Since a ∈ Hi,j (i = 1, · · · ,m and j = 1, · · · , ni) for any

a ∈ G, it is obvious by the form of −→v that (−→u ,−→v ) ∈
(⋂

a∈G

(
4∗;R∗{a}

))m
.

Definition 3.36 (bounded morphism). Let M = (W,6, (RG)G∈Grp, V ) and M ′ = (W ′,6′

, (R′G)G∈Grp, V
′) be pseudo-models. A function f : W → W ′ is called a bounded morphism

from M to M ′ if and only if any of the following is satisfied:

• if w 6 v then f(w) 6′ f(v).

• if f(w) 6′ v′ then there is v ∈ W such that w 6 v and v′ = f(v).

• if wRGv then f(w)R′Gf(v).

• if f(w)R′Gv
′ then there is v ∈ W such that wRGv and v′ = f(v).

• w ∈ V (p) iff f(w) ∈ V ′(p).

Proposition 3.37. Let f be a bounded morphism from a pseudo-model M = (W,6

, (RG)G∈Grp, V ) to a pseudo-model M ′ = (W ′,6′, (R′G)G∈Grp, V
′). Then, for any w ∈ W

and formula ϕ,

M,w ps ϕ iff M ′, f(w) ps ϕ.

Proof. By induction on ϕ. We deal with only the case of ϕ ≡ ψ → χ and ϕ ≡ DGψ.

• (the case of ϕ ≡ ψ → χ) First, we show the left-to-right. Fix any v such that

f(w) 6′ v′ and assume M ′, v′ ps ψ. We show M ′, v′ ps χ. Since f is a bounded

morphism, there exists v ∈ W such that w 6 v and v′ = f(v). Then, we have

M ′, f(v) ps ψ, which entails, by I.H., M, v ps ψ. Since we have M,w ps ψ → χ

and w 6 v, we obtain M, v ps χ. By I.H., we get M ′, v′(= f(v)) ps χ. Second,

we show the right-to-left. Fix any v such that w 6 v and assume M, v ps ψ. We

show M, v ps χ. Since f is a bounded morphism, f(w) 6 f(v). By I.H., we have

M ′, f(v) ps ψ. Hence, M ′, f(v) ps χ is obtained by the assumption. We thus

have M, v ps χ again by I.H.

• (the case of ϕ ≡ DGψ) First, we show the left-to-right. Fix any v′ such that

f(w)R′Gv
′. We show M ′, v′ ps ψ. Since f is a bounded morphism, there exists

v ∈ W such that wRGv and v′ = f(v). By the assumption, we have M, v ps ψ,

from which it follows, by I.H., that M, f(v)(= v′) ps ψ, as desired. Second, we

show the right-to-left. Fix any v such that wRGv. We show M, v ps ψ. Since f
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is a bounded morphism, f(w)R′Gf(v). Hence, by the assumption, M ′, f(v) ps ψ.

Then, by I.H., we obtain M, v ps ψ.

Theorem 3.38. Let M = (F, V ) be a pseudo-model generated by w ∈ W, where F =

(W,6, (RG)G∈Grp).

1. There is a surjective bounded morphism from Tree(M,w) to M .

2. There is a surjective bounded morphism from Tree◦(M,w) to M , if RG is reflexive.

3. There is a surjective bounded morphism from Tree+(M,w) to M , if RG is transitive.

4. There is a surjective bounded morphism from Tree∗(M,w) to M , if RG is reflexive

and transitive.

Proof. In any item, we define a function f from |Tree•(M,w)| to |M | as one which maps
−→u ∈ Finpath(F,w) to tail(−→u ) (• ∈ {ε, ◦,+, ∗}). Surjectivity is evident from the definition

of Finpath(F,w) and the assumption that M is generated by w. We show that f is a

bounded morphism. The condition for a valuation is obviously satisfied by the definition

of V . We check the condition for preorder. Suppose −→u 4∗ −→v . Then, it is obvious by the

definition of4 and the transitivity of6 that f(−→u ) 6 f(−→v ). Suppose f(−→u ) 6 v. Put−→v :=
−→u _〈6, v〉, which clearly gives −→u 4 −→v and f(−→v ) = v. We check the condition for RG

relation. The back condition is easier. Suppose f(−→u )RGv. Put −→v := −→u _〈RG, v〉, which

clearly gives −→uRG
−→v and v = f(−→v ). Since RG is a subset of 4∗;RG,4∗;R◦G,

(
4∗;R+

G

)+
,

and (4∗;R∗G)∗, the back condition turns out to be satisfied in all items by −→v . We check

the forth condition for each item below.

• (item 1) Suppose−→u (4∗;RG)−→v . By definition, −→v ≡ −→u _〈6, w1, · · · , wn−1,6, wn, RH , v〉
(n ≥ 0 and G ⊆ H). Therefore, f(−→u )(6;RH)f(−→v ), which entails f(−→u )RHf(−→v ).

Since RH ⊆ RG, we have f(−→u )RGf(−→v ).

• (item 2) Suppose −→u (4∗;R◦G)−→v , i.e. −→u (4∗;RG)−→v or −→u 4∗ −→v . In the former

case, the same argument as item 1 can be applied. In the latter case, we have

f(−→u ) 6 f(−→v ). Since RG is reflexive, 6⊆6;RG(⊆ RG). Hence, f(−→u )RGf(−→v ).

• (item 3) Suppose −→u
(
4∗;R+

G

)+−→v . Then, −→v is of the same form as (3.1) in the proof

of Proposition 3.35. Note that G ⊆ Hi,j (i = 1, · · · ,m and j = 1, · · · , ni). Under

RHi,j ⊆ RG, we obtain f(−→u )(6;Rn1
G ; · · · ;6;Rnm

G )f(−→v ). Since RG is transitive,

6;Rn1
G ; · · · ;6;Rnm

G ⊆ (6;RG)m ⊆ Rm
G ⊆ RG. Thus, f(−→u )RGf(−→v ).
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• (item 4) Suppose −→u (4∗;R∗G)∗−→v . If −→u ≡ −→v , then it is evident from the reflexivity

of RG that f(−→u )RGf(−→v ). So, we assume −→u 6≡ −→v . Then, −→v is of the same form

as (3.1) in the proof of Proposition 3.35, except that ni can be 0. Also, G ⊆ Hi,j

(i = 1, · · · ,m and j = 1, · · · , ni). Under RHi,j ⊆ RG, we obtain f(−→u )(6;Rn1
G ; · · · ;6

;Rnm
G )f(−→v ). Since RG is reflexive and transitive, 6;Rn1

G ; · · · ;6;Rnm
G ⊆ (6;RG)m ⊆

Rm
G ⊆ RG. Thus, f(−→u )RGf(−→v ).

We prove Theorem 3.11. The statement is “Let X be any of IK, IKT, IKD, IK4,

IK4D, and IS4. Then, if Γ F(X) ϕ, then Γ `H(X) ϕ.”

Proof. We show the contraposition. Assume Γ 6`H(X) ϕ. By Lemma 3.19, We can find an

X-consistent and prime X-theory Γ+ such that Γ ⊆ Γ+ and Γ+ 6`H(X) ϕ. Since Γ ⊆ Γ+,

MX,Γ+ ps Γ by the left-to-right of Lemma 3.23. On the other hand, MX,Γ+ 6ps ϕ by

the right-to-left of Lemma 3.23 and item 1 of Lemma 3.18. We take an appropriate tree

unraveling depending on X.

• (X = IK, IKD) We can take Tree
(
MX

Γ+ ,Γ+
)
, because, by Proposition 3.21, MX

Γ+

is a pseudo-model generated by Γ+. Since Tree
(
MX

Γ+ ,Γ+
)

can be seen as a model

in the sense of Definition 3.1 by Proposition 3.35, it suffices to show that (MX,Γ+)

satisfies exactly the same formulas as
(
Tree

(
MX

Γ+ ,Γ+
)
, 〈Γ+〉

)
in the case of IK.

First, (MX,Γ+) satisfies exactly the same formulas as (MX
Γ+ ,Γ+) by Proposition

3.26. Next, (MX
Γ+ ,Γ+) satisfies exactly the same formulas as

(
Tree

(
MX

Γ+ ,Γ+
)
, 〈Γ+〉

)
by Proposition 3.37, because f(〈Γ+〉) = Γ+ for the bounded morphism f , which is

shown to exist in Theorem 3.38. Hence, Tree
(
MX

Γ+ ,Γ+
)
, 〈Γ+〉  Γ but

Tree
(
MX

Γ+ ,Γ+
)
, 〈Γ+〉 6 ϕ. In the case of IKD, we need to additionally show

that Tree
(
MX

Γ+ ,Γ+
)

is serial. This is true, because of item 2 of Proposition 3.24,

the obvious fact that seriality is preserved under taking generated submodel, and

Proposition 3.32.

• (X = IKT) Take Tree◦
(
MX

Γ+ ,Γ+
)
. We can show that

(
Tree◦

(
MX

Γ+ ,Γ+
)
, 〈Γ+〉

)
,

which can be seen as a model by Proposition 3.35, satisfies exactly the same formulas

as (MX,Γ+) by the same argument as the case of IK. Note that Tree◦
(
MX

Γ+ ,Γ+
)

is reflexive.

• (X = IK4, IK4D) Take Tree+
(
MX

Γ+ ,Γ+
)
. We can show

(
Tree+

(
MX

Γ+ ,Γ+
)
, 〈Γ+〉

)
,

which can be seen as a model by Proposition 3.35, satisfies exactly the same formulas

as (MX,Γ+) by the same argument as the case of IK. Note that Tree+
(
MX

Γ+ ,Γ+
)

is transitive. For the case of IK4D, we can show that Tree+
(
MX

Γ+ ,Γ+
)

is serial by

the same argument as the case of IKD.
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• (X = IS4) Take Tree∗
(
MX

Γ+ ,Γ+
)
. We can show

(
Tree∗

(
MX

Γ+ ,Γ+
)
, 〈Γ+〉

)
, which

can be seen as a model by Proposition 3.35, satisfies exactly the same formulas as

(MX,Γ+) by the same argument as the case of IK. Note that Tree∗
(
MX

Γ+ ,Γ+
)

is

reflexive and transitive.

Proof for Theorem 3.12

For Theorem 3.12, we introduce an operation which turns a pseudo-model into a stable

one without changing satisfaction on any state. Moreover, the operation preserves reflex-

ivity, transitivity, and seriality, and for tree unravelings, also preserves the intersection

condition. Using these properties, we prove Theorem 3.12.

Definition 3.39 (stabilization). Let M = (W,6, (RG)G∈Grp, V ) be a pseudo-model.

M st := (W,6, (RG;6)G∈Grp, V ) is called “the stabilization of M”.

Proposition 3.40. Let M = (W,6, (RG)G∈Grp, V ) be a pseudo-model. Then, the stabiliza-

tion M st := (W,6, (RG;6)G∈Grp, V ) of M is a stable pseudo-model. Moreover, M,w ps ϕ

iff M st, w ps ϕ for any ϕ ∈ Form and w ∈ W .

Proof. First, we show that M st is a stable pseudo-model. We show 6; (RG;6);6⊆ RG;6.

Using 6;RG ⊆ RG and the transitivity of 6, we have 6;RG;6;6⊆ RG;6;6⊆ RG;6.

Further, if G ⊆ H, we have RH ;6⊆ RG;6 by RH ⊆ RG.

Next, we show the latter by induction on ϕ. Only the case ϕ ≡ DGψ is treated.

(left-to-right) Assume that M,w ps DGψ. We show that M st, w ps DGψ. Fix v such

that w(RG;6)v. Then, there is u such that wRGu and u 6 v. From the former and

the assumption, we have M,u ps ψ. Then, by the latter and the heredity, M, v ps ψ.

(right-to-left) Obvious by RG ⊆ RG;6.

Proposition 3.41. Let M = (W,6, (RG)G∈Grp, V ) be a pseudo-model. If RG is reflexive

(transitive, or serial), then RG;6 is also reflexive (transitive, or serial, respectively).

Proof. (reflexivity) Obvious by Id ⊆6, where Id := {(w,w) | w ∈ W}. (transitivity)

Under 6;RG ⊆ RG and the transitivity of RG, we have: RG;6;RG;6⊆ RG;RG;6⊆
RG;6. (seriality) Obvious by RG ⊆ RG;6.

However, in general, the intersection condition
(⋂

a∈GR{a} = RG

)
is not preserved

under the stabilization. That is, there is a pseudo-model which satisfies
⋂
a∈GR{a} = RG

for any G ∈ Grp, but does not satisfy “
⋂
a∈G(R{a};6) = RG;6 for any G ∈ Grp”. The
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Figure 3.6: Counter pseudo-model M to preservation of intersection condition under
stabilization

pseudo-model M depicted in Figure 3.6 is such a model. Let Agt = {a, b}. The pseudo-

model M is defined as ({w, v, u, t},6, (R{a}, R{b}, R{a,b}), V ) , where

6= {(w,w), (v, v), (v, t), (u, u), (u, t), (t, t)}, R{a} = {(w, v)}, R{b} = {(w, u)}, and R{a,b} = ∅.

The valuation V can be any. The solid line stands for the relations for groups and

the dotted arrow stands for the preorder. Reflexive arrows for the preorder is omitted

in the figure. We can easily see that
⋂
a∈GR{a} = RG for any G ∈ Grp. However,⋂

c∈G(R{c};6) = RG;6 is not true when G = {a, b}, because (w, t) ∈
(
R{a};6

)
∩
(
R{b};6

)
but (w, t) 6∈ R{a,b};6= ∅.

As can be guessed from the counterexample, “(RG1 ;6) ∩ (RG2 ;6) ⊆ RG1∪G2 ;6” is a

sufficient condition for the preservation of the intersection condition.

Proposition 3.42. Let M be a pseudo-model satisfying the intersection condition and

“(RG1 ;6)∩(RG2 ;6) ⊆ RG1∪G2 ;6” for any G1, G2 ∈ Grp. Then, the intersection condition

holds in M st, too.

Proof. “RG;6⊆
⋂
a∈G

(
R{a};6

)
” always holds, so we show

⋂
a∈G

(
R{a};6

)
⊆ RG;6 by

induction on ]G. If ]G = 1, the equation trivially holds. Let ]G = 2 and suppose

G = {a, b}. Then, by the assumption,
(
R{a};6

)
∩
(
R{b};6

)
⊆ R{a,b};6. Let ]G > 2

and suppose G = {a, b} ∪ G′. Then, by the assumption and I.H.,
⋂
c∈G
(
R{c};6

)
=(

R{a};6
)
∩
(
R{b};6

)
∩
⋂
c∈G′

(
R{c};6

)
⊆
(
R{a,b};6

)
∩
⋂
c∈G′

(
R{c};6

)
⊆
(
R{a,b};6

)
∩

RG′ ;6⊆ RG;6.

We show that the tree unravelings satisfy the very condition.

Proposition 3.43. The tree unravelings of a pointed pseudo-model (M,w) satisfy the

condition “(RG1 ;6) ∩ (RG2 ;6) ⊆ RG1∪G2 ;6” for any G1, G2 ∈ Grp.

Proof. • (Tree(M,w)) Assume (−→u ,−→v ) ∈ (4∗;RG1 ;4∗) ∩ (4∗;RG2 ;4∗). We show

that (−→u ,−→v ) ∈4∗;RG1∪G2 ;4∗. Then, by the definitions of 4 and RG,
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−→v ≡ −→u _〈6, w1, · · · , wn−1,6, wn, RH , u0,6, u1, · · · , um−1,6, um〉 , where n,m ≥ 0

and Gi ⊆ H for i = 1, 2. Since G1∪G2 ⊆ H, we also have (−→u ,−→v ) ∈4∗;RG1∪G2 ;4∗.

• (Tree◦(M,w)) Since
(
4∗;R◦G1

;4∗
)
∩
(
4∗;R◦G2

;4∗
)

= ((4∗;RG1 ;4∗) ∩ (4∗;RG2 ;4∗))∪ 4∗

and
(
4∗;R◦G1∪G2

;4∗
)

= (4∗;RG1∪G2 ;4∗)∪ 4∗, the condition is obviously satisfied

by the argument of the case of Tree(M,w).

• (Tree+(M,w)) Assume (−→u ,−→v ) ∈
((
4∗;R+

G1

)+
;4∗

)
∩
((
4∗;R+

G2

)+
;4∗

)
. We show

(−→u ,−→v ) ∈
(
4∗;R+

G1∪G2

)+
;4∗. By the definitions of 4 and RG,

−→v ≡ −→u _〈 6, w1,1, · · · , w1,l1−1,6, w1,l1 , H1,1, u1,1, · · · , u1,n1−1, H1,n1 , u1,n1 ,
...

6, wi,1, · · · , wi,li−1,6, wi,li , Hi,1, ui,1, · · · , ui,ni−1, Hi,ni , ui,ni ,
...

6, wm,1, · · · , wm,lm−1,6, wm,lm , Hm,1, um,1, · · · , um,nm−1, Hm,nm , um,nm ,

6, wm+1,1, · · · , wm+1,lm+1−1,6, wm+1,lm+1〉,

where RHi,j is denoted byHi,j for the sake of simplicity, li (≥ 0) denote the number of

6 in in the i-th section for any i ∈ {1, · · · ,m+1}, ni > 0 for any i ∈ {1, · · · ,m}, and

RG, Gk ⊆ Hi,j (i = 1, · · · ,m, and j = 1, · · · , ni) for k = 1, 2. Since G1 ∪G2 ⊆ Hi,j,

we have (−→u ,−→v ) ∈
(
4∗;R+

G1∪G2

)+
;4∗.

We end the present section by proving Theorem 3.12. The statement is “Let X be any

of IK, IKT, IKD, IK4, IK4D, and IS4. Then, if Γ F(X)∩ST ϕ, then Γ `H(X) ϕ. ”

Proof. We show the contraposition. Assume Γ 6`H(X) ϕ. By the same argument as the

proof of Theorem 3.11, we have MX,Γ+ ps Γ and MX,Γ+ 6ps ϕ.

• (X = IK, IKD) First, by Proposition 3.40,
(

Tree
(
MX

Γ+ ,Γ+
)st
, 〈Γ+〉

)
satisfies the

same formulas as
(
Tree

(
MX

Γ+ ,Γ+
)
, 〈Γ+〉

)
, which is shown in the proof of Theorem

3.11 to satisfy the same formulas as (MX,Γ+). Second, Tree
(
MX

Γ+ ,Γ+
)st

also can be

seen as a model by Proposition 3.42 and 3.43. Therefore, Tree
(
MX

Γ+ ,Γ+
)st
, 〈Γ+〉  Γ

and Tree
(
MX

Γ+ ,Γ+
)st
, 〈Γ+〉 6 ϕ. For the case of IKD, we have to show that

Tree
(
MX

Γ+ ,Γ+
)st

is serial. This is true by the fact shown in the proof of Theorem

3.11 that Tree
(
MX

Γ+ ,Γ+
)

is serial and Proposition 3.41.

• (X = IKT) By the same argument as the case of IK, Tree◦
(
MX

Γ+ ,Γ+
)st
, 〈Γ+〉 

Γ and Tree◦
(
MX

Γ+ ,Γ+
)st
, 〈Γ+〉 6 ϕ. Note that Tree◦

(
MX

Γ+ ,Γ+
)st

is reflexive by

Proposition 3.41.
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• (X = IK4, IK4D) By the same argument as the case of IK, Tree+
(
MX

Γ+ ,Γ+
)st
, 〈Γ+〉 

Γ and Tree+
(
MX

Γ+ ,Γ+
)st
, 〈Γ+〉 6 ϕ. Note that Tree+

(
MX

Γ+ ,Γ+
)st

is transitive by

Proposition 3.41. If X = IK4D, Tree+
(
MX

Γ+ ,Γ+
)st

is also serial, because of the fact

shown in the proof of Theorem 3.11 that Tree+
(
MX

Γ+ ,Γ+
)

is serial and Proposition

3.41.

• (X = IS4) Theorem 3.11 is sufficient because F(IS4) = F(IS4) ∩ ST by item 2 of

Proposition 3.3.

3.4 Sequent Calculi

3.4.1 Equipollence and Cut-Elimination

A sequent is a pair of finite multisets of formulas Γ and ∆ denoted by “Γ ⇒ ∆”, where

#∆ ≤ 1. The multiset Γ is called an“antecedent” of a sequent Γ ⇒ ∆, and ∆ a “succe-

dent”. A sequent is intuitively interpreted as “if all formulas in Γ hold, then a formula in

∆ holds.” The reason why the number of ∆ is restricted is that we build our calculus on

the basis of Gentzen’s LJ [11, 12] for intuitionistic propositional logic. Our sequent calculi

for the intuitionistic epistemic logics with distributed knowledge are presented in Table

3.2. Axioms, structural rules, and propositional logical rules are common to LJ. The

other rules are the same as the ones in [30], except that rules for (D) axiom, i.e., (DIKD)

and (DIK4D) are added, in order to construct calculi for the logics IKD and IK4D.

We note that when n = 0, e.g., in the rule (D) of Table 3.2, the multiset is regarded

as the empty multiset and thus
⋃n
i=1Gi is regarded as ∅. A sequent Γ ⇒ ∆ is derivable

in each calculus G(X) if there exists a finite tree of sequents, whose root is Γ ⇒ ∆ and

each node of which is inferred by some rule (including axioms) in G(X). We write it as

`G(X) Γ⇒ ∆.

We note that for any logic X under consideration, H(X) and G(X) are equipollent in

the following sense.

Theorem 3.44 (Equipollence). Let X be any of IK, IKT, IKD, IK4, IK4D, and

IS4. Then, the following hold. 1. If `H(X) ϕ, then `G(X)⇒ ϕ. 2. If `G(X) Γ ⇒ ∆, then

`H(X)

∧
Γ→

∨
∆, where

∧
∅ := > and

∨
∅ := ⊥.

Proof. We show the case of IK. The idea for proof is common to the rest. Here we focus

on item 2 alone. We show item 2 by induction on the structure of the derivation for

the sequent Γ ⇒ ∆. We deal with the case for the rule (D) only. Suppose we have a
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Table 3.2: Sequent Calculi for IK, IKT, IKD, IK4, IK4D, and IS4
Axioms

ϕ⇒ ϕ (Id) ⊥ ⇒ (⊥)

Structural Rules

Γ⇒
Γ⇒ ϕ

(⇒ w) Γ⇒ ∆
ϕ,Γ⇒ ∆

(w ⇒)
ϕ, ϕ,Γ⇒ ∆
ϕ,Γ⇒ ∆

(c⇒)

Γ⇒ ϕ ϕ,Π⇒ Σ
Γ,Π⇒ Σ

(Cut)

Propositional Logical Rules

ϕ,Γ⇒ ψ

Γ⇒ ϕ→ ψ
(⇒→)

Γ1 ⇒ ϕ ψ,Γ2 ⇒ ∆

ϕ→ ψ,Γ1,Γ2 ⇒ ∆
(→⇒)

Γ⇒ ϕ Γ⇒ ψ

Γ⇒ ϕ ∧ ψ (⇒ ∧)
ϕ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(∧ ⇒1)

ψ,Γ⇒ ∆

ϕ ∧ ψ,Γ⇒ ∆
(∧ ⇒2)

Γ⇒ ϕ

Γ⇒ ϕ ∨ ψ (⇒ ∨1)
Γ⇒ ψ

Γ⇒ ϕ ∨ ψ (⇒ ∨2)
ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

ϕ ∨ ψ,Γ⇒ ∆
(∨ ⇒)

Logical Rules for DG of IK

ϕ1, . . . , ϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

Logical Rules for DG of IKT

ϕ1, . . . , ϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

ϕ,Γ⇒ ∆
DGϕ,Γ⇒ ∆

(D ⇒)

Logical Rules for DG of IKD

ϕ1, . . . , ϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D) Γ⇒

D{a}Γ⇒
(DIKD)

Logical Rules for DG of IK4

ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(⇒ DIK4)

Logical Rules for DG of IK4D

ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(⇒ DIK4)

Γ, D{a}Γ⇒
D{a}Γ⇒

(⇒ DIK4D)

Logical Rules for DG of IS4

DG1ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(⇒ DIS4)

ϕ,Γ⇒ ∆
DGϕ,Γ⇒ ∆

(D ⇒)
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derivation
D

ϕ1, . . . , ϕn ⇒ ψ (
⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

.

We show `H(X)

∧n
i=1DGiϕi → DGψ. We have `H(X)

∧n
i=1 ϕi → ψ as the induction hypoth-

esis for the derivation D. From this, we can infer by necessitation `H(X) DG(
∧n
i=1 ϕi → ψ).

By this and axiom (K), we have `H(X) DG(
∧n
i=1 ϕi)→ DGψ, which is equivalent to `H(X)∧n

i=1DGϕi → DGψ. Therefore, it suffices to show that `H(X)

∧n
i=1DGiϕi →

∧n
i=1DGϕi,

which is equivalent to `H(X)

∧n
i=1DGiϕi → DGϕi for any i ∈ {1, . . . , n}. This is evident

because we have a theorem in intuitionistic propositional logic `H(X)

∧n
i=1DGiϕi → DGiϕi

and the axiom (Incl) `H(X) DGiϕi → DGϕi.

We have the cut-elimination theorem for all of the logics in consideration. First, we

introduce a notion of “principal formula”. A principal formula is defined for each inference

rule, except for the axioms and (Cut) rule and is informally expressed as “a formula, on

which the inference rule acts.”

Definition 3.45. A principal formula of the structural rules, the propositional logical

rules, and the rule (D ⇒) is a formula appearing in the lower sequent, which is not

contained in Γ, Γ1, Γ2, or ∆. A principal formula of the rules for DG operator other than

(D ⇒) is every formula in the lower sequent.

Theorem 3.46 (Cut-Elimination). Let X be any of IK, IKT, IKD, IK4, IK4D, and

IS4. Then, the following holds: If `G(X) Γ ⇒ ∆, then `G−(X) Γ ⇒ ∆, where G−(X)

denotes a system “G(X) minus the cut rule”.

Proof. Following [24, Section 9.3] and [36, Section 2.2], we consider a system G∗(X), in

which the cut rule is replaced by the “extended” cut rule defined as:

Γ⇒ ϕn ϕm,Σ⇒ Θ
Γ,Σ⇒ Θ

(ECut)
,

where ϕn denotes the multi-set of n-copies of ϕ and n = 0, 1 and m ≥ 0. Since (ECut)

is the same as (Cut) when we set n = m = 1, it is obvious that if `G(X) Γ ⇒ ∆, then

`G∗(X) Γ⇒ ∆, so it suffices to show that if `G∗(X) Γ⇒ ∆, then `G−(X) Γ⇒ ∆.

Suppose `G∗(X) Γ⇒ ∆ and fix one derivation for the sequent. To obtain an (ECut)-

free derivation of Γ⇒ ∆, it is enough to concentrate on a derivation whose root is derived

by (ECut) and which has no other application of (ECut). In what follows, we let X be

IKT. The cases of the other logics can be similarly shown. Let us suppose that D has
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the following structure:

L
Γ⇒ ϕn

(ruleL) R
ϕm,Σ⇒ Θ

(ruleR)

Γ,Σ⇒ Θ
(ECut)

,

where the derivations L and R has no application of (ECut) and ruleL and ruleR are

meta-variables for the name of rule applied there. Let the number of logical symbols

(including DG) appearing in ϕ be c(D) and the number of sequents in L and R be w(D).

We show the lemma by double induction on (c(D), w(D)). If n = 0 or m = 0, we can

derive the root sequent of D without using (ECut) by weakening rules. So, in what follows

we assume n = 1 and m > 0. Then, it is sufficient to consider the following four cases

following [37, proof of Theorem 2.3], [24, Section 9.3], and [36, Section 2.2]: 2

1. ruleL or ruleR is an axiom.

2. ruleL or ruleR is a structural rule.

3. ruleL or ruleR is a logical rule and a cut formula ϕ is not principal (in the sense

we have specified above) for that rule.

4. ruleL and ruleR are both logical rules (including (D)) for the same logical symbol

and a cut formula ϕ is principal for each rule.

We omit case 1 and case 2 in the proof since this is well-known in a proof for LJ (the

reader is referred to [36, p.28]). For the same reason, the cases concerning propositional

logical rules are also not treated. Therefore, we treat case 3 and case 4 involving DG.

(Case 3) If ruleL = (D ⇒), the derivation D has the following structure.

L′
ψ,Γ⇒ ϕ

DGψ,Γ⇒ ϕ
(D ⇒) R

ϕm,Σ⇒ Θ
(ruleR)

DGψ,Γ,Σ⇒ Θ
(ECut)

This can be transformed into the following derivation E :

L′
ψ,Γ⇒ ϕ

R
ϕm,Σ⇒ Θ

(ruleR)

ψ,Γ,Σ⇒ Θ
(ECut)

DGψ,Γ,Σ⇒ Θ
(D ⇒)

2In case 4, we assume the condition for both rule applications, because if the one of the two rule
applications does not satisfy the condition, the whole derivation should be categorized into one of the
rest cases.
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The subderivation E ′ whose root is ψ,Γ,Σ⇒ Θ has no application of (ECut) except the

lowermost one, c(E ′) = c(D), and w(E ′) < w(D). Hence, by induction hypothesis, there

exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Replacing the derivation

E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent DGψ,Γ,Σ⇒ Θ.

If ruleR = (D ⇒), the derivation D has the following structure.

L
Γ⇒ ϕ

(ruleL)

R′
ϕm, ψ,Σ⇒ Θ

ϕm, DGψ,Σ⇒ Θ
(D ⇒)

Γ, DGψ,Σ⇒ Θ
(ECut)

This can be transformed into the following derivation E :

L
Γ⇒ ϕ

(ruleL) R′
ϕm, ψ,Σ⇒ Θ

Γ, ψ,Σ⇒ Θ
(ECut)

Γ, DGψ,Σ⇒ Θ
(D ⇒)

The subderivation E ′ whose root is Γ, ψ,Σ⇒ Θ has no application of (ECut) except the

lowermost one, c(E ′) = c(D), and w(E ′) < w(D). Hence, by induction hypothesis, there

exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Replacing the derivation

E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent Γ, DGψ,Σ⇒ Θ.

(Case 4) One of the possible structures of the derivation D is the following.

L′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

R′
ψm, ψ1, . . . , ψm ⇒ χ (G ∪

⋃m
j=1Hj ⊆ H)

(DGψ)m, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ DHχ
(ECut)

The derivation D can be transformed into the following derivation E :

L′
ϕ1, . . . , ϕn ⇒ ψ

R′
ψm, ψ1, . . . , ψm ⇒ χ

ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ
(ECut)

(
⋃n
i=1Gi ∪

⋃m
j=1 Hj ⊆ H)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

.

We call E ′ its subderivation whose root sequent is ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ. The

derivation E ′ have no application of (ECut) and c(E ′) < c(D). Hence, by induction

hypothesis, there exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Re-

placing the derivation E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ as required.



73

The other possible structure of the derivation D is the following:

L′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

R′
ψ, (DGψ)m−1,Σ⇒ Θ

(DGψ)m,Σ⇒ Θ
(D ⇒)

DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(ECut)

This can be transformed into the following derivation E :

L′
ϕ1, . . . , ϕn ⇒ ψ

L
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

R′
ψ, (DGψ)m−1,Σ⇒ Θ

DG1ϕ1, . . . , DGnϕn, ψ,Σ⇒ Θ
(ECut)

ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(ECut)

...
(D ⇒)

DG1ϕ1, . . . , DGnϕn, DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(D ⇒)

...
(c⇒)

DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ
(c⇒)

The subderivation E1 whose root is DG1ϕ1, . . . , DGnϕn, ψ,Σ ⇒ Θ has no application of

(ECut) except the lowermost one, c(E1) = c(D), and w(E1) < w(D). Hence, by induction

hypothesis, there exists an (ECut)-free derivation Ẽ1 having the same root sequent. Name

E2, the derivation obtained by replacing the derivation E1 by Ẽ1 in the subderivation whose

root is ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn,Σ ⇒ Θ. The derivation E2 has no application of

(ECut) except the lowermost one and c(E2) < c(D). Hence, by induction hypothesis,

there exists an (ECut)-free derivation Ẽ2 having the same root sequent. Thus, we obtain

an (ECut)-free derivation for the sequent DG1ϕ1, . . . , DGnϕn,Σ⇒ Θ.

The following subformula property is an important corollary of the cut-elimination

theorem, and later used in a proof of decidability.

Corollary 3.47 (Subformula Property). Let X be any of IK, IKT, IKD, IK4, IK4D,

and IS4 and suppose `G(X) Γ⇒ ∆. Then, there exists a derivation of Γ⇒ ∆ satisfying a

condition that any formula occurring in the derivation is a subformula of certain formula

in Γ or ∆.

Proof. A cut-free derivation of Γ⇒ ∆ satisfies the condition, because any formula in the

upper sequent is a subformula of certain formula in the lower sequent in every inference

rules of our calculi except (Cut).
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3.4.2 Craig Interpolation Theorem and Decidability

In many logics, the Craig interpolation theorem can be derived as an application of

the cut-elimination theorem, using a Maehara method originally described in [26]. An

application of the method to basic modal logic can also be found in [35]. Unlike [30], the

concept of ‘partition’ is simplified, because we do not allow multiple formulas to appear

in the succedent of a sequent.

Definition 3.48 (Partition). A partition for a sequent Γ ⇒ ∆ is defined as a tuple

〈Γ1; Γ2〉, such that Γ = Γ1,Γ2.

Definition 3.49. For a formula ϕ, Prop(ϕ) is defined as the set of all propositional

variables appearing in ϕ. For a multiset Γ of formulas, Prop(Γ) is defined as
⋃
ϕ∈Γ Prop(ϕ).

Similarly, Agt(ϕ) is defined as the set of agents appearing in ϕ and Agt(Γ) as
⋃
ϕ∈Γ Agt(ϕ)

The following is a key lemma for Craig Interpolation Theorem.

Lemma 3.50. Let X be any of IK, IKT, IKD, IK4, IK4D, and IS4. Suppose `G(X)

Γ⇒ ∆. Then, for any partition 〈Γ1; Γ2〉 for the sequent Γ⇒ ∆, there exists a formula ϕ

called “interpolant”, satisfying the following:

1. `G(X) Γ1 ⇒ ϕ and `G(X) ϕ,Γ2 ⇒ ∆.

2. Prop(ϕ) ⊆ Prop(Γ1) ∩ Prop(Γ2,∆).

3. Agt(ϕ) ⊆ Agt(Γ1) ∩ Agt(Γ2,∆).

Proof. We prove the case of IKT by induction on the structure of a derivation for Γ⇒ ∆.

Fix the derivation and name it D. By Theorem 3.46, we can assume that D is cut-free.

We treat the case for axioms and the case involving DG below (for other cases, the reader

is referred to [35]).

SupposeD is of the form ϕ⇒ ϕ (Id). For the partition 〈ϕ; 〉, ϕ is clearly an interpolant

of the sequent ϕ ⇒ ϕ. For the partition 〈;ϕ〉, ⊥ → ⊥ is an interpolant of the sequent

ϕ⇒ ϕ, because we have the following derivations:

⊥ ⇒ ⊥ (Id)

⇒ ⊥→ ⊥ (⇒→)
ϕ⇒ ϕ (Id)

⊥ → ⊥, ϕ⇒ ϕ
(w ⇒)

.

Items 2 and 3 are clearly satisfied because Prop(⊥) = Agt(⊥) = ∅.
Suppose D is of the form ⊥ ⇒ (⊥)

. For the partition 〈⊥; 〉, ⊥ is clearly an interpolant

of the sequent ⊥ ⇒. For the partition 〈;⊥〉, ⊥ → ⊥ is an interpolant of the sequent ⊥ ⇒,
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because we have the following derivations:

⊥ ⇒ ⊥ (Id)

⇒ ⊥→ ⊥ (⇒→) ⊥ ⇒ (⊥)

⊥ → ⊥,⊥ ⇒ (w ⇒)
.

Item 2 and 3 are clearly satisfied because Prop(⊥) = Agt(⊥) = Prop(⊥ → ⊥) = Agt(⊥ →
⊥) = ∅.

Suppose D is of the form

D′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

.

A partition of DG1ϕ1, . . . , DGnϕn ⇒ DGψ is of the following form:

〈DG1ϕ1, . . . , DGkϕk;DGk+1
ϕk+1, . . . , DGnϕn〉.

As the induction hypothesis for D′ with the partition 〈ϕ1, . . . , ϕk;ϕk+1, . . . , ϕn〉, we have

`G(X)+ ϕ1, . . . , ϕk ⇒ χ and `G(X)+ χ, ϕk+1, . . . , ϕn ⇒ ψ for some formula χ. If k > 0, we

can choose D⋃k
i=1Gi

χ as a required interpolant, because we have the following derivations:

I.H.
ϕ1, . . . , ϕk ⇒ χ (

⋃k
i=1 Gi ⊆

⋃k
i=1 Gi)

DG1ϕ1, . . . , DGkϕk ⇒ D⋃k
i=1Gi

χ
(D)

I.H.
χ, ϕk+1, . . . , ϕn ⇒ ψ (

⋃k
i=1 Gi ∪

⋃n
i=k+1Gi =

⋃n
i=1 Gi ⊆ G)

D⋃k
i=1 Gi

χ,DGk+1
ϕk+1, . . . , DGnϕn ⇒ DGψ

(D)

The interpolant D⋃k
i=1Gi

χ satisfies item 2, because Prop
(
D⋃k

i=1 Gi
χ
)

= Prop(χ)
(I.H.)

⊆
Prop(ϕ1, . . . , ϕk) ∩ Prop(ϕk+1, . . . , ϕn, ψ) =

Prop(DG1ϕ1, . . . , DGkϕk)∩Prop(DGk+1
ϕk+1, . . . , DGnϕn, DGψ). Item 3 is also satisfied. As

the induction hypothesis, we have Agt(χ) ⊆ Agt(ϕ1, . . . , ϕk)∩Agt(ϕk+1, . . . , ϕn, ψ). Then,

Agt
(
D⋃k

i=1 Gi
χ
)

=
⋃k
i=1Gi∪Agt(χ)⊆

⋃k
i=1Gi∪(Agt(ϕ1, . . . , ϕk) ∩ Agt(ϕk+1, . . . , ϕn, ψ)) =

(
⋃k
i=1 Gi∪Agt(ϕ1, . . . , ϕk))∩(

⋃k
i=1 Gi∪Agt(ϕk+1, . . . , ϕn, ψ)) ⊆ (

⋃k
i=1Gi∪Agt(ϕ1, . . . , ϕk))∩

(G∪Agt(ϕk+1, . . . , ϕn, ψ)) = Agt(DG1ϕ1, . . . , DGkϕk)∩Agt(DGk+1
ϕk+1, . . . , DGnϕn, DGψ).

If k = 0, we can choose χ as an interpolant, since we have the following derivations:

I.H.
⇒ χ

D′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

χ,DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(w ⇒)

.
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Item 2 is satisfied, because Prop(χ)
(I.H.)

⊆ Prop(ϕ1, . . . , ϕn, ψ) = Prop(DG1ϕ1, . . . , DGnϕn, DGψ).

Item 3 is satisfied, because Agt(χ)
(I.H.)

⊆ Agt(ϕ1, . . . , ϕn, ψ) ⊆ Agt(DG1ϕ1, . . . , DGnϕn, DGψ).

Suppose D is of the form
D′

ϕ,Γ⇒ ∆
DGϕ,Γ⇒ ∆

(D ⇒)

There are two types of partition for the sequent DGϕ,Γ⇒ ∆ depending on whether DGϕ

belongs to the left or the right of a partition. First, fix the partition 〈Γ1, DGϕ; Γ2〉. As the

induction hypothesis for D′ with the partition 〈Γ1, ϕ; Γ2〉, we have `G(X)+ Γ1, ϕ⇒ ψ and

`G(X)+ ψ,Γ2 ⇒ ∆ for some formula ψ. The formula ψ is an interpolant for the sequent

Γ, DGϕ⇒ ∆, too, because we have the following derivation:

I.H.
Γ1, ϕ⇒ ψ

Γ1, DGϕ⇒ ψ
(D ⇒)

.

The interpolant ψ also satisfies item 2, because Prop(ψ)
(I.H.)

⊆ Prop(Γ1, ϕ)∩ Prop(Γ2,∆) =

Prop(Γ1, DGϕ) ∩ Prop(Γ2,∆). Item 3 is also satisfied, because Agt(ψ)
(I.H.)

⊆ Agt(Γ1, ϕ) ∩
Agt(Γ2,∆) ⊆ Agt(Γ1, DGϕ) ∩ Agt(Γ2,∆).

Next, fix the partition 〈Γ1; Γ2, DGϕ〉. As the induction hypothesis for D′ with the

partition 〈Γ1; Γ2, ϕ〉, we have `G(X)+ Γ1 ⇒ ψ and `G(X)+ ψ,Γ2, ϕ ⇒ ∆ for some formula

ψ. The formula ψ is an interpolant for the sequent Γ, DGϕ ⇒ ∆, too, because we have

the following derivation:
I.H.

ψ,Γ2, ϕ⇒ ∆

ψ,Γ2, DGϕ⇒ ∆
(D ⇒)

.

The interpolant ψ also satisfies item 2, because Prop(ψ)
(I.H.)

⊆ Prop(Γ1)∩ Prop(Γ2, ϕ,∆) =

Prop(Γ1) ∩ Prop(Γ2, DGϕ,∆). Item 3 is also satisfied, because Agt(ψ)
(I.H.)

⊆ Agt(Γ1) ∩
Agt(Γ2, ϕ,∆) ⊆ Agt(Γ1) ∩ Agt(Γ2, DGϕ,∆).

Theorem 3.51 (Craig Interpolation Theorem). Let X be any of IK, IKT, IKD, IK4,

IK4D, and IS4. Given that `G(X) ϕ⇒ ψ, there exists a formula χ satisfying the following

conditions:

1. `G(X) ϕ⇒ χ and `G(X) χ⇒ ψ.

2. Prop(χ) ⊆ Prop(ϕ) ∩ Prop(ψ).

3. Agt(χ) ⊆ Agt(ϕ) ∩ Agt(ψ).
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We note that not only the condition for propositional variables but also the condition

for agents can be satisfied.

Proof. When we set Γ := ϕ and ∆ := ψ, and take a partition 〈Γ;∅〉, Lemma 3.50 proves

Craig Interpolation Theorem.

Further, decidability of the logics we investigate also follows from the cut-elimination

theorem (Theorem 3.46). To show decidability, we introduce a notion of “(1-)reduced

sequent”.

Definition 3.52. A sequent Γ ⇒ ∆ is called reduced if every formula occurs at most

three times in Γ. A sequent Γ ⇒ ∆ is called 1-reduced if every formula occurs at most

once in Γ.

Definition 3.53. For any sequent Γ ⇒ ∆, a sequent Γ∗ ⇒ ∆ is a 1-reduced contraction

of Γ ⇒ ∆ if Γ∗ ⇒ ∆ can be derived from Γ ⇒ ∆ by applying (c ⇒) to Γ ⇒ ∆ and is

1-reduced. Clearly, a 1-reduced contraction is determined uniquely.

Proposition 3.54. `G(X) Γ⇒ ∆ if and only if `G(X) Γ∗ ⇒ ∆.

Proof. By definition of the 1-reduced contraction, the left-to-right is obvious. The right-

to-left is also easily shown by applying (w ⇒) to Γ∗ ⇒ ∆.

Lemma 3.55. Suppose that `G(X) Γ ⇒ ∆. Then, there exists a derivation of Γ∗ ⇒ ∆

such that the derivation is cut-free and has only reduced sequents.

Proof. Thanks to Theorem 3.46, we can take a cut-free derivation of Γ⇒ ∆. We name it

D. We show by induction on the height of D. We treat only the case where the last rule

application of D is (D). That is, suppose D is of the form

D′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

.

By induction hypothesis, we have a derivation E ′ of (ϕ1, . . . , ϕn)∗ ⇒ ψ such that E ′ is

cut-free and has only reduced sequents. Applying the rule (D) to E ′, we obtain the desired

derivation of (DG1ϕ1, . . . , DGnϕn)∗ ⇒ DGψ.

Remark 3.56. We admit three occurrences of the same formula in a reduced sequent,

because if we only allow at most two occurrences, induction fails in the case of (→⇒) in

the proof of this lemma.
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Theorem 3.57 (Decidability). Let X be any of IK, IKT, IKD, IK4, IK4D, and IS4.

A logic X is decidable, that is, there is an algorithm checking whether each sequent Γ⇒ ∆

has a derivation in G(X) or not.

Proof. We describe a rough sketch of the proof, based on [35, p. 228]. By Proposition

3.54, it suffices to check whether Γ∗ ⇒ ∆ has a derivation. In what follows, by “tree (of

Σ⇒ Θ)”, we mean a tree of sequents (ending with Σ⇒ Θ), whose leaves are axioms, or

sequents, to which no rule can be applied. Without any restriction, there are infinitely

many trees of Γ∗ ⇒ ∆. Therefore, in order to execute a brute-force search, we impose

three restrictions on the trees. In general, if a derivation exists, Lemma 3.55 allows us

to find a derivation such that (i) it is cut-free and (ii) it has only reduced sequents. By

Corollary 3.47, it has subformula property. Therefore, there are finitely many reduced

sequents that can be a part of the derivation. Moreover, we can safely assume that (iii) for

each path in the derivation from the root sequent to an initial sequent, each sequent in the

path occurs exactly once, because, if there are multiple occurrences of the same sequent,

we can always eliminate the redundant occurrences by grafting the subderivation for the

uppermost occurrence onto the lowermost occurrence. From the above argument, if we

impose the conditions (i) to (iii) on the trees of Γ∗ ⇒ ∆, the number of trees becomes finite

and we can construct an algorithm enumerating all of them which also checks whether

each tree is a derivation or not. If the algorithm does not find any derivation, we can

conclude that Γ∗ ⇒ ∆ has no derivation.



Chapter 4

Intuitionistic Public Announcement

Logic with Distributed Knowledge

This chapter is organized as follows. In Section 4.1, we expand the intuitionistic epistemic

logic of Chapter 3 with reduction axioms for a public announcement operator, and prove

its completeness by reducing to the completeness of static one via translation from a

formula possibly with public announcement operators to a formula without any public

announcement operators. In Section 4.3, we introduce sequent calculi for the logics and

prove the cut-elimination theorem and Craig interpolation theorem.

The author’s contribution is as follows. Regarding the Hilbert systems defined by the

author, the author found that the soundness does not hold for the corresponding class of

frames without any condition. The author confirmed that the problem can be solved by

imposing the condition of stability defined in [64, 49, 46] on Kripke frames. The solution

was a suggestion by the supervisor. The author proved the completeness theorem on his

own. The sequent calculi were defined through discussions with the supervisor, and the

author proved the cut elimination theorem and the Craig interpolation theorem.

4.1 Syntax, Semantics, and Hilbert System

We expand our syntax with the public announcement operator and define the set of all

formulas of the expanded syntax as:

Form+ 3 ϕ ::= p | ⊥ | ϕ→ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | DGϕ | [ϕ]ϕ,

where p ∈ Prop and G ∈ Grp. We define ¬ϕ as ϕ→ ⊥, ϕ↔ ψ as ϕ→ ψ ∧ ψ → ϕ, > as

⊥ → ⊥, and the epistemic operator Kaϕ (read “agent a knows that ϕ”) as D{a}ϕ.

79
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Figure 4.1: Mstable,M
p∨¬p
stable, (M

p∨¬p
stable)

p

Definition 4.1. Let M = (W,6, (Ra)a∈Agt, V ) and ϕ, ψ ∈ Form+. The satisfaction

relation M,w  ϕ is defined as before except:

M,w  [ϕ]ψ iff for all v ∈ W,w 6 v and M, v  ϕ jointly imply Mϕ, v  ψ,

where Mϕ := (JϕKM ,6ϕ, (Rϕ
a )a∈Agt , V

ϕ) (a model updated from M by ϕ) is defined as

follows:

• JϕKM := {w ∈ W |M,w  ϕ},

• 6ϕ := 6 ∩(JϕKM × JϕKM),

• Rϕ
a := Ra ∩ (JϕKM × JϕKM),

• V ϕ(p) := V (p) ∩ JϕKM .

It is easy to show the following.

Proposition 4.2. Let M = (W,6, (Ra)a∈Agt, V ) and ϕ ∈ Form+.

1. Mϕ satisfies all the conditions of a model.

2. If Ra is reflexive (or transitive), then so is Rϕ
a .

3. If M is stable, then so is Mϕ.

Remark 4.3. Seriality is not preserved under (−)ϕ, as explained in Remark 1.13. Hence,

the corresponding axiom (D) is not in consideration below.

Example 4.4. In Figure 4.1, we consider updates of the model Mstable discussed in Ex-

ample 3.5 (recall Figure 3.2). If we update the first (leftmost) model by p∨¬p, we obtain

the second model, Mp∨¬p
stable. This amounts to making the situation classical-logical. That

is, the updated model can be seen as a classical Kripke model since no proper pair is
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ordered by 6p∨¬p. By this update, p becomes a distributed knowledge at v of a group

{a, b}, that is, Mstable, v  ¬D{a,b}p but Mp∨¬p
stable, v  D{a,b}p. Next, we update Mp∨¬p

stable by p

to obtain the model (Mp∨¬p
stable)

p
. It is easy to see that (Mp∨¬p

stable)
p

and Mp
stable are the same.

By this update, p becomes a knowledge at v of an agent b, that is, Mp∨¬p
stable, v  ¬D{b}p

but (Mp∨¬p
stable)

p, v  D{b}p.

Under these definitions, the heredity condition still holds.

Proposition 4.5. If M,w  ϕ and w 6 v, then M, v  ϕ.

Proof. We show the case where ϕ ≡ [ψ]χ. For the rest cases, the reader is referred to

Proposition 3.4. Suppose M,w  [ψ]χ and w 6 v. To show M, v  [ψ]χ, fix u such that

v 6 u and assume M,u  ψ. Then, from M,w  [ψ]χ and w 6 u, we have Mψ, u  χ as

required.

Note that this would not hold if we were to adopt “M,w  ϕ implies Mϕ, w  ψ” as

the definition of M,w  [ϕ]ψ.

The axioms in Table 4.1 are for the PAL extension. We call the axiom system expanded

from H(X) by all the axioms in Table 4.1, H(X)+, where X = IK, IKT, IK4, and IS4.

The notion of semantic consequence and derivability is defined in the same way as H(X).

Table 4.1: Axioms for Public Announcement Operator

([]p) [ϕ]p↔ (ϕ→ p) ([]⊥) [ϕ]⊥ ↔ (ϕ→ ⊥)
([]→) [ϕ](ψ → χ)↔ ([ϕ]ψ → [ϕ]χ) ([]∨) [ϕ](ψ ∨ χ)↔ (ϕ→ [ϕ]ψ ∨ [ϕ]χ)
([]∧) [ϕ](ψ ∧ χ)↔ ([ϕ]ψ ∧ [ϕ]χ) ([]D) [ϕ]DGψ ↔ (ϕ→ DG[ϕ]ψ)
([][]) [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ

In what follows, we establish that all the axioms in Table 4.1 are valid with respect

to the class of all stable frames. First, we deal with composition of two announcements.

Recall from Example 4.4 that (Mp∨¬p
stable)

p
and Mp

stable of Figure 4.1 are the same. This can

be understood as an example of the following lemma, because (p ∨ ¬p) ∧ [p ∨ ¬p]p and p

are equivalent.

Lemma 4.6. Let M = (W,6, (Ra)a∈Agt, V ) be a model and ϕ, ψ ∈ Form+. Then,

(Mϕ)ψ = Mϕ∧[ϕ]ψ.

Proof. It suffices to show that |(Mϕ)ψ| = |Mϕ∧[ϕ]ψ|. Assume w ∈ |Mϕ∧[ϕ]ψ|, which is

equivalent to M,w  ϕ ∧ [ϕ]ψ. This is equivalent to M,w  ϕ and “M, v  ϕ implies

Mϕ, v  ψ for any v such that w 6 v”. By instantiating v with w, we can infer “M,w  ϕ
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implies Mϕ, w  ψ” from the latter. Then, we have Mϕ, w  ψ by modus ponens, which

means w ∈ |(Mϕ)ψ|. For the left-to-right, let us assume Mϕ, w  ψ. We have to show

M,w  ϕ and “M, v  ϕ implies Mϕ, v  ψ for any v such that w 6 v”. The assumption

presupposes w ∈ |Mϕ|, which meansM,w  ϕ, the former goal. For the latter implication,

fix a v satisfying w 6 v. Then, by the heredity, M, v  ϕ, so w 6ϕ v. Then, again by the

heredity, Mϕ, v  ψ.

Proposition 4.7. The axioms in Table 4.1 except ([]D) are valid with respect to the class

of all frames.

Proof. We show the validity of ([]∨) and ([][]) alone. First, we show the validity of ([]∨).

For any model M and w ∈ |M |, we show M,w  [ϕ](ψ1∨ψ2)→ ϕ→ ([ϕ]ψ1∨ [ϕ]ψ2). Fix

any v such that w 6 v and M, v  [ϕ](ψ1∨ψ2). To show M, v  ϕ→ ([ϕ]ψ1∨ [ϕ]ψ2), fix u

such that v 6 u and M,u  ϕ. We show M,u  [ϕ]ψ1 ∨ [ϕ]ψ2. From M, v  [ϕ](ψ1 ∨ψ2),

v 6 u, and M,u  ϕ, we have Mϕ, u  ψ1∨ψ2. Then, it suffices to show that Mϕ, u  ψi

implies M,u  [ϕ]ψi for i = 1, 2. Assume Mϕ, u  ψi and fix any t such that u 6 t

and M, t  ϕ. Obviously, we have u 6ϕ t. Then, by the assumption and the heredity,

Mϕ, t  ψi. Next, we show M,w  (ϕ→ ([ϕ]ψ1 ∨ [ϕ]ψ2))→ [ϕ](ψ1 ∨ψ2). Fix any v such

that w 6 v and M, v  ϕ→ ([ϕ]ψ1 ∨ [ϕ]ψ2). To show M, v  [ϕ](ψ1 ∨ψ2), fix u such that

v 6 u and M,u  ϕ. We show Mϕ, u  ψ1 ∨ ψ2. Since v 6 u and M,u  ϕ, we have

M,u  [ϕ]ψ1 ∨ [ϕ]ψ2. Then, it suffices to show that M,u  [ϕ]ψi implies Mϕ, u  ψi for

i = 1, 2. This is obviously true because M,u  ϕ.

Second, we show the validity of ([][]). First, for any model M and w ∈ |M |, we show

M,w  [ϕ][ψ]χ → [ϕ ∧ [ϕ]ψ]χ. Fix any v such that w 6 v and M, v  [ϕ][ψ]χ. To show

M, v  [ϕ ∧ [ϕ]ψ]χ, fix u such that v 6 u and M,u  ϕ ∧ [ϕ]ψ. Since M,u  ϕ and

M, v  [ϕ][ψ]χ, we have Mϕ, u  [ψ]χ. Also, by M,u  [ϕ]ψ, we have Mϕ, u  ψ. Then,

by these two, we obtain (Mϕ)ψ, u  χ, which is equivalent to Mϕ∧[ϕ]ψ, u  χ by Lemma

4.6. To show the right-to-left, Fix any v such that w 6 v and M, v  [ϕ∧ [ϕ]ψ]χ. Fix any

u such that v 6 u and M,u  ϕ. We show Mϕ, u  [ψ]χ. Fix any t such that u 6ϕ t and

Mϕ, t  ψ. Instead of (Mϕ)ψ, t  χ, we use Lemma 4.6 to show Mϕ∧[ϕ]ψ, t  χ. To show

this, we show v 6 t and M, t  ϕ ∧ [ϕ]ψ. The former is obvious. Also, M, t  ϕ since

t ∈ |Mϕ|. Further, we have M, t  [ϕ]ψ. For this, take s such that t 6 s and M, s  ϕ.

Then, Mϕ, s  ψ, since Mϕ, t  ψ and t 6ϕ s.

Proposition 4.8. The axiom ([]D) is not valid with respect to the class of all frames.

Proof. The model M depicted in Figure 4.2 is a counterexample. Let Agt = {a}. The

model M is defined as ({w, v, u},6, Ra, V ), where
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w

p

v u

p
a

Figure 4.2: Counter model M to validity of ([]D)

6 = {(w,w), (v, v), (v, u), (u, u)},

Ra = {(w, v)}, and V is such that V (p) = {w, u} and V (q) = ∅. The solid line stands for

the relations for agents and the dotted arrow stands for the preorder. Reflexive arrows

for the preorder is omitted in the figure. The condition “6;Ra ⊆ Ra” is easily checked.

Also, the condition “Ra;6⊆ Ra” is easily seen not to be satisfied, since w(Ra;6)u holds

but wRau fails. Therefore, M is not a stable model.

To show that the axiom ([]D) is not valid with respect to the class of all frames, we

show [p]Kaq → (p → Ka[p]q) is not satisfied at the state w in M . First, M,w  [p]Kaq,

because Mp, w  Kaq is vacuously true by the model update which eliminates v, and w

is the only world accessible from w by 6. Second, however, M,w 6 p → Ka[p]q. The

antecedent is obviously true at w. To reject the consequent, we focus on v, the only world

accessible from w by Ra, to show M, v 6 [p]q. This is true because we can find u, which

is ahead of v, satisfies p, but does not q.

By restricting our attention to the class of all stable frames, we can recover the validity

of ([]D) as follows.

Proposition 4.9. The axiom ([]D) is valid with respect to the class of all stable frames.

Proof. For any stable model M and w ∈ |M |, we show M,w  [ϕ]DGψ → (ϕ→ DG[ϕ]ψ).

Fix any v such that w 6 v and M, v  [ϕ]DGψ. We show M, v  ϕ → DG[ϕ]ψ. Fix

any u such that v 6 u and M,u  ϕ. To show M,u  DG[ϕ]ψ, fix any t such that

(u, t) ∈
⋂
a∈GRa. We show M, t  [ϕ]ψ. Fix any s such that t 6 s and M, s  ϕ. We

show Mϕ, s  ψ. By the stability of the underlying frame, we have
⋂
a∈GRa;6=

⋂
a∈GRa.

Hence, (u, s) ∈
⋂
a∈GRa. Then, we have Mϕ, s  ψ, because Mϕ, u  DGψ holds

by M, v  [ϕ]DGψ, v 6 u, and M,u  ϕ and we have s ∈ |Mϕ|. Next, we show

M,w  (ϕ→ DG[ϕ]ψ)→ [ϕ]DGψ. Fix any v such that w 6 v and M, v  ϕ→ DG[ϕ]ψ.

To show M, v  [ϕ]DGψ, fix any u such that v 6 u and M,u  ϕ. Take any t such that

(u, t) ∈
⋂
a∈GR

ϕ
a . We show Mϕ, t  ψ. By M, v  ϕ → DG[ϕ]ψ, v 6 u, and M,u  ϕ,

we have M,u  DG[ϕ]ψ. Then, M, t  [ϕ]ψ. Since M, t  ϕ, we obtain Mϕ, t  ψ.

Theorem 4.10 (soundness). Let ϕ ∈ Form+. If `H(X)+ ϕ, then F(X)∩ST ϕ.

Proof. Obvious by the soundness of the static part of the axiom system and Proposition

4.7.
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Note that H(X)+ is sound with respect to the class of all stable frames due to the

axiom ([]D).

4.2 Semantic Completeness

We show the strong completeness of H(X)+ with respect to the class of stable frames

using a translation Form+ → Form as in [59].

Definition 4.11 (translation). The translation function t on Form+ is defined as follows:

- t(p) = p

- t(⊥) = ⊥

- t(ϕ • ψ) = t(ϕ) • t(ψ) (• ∈ {→,∨,∧})

- t(DGϕ) = DGt(ϕ)

- t([ϕ]p) = t(ϕ→ p)

- t([ϕ]⊥) = t(ϕ→ ⊥)

- t([ϕ](ψ ? χ)) = t([ϕ]ψ ? [ϕ]χ) (? ∈ {→,∧})

- t([ϕ](ϕ ∨ χ)) = t(ϕ→ [ϕ]ψ ∨ [ϕ]χ)

- t([ϕ]DGψ) = t(ϕ→ DG[ϕ]ψ)

- t([ϕ][ψ]χ) = t([ϕ ∧ [ϕ]ψ]χ)

To show that t is Form-valued, a measure called complexity of a formula is introduced.

Definition 4.12 (complexity). The complexity function c : Form+ → N is defined induc-

tively as follows:

- c(p) = 1

- c(⊥) = 1

- c(ϕ • ψ) = 1 + max(c(ϕ), c(ψ)) (• ∈ {→,∨,∧})

- c(DGϕ) = 1 + c(ϕ)

- c([ϕ]ψ) = (2 + c(ϕ)) · c(ψ)
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Note that c(ϕ) ≥ 1 for any formula ϕ, as easily shown.

Lemma 4.13. Let ϕ, ψ, χ ∈ Form+. The following holds:

1. c(ψ) > c(ϕ) if ϕ ∈ Sub(ψ) and ϕ 6= ψ, where Sub(ψ) denotes the set of subformulas

of ψ.

2. c([ϕ]p) > c(ϕ→ p).

3. c([ϕ]⊥) > c(ϕ→ ⊥).

4. c([ϕ](ψ ? χ)) > c([ϕ]ψ ? [ϕ]χ). (? ∈ {→,∧})

5. c([ϕ](ψ ∨ χ)) > c(ϕ→ [ϕ]ψ ∨ [ϕ]χ).

6. c([ϕ]DGψ) > c(ϕ→ DG[ϕ]ψ).

7. c([ϕ][ψ]χ) > c([ϕ ∧ [ϕ]ψ]χ).

Proof. • (item 1) By induction on the structure of ψ. If ψ ≡ p or ⊥, item 1 is trivially

true because there is no proper subformula of ψ. Suppose ψ ≡ ψ1 • ψ2 (• ∈ {→
,∨,∧}). By the assumption, ϕ ∈ Sub(ψi) (i = 1 or 2). Then, by I.H., c(ψi) ≥ c(ϕ).

Thus, c(ψ) = 1 + max(c(ψ1), c(ψ2)) > 1 + c(ψi) > c(ϕ). Suppose ψ ≡ DGχ. By the

assumption, ϕ ∈ Sub(χ). Then, by I.H., c(χ) ≥ c(ϕ). Thus, c(ψ) = 1+c(χ) > c(ϕ).

Suppose ψ ≡ [ψ1]ψ2. By the assumption, ϕ ∈ Sub(ψi) (i = 1 or 2). Then, by I.H.,

c(ψi) ≥ c(ϕ). If i = 1, c(ψ) = (2 + c(ψ1)) · c(ψ2) ≥ 2 + c(ψ1) > c(ϕ). If i = 2,

c(ψ) = (2 + c(ψ1)) · c(ψ2) ≥ 3 · c(ψ2) > c(ϕ).

• (item 2) We have c([ϕ]p) = (2 + c(ϕ)) · c(p) = 2 + c(ϕ) > 1 + c(ϕ) = 1 +

max(c(ϕ), c(p)) = c(ϕ→ p).

• (item 3) The same as item 2.

• (item 4) We may assume that c(ψ) ≥ c(χ) without loss of generality. Then, we have

c([ϕ](ψ ? χ)) = (2 + c(ϕ)) · c(ψ ? χ) = (2 + c(ϕ)) · (1 + c(ψ)). On the other hand,

c([ϕ]ψ ? [ϕ]χ) = 1 + max(c([ϕ]ψ), c([ϕ]χ)) = 1 + c([ϕ]ψ) = 1 + (2 + c(ϕ)) · c(ψ).

Thus, c([ϕ](ψ ? χ))− c([ϕ]ψ ? [ϕ]χ) = 1 + c(ϕ) > 0.

• (item 5) We may assume that c(ψ) ≥ c(χ) without loss of generality. Then, c([ϕ](ψ∨
χ)) = (2 + c(ϕ)) · (1 + c(ψ)). On the other hand, c(ϕ → [ϕ]ψ ∨ [ϕ]χ) = 1 +

max(c(ϕ), 1 + c([ϕ]ψ))
(item1)

= 1 + 1 + c([ϕ]ψ) = 2 + (2 + c(ϕ)) · c(ψ). Then, c([ϕ](ψ ∨
χ))− c(ϕ→ [ϕ]ψ ∨ [ϕ]χ) = c(ϕ) > 0.
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• (item 6) We have c([ϕ]DGψ) = (2 + c(ϕ)) · c(DGψ) = (2 + c(ϕ)) · (1 + c(ψ)). On

the other hand, c(ϕ→ DG[ϕ]ψ) = 1 + max(c(ϕ), c(DG[ϕ]ψ))
(item1)

= 1 + c(DG[ϕ]ψ) =

1+(1+c([ϕ]ψ)) = 2+(2+c(ϕ))·c(ψ). Thus, c([ϕ]DGψ)−c(ϕ→ DG[ϕ]ψ) = c(ϕ) > 0.

• (item 7) We have c([ϕ][ψ]χ) = (2 + c(ϕ)) · c([ψ]χ) = (2 + c(ϕ)) · (2 + c(ψ)) · c(χ). On

the other hand, c([ϕ∧[ϕ]ψ]χ) = (2+c(ϕ∧[ϕ]ψ))·c(χ) = (2+1+max(c(ϕ), c([ϕ]ψ)))·
c(χ)

(item1)
= (3+c([ϕ]ψ)) ·c(χ) = (3+(2+c(ϕ)) ·c(ψ)) ·c(χ). Then, c([ϕ][ψ]χ)−c([ϕ∧

[ϕ]ψ]χ) = c(χ) ·((2+c(ϕ)) ·(2+c(ψ))−(3+(2+c(ϕ)) ·c(ψ))) = c(χ) ·(1+2 ·c(ϕ)) >

0.

Lemma 4.14. The translation function t is indeed a Form-valued function, i.e., t(ϕ) does

not include a public announcement operator for any formula ϕ ∈ Form+.

Proof. By induction on c(ϕ). It is obvious if ϕ ≡ p or ⊥. If ϕ ≡ ψ1 • ψ2 (• ∈ {→,∧,∨}),
c(ϕ) > c(ψi) by item 1 of Lemma 4.13. Hence, by I.H., t(ψ1 • ψ2) = t(ψ1) • t(ψ2) ∈ Form.

The same argument applies to the case that ϕ ≡ DGψ. Suppose that ϕ ≡ [ψ]χ. Depending

on the form of χ, the corresponding item from among items 2 to 7 of Lemma 4.13 assures

that t(ϕ) ∈ Form.

Lemma 4.15. Let X = IK, IKT, IK4, or IS4 and ϕ ∈ Form+. Then, `H(X)+ ϕ↔ t(ϕ).

Proof. By induction on c(ϕ). If ϕ ≡ p or ⊥, it is obvious. Suppose ϕ ≡ ψ1 • ψ2 (• ∈ {→
,∧,∨}). By I.H., ψi ↔ t(ψi). Then, by intuitionistic tautologies, we have `H(X)+ ψ1•ψ2 ↔
t(ψ1) • t(ψ2). Suppose ϕ ≡ DGψ. By I.H. and the axiom (K), `H(X)+ DGψ ↔ DGt(ψ).

Suppose that ϕ ≡ [ψ]χ. Depending on the form of χ, the corresponding item from among

items 2 to 7 of Lemma 4.13 assures that `H(X)+ ϕ↔ t(ϕ).

Theorem 4.16 (strong completeness). Let X = IK, IKT, IK4, or IS4 and Γ ∪ {ϕ} ⊆
Form+. If Γ F(X)∩ST ϕ, then Γ `H(X)+ ϕ.

Proof. Assume that Γ F(X)∩ST ϕ. By Theorem 4.10 and Lemma 4.15, we have t[Γ] F(X)∩ST

t(ϕ), where t[∆] := {t(ψ) | ψ ∈ ∆}. By Lemma 4.14, t[Γ ∪ {ϕ}] ⊆ Form. Then, by The-

orem 3.12, t[Γ] `H(X) t(ϕ). Then, for some finite set Γ′ ⊆ Γ, `H(X)

∧
t[Γ′] → t(ϕ). Since

H(X) is a subsystem of H(X)+, we also have `H(X)+

∧
t[Γ′] → t(ϕ). Then, by Lemma

4.15, `H(X)+

∧
Γ′ → ϕ, which means that Γ `H(X)+ ϕ.

4.3 Sequent Calculi

Our sequent calculi G(X)+ for the intuitionistic public announcement logic with dis-

tributed knowledge are obtained by adding the rules in Table 4.2 to G(X) defined in

Table 3.2.
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Table 4.2: Additional Logical Rules for G(X)+

Γ, ϕ⇒ p

Γ⇒ [ϕ]p
(⇒ []p)

Γ1 ⇒ ϕ p,Γ2 ⇒ ∆

[ϕ]p,Γ1,Γ2 ⇒ ∆
([]p⇒)

Γ, ϕ⇒
Γ⇒ [ϕ]⊥ (⇒ []⊥)

Γ⇒ ϕ

[ϕ]⊥,Γ⇒ ([]⊥ ⇒)

Γ, [ϕ]ψ ⇒ [ϕ]χ

Γ⇒ [ϕ](ψ → χ)
(⇒ []→)

Γ1 ⇒ [ϕ]ψ [ϕ]χ,Γ2 ⇒ ∆

[ϕ](ψ → χ),Γ1,Γ2 ⇒ ∆
([]→⇒)

Γ, ϕ⇒ [ϕ]ψ ∨ [ϕ]χ

Γ⇒ [ϕ](ψ ∨ χ)
(⇒ []∨)

Γ1 ⇒ ϕ [ϕ]ψ,Γ2 ⇒ ∆ [ϕ]χ,Γ2 ⇒ ∆

Γ1,Γ2, [ϕ](ψ ∨ χ)⇒ ∆
([]∨ ⇒)

Γ⇒ [ϕ]ψ Γ⇒ [ϕ]χ

Γ⇒ [ϕ](ψ ∧ χ)
(⇒ []∧)

Γ, [ϕ]ψ ⇒ ∆

Γ, [ϕ](ψ ∧ χ)⇒ ∆
([]∧ ⇒1)

Γ, [ϕ]χ⇒ ∆

Γ, [ϕ](ψ ∧ χ)⇒ ∆
([]∧ ⇒2)

Γ, ϕ⇒ DG[ϕ]ψ

Γ⇒ [ϕ]DGψ
(⇒ []D)

Γ1 ⇒ ϕ DG[ϕ]ψ,Γ2 ⇒ ∆

[ϕ]DGψ,Γ1,Γ2 ⇒ ∆
([]D ⇒)

Γ⇒ [ϕ ∧ [ϕ]ψ]χ

Γ⇒ [ϕ][ψ]χ
(⇒ [][])

[ϕ ∧ [ϕ]ψ]χ,Γ⇒ ∆

[ϕ][ψ]χ,Γ⇒ ∆
([][]⇒)

Since the rules are constructed naturally from the reduction axioms for the public

announcement operator, the following equipollence theorem is easy to prove.

Theorem 4.17 (Equipollence). Let X be any of IK, IKT, IK4, and IS4. Then, the

following hold. 1. If `H(X)+ ϕ, then `G(X)+⇒ ϕ. 2. If `G(X)+ Γ⇒ ∆, then `H(X)+

∧
Γ→∨

∆, where
∧

∅ := > and
∨

∅ := ⊥.

Proof. We show a part of (item 1). The axiom ([]p) can be derivable in G(X)+:

ϕ⇒ ϕ (Id) p⇒ p (Id)

[ϕ]p, ϕ⇒ p
([]p⇒)

[ϕ]p⇒ ϕ→ p
(⇒→)

⇒ [ϕ]p→ (ϕ→ p)
(⇒→)

ϕ⇒ ϕ (Id) p⇒ p (Id)

ϕ→ p, ϕ⇒ p (→⇒)

ϕ→ p⇒ [ϕ]p
(⇒ []p)

⇒ (ϕ→ p)→ [ϕ]p
(⇒→)

⇒ ([ϕ]p→ (ϕ→ p)) ∧ ((ϕ→ p)→ [ϕ]p)
(⇒ ∧)

.

The axiom ([]⊥) can be derivable in G(X)+:

ϕ⇒ ϕ (Id)

[ϕ]⊥, ϕ⇒ ([]⊥ ⇒)

[ϕ]⊥, ϕ⇒ ⊥ (⇒ w)

[ϕ]⊥ ⇒ ϕ→ ⊥ (⇒→)

⇒ [ϕ]⊥ → (ϕ→ ⊥)
(⇒→)

ϕ⇒ ϕ (Id) ⊥ ⇒ (⊥)

ϕ→ ⊥, ϕ⇒ (→⇒)

ϕ→ ⊥⇒ [ϕ]⊥ (⇒ []⊥)

⇒ (ϕ→ ⊥)→ [ϕ]⊥ (⇒→)

⇒ ([ϕ]⊥ → (ϕ→ ⊥)) ∧ ((ϕ→ ⊥)→ [ϕ]⊥)
(⇒ ∧)

.
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The axiom ([]→) can be derivable in G(X)+:

[ϕ]ψ ⇒ [ϕ]ψ
(Id)

[ϕ]χ⇒ [ϕ]χ
(Id)

[ϕ](ψ → χ), [ϕ]ψ ⇒ [ϕ]χ
([]→⇒)

[ϕ](ψ → χ)⇒ [ϕ]ψ → [ϕ]χ
(⇒→)

⇒ [ϕ](ψ → χ)→ ([ϕ]ψ → [ϕ]χ)
(⇒→)

[ϕ]ψ ⇒ [ϕ]ψ
(Id)

[ϕ]χ⇒ [ϕ]χ
(Id)

[ϕ]ψ → [ϕ]χ, [ϕ]ψ ⇒ [ϕ]χ
(→⇒)

[ϕ]ψ → [ϕ]χ⇒ [ϕ](ψ → χ)
(⇒ []p)

⇒ ([ϕ]ψ → [ϕ]χ)→ [ϕ](ψ → χ)
(⇒→)

⇒ ([ϕ](ψ → χ)→ ([ϕ]ψ → [ϕ]χ)) ∧ (([ϕ]ψ → [ϕ]χ)→ [ϕ](ψ → χ))
(⇒ ∧)

.

The axiom ([]∨) can be derivable in G(X)+:

ϕ⇒ ϕ (Id) [ϕ]ψ ⇒ [ϕ]ψ ∨ [ϕ]χ
(Id)

[ϕ]χ⇒ [ϕ]ψ ∨ [ϕ]χ
(Id)

[ϕ](ψ ∨ χ), ϕ⇒ [ϕ]ψ ∨ [ϕ]χ
([]∨ ⇒)

[ϕ](ψ ∨ χ)⇒ ϕ→ [ϕ]ψ ∨ [ϕ]χ
(⇒→)

⇒ [ϕ](ψ ∨ χ)→ (ϕ→ [ϕ]ψ ∨ [ϕ]χ)
(⇒→)

ϕ⇒ ϕ (Id) [ϕ]ψ ∨ [ϕ]χ⇒ [ϕ]ψ ∨ [ϕ]χ
(Id)

ϕ→ [ϕ]ψ ∨ [ϕ]χ, ϕ⇒ [ϕ]ψ ∨ [ϕ]χ
(→⇒)

ϕ→ [ϕ]ψ ∨ [ϕ]χ⇒ [ϕ](ψ ∨ χ)
(⇒ []∨)

⇒ (ϕ→ [ϕ]ψ ∨ [ϕ]χ)→ [ϕ](ψ ∨ χ)
(⇒→)

⇒ ([ϕ](ψ ∨ χ)→ (ϕ→ [ϕ]ψ ∨ [ϕ]χ)) ∧ ((ϕ→ [ϕ]ψ ∨ [ϕ]χ)→ [ϕ](ψ ∨ χ))
(⇒ ∧)

.

4.3.1 Cut-Elimination

We show the cut-elimination theorem for G(X)+. The proof is different from Theorem

3.46, in that we use the complexity function for a formula, which is introduced in the

argument of the completeness proof, as a measure for cut formula, not the complexity

measure used in Theorem 3.46. First, we introduce a notion of “principal formula” as

in Definition 3.45. A principal formula is defined for each inference rule, except for the

axioms and (Cut) rule and is informally expressed as “a formula, on which the inference

rule acts.”

Definition 4.18. A principal formula of the structural rules, the propositional logical

rules, the rule (D ⇒), and the rules for public announcement operator is a formula

appearing in the lower sequent, which is not contained in Γ, Γ1, Γ2, or ∆. A principal

formula of the rules for DG operator other than (D ⇒) is every formula in the lower

sequent.

Theorem 4.19 (Cut-Elimination). Let X be any of IK, IKT, IK4, and IS4. Then, the

following holds: If `G(X)+ Γ⇒ ∆, then `G−(X)+ Γ⇒ ∆, where G−(X)+ denotes a system

“G(X)+ minus the cut rule”.

Proof. Following [24, Section 9.3] and [36, Section 2.2], we consider a system G∗(X)+, in

which the cut rule is replaced by the “extended” cut rule defined as:

Γ⇒ ϕn ϕm,Σ⇒ Θ
Γ,Σ⇒ Θ

(ECut)
,
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where ϕn denotes the multi-set of n-copies of ϕ and n = 0, 1 and m ≥ 0. Since (ECut)

is the same as (Cut) when we set n = m = 1, it is obvious that if `G(X)+ Γ ⇒ ∆, then

`G∗(X)+ Γ⇒ ∆, so it suffices to show that if `G∗(X)+ Γ⇒ ∆, then `G−(X)+ Γ⇒ ∆.

Suppose `G∗(X)+ Γ⇒ ∆ and fix one derivation for the sequent. To obtain an (ECut)-

free derivation of Γ⇒ ∆, it is enough to concentrate on a derivation whose root is derived

by (ECut) and which has no other application of (ECut). In what follows, let X be IK.

Let us suppose that D has the following structure:

L
Γ⇒ ϕn

(ruleL) R
ϕm,Σ⇒ Θ

(ruleR)

Γ,Σ⇒ Θ
(ECut)

,

where the derivations L and R has no application of (ECut) and ruleL and ruleR are

meta-variables for the name of rule applied there. We define c(D). c(D) := 0 if n = m = 0

and c(D) := c(ϕ) (the complexity of ϕ defined in Definition 4.12) otherwise. Let the

number of sequents in L and R be w(D). We show the lemma by double induction on

(c(D), w(D)). If n = 0 or m = 0, we can derive the root sequent of D without using

(ECut) by weakening rules. So, in what follows we assume n = 1 and m > 0. Then, it

is sufficient to consider the following four cases following [37, proof of Theorem 2.3], [24,

Section 9.3], and [36, Section 2.2]: 1

1. ruleL or ruleR is an axiom.

2. ruleL or ruleR is a structural rule.

3. ruleL or ruleR is a logical rule and a cut formula ϕ is not principal (in the sense

we have specified above) for that rule.

4. ruleL and ruleR are both logical rules (including (D)) for the same logical symbol

and a cut formula ϕ is principal for each rule.

We concentrate on the case where DG or [ϕ] is involved. Among the rules for public

announcement operator, the rules for [ϕ]p and [ϕ](ψ ∨ χ) are treated.

1In case 4, we assume the condition for both rule applications, because if the one of the two rule
applications does not satisfy the condition, the whole derivation should be categorized into one of the
rest cases.
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(Case 3) Consider the case where the logical rule is (⇒ []p). The derivation D has the

following structure.

L
Γ⇒ ϕ

(ruleL)

R′
ϕm,Σ, ψ ⇒ p

ϕm,Σ⇒ [ψ]p
(⇒ []p)

Γ,Σ⇒ [ψ]p
(ECut)

This can be transformed into the following derivation E :

L
Γ⇒ ϕ

(ruleL) R′
ϕm,Σ, ψ ⇒ p

Γ,Σ, ψ ⇒ p
(ECut)

Γ,Σ⇒ [ψ]p
(⇒ []p)

.

The subderivation E ′ whose root is Γ,Σ, ψ ⇒ p has no application of (ECut) except

the lowermost one, c(E ′) = c(D), and w(E ′) < w(D). Hence, by induction hypothesis,

there exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Replacing the

derivation E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent Γ,Σ⇒ [ψ]p.

Consider the case where the logical rule is ([]p⇒). If ruleL = ([]p⇒), the derivation

D has the following structure.

L1

Γ1 ⇒ ψ
L2

p,Γ2 ⇒ ϕ

Γ1,Γ2, [ψ]p⇒ ϕ
([]p⇒) R

ϕm,Σ⇒ Θ
(ruleR)

Γ1,Γ2, [ψ]p,Σ⇒ Θ
(ECut)

This can be transformed into the following derivation E :

L1

Γ1 ⇒ ψ

L2

p,Γ2 ⇒ ϕ
R

ϕm,Σ⇒ Θ
(ruleR)

p,Γ2,Σ⇒ Θ
(ECut)

Γ1,Γ2, [ψ]p,Σ⇒ Θ
([]p⇒)

.

The subderivation E ′ whose root is p,Γ2,Σ⇒ Θ has no application of (ECut) except

the lowermost one, c(E ′) = c(D), and w(E ′) < w(D). Hence, by induction hypothe-

sis, there exists an (ECut)-free derivation Ẽ ′ having the same root sequent. Replac-

ing the derivation E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for the sequent

Γ1,Γ2, [ψ]p,Σ⇒ Θ.

If ruleR = ([]p⇒), the derivation D has the following structure.

L
Γ⇒ ϕ

(ruleL)

R1

ϕm1 ,Σ1 ⇒ ψ
R2

p, ϕm2 ,Σ2 ⇒ Θ

ϕm, [ψ]p,Σ1,Σ2,⇒ Θ
([]p⇒)

Γ, [ψ]p,Σ1,Σ2 ⇒ Θ
(ECut)



91

Here, m = m1 +m2. This can be transformed into the following derivation E :

L
Γ⇒ ϕ

(ruleL)
R1

ϕm1 ,Σ1 ⇒ ψ

Γ,Σ1 ⇒ ψ
(ECut)

L
Γ⇒ ϕ

(ruleL)
R2

p, ϕm2 ,Σ2 ⇒ Θ
Γ, p,Σ2 ⇒ Θ

(ECut)

Γ,Γ, [ψ]p,Σ1,Σ2 ⇒ Θ
([]p⇒)

...
(c⇒)

Γ, [ψ]p,Σ1,Σ2 ⇒ Θ
(c⇒)

The subderivation E1 whose root is Γ,Σ1 ⇒ ψ has no application of (ECut) except

the lowermost one, c(E1) = c(D), and w(E1) < w(D). The subderivation E2 whose root is

Γ, p,Σ2 ⇒ Θ also satisfies the same condition. Hence, by induction hypothesis, there exist

(ECut)-free derivations Ẽ1 and Ẽ2 having the same root sequent as E1 and E2, respectively.

Replacing the derivation Ei by Ẽi in E (i = 1, 2), we obtain an (ECut)-free derivation for

the sequent Γ, [ψ]p,Σ1,Σ2 ⇒ Θ.

The case where the logical rule is (⇒ []∨) is is similar to the case for (⇒ []p), so we

skip it. Consider the case where the logical rule is ([]∨ ⇒). If ruleL = ([]∨ ⇒), the

derivation D has the following structure.

L1

Γ1 ⇒ ψ

L2

[ψ]χ,Γ2 ⇒ ϕ

L3

[ψ]ρ,Γ2 ⇒ ϕ

Γ1,Γ2, [ψ](χ ∨ ρ)⇒ ϕ
([]∨ ⇒) R

ϕm,Σ⇒ Θ
(ruleR)

Γ1,Γ2, [ψ](χ ∨ ρ),Σ⇒ Θ
(ECut)

This can be transformed into the following derivation E :

L1

Γ1 ⇒ ψ

L2

[ψ]χ,Γ2 ⇒ ϕ
R

ϕm,Σ⇒ Θ
(ruleR)

[ψ]χ,Γ2,Σ⇒ Θ
(ECut)

L3

[ψ]ρ,Γ2 ⇒ ϕ
R

ϕm,Σ⇒ Θ
(ruleR)

[ψ]ρ,Γ2,Σ⇒ Θ
(ECut)

Γ1,Γ2, [ψ](χ ∨ ρ),Σ⇒ Θ
([]∨ ⇒)

.

The subderivation E1 whose root is [ψ]χ,Γ2,Σ ⇒ Θ has no application of (ECut)

except the lowermost one, c(E1) = c(D), and w(E1) < w(D). The subderivation E2 whose

root is [ψ]ρ,Γ2,Σ⇒ Θ also satisfies the same condition. Hence, by induction hypothesis,

there exist (ECut)-free derivations Ẽ1 and Ẽ2 having the same root sequent as E1 and E2,

respectively. Replacing the derivation Ei by Ẽi in E (i = 1, 2), we obtain an (ECut)-free

derivation for the sequent Γ1,Γ2, [ψ](χ ∨ ρ),Σ⇒ Θ.

If ruleR = ([]∨ ⇒), the derivation D has the following structure.
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L
Γ⇒ ϕ

(ruleL)

R1

ϕm1 ,Σ1 ⇒ ψ

R2

[ψ]χ, ϕm2 ,Σ2 ⇒ Θ

R3

[ψ]ρ, ϕm2 ,Σ2 ⇒ Θ

ϕm, [ψ](χ ∨ ρ),Σ1,Σ2,⇒ Θ
([]∨ ⇒)

Γ, [ψ](χ ∨ ρ),Σ1,Σ2 ⇒ Θ
(ECut)

Here, m = m1 +m2. This can be transformed into the following derivation E :

L
Γ⇒ ϕ

(ruleL)
R1

ϕm1 ,Σ1 ⇒ ψ

Γ,Σ1 ⇒ ψ
(ECut)

L
Γ⇒ ϕ

(ruleL)
R2

[ψ]χ, ϕm2 ,Σ2 ⇒ Θ

Γ, [ψ]χ,Σ2 ⇒ Θ
(ECut)

L
Γ⇒ ϕ

(ruleL)
R3

[ψ]ρ, ϕm2 ,Σ2 ⇒ Θ

Γ, [ψ]ρ,Σ2 ⇒ Θ
(ECut)

Γ,Γ, [ψ](χ ∨ ρ),Σ1,Σ2 ⇒ Θ
([]∨ ⇒)

.

.

.

(c⇒)

Γ, [ψ](χ ∨ ρ),Σ1,Σ2 ⇒ Θ
(c⇒)

The subderivation E1 whose root is Γ,Σ1 ⇒ ψ has no application of (ECut) except the

lowermost one, c(E1) = c(D), and w(E1) < w(D). The subderivation E2 whose root is

Γ, [ψ]χ,Σ2 ⇒ Θ and The subderivation E3 whose root is Γ, [ψ]ρ,Σ2 ⇒ Θ also satisfy the

same condition. Hence, by induction hypothesis, there exists (ECut)-free derivation Ẽi
having the same root sequent as Ei (i = 1, 2, 3). Replacing the derivation Ei by Ẽi in E
(i = 1, 2, 3), we obtain an (ECut)-free derivation for the sequent Γ, [ψ](χ∨ρ),Σ1,Σ2 ⇒ Θ.

(Case 4) Consider the case where the cut formula is [ψ]p. The derivation D has the

following structure.

L′
Γ, ψ ⇒ p

Γ⇒ [ψ]p
(⇒ []p)

R1

([ψ]p)m1 ,Σ1 ⇒ ψ

R2

p, ([ψ]p)m2 ,Σ2 ⇒ Θ

([ψ]p)m,Σ1,Σ2 ⇒ Θ
([]p⇒)

Γ,Σ1,Σ2 ⇒ Θ
(ECut)

Here, m = m1 +m2 + 1. This can be transformed into the following derivation E :

L
Γ⇒ [ψ]p

R1

([ψ]p)m1 ,Σ1 ⇒ ψ

Γ,Σ1 ⇒ ψ
(ECut)

L′
Γ, ψ ⇒ p

L
Γ⇒ [ψ]p

R2

p, ([ψ]p)m2 ,Σ2 ⇒ Θ

Γ, p,Σ2 ⇒ Θ
(ECut)

Γ,Γ, ψ,Σ2 ⇒ Θ
(ECut)

Γ,Γ,Γ,Σ1,Σ2 ⇒ Θ
(ECut)

...

(c⇒)

Γ,Σ1,Σ2 ⇒ Θ
(c⇒)

The subderivation E1 whose root is Γ,Σ1 ⇒ ψ has no application of (ECut) except the

lowermost one, c(E1) = c(D), and w(E1) < w(D). Hence, by induction hypothesis, there

exists an (ECut)-free derivation Ẽ1 having the same root sequent. For the subderivation
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E2 whose root is Γ, p,Σ2 ⇒ Θ, we have an (ECut)-free derivation Ẽ2 having the same root

sequent, by the same argument as E1. Name E3, the derivation obtained by replacing the

derivation E2 by Ẽ2 in the subderivation whose root is Γ,Γ, ψ,Σ2 ⇒ Θ. The derivation

E3 has no application of (ECut) except the lowermost one and c(E3) < c(D) by item 1

of Lemma 4.13. Hence, by induction hypothesis, there exists an (ECut)-free derivation

Ẽ3 having the same root sequent. Name E4, the derivation inferring Γ,Γ,Γ,Σ1,Σ2 ⇒ Θ

from Ẽ1 and Ẽ3. We have an (ECut)-free derivation Ẽ4 having the same root sequent,

by the same argument as E3. Thus, we obtain an (ECut)-free derivation for the sequent

Γ,Σ1,Σ2 ⇒ Θ.

Consider the case where the cut formula is [ψ](χ ∨ ρ). The derivation D has the
following structure.

L′
Γ, ψ ⇒ [ψ]χ ∨ [ψ]ρ

Γ⇒ [ψ](χ ∨ ρ)
(⇒ []∨)

R1

([ψ](χ ∨ ρ))m1 ,Σ1 ⇒ ψ

R2

[ψ]χ, ([ψ](χ ∨ ρ))m2 ,Σ2 ⇒ Θ

R3

[ψ]ρ, ([ψ](χ ∨ ρ))m2 ,Σ2 ⇒ Θ

([ψ](χ ∨ ρ))m,Σ1,Σ2 ⇒ Θ
([]∨ ⇒)

Γ,Σ1,Σ2 ⇒ Θ
(ECut)

Here, m = m1 +m2 + 1. This can be transformed into the following derivation E :

E1

Γ,Σ1 ⇒ ψ
(ECut)

L′
Γ, ψ ⇒ [ψ]χ ∨ [ψ]ρ

E2

Γ, [ψ]χ,Σ2 ⇒ Θ
(ECut)

E3

Γ, [ψ]ρ,Σ2 ⇒ Θ
(ECut)

[ψ]χ ∨ [ψ]ρ,Γ,Σ2 ⇒ Θ
(∨ ⇒)

Γ,Γ, ψ,Σ2 ⇒ Θ
(ECut)

Γ,Γ,Γ,Σ1,Σ2 ⇒ Θ
(ECut)

...

(c⇒)

Γ,Σ1,Σ2 ⇒ Θ
(c⇒)

where E1 is the derivation

L
Γ⇒ [ψ](χ ∨ ρ)

R1

([ψ](χ ∨ ρ))m1 ,Σ1 ⇒ ψ

Γ,Σ1 ⇒ ψ
(ECut)

,

E2 is the derivation

L
Γ⇒ [ψ](χ ∨ ρ)

R2

[ψ]χ, ([ψ](χ ∨ ρ))m2 ,Σ2 ⇒ Θ

Γ, [ψ]χ,Σ2 ⇒ Θ
(ECut)

,

and E3 is the derivation

L
Γ⇒ [ψ](χ ∨ ρ)

R3

[ψ]ρ, ([ψ](χ ∨ ρ))m2 ,Σ2 ⇒ Θ

Γ, [ψ]ρ,Σ2 ⇒ Θ
(ECut)

.
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The subderivation E1 has no application of (ECut) except the lowermost one, c(E1) =

c(D), and w(E1) < w(D). Hence, by induction hypothesis, there exists an (ECut)-free

derivation Ẽ1 having the same root sequent. For the subderivation E2 and E3, we have

(ECut)-free derivations Ẽ2 and Ẽ3 having the same root sequent as E2 and E3, respectively,

by the same argument as E1. Name E4, the derivation obtained by replacing the derivations

E2 and E3 by Ẽ2 and Ẽ3, respectively, in the subderivation whose root is Γ,Γ, ψ,Σ2 ⇒ Θ.

The derivation E4 has no application of (ECut) except the lowermost one and c(E4) <

c(D) by items 1 and 5 of Lemma 4.13. Hence, by induction hypothesis, there exists an

(ECut)-free derivation Ẽ4 having the same root sequent. Name E5, the derivation inferring

Γ,Γ,Γ,Σ1,Σ2 ⇒ Θ from Ẽ1 and Ẽ4. We have an (ECut)-free derivation Ẽ5 having the same

root sequent, by the same argument as E4. Thus, we obtain an (ECut)-free derivation for

the sequent Γ,Σ1,Σ2 ⇒ Θ.

Consider the case where the cut formula is DGψ. The derivation D has the following

structure.

L′
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

R′
ψm, ψ1, . . . , ψm ⇒ χ (G ∪

⋃m
j=1Hj ⊆ H)

(DGψ)m, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ DHχ
(ECut)

The derivation D can be transformed into the following derivation E :

L′
ϕ1, . . . , ϕn ⇒ ψ

R′
ψm, ψ1, . . . , ψm ⇒ χ

ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ
(ECut)

(
⋃n
i=1Gi ∪

⋃m
j=1 Hj ⊆ H)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

.

The subderivation E ′ whose root sequent is ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ has no application

of (ECut) except the lowermost one and c(E ′) < c(D) by item 1 of Lemma 4.13. Hence,

by induction hypothesis, there exists an (ECut)-free derivation Ẽ ′ having the same root

sequent. Replacing the derivation E ′ by Ẽ ′ in E , we obtain an (ECut)-free derivation for

the sequent DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ.

4.3.2 Craig Interpolation Theorem

Now, we show Craig interpolation theorem for G(X)+ by the similar method to G(X).

Definition 4.20 (Partition). A partition for a sequent Γ ⇒ ∆ is defined as a tuple

〈Γ1; Γ2〉, such that Γ = Γ1,Γ2.

Definition 4.21. For a formula ϕ, Prop(ϕ) is defined as the set of all propositional
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variables appearing in ϕ. For a multiset Γ of formulas, Prop(Γ) is defined as
⋃
ϕ∈Γ Prop(ϕ).

Similarly, Agt(ϕ) is defined as the set of agents appearing in ϕ and Agt(Γ) as
⋃
ϕ∈Γ Agt(ϕ)

The following is a key lemma for Craig Interpolation Theorem.

Lemma 4.22. Let X be any of IK, IKT, IK4, and IS4. Suppose `G(X)+ Γ ⇒ ∆.

Then, for any partition 〈Γ1; Γ2〉 for the sequent Γ ⇒ ∆, there exists a formula ϕ called

“interpolant”, satisfying the following:

1. `G(X)+ Γ1 ⇒ ϕ and `G(X)+ ϕ,Γ2 ⇒ ∆.

2. Prop(ϕ) ⊆ Prop(Γ1) ∩ Prop(Γ2,∆).

3. Agt(ϕ) ⊆ Agt(Γ1) ∩ Agt(Γ2,∆).

Proof. We prove by induction on the structure of a derivation for Γ ⇒ ∆. Fix the

derivation and name it D. By Theorem 4.19, we can assume that D is cut-free. We only

concentrate on the cases involving public announcement operator. Among the rules for

public announcement operator, the rules for [ϕ]p, [ϕ](ψ∨χ), and [ϕ]DGψ are treated. For

the other cases, the reader is referred to Lemma 3.50.

Suppose D is of the form
D′

Γ1,Γ2, ϕ⇒ p

Γ1,Γ2 ⇒ [ϕ]p
(⇒ []p)

.

Fix the partition 〈Γ1; Γ2〉 for the sequent Γ1,Γ2 ⇒ [ϕ]p. As the induction hypothesis for

D′ with the partition 〈Γ1; Γ2, ϕ〉, we have `G(X)+ Γ1 ⇒ ψ and `G(X)+ ψ,Γ2, ϕ ⇒ p for

some formula ψ. The formula ψ is an interpolant for the sequent Γ1,Γ2 ⇒ [ϕ]p, too,

because we have the following derivation:

I.H.
ψ,Γ2, ϕ⇒ p

ψ,Γ2 ⇒ [ϕ]p
(⇒ []p)

.

The interpolant ψ also satisfies item 2, because Prop(ψ)
(I.H.)

⊆ Prop(Γ1) ∩ Prop(Γ2, ϕ, p) =

Prop(Γ1) ∩ Prop(Γ2, [ϕ]p). Item 3 is also similarly satisfied.

Suppose D is of the form

D1

Γa1 ,Γa2 ⇒ ϕ
D2

p,Γb1 ,Γb2 ⇒ ∆

Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]p⇒ ∆
([]p⇒)

There are two types of partition for the sequent Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]p ⇒ ∆ depending

on whether [ϕ]p belongs to the left or the right of a partition. First, fix the partition
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〈Γa1 ,Γb1 , [ϕ]p; Γa2 ,Γb2〉. As the induction hypothesis for D1 with the partition 〈Γa2 ; Γa1〉,
we have `G(X)+ Γa2 ⇒ ψ1 and `G(X)+ ψ1,Γa1 ⇒ ϕ for some formula ψ1. As the induction

hypothesis for D2 with the partition 〈p,Γb1 ; Γb2〉, we have `G(X)+ p,Γb1 ⇒ ψ2 and `G(X)+

ψ2,Γb2 ⇒ ∆ for some formula ψ2. The formula ψ1 → ψ2 is an interpolant for the sequent

Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]p⇒ ∆, because we have the following derivations:

I.H.
ψ1,Γa1 ⇒ ϕ

I.H.
p,Γb1 ⇒ ψ2

Γa1 ,Γb1 , [ϕ]p, ψ1 ⇒ ψ2
([]p⇒)

Γa1 ,Γb1 , [ϕ]p⇒ ψ1 → ψ2
(⇒→)

,

I.H.
Γa2 ⇒ ψ1

I.H.
ψ2,Γb2 ⇒ ∆

ψ1 → ψ2,Γa2 ,Γb2 ⇒ ∆
(→⇒)

We show the interpolant ψ1 → ψ2 satisfies item 2. First, Prop(ψ1)
(I.H.)

⊆ Prop(Γa2) ∩
Prop(Γa1 , ϕ) ⊆ Prop(Γa2 ,Γb2)∩Prop(Γa1 ,Γb1 , ϕ) ⊆ Prop(Γa1 ,Γb1 , [ϕ]p)∩Prop(Γa2 ,Γb2 ,∆).

Second, Prop(ψ2)
(I.H.)

⊆ Prop(p,Γb1)∩Prop(Γb2 ,∆) ⊆ Prop(p,Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 ,∆) ⊆
Prop(Γa1 ,Γb1 , [ϕ]p) ∩ Prop(Γa2 ,Γb2 ,∆). Thus, Prop(ψ1 → ψ2) = Prop(ψ1) ∪ Prop(ψ2) ⊆
Prop(Γa1 ,Γb1 , [ϕ]p) ∩ Prop(Γa2 ,Γb2 ,∆). Item 3 is also similarly satisfied.

Next, fix the partition 〈Γa1 ,Γb1 ; Γa2 ,Γb2 , [ϕ]p〉. As the induction hypothesis for D1

with the partition 〈Γa1 ; Γa2〉, we have `G(X)+ Γa1 ⇒ ψ1 and `G(X)+ ψ1,Γa2 ⇒ ϕ for some

formula ψ1. As the induction hypothesis for D2 with the partition 〈Γb1 ; p,Γb2〉, we have

`G(X)+ Γb1 ⇒ ψ2 and `G(X)+ ψ2, p,Γb2 ⇒ ∆ for some formula ψ2. The formula ψ1 ∧ ψ2 is

an interpolant for the sequent Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]p ⇒ ∆, because we have the following

derivations:
I.H.

Γa1 ⇒ ψ1

...
(w ⇒)

Γa1 ,Γb1 ⇒ ψ1
(w ⇒)

I.H.
Γb1 ⇒ ψ2

...
(w ⇒)

Γa1 ,Γb1 ⇒ ψ2
(w ⇒)

Γa1 ,Γb1 ⇒ ψ1 ∧ ψ2
(⇒ ∧)

I.H.
ψ1,Γa2 ⇒ ϕ

ψ1 ∧ ψ2,Γa2 ⇒ ϕ
(∧ ⇒1)

I.H.
p,Γb2 , ψ2 ⇒ ∆

p,Γb2 , ψ1 ∧ ψ2 ⇒ ∆
(∧ ⇒2)

ψ1 ∧ ψ2, ψ1 ∧ ψ2, [ϕ]p,Γa2 ,Γb2 ⇒ ∆
([]p⇒)

ψ1 ∧ ψ2, [ϕ]p,Γa2 ,Γb2 ⇒ ∆
(c⇒)

We show the interpolant ψ1 ∧ ψ2 satisfies item 2. First, Prop(ψ1)
(I.H.)

⊆ Prop(Γa1) ∩
Prop(Γa2 , ϕ) ⊆ Prop(Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 , ϕ) ⊆ Prop(Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 , [ϕ]p,∆).

Second, Prop(ψ2)
(I.H.)

⊆ Prop(Γb1)∩Prop(p,Γb2 ,∆) ⊆ Prop(Γa1 ,Γb1)∩Prop(p,Γa2 ,Γb2 ,∆) ⊆
Prop(Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 , [ϕ]p,∆). Thus, Prop(ψ1 ∧ ψ2) = Prop(ψ1) ∪ Prop(ψ2) ⊆
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Prop(Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 , [ϕ]p,∆). Item 3 is also similarly satisfied.

Suppose D is of the form

D′
Γ1,Γ2, ϕ⇒ [ϕ]ψ ∨ [ϕ]χ

Γ1,Γ2 ⇒ [ϕ](ψ ∨ χ)
(⇒ []∨)

.

Fix the partition 〈Γ1; Γ2〉 for the sequent Γ1,Γ2 ⇒ [ϕ](ψ∨χ). As the induction hypothesis

for D′ with the partition 〈Γ1; Γ2, ϕ〉, we have `G(X)+ Γ1 ⇒ ψ and `G(X)+ ψ,Γ2, ϕ ⇒
[ϕ]ψ∨ [ϕ]χ for some formula ψ. The formula ψ is an interpolant for the sequent Γ1,Γ2 ⇒
[ϕ](ψ ∨ χ), too, because we have the following derivation:

I.H.
ψ,Γ2, ϕ⇒ [ϕ]ψ ∨ [ϕ]χ

ψ,Γ2 ⇒ [ϕ](ψ ∨ χ)
(⇒ []∨)

.

The interpolant ψ also satisfies item 2, because Prop(ψ)
(I.H.)

⊆ Prop(Γ1)∩Prop(Γ2, ϕ, [ϕ]ψ∨
[ϕ]χ) = Prop(Γ1) ∩ Prop(Γ2, [ϕ](ψ ∨ χ)). Item 3 is also similarly satisfied.

Suppose D is of the form

D1

Γa1 ,Γa2 ⇒ ϕ

D2

[ϕ]ψ,Γb1 ,Γb2 ⇒ ∆

D3

[ϕ]χ,Γb1 ,Γb2 ⇒ ∆

Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ](ψ ∨ χ)⇒ ∆
([]∨ ⇒)

.

There are two types of partition for the sequent Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ](ψ∨χ)⇒ ∆ depending

on whether [ϕ](ψ∨χ) belongs to the left or the right of a partition. First, fix the partition

〈Γa1 ,Γb1 , [ϕ](ψ ∨ χ); Γa2 ,Γb2〉. As the induction hypothesis for D1 with the partition

〈Γa2 ; Γa1〉, we have `G(X)+ Γa2 ⇒ ρ1 and `G(X)+ ρ1,Γa1 ⇒ ϕ for some formula ρ1. As the

induction hypothesis for D2 with the partition 〈[ϕ]ψ,Γb1 ; Γb2〉, we have `G(X)+ [ϕ]ψ,Γb1 ⇒
ρ2 and `G(X)+ ρ2,Γb2 ⇒ ∆ for some formula ρ2. Similarly, we have `G(X)+ [ϕ]χ,Γb1 ⇒ ρ3

and `G(X)+ ρ3,Γb2 ⇒ ∆ for some formula ρ3, as the induction hypothesis for D3. The

formula ρ1 → ρ2 ∨ ρ3 is an interpolant for the sequent Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ](ψ ∨ χ) ⇒ ∆,

because we have the following derivations:

I.H.
ρ1,Γa1 ⇒ ϕ

I.H.
[ϕ]ψ,Γb1 ⇒ ρ2

[ϕ]ψ,Γb1 ⇒ ρ2 ∨ ρ3
(⇒ ∨1)

I.H.
[ϕ]χ,Γb1 ⇒ ρ3

[ϕ]χ,Γb1 ⇒ ρ2 ∨ ρ3
(⇒ ∨2)

Γa1 ,Γb1 , [ϕ](ψ ∨ χ), ρ1 ⇒ ρ2 ∨ ρ3
([]∨ ⇒)

Γa1 ,Γb1 , [ϕ](ψ ∨ χ)⇒ ρ1 → ρ2 ∨ ρ3
(⇒→)

,



98

I.H.
Γa2 ⇒ ρ1

I.H.
ρ2,Γb2 ⇒ ∆

I.H.
ρ3,Γb2 ⇒ ∆

ρ2 ∨ ρ3,Γb2 ⇒ ∆
(∨ ⇒)

ρ1 → ρ2 ∨ ρ3,Γa2 ,Γb2 ⇒ ∆
(→⇒)

We show the interpolant ρ1 → ρ2 ∨ ρ3 satisfies item 2. First, Prop(ρ1)
(I.H.)

⊆ Prop(Γa2) ∩
Prop(Γa1 , ϕ) ⊆ Prop(Γa2 ,Γb2)∩Prop(Γa1 ,Γb1 , ϕ) ⊆ Prop(Γa1 ,Γb1 , [ϕ](ψ∨χ))∩Prop(Γa2 ,Γb2 ,∆).

Second, Prop(ρ2)
(I.H.)

⊆ Prop([ϕ]ψ,Γb1)∩Prop(Γb2 ,∆) ⊆ Prop([ϕ]ψ,Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 ,∆) ⊆
Prop(Γa1 ,Γb1 , [ϕ](ψ∨χ))∩Prop(Γa2 ,Γb2 ,∆). Similarly, we have Prop(ρ3) ⊆ Prop(Γa1 ,Γb1 , [ϕ](ψ∨
χ)) ∩ Prop(Γa2 ,Γb2 ,∆). Thus, Prop(ρ1 → ρ2 ∨ ρ3) = Prop(ρ1) ∪ Prop(ρ2) ∪ Prop(ρ3) ⊆
Prop(Γa1 ,Γb1 , [ϕ](ψ ∨ χ)) ∩ Prop(Γa2 ,Γb2 ,∆). Item 3 is also similarly satisfied.

Next, fix the partition 〈Γa1 ,Γb1 ; Γa2 ,Γb2 , [ϕ](ψ ∨ χ)〉. As the induction hypothesis for

D1 with the partition 〈Γa1 ; Γa2〉, we have `G(X)+ Γa1 ⇒ ρ1 and `G(X)+ ρ1,Γa2 ⇒ ϕ for

some formula ρ1. As the induction hypothesis for D2 with the partition 〈Γb1 ; [ϕ]ψ,Γb2〉,
we have `G(X)+ Γb1 ⇒ ρ2 and `G(X)+ ρ2, [ϕ]ψ,Γb2 ⇒ ∆ for some formula ρ2. Similarly,

we have `G(X)+ Γb1 ⇒ ρ3 and `G(X)+ ρ3, [ϕ]χ,Γb2 ⇒ ∆ for some formula ρ3, as the

induction hypothesis for D3. The formula ρ1 ∧ (ρ2 ∧ ρ3) is an interpolant for the sequent

Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ](ψ ∨ χ)⇒ ∆, because we have the following derivations:

I.H.
Γa1 ⇒ ρ1

...
(w ⇒)

Γa1 ,Γb1 ⇒ ρ1
(w ⇒)

I.H.
Γb1 ⇒ ρ2

...
(w ⇒)

Γa1 ,Γb1 ⇒ ρ2
(w ⇒)

I.H.
Γb1 ⇒ ρ3

...
(w ⇒)

Γa1 ,Γb1 ⇒ ρ3
(w ⇒)

Γa1 ,Γb1 ⇒ ρ2 ∧ ρ3
(⇒ ∧)

Γa1 ,Γb1 ⇒ ρ1 ∧ (ρ2 ∧ ρ3)
(⇒ ∧)

I.H.
ρ1,Γa2

⇒ ϕ

ρ1 ∧ (ρ2 ∧ ρ3),Γa2
⇒ ϕ

(∧ ⇒1)

I.H.
[ϕ]ψ,Γb2 , ρ2 ⇒ ∆

[ϕ]ψ,Γb2 , ρ2 ∧ ρ3 ⇒ ∆
(∧ ⇒1)

[ϕ]ψ,Γb2 , ρ1 ∧ (ρ2 ∧ ρ3)⇒ ∆
(∧ ⇒2)

I.H.
[ϕ]χ,Γb2 , ρ3 ⇒ ∆

[ϕ]χ,Γb2 , ρ2 ∧ ρ3 ⇒ ∆
(∧ ⇒2)

[ϕ]χ,Γb2 , ρ1 ∧ (ρ2 ∧ ρ3)⇒ ∆
(∧ ⇒2)

ρ1 ∧ (ρ2 ∧ ρ3), ρ1 ∧ (ρ2 ∧ ρ3), [ϕ](ψ ∨ χ),Γa2
,Γb2 ⇒ ∆

([]∨ ⇒)

ρ1 ∧ (ρ2 ∧ ρ3), [ϕ](ψ ∨ χ),Γa2 ,Γb2 ⇒ ∆
(c⇒)

We show the interpolant ρ1 ∧ (ρ2 ∧ ρ3) satisfies item 2. First, Prop(ρ1)
(I.H.)

⊆ Prop(Γa1) ∩
Prop(Γa2 , ϕ) ⊆ Prop(Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 , ϕ) ⊆ Prop(Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 , [ϕ](ψ ∨

χ),∆). Second, Prop(ρ2)
(I.H.)

⊆ Prop(Γb1) ∩ Prop([ϕ]ψ,Γb2 ,∆) ⊆
Prop(Γa1 ,Γb1) ∩ Prop([ϕ]ψ,Γa2 ,Γb2 ,∆) ⊆ Prop(Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 , [ϕ](ψ ∨ χ),∆).

Similarly, we have Prop(ρ3) ⊆ Prop(Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 , [ϕ](ψ∨χ),∆). Thus, Prop(ρ1∧
(ρ2∧ρ3)) = Prop(ρ1)∪Prop(ρ2)∪Prop(ρ3) ⊆ Prop(Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 , [ϕ](ψ∨χ),∆).

Item 3 is also similarly satisfied.
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Suppose D is of the form

D′
Γ1,Γ2, ϕ⇒ DG[ϕ]ψ

Γ1,Γ2 ⇒ [ϕ]DGψ
(⇒ []D)

.

Fix the partition 〈Γ1; Γ2〉 for the sequent Γ1,Γ2 ⇒ [ϕ]DGψ. As the induction hypothesis

forD′ with the partition 〈Γ1; Γ2, ϕ〉, we have `G(X)+ Γ1 ⇒ χ and `G(X)+ χ,Γ2, ϕ⇒ DG[ϕ]ψ

for some formula χ. The formula χ is an interpolant for the sequent Γ1,Γ2 ⇒ [ϕ]DGψ,

too, because we have the following derivation:

I.H.
χ,Γ2, ϕ⇒ DG[ϕ]ψ

χ,Γ2 ⇒ [ϕ]DGψ
(⇒ []D)

.

The interpolant χ also satisfies item 2, because Prop(χ)
(I.H.)

⊆ Prop(Γ1)∩Prop(Γ2, ϕ,DG[ϕ]ψ) =

Prop(Γ1) ∩ Prop(Γ2, DG[ϕ]ψ) = Prop(Γ1) ∩ Prop(Γ2, [ϕ]DGψ). Since Agt(DG[ϕ]ψ) =

Agt([ϕ]DGψ) = G ∪ Agt(ϕ) ∪ Agt(ψ), item 3 is also similarly satisfied.

Suppose D is of the form

D1

Γa1 ,Γa2 ⇒ ϕ

D2

DG[ϕ]ψ,Γb1 ,Γb2 ⇒ ∆

Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]DGψ ⇒ ∆
([]D ⇒)

There are two types of partition for the sequent Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]DGψ ⇒ ∆ depend-

ing on whether [ϕ]DGψ belongs to the left or the right of a partition. First, fix the

partition 〈Γa1 ,Γb1 , [ϕ]DGψ; Γa2 ,Γb2〉. As the induction hypothesis for D1 with the par-

tition 〈Γa2 ; Γa1〉, we have `G(X)+ Γa2 ⇒ ρ1 and `G(X)+ ρ1,Γa1 ⇒ ϕ for some formula

ρ1. As the induction hypothesis for D2 with the partition 〈DG[ϕ]ψ,Γb1 ; Γb2〉, we have

`G(X)+ DG[ϕ]ψ,Γb1 ⇒ ρ2 and `G(X)+ ρ2,Γb2 ⇒ ∆ for some formula ρ2. The formula

ρ1 → ρ2 is an interpolant for the sequent Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]DGψ ⇒ ∆, because we have

the following derivations:

I.H.
ρ1,Γa1 ⇒ ϕ

I.H.
DG[ϕ]ψ,Γb1 ⇒ ρ2

Γa1 ,Γb1 , [ϕ]DGψ, ρ1 ⇒ ρ2
([]D ⇒)

Γa1 ,Γb1 , [ϕ]DGψ ⇒ ρ1 → ρ2
(⇒→)

I.H.
Γa2 ⇒ ρ1

I.H.
ρ2,Γb2 ⇒ ∆

ρ1 → ρ2,Γa2 ,Γb2 ⇒ ∆
(→⇒)

We show the interpolant ρ1 → ρ2 satisfies item 2. First, Prop(ρ1)
(I.H.)

⊆ Prop(Γa2) ∩
Prop(Γa1 , ϕ) ⊆ Prop(Γa2 ,Γb2)∩Prop(Γa1 ,Γb1 , ϕ) ⊆ Prop(Γa1 ,Γb1 , [ϕ]DGψ)∩Prop(Γa2 ,Γb2 ,∆).
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Second, Prop(ρ2)
(I.H.)

⊆ Prop(DG[ϕ]ψ,Γb1) ∩ Prop(Γb2 ,∆) ⊆
Prop(DG[ϕ]ψ,Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 ,∆) = Prop(Γa1 ,Γb1 , [ϕ]DGψ) ∩ Prop(Γa2 ,Γb2 ,∆).

Thus, Prop(ρ1 → ρ2) = Prop(ρ1) ∪ Prop(ρ2) ⊆ Prop(Γa1 ,Γb1 , [ϕ]DGψ) ∩ Prop(Γa2 ,Γb2 ,∆).

Item 3 is also similarly satisfied.

Next, fix the partition 〈Γa1 ,Γb1 ; Γa2 ,Γb2 , [ϕ]DGψ〉. As the induction hypothesis for D1

with the partition 〈Γa1 ; Γa2〉, we have `G(X)+ Γa1 ⇒ ρ1 and `G(X)+ ρ1,Γa2 ⇒ ϕ for some

formula ρ1. As the induction hypothesis for D2 with the partition 〈Γb1 ;DG[ϕ]ψ,Γb2〉, we

have `G(X)+ Γb1 ⇒ ρ2 and `G(X)+ ρ2, DG[ϕ]ψ,Γb2 ⇒ ∆ for some formula ρ2. The formula

ρ1 ∧ ρ2 is an interpolant for the sequent Γa1 ,Γa2 ,Γb1 ,Γb2 , [ϕ]DGψ ⇒ ∆, because we have

the following derivations:

I.H.
Γa1 ⇒ ρ1

...
(w ⇒)

Γa1 ,Γb1 ⇒ ρ1
(w ⇒)

I.H.
Γb1 ⇒ ρ2

...
(w ⇒)

Γa1 ,Γb1 ⇒ ρ2
(w ⇒)

Γa1 ,Γb1 ⇒ ρ1 ∧ ρ2
(⇒ ∧)

I.H.
ρ1,Γa2 ⇒ ϕ

ρ1 ∧ ρ2,Γa2 ⇒ ϕ
(∧ ⇒1)

I.H.
DG[ϕ]ψ,Γb2 , ρ2 ⇒ ∆

DG[ϕ]ψ,Γb2 , ρ1 ∧ ρ2 ⇒ ∆
(∧ ⇒2)

ρ1 ∧ ρ2, ρ1 ∧ ρ2, [ϕ]DGψ,Γa2 ,Γb2 ⇒ ∆
([]D ⇒)

ρ1 ∧ ρ2, [ϕ]DGψ,Γa2 ,Γb2 ⇒ ∆
(c⇒)

We show the interpolant ρ1 ∧ ρ2 satisfies item 2. First, Prop(ρ1)
(I.H.)

⊆ Prop(Γa1) ∩
Prop(Γa2 , ϕ) ⊆ Prop(Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 , ϕ) ⊆ Prop(Γa1 ,Γb1)∩Prop(Γa2 ,Γb2 , [ϕ]DGψ,∆).

Second, Prop(ρ2)
(I.H.)

⊆ Prop(Γb1) ∩ Prop(DG[ϕ]ψ,Γb2 ,∆) ⊆
Prop(Γa1 ,Γb1) ∩ Prop(DG[ϕ]ψ,Γa2 ,Γb2 ,∆) = Prop(Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 , [ϕ]DGψ,∆).

Thus, Prop(ρ1 ∧ ρ2) = Prop(ρ1) ∪ Prop(ρ2) ⊆ Prop(Γa1 ,Γb1) ∩ Prop(Γa2 ,Γb2 , [ϕ]DGψ,∆).

Item 3 is also similarly satisfied.

Theorem 4.23 (Craig Interpolation Theorem). Let X be any of IK, IKT, IK4, and IS4.

Given that `G(X)+ ϕ⇒ ψ, there exists a formula χ satisfying the following conditions:

1. `G(X)+ ϕ⇒ χ and `G(X)+ χ⇒ ψ.

2. Prop(χ) ⊆ Prop(ϕ) ∩ Prop(ψ).

3. Agt(χ) ⊆ Agt(ϕ) ∩ Agt(ψ).

We note that not only the condition for propositional variables but also the condition

for agents can be satisfied.
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Proof. When we set Γ := ϕ and ∆ := ψ, and take a partition 〈Γ;∅〉, Lemma 4.22 proves

Craig Interpolation Theorem.
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Chapter 5

Conclusion

5.1 Conclusion of Thesis

In Chapter 2, we propose Gentzen-style sequent calculi G(KD), G(KTD),G(K4D), G(S4D),

and G(S5D) for multiagent epistemic propositional logics with distributed knowledge op-

erators, parameterized by groups, which are reasonable generalization of sequent calculi

for basic epistemic (modal) logic. We show the equipollence of the sequent calculi to the

known Hilbert systems (Theorem 2.3) and prove the cut-elimination theorem for G(KD),

G(KTD),G(K4D), and G(S4D) (Theorem 2.4). Using a method described in [26], Craig

interpolation theorem is also established for G(KD), G(KTD),G(K4D), and G(S4D), in

which not only condition of propositional variables but also that of agents is taken into

account (Theorem 2.9).

In Chapter 3, we develop intuitionistic K, KT, KD, K4, K4D, and S4 with dis-

tributed knowledge operator, parameterized by group G, based on [23]. We show the se-

mantic completeness of the Hilbert systems H(IK), H(IKT), H(IKD), H(IK4), H(IK4D),

and H(IS4) (Theorem 3.11), where we adopt a more standard method via the concept of

“pseudo-model” and “tree unraveling” than [23]. Moreover, we also show the semantic

completeness with respect to more restricted classes of Kripke frames than the ordinary

one, which are characterized by the notion of ‘stability’ (Definition 3.2, Theorem 3.12).

This is because Kripke frame should be stable in order for the intuitionistic public an-

nouncement logic with distributed knowledge introduced in Chapter 4 to be sound. To

show this, first we prove the strong completeness with respect to the suitable class of

frames including nonstable ones (Theorem 3.11) by constructing a model called “tree

unraveling”. Then, we make the tree unraveling model stable by the operation called sta-

bilization (Definition 3.39). It is noted that the operation of stabilization is compatible

with tree unraveling by certain property of it (Proposition 3.42). We also propose cut-free
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sequent calculi G(IK), G(IKT), G(IKD), G(IK4), G(IK4D), and G(IS4) for our logics

(Theorem 3.44, Theorem 3.46), based on the idea introduced in Chapter 2 and prove

Craig interpolation theorem (Theorem 3.51) by Maehara’s method [26, 35]. In addition,

we establish decidability (Theorem 3.57) of the sequent calculi by the standard argument

[11, 12] on a cut-free derivation of a sequent, while [23] does not show it for their Hilbert

systems.

In Chapter 4, we develop intuitionistic public announcement logics with distributed

knowledge based on the logics developed in Chapter 3. We expand the logics developed

in Chapter 3 except the ones having the axiom (D) with a public announcement opera-

tor to obtain H(IK)+, H(IKT)+, H(IK4)+, and H(IS4)+ and prove its semantic strong

completeness (Theorem 4.16) by a standard argument using reduction axiom [59]. Note

that a reduction axiom for the distributed knowledge is not sound for the class of all

frames, which are defined to enjoy the condition 6;Ra ⊆ Ra. This means that we need

to restrict our attention to a subclass of frames, called a class of stable frames. We also

develop sequent calculi G(IK)+, G(IKT)+, G(IK4)+, and G(IS4)+ of the logics by natu-

rally transforming the reduction axioms into inference rules and prove the cut-elimination

theorem (Theorem 4.19) and Craig interpolation theorem (Theorem 4.23). The inductive

proof of the cut-elimination theorem is made possible by using the complexity function

(Definition 4.12) for a formula, which is introduced in the argument of the complete-

ness proof, as a measure for cut formula, not the ordinary complexity measure used in

cut-elimination theorem for other logics.

5.2 Further Direction

We mention possible directions of further research of the work in Chapter 2. First, we

may provide sequent calculi KDD, K4DD or KD45D to establish the cut-elimination and

Craig interpolation theorems. Second, we may establish the subformula property for S5D

along the line of [51, 52], which proves the property on a sequent calculus for S5 though

the calculus is not cut-free. We note that even if the sequent calculus for S5 is not cut-free

but still we can apply Maehara method to establish Craig interpolation theorem (cf [35]).

Third, it is interesting to see if we can construct a cut-free sequent calculus for S5D on

the basis of one of the known cut-free calculi for S5 (with label or with the notion of

hypersequent). Fourth, we may check what follows from Craig interpolation theorem. It

is known that Craig interpolation theorem entails Beth definability theorem or Robinson

consistency theorem in many systems. It is interesting to see whether these hold for our

logics. Finally, we may establish completeness results on epistemic logics with distributed
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knowledge other than the ones mentioned in Fact 2.1 (if it has not been done).

Next, we mention possible directions of further research of the work in Chapters 3

and 4. The first direction is to simplify our semantic completeness argument of H(X) via

a similar method given in [62] for classical epistemic logic with distributed knowledge.

One of the merits of the method is that the notion of pseudo- (or pre-) model is not

necessary. The second direction is to add S5-type axioms to our intuitionistic epistemic

logic with distributed knowledge. Since Ono [34] showed that there are at least four

distinct S5-type axioms over the intuitionistic modal logic S4, it would be interesting to

study the corresponding S5-type axioms in our setting. The third direction is to expand

our syntax with the common knowledge operator (cf. [59]). This amounts to investigating

the intuitionistic counterpart of [62]. The final direction is to consider another dynamic

expansions of our syntax. In order to formalize changes of agents’ constructive knowledge

caused by communication among a group, we may add resolution operators [1].
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