

HOKKAIDO UNIVERSITY

Title	Extraction of chondroitin sulfate and type II collagen from sturgeon (Acipenser gueldenstaedti) notochord and characterization of their hybrid fibrils
Author(s)	Meng, Dawei; Li, Wen; Leng, Xiaoqian; Takagi, Yasuaki; Dai, Zhiyuan; Du, Hao; Wei, Qiwei
Citation	Process Biochemistry, 124, 180-188 https://doi.org/10.1016/j.procbio.2022.11.026
Issue Date	2023-01
Doc URL	http://hdl.handle.net/2115/91040
Rights	© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	Process Biochemistry_Vol.124.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

\perp DAMACHON OF CHONGEORD SUBJECTION (V) \downarrow		Extraction of	cnonarolun	sunate and	type II	conagen	ILOII
--	--	---------------	------------	------------	---------	---------	-------

2 sturgeon (Acipenser gueldenstaedti) notochord and

3 characterization of their hybrid fibrils

4 Dawei Meng^a*, Wen Li^b, Xiaoqian Leng^c, Yasuaki Takagi^d, Zhiyuan Dai^a, Hao Du^c,

5 Qiwei Wei^c

- 6 a Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province
- 7 Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang
- 8 Gongshang University, Hangzhou 310012, China
- 9 b Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho,
- 10 Hakodate, Hokkaido 041-8611, Japan
- 11 *c Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture*
- 12 and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese academy of
- 13 Fishery Sciences, Wuhan 430223, China
- 14 *d* Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate,
- 15 Hokkaido 041-8611, Japan
- 16
- 17 Corresponding author at: Zhejiang Province Joint Key Laboratory of Aquatic Products
- 18 Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012,
- 19 China. E-mail addresses: <u>dawei@mail.zjgsu.edu.cn</u> (D. Meng)

20

21

22

1. Introduction

24	Chondroitin sulfate (CS) and type II collagen (Col II) are the two major
25	biological macromolecules of the cartilage matrix [1, 2]. They form a stable fibrous
26	structure, which contributes to the strength against abrasive force during joint
27	movement in vivo [3]. Both CS and undenatured Col II, extracted from animal
28	cartilaginous tissues, are widely applied in pharmaceutical and biomedical materials
29	and nutraceuticals industries. The CSs extracted from animal tissues have various
30	biological activities in vitro, including anti-viral, anticoagulant, anti-inflammatory,
31	and antioxidant activities [4], [5]. Meanwhile, undenatured Col II, which maintained
32	triple helical structure, could relieve osteoarthritis [6], [7]. In addition, due to their
33	special structures and biological characteristics, CS and undenatured collagens are
34	often used as the cell scaffold materials in tissue engineering [8].
35	Currently, commercially available CS and Col II are mainly derived from porcine
36	throat, bovine trachea, chicken clavicle and shark cartilage [9], [10]. However,
37	outbreaks of zoonoses, such as bovine spongiform encephalopathy, swine fever and
38	avian influenza, have raised concerns about the products of terrestrial origin [11]. In
39	addition, religious beliefs restrict the use of porcine sources, and shark catches are
40	decreasing year by year [11], [12]. Therefore, alternative CS and Col II from fish
41	tissues have attracted increasing attention. The current researches reported the
42	cartilages of fishes such as skate fish, lumpsucker fish, rabbit fish, sturgeon are good
43	sustainable sources of CS and Col II [13], [14], [15]. However, existing researches
44	were all about the extraction of one certain substance from fish cartilage-related

45	tissues [16], [17]. Shen et al. reported the co-production of CS and low molecular
46	weight peptides in one process using the hot-pressure extraction technique [18]. Many
47	researchers have focused on collagen peptides because of their functional activities.
48	However, as a biomaterial, the unique macromolecular and structural properties of
49	undenatured collagen could not be replaced by collagen peptides. So far, there was
50	still no method to simultaneously obtain both CS and undenatured Col II in one
51	extraction process. It meant that one or more valuable macromolecular substances
52	would be lost during the extraction of CS or undenatured Col II, resulting in
53	incomplete utilization of fish body and serious waste of resources.
54	Protease digestion extraction is the most common procedure for extracting CS
55	[14], [15]. However, it is difficult to extract with undenatured collagen because
56	protease digestion destroys the secondary structure of collagen and hydrolyzes
57	collagen into peptides. In terms of the traditional CS extraction procedures, alkaline
58	treatment is a common method to breakdown the covalent connection between CS and
59	core protein [19]. Meanwhile, low-temperature alkaline pretreatment is widely used to
60	remove non-collagenous substances during collagen extraction [17]. Our recent study
61	reported that, under certain condition, alkaline treatment increased the extraction
62	efficiency of sturgeon notochord Col II and showed no effect on triple helical
63	structure of Col II, but the extraction and structure properties of notochord CS were
64	not addressed [19]. Based on previous studies, we hypothesis that it is possible to
65	extract both CS and undenatured Col II using alkaline treatment. In addition, further
66	exploration of the interaction between CS and Col II will facilitate the application of

67	sturgeon CS and Col II in biomedical materials. To our knowledge, no studies discuss
68	the in vitro interaction of CS and Col II in the sturgeon notochord.

69	The objectives of this study were to develop a new method for the simultaneous
70	extraction of CS and undenatured Col II from sturgeon notochord, furthermore, to
71	clarify the interaction between CS and Col II fibrils. Firstly, we isolated CS and
72	undenatured Col II from notochord tissue using low-temperature alkaline treatment
73	and then extracted CS and undenatured Col II, respectively. Secondly, we analyzed
74	their structural properties using spectroscopy methods. Finally, we discussed the
75	effects of CS on Col II fibril, including the speed and degree of fibril formation, fibril
76	morphology, and antioxidant activity of fibril membranes.
77	2. Materials and methods
78	2.1 Materials
79	Sturgeon (Acipenser gueldenstaedtii) notochord was obtained from the Sturgeon

80 Biological Technology Co. Ltd. (Xinchang county, Zhejiang province, China). The

81 notochord was kept in dry ice to be transported to the laboratory. The internal

82 semisolid of notochord tube was removed and then the notochord sheath was

83 lyophilized in a freeze dryer (FreeZone 2.5 L, American Labconco Co., Ltd., Kansas

84 City, USA). The dry notochord sheath was stored at -30 °C until use.

85 2.2 Alkaline treatment of notochord

86 Notochord sheath was cut into small pieces (approximately 0.2×0.2 cm) for CS

87 and undenatured Col II extraction. The tissues were continuously stirred in a solution

of 0.1 M NaOH for 24 h at 4 °C, with a sample: solution ratio of 1: 50 (dry weight,

89	w/v, g/mL; two solution-changes). After alkaline treatment, the mixtures were
90	centrifuged at 10,000 \times g for 30 min at 4 °C (Sorvall LYNX4000, Thermo fisher
91	scientific, Waltham, USA). The supernatant and precipitate were used for CS and
92	undenatured Col II extraction, respectively. To discuss the effects of alkaline
93	treatment time and NaOH concentration on the yields of CS and Col II, the alkaline
94	treatment time (12, 24, and 48 h) and NaOH concentration (0.01, and 0.1 M) were
95	used to treat notochord tissue, respectively.
96	2.3 Isolation and purification of CS
97	The alkaline treated supernatant was neutralized to pH 8.0 with 3 M HCl.
98	Enzymatic hydrolysis was achieved by the addition of papain (EC 3.4.23.1, 1:10,000,
99	Solarbio Science&Technology Co, Ltd, BeiJing, China) with a ratio of papain :
100	solution 1:5000 (w/v, g/mL). The reaction was kept at 50 $^{\circ}$ C for 4 h under continuous
101	stirring. The reaction was then terminated by boiling for 10 min. The crude CS was
102	precipitated by the addition of 3 volumes of ethanol at 21 °C for 12 h. The precipitate
103	was collected by centrifugation at 10,000 \times g for 30 min and dried at 60 °C until
104	constant weight.
105	The crude CS was dissolved in 20 mM Tris-HCl buffer (pH 8.0) containing 50
106	mM NaCl. The solution was applied to a column (1.5 cm \times 7 cm) packed with
107	UNOsphere Q strong anion-exchange media (Bio-Rad Laboratories, Inc., Hercules,
108	CA, USA) and equilibrated in 20 mM Tris-HCl and 50 mM NaCl. The crude CS was
109	eluted with a linear gradient of NaCl (50 mM to 2 M in 90 min) in 20 mM Tris-HCl
110	using Biologic LP system (Bio-Rad Laboratories, Inc, Hercules, CA, USA) at flow

111	rate of 1 mL/min. The eluate solution was collected in each 5 min. Three volumes of
112	ethanol were added into collection tube to purify CS at 21 °C for 12 h. The precipitate
113	was collected and re-dissolved in deionized water, and then dialyzed against 50 times
114	volume of deionized water (two solution-changes) using a 200-Da dialysis membrane
115	to remove NaCl at 21°C for 12 h. Finally, the dialysis fluid was lyophilized and stored
116	at -30 °C until used. The percentage of dry weight of CS extracted in comparison with
117	the dry weight of the initial tissues was calculated as the CS yield. Experiments were
118	conducted for 3 times, and the data were expressed as means \pm standard errors (SE).
119	2.4 Isolation and purification of Col II
120	The precipitate obtained from section 2.2 was used for undenatured Col II
121	extraction. Extraction progress performed according to the method of Meng et al. [19].
122	The precipitate was washed to neutral with cold deionized water, and then
123	continuously stirred in a solution of HCl (pH 2.0) containing 0.5% (w/v) porcine
124	gastric mucosa pepsin (1:10,000., Solarbio Science & Technology Co, Ltd., BeiJing.,
125	China) at a sample (dry weight based) / solvent solution of 1:100 (w/v) for 24 h at
126	4 °C (two solution changes). The mixture was centrifuged at 10,000 g for 30 min
127	(Sorvall LYNX4000., Thermo fisher scientific., Waltham, USA) to obtain the
128	supernatants. The supernatant was precipitated by adding NaCl to a final
129	concentration of 1 M. The precipitate was redissolved by a small amount of HCl (pH
130	2.0) at 4 °C. After redissolving, the purified collagen was dialyzed against 50 volumes
131	of distilled water at 4 °C for 24 h with two changes of water. The dialysate was
132	lyophilized using a freeze dryer (FreeZone 2.5 L, American Labconco Co., Ltd.,

133	Kansas City, USA). The percentage of dry weight of collagen in comparison with dry
134	weight of the initial tissues was calculated as the collagen yield. Experiments were
135	conducted for 3 times, and the data were expressed as means \pm standard errors (SE).
136	2.5 Determination of purity and molecular weight of CS and undenatured Col II
137	2.5.1 Purity and molecular weight distribution of CS
138	The purity and average molecular weight of CS was analyzed by Gel permeation
139	chromatography/size-exclusion chromatography (GPC/SEC). An Agilent 1260
140	Infinity II Multi-detector GPC/SEC system (Agilient Technologies., CA, USA) was
141	coupled with a refractive index (RI) detector and a multi-angle laser light scattering
142	(MALLS, Wyatt Dawn Heleos-II., USA). Separation was performed using a Agilent
143	PL aquagel-OH Mixed-H column (8 $\mu m,7.5$ mm \times 300 mm) and was eluted with 0.1
144	M NaNO ₃ at 1.0 mL/min (45 °C). The CS was prepared at a concentration of 1
145	mg/mL using deionized water and the injection volume was 50 μ L. The average
146	molecular weight calculations were performed by Agilent GPC/SEC software
147	(Agilient Technologies, CA, USA).
148	2.5.2 SDS-PAGE of Col II
149	SDS-PAGE was performed according to the method of Laemmli. [20]. The
150	lyophilized Col II was dissolved in diluted HCl (pH 2.0) at a concentration of 1
151	mg/mL. The Col II were mixed at a ratio of $1:1$ (v/v) with buffer (0.5 M Tris-HCl
152	buffer, pH 6.8, with 4% SDS and 20% glycerol) containing 10% β -mercaptoethanol.
153	The sample solution was boiled for 3 min. Ten micrograms of sample solution were
154	loaded onto each lane. Electrophoresis was performed at 15 mA for the stacking gel,

- and 20 mA for the 8% running gel. After electrophoresis, the gel was stained for 20
- 156 min with a 0.1% Coomassie Brilliant Blue R250 solution. Then, the gel de-stained
- 157 with a mixture of 20% methanol, 2.5% glycerin, and 5% acetic acid.
- 158 2.6 Structure characteristics of CS and Col II
- 159 2.6.1 UV spectra of CS and Col II
- 160 The CS and Col II samples were prepared as a 1 mg/mL solution with deionized
- 161 water and dilute HCl (pH:2.0), respectively. The UV spectra were recorded in the
- 162 wavelength range from 190 to 400 nm (Evolution 60 s, Thermo fisher scientific,
- 163 Waltham, USA). Deionized water was used as blank control.
- 164 2.6.2 FTIR of CS and Col II
- 165 FTIR spectroscopy of CS and Col II samples were recorded with an FTIR
- 166 spectrophotometer (Nicolet iS10, Thermo Scientific, Madison, USA). The CS and Col
- 167 II powers were ground together with potassium bromide (w/w 1:200), respectively,
- and then pressed into a 1 mm pellet for measurement in the range of 500-4000 cm⁻¹.

169 The potassium bromide powder was used as the background.

- 170 2.6.3 NMR of CS
- ¹H- and ¹³C-NMR spectra of CS were recorded with a Bruker Avance 600 (Karl-
- 172 scrube, Germany) operating at 600 MHz. The lyophilized sample was dissolved in
- 173 D₂O at a 30 mg/mL concentration and the spectra were recorded at 298 K. The
- 174 chemical shifts (d, ppm) were quoted with respect to external sodium 4, 4-dimethyl-4-
- silapentane-1-sulfonate (0.0 ppm).
- 176 2.6.4 Disaccharide composition of CS

177	CS was dissolved in Tris-acetate buffer (50 mM Tris and 60 mM of sodium
178	acetate, pH 8.0) to 10 mg/mL. Eighty microliter chondroitinase ABC (6mU/ μ L, EC
179	4.2.2.4, Sigma-Aldrich., Saint louis., USA) was mixed into 400 μL CS solution. The
180	reaction was performed for 24 h at 37 °C. Then, the mixture was boiled for 10 min to
181	terminate reaction and filtered through 0.22 μm syringe filters. The solution was
182	fractionated by ultrafiltration using molecular weight cutoff of 3 kDa (Merck
183	Millipore Ltd., Darmstadt., Germany). The fraction of molecule weight below 3 kDa
184	was collected for analysis of disaccharide composition. The disaccharide sample was
185	detected by HPLC with Waters 2695 Pump system, Waters 2489 UV/Vis detector
186	(Waters Co., USA) and a Spherisorb SAX column (4.6 mm \times 150 mm, 5 $\mu L,$ Waters
187	Co., USA), with a linear gradient from 5 to 35 min using 0 to 1 M NaCl (pH 3.5)
188	solution as mobile phase. The absorbance was monitored at 232 nm. Bovine and shark
189	cartilage CSs (Sigma-Aldrich., Saint louis., USA) were used as standard and were
190	analyzed by the same method. Each experiment was replicated three times.
191	2.6.5 Circular dichroism (CD) of Col II
192	CD spectra of Col II was measured on Brighttime Chirascan (Applied
193	Photophysics Ltd, UK). The measurement was performed following our previous
194	method [19]. Col II was dissolved in pH 2 HCl solution to 1 mg/mL, and placed into a

- 195 quartz cell. The spectra were measured at wavelength range of 190 to 250 nm at 10 $^\circ$ C
- 196 with an interval of 0.1 nm. The scan speed was 50 nm/min.
- 197 2.7 Fibril formation *in vitro*
- 198 The fibril-forming process of Col II was evaluated by the method of Meng et al.

199	[19]. Lyophilized Col II was dissolved in pH 2.0 HCl solution to 0.3% (w/v). CS was
200	added to Na-phosphate buffer (45mM, pH 7.4) at concentrations of 0, 0.75, and 1.5
201	mg/mL, respectively. The Col II solution was mixed with a Na-phosphate buffer with
202	a ratio of 1:2 (v/v). After mixing, the final concentrations of CS were 0, 0.5, and 1
203	mg/mL, respectively. The mixed solution was pipetted into a quartz cuvette. Fibril
204	formation at 21°C was monitored by measuring turbidity change via optical
205	absorbance at 340 nm, using a spectral monitor (Evolution 60 s., Thermo fisher
206	scientific., Waltham, USA).
207	The fibril formation degree was determined followed by the method of Zhang et
208	al. [21]. When the turbidity was constant, the mixture was centrifuged at 20,000 $\times g$
209	for 20 min at 4 °C. Quantification of protein in supernatant was measured by Lowry
210	method [22]. The bovine serum albumin was used as a standard. Fibril formation
211	degree was defined as the percentage of the decrease of collagen concentration in the
212	solution, which meant the percentage of collagen molecules that formed the fibrils.
213	2.8 Morphology and elemental analysis of fibrils
214	The microstructure of notochord Col II fibrils was observed using a scanning
215	electron microscope (SEM; Sigma 500, Carl Zeiss Ltd, Germany). The Col II fibrils
216	were formed and obtained by centrifugation as described in Section 2.7. The
217	precipitated fibrils were fixed by 2.5% (v/v) glutaraldehyde in 30 mM Na-phosphate
218	buffer (pH 7.4) for 3 h at room temperature, and then rinsed with Na-phosphate buffer
219	to remove the fixative. The fixed fibril was dehydrated using a graded series of
220	ethanol solutions, and soaked in a t-butyl alcohol solution for two 15-min intervals.

221	Finally, the sample was freeze-dried using a freeze-drying device, and then coated
222	with gold-platinum, using an auto fine coater (JFC-1600; JEOL Ltd, Japan). SEM and
223	energy dispersive X-ray spectroscopy (EDX; Link ISIS 300, Oxford Instrument, UK)
224	were used to analyze the elemental content of the fibril surfaces.
225	2.9 Statistical analyses
226	The data of yields, fibril formation degree, and antioxidant activity were
227	expressed as means \pm standard errors. The data were analyzed using ANOVA and
228	Tukey-Kramer post-hoc tests for multiple comparisons, which were performed using
229	a statistical add-in for Microsoft Excel.
230	3. Results and discussion
231	3.1 Yields of CS and Col II
232	In actual production, shortening the extraction time will save processing cost and
233	minimizing the NaOH concentration will reduce environmental pollution. In this
234	study, we discussed the effects of alkaline treatment time and NaOH concentration on
235	CS and Col II yields. The results were shown in Table. 1 and 2. As shown in Table. 1,
236	long alkaline treatment time increased the yield of CS. When alkaline treatment time
237	was 24 h, the yield of Col II was the highest. Our previous study showed that alkaline
238	pretreatment could improve the efficiency of Col II extraction because it could
239	remove non-collagenous proteins and polysaccharides bound to Col II in the tissue.
240	Meanwhile, long alkaline treatment could also lead to collagen loss [19]. Thus, 24 h
241	alkaline treatment was suitable to obtain high yields of CS and Col II. As shown in
242	Table. 2, low NaOH concentration (0.01 M) obtained higher yield of CS. However,

243	the yield of Col II extracted at 0.01 M NaOH was much lower than that at 0.1 M
244	NaOH. It suggested that CS was easier to dissolved into diluted NaOH solution, but
245	was not conducive to the removal of non-collagenous protein. Residue of non-
246	collagenous protein in the tissue decreased the Col II extraction efficiency, resulting in
247	lower yield of Col II. Therefore, 24 h, 0.1 M NaOH treatment was used for CS and
248	Col II extraction, and the products were used for further structural analysis.
249	The yields of notochord CS and Col II were $5.34 \pm 0.74\%$ and $45.25 \pm 5.25\%$
250	(dry weight basis), respectively. Notochord CS yield was lower than the CSs derived
251	from sturgeon cranial and backbone cartilages (19.5% and 13.3%, respectively) [15],
252	[23], but was higher than that of the CSs extracted from smooth hound cartilage
253	(2.52%) and <i>Holothutis scabra</i> cartilage (2.89%) [24], [25]. It is difficult to compare
254	the yield of sturgeon notochord CS with other notochordal tissues because there have
255	been few other studies on notochord CS extraction. In this study, CS was purified by
256	ethanol precipitation and ion-exchange chromatography, which might lead to loss of
257	CS during purification process. For large scale production, more efficient and
258	environmentally friendly purification methods, such as ultrafiltration or membrane
259	filtration, should be used instead of ethanol precipitation and ion-exchange
260	chromatography [26].
261	The yield of Col II ($45.25 \pm 5.25\%$) was higher than Bester sturgeon notochord
262	Col II (37.5%) reported in our previous study [19]. Different ages and species of
263	sturgeon thought to be responsible for different yields. Our previous study reported
264	that alkaline pretreatment accelerated the extraction efficiency of undenatured Col II

265	[19]. Based on amino acid analysis results, we found non-collagenous proteins were
266	removed by alkaline pretreatment [19]. From this research, we knew that the
267	polysaccharides also could be efficiently removed by alkaline pretreatment.
268	Comparing with previous method, alkaline pretreatment time was extended from 12 h
269	to 24 h in this study. The longer alkaline pretreatment time might be the reason for the
270	higher Col II yield, because the polysaccharide components in the notochord might be
271	more fully removed after the prolonged alkaline pretreatment time. As known, in the
272	cartilage-related tissues, CS and Col II interlace to form the stable fibril sheath that
273	resists high pressure. After removal of CS and non-collagenous proteins, Col II is
274	better to exposure to pepsin solution without steric hindrance, and the pepsin will
275	more easily break their intermolecular cross-links, thereby increasing the solubility of
276	collagen molecules. In this study, we proposed a preliminary process for extraction of
277	CS and undenatured Col II, respectively. Although, according to this method, the
278	utilization of sturgeon notochord was increased from 37.5% to 50.6% comparing to
279	our previous study [19]. The remaining 49.4% of notochord body was still not
280	efficiently utilized. In order to reduce aquatic resource waste and make full use of
281	sturgeon notochord, more suitable extraction conditions were need to be discussed in
282	further study.
283	The amount of farmed sturgeon in China exceeded 80,000 tons in 2017 [27]. The
284	notochord accounts for approx. 1.7% of sturgeon body weight (wet weight basis) and
285	the moisture content of notochord is about 83.2% (data of the present research
286	material). It is predicted that ca. 10.7 t CS and 90.5 t Col II can be obtained annually

287	from sturgeon notochord. Especially, type II collagen is highly valuable in the market
288	because of much less availability than type I collagen. Thus, we conclude that
289	sturgeon notochord has huge potential for the large-scale industrial production of CS
290	and Col II.
291	3.2 Purity and molecular weight of CS and Col II
292	The purity and molecular weight of CS was analyzed by SEC-RI-MALLS as
293	shown in Fig 1-A. CS appeared a symmetric peak in the HPGPC chromatography.
294	The average molecular weight of notochord CS was ca. 38.4 kDa, and the
295	polydispersity indices of notochord CS was 1.198. It indicated the component of CS
296	was relatively uniform. Purified CS did not contain keratan sulfate with molecular
297	weight was lower than CS [28]. Zhu et al. reported that the molecular weights of
298	bovine, shark, and Chinese giant salamander CSs were 34.4, 75.8, and 49.2 kDa [29].
299	Maccari et al. [30] reported that the average molecular weight of sturgeon (unknown
300	species) cartilage CS (unknown location) was 39.8 kDa. Gui et al. [15] reported that
301	the molecular weights of hybrid sturgeon (Acipenser baerii × Acipenser schrenckii)
302	skull and backbone CSs were 38.5 and 49.2 kDa, respectively. The molecular weight
303	of sturgeon notochord CS was different with other fish CS and bovine CS, but similar
304	with sturgeon cartilage CS. These results suggested that the molecular weight of CS
305	was closely related to species source. This study was the first to report the molecular
306	weight of sturgeon notochord CS.
307	SDS-PAGE was performed to detect the purity of notochord Col II, as shown in

308 Fig 1-B. Notochord Col II had only one α -chain at ca. 130 kDa. The result was

309	consistent with our previous study [19]. These results suggested that the pure CS and
310	Col II were obtained simultaneously by the new extraction method.
311	3.3 Structure characteristics of CS
312	The ultraviolet absorption of CS was identified using ultraviolet-visible
313	spectrophotometer in the wavelength range from 190 to 400 nm, as shown in Fig 2
314	(A). The CS had a strong absorption peak at 190 to 210 nm, which was the
315	characteristic absorption peak of polysaccharides [24], [31]. There had no absorbance
316	at 260 nm and 280 nm, indicating that the nucleic acids and other protein were not
317	mixed in CS [31].
318	The molecular structural characteristics of CS were identified by FTIR
319	spectroscopy (Fig 2-C). The presence of sulfate group in C-O-S was detected at
320	856.59 cm ⁻¹ . Garnjanagoonchorn et al. reported that the absorption of the C-O-S axial
321	and equatorial orientations of chondroitin 4-sulfate (CS-A) and chondroitin 6-sulfate
322	(CS-C) exhibited the special peaks at 854.5 cm ⁻¹ and 823.7 cm ⁻¹ , respectively [32]. It
323	suggested that the main type of sturgeon notochord CS was CS-A. Furthermore, the
324	peak observed at 1068.29 cm ⁻¹ was attributed to the C-C ring vibrations [33]. The
325	peaks shown at 1415.31 cm ⁻¹ and 1233.37 cm ⁻¹ were characteristic of C-O stretching
326	[18]. The peak detected at 1640.16 cm ⁻¹ was represented -CONH structure [33]. The
327	peak observed around 2922.86 cm ⁻¹ was attributed to the stretching vibration of C-H
328	[18]. The strong absorbance peak at 3415 cm ⁻¹ indicated the stretching of -OH [18],
329	[33].
330	¹ H and ¹³ C-NMR spectroscopy were performed to confirm the integrity and

331	characteristics of CS molecular structure (Fig 3). ¹ H-NMR spectroscopy was shown in
332	Fig 3-A. All proton signals of CS appeared in two spectral regions, one between 2.0
333	and 2.1 ppm, and the other between 3.0 and 5.0 ppm. It indicated that high purity CS
334	was obtained. The characteristic signal at 4.80 ppm was assigned to H4 of GalNAc-
335	4SO ₄ [34]. It indicated that CS of sturgeon notochord was composed by CS-A.
336	Furthermore, the peak between 2.0 to 2.1 ppm was the signal of acetyl methyl group
337	proton [35]. The signals at 3.74 and 3.98 ppm were assigned to H6 and H2 of N-
338	acetyl-galactosamine, while the signals at 3.32, 3.54 and 3.69 ppm were assigned to
339	H2, H3 and H4/5 of glucuronic acid, respectively.
340	¹³ C-NMR spectroscopy was shown in Fig 3-B. All signals were found in the
341	region 50-80 ppm and 100-110 ppm except for the acetamido methyl carbon at around
342	25.5 ppm and the carbonyl at around 174.0 ppm. It indicated CS had high sulfate
343	content at the 4 and/or 6 positions of the GalNAc [30]. The signals at 102.3, 53.0,
344	81.4, 78.1, 62.5 ppm were assigned to the C1, C2, C3, C4 (C5) and C6 of GalNac-
345	4SO ₄ . The signals at 105.0, 73.8, 75.1, 78.1 and 175.7 ppm were assigned to the C1,
346	C2, C3, C5 and C6 of GlcA [36]. Therefore, the sturgeon notochord CS contained a
347	high content of CS-A, which was consistent with FTIR spectroscopy results. The
348	structure of the sturgeon notochord CS differed from that of sturgeon cartilage CS,
349	which was composed of CS-C [15], [23]. Differences in the functional activities of
350	sturgeon notochord and cartilage CSs required further discussion.
351	To further investigate the disaccharide composition of CS, we hydrolyzed the CS
352	with chondroitinase ABC and analyzed the disaccharide structure using SAX-HPLC,

353	as shown in Fig. 4. The disaccharide composition of sturgeon CS was analyzed by
354	comparison with shark cartilage CS and bovine cartilage CS. Bovine Cart-CS
355	consisted of non-sulfated disaccharide CS-0 (5.70%), and mono-sulfated disaccharide
356	CS-A (63.79%) and CS-C (30.51%). Shark Cart-CS consisted of non-sulfated
357	disaccharide CS-0 (2.79%), and mono-sulfated disaccharide CS-A (28.91%) and CS-
358	C (50.46%), and di-sulfated disaccharide CS-D (17.85%). This disaccharide
359	composition was consistent with the previous report [28]. Sturgeon notochord CS was
360	composed of CS-0 (3.06%), CS-A (86.59%), and CS-C (10.35%). The di-sulfated
361	disaccharide was not detected in sturgeon notochord CS. CS-A was the major
362	component of sturgeon notochord CS. This result was consistent with the FTIR and
363	NMR results. The effects of alkaline treatment time and NaOH concentration on
364	disaccharide composition of CS was shown in Supplementary Fig.1. The result
365	indicated that alkaline treatment time and NaOH concentration had no effect on
366	disaccharide composition of sturgeon notochord CS.
367	3.4 Structure characteristic of Col II
368	The ultraviolet absorption of Col II was shown in Fig 2-B. The Col II was
369	emerged a strong absorption peak at 200 to 220 nm, and the maximum absorption
370	peak was at 206.9 nm. It was the characteristic absorption peak of type II collagen
371	[37]. The ultraviolet absorption peak of type I collagen was at approx. 232 nm [38],
372	slightly higher than Col II. Low absorbance at 280 nm because there were few
373	aromatic amino acids in collagen [19].
374	The FTIR spectra of Col II was presented in Fig 2-D. The main characteristic

375	absorption peaks contained amide A (3416.17 cm ⁻¹), amide B (2922.11 cm ⁻¹), amide I
376	(1618.61 cm ⁻¹), amide II (1554.92 cm ⁻¹) and amide III (1239.06 cm ⁻¹). The amide A
377	band of Col II was observed at 3416.17 cm ⁻¹ . Doyle et al. reported that the absorption
378	band of amide A, associated with N-H stretching vibration appeared in the range of
379	3400–3440 cm ⁻¹ [39]. The amide B band was observed at 2922.11 cm ⁻¹ , which was
380	related to the asymmetrical stretching of CH_2 [40], [41]. The amide I band frequencies
381	from 1600 to 1700 cm ⁻¹ were mainly related to carbonyl group stretching vibrations
382	and were characteristic of the secondary coil structure [40]. The amide I bond of Col
383	II was observed at 1637.00 cm ⁻¹ . This observation confirmed the formation of
384	hydrogen bond between N-H stretch, where the C-O residues were responsible for
385	stabilizing triple helical structure [41]. The amide II band corresponded to N-H
386	bending vibrations, and the amide III band represented C-H stretching [40]. The
387	amide II and III of Col II were observed at 1554.92 and 1239.66 cm ⁻¹ , respectively.
388	According to Plepis et al, the ratio of absorbance of amide III and to the peak between
389	1400 to 1454 cm ⁻¹ was close to 1.0, indicating that the triple helical structure of
390	collagen was intact [42]. In this result, the ratio of amide III and 1454.14 cm ⁻¹ was
391	1.01, which confirmed the intact triple helical structures in Col II.
392	The CD spectra of notochord Col II was shown in Fig 5. The Col II had a
393	rotatory maximum at 221 nm and a crossover point at approximately at 212 nm,
394	which were typical characteristics of collagen triple-helical conformation [43]. FTIR
395	and CD spectra results demonstrated that the Col II maintained an intact triple helical
396	structure after extraction.

397 3.5 Effects of CS on the Col II fibril formation

398	Collagen fibril formation in vitro was a self-assembly process from soluble
399	collagen molecule to insoluble fibrils. The changing process of solution turbidity
400	reflected the different stages of fibril formation, and the turbidity value reflected fibril
401	diameter [22]. The effects of CS on Col II fibril formation process were shown in Fig
402	6-A. The turbidity curve of three samples exhibited a logarithmic growth trend, and
403	no lag phase was detected in the three curves. It suggested that fibril formation was
404	too fast to detect the fibril nucleation process in the lag phase. The initial turbidity
405	values for the 0, 0.5, and 1 mg/mL CS mixed samples were 0.258, 0.359, and 0.388,
406	respectively. All three turbidity curves increased significantly during the first 15 min,
407	and then the turbidity growth slowed down over time. The turbidity value of the 0
408	mg/mL CS sample remained slowly increasing over 300 min. The turbidity value of
409	the 0.5 mg/mL CS sample stopped increasing at 180 min, and the turbidity value of
410	the 1 mg/mL CS mixed sample stopped increasing at 135 min. It meant that CS
411	accelerated the completion of Col II self-assembly, but inhibited the lateral
412	aggregation of fibrils. CS was a polyanionic chain structure composed of disaccharide
413	units of glucuronic acid and sulfated N-acetyl galactosamine [44]. In section 3.3, we
414	demonstrated that the notochord CS was mainly composed of CS-A with N-acetyl
415	galactosamine sulfated at carbon 4. The negative carboxyl and sulfonic acid groups of
416	the CS chain were both anions under neutral conditions. These anions interacted with
417	the amino groups of basic amino acids such as lysine, hydroxylysine, histidine and
418	arginine on the side chain of Col II through electrostatic attraction. Mathews (1968)

have reported that electrostatic interaction was important for polyanions on collagen 419 aggregation [45]. Multiple anions on the CS chain combined with amino ions on 420 421 different collagen molecules or fibrils to form steric hindrance, which was dispersed between Col II molecules or fibrils, thereby affecting the later aggregation of fibrils. It 422 might be the reason why the growth phase was shortened and the turbidity curve 423 rapidly reached a plateau phase after CS was added to the sample. 424 The results of the degree of fibril formation at different CS concentrations were 425 shown in Fig 6-B. The degree of fibril formation was $97.8 \pm 0.09\%$, $97.1 \pm 0.13\%$ and 426 $95.9 \pm 0.11\%$ for the 0, 0.5, and 1 mg/m CS samples, respectively. The degree of fibril 427 formation decreased with increasing CS concentration. It suggested that CS had an 428 inhibitory effect on Col II fibril formation. Wood et al. (1960) found that CS-A 429 430 retarded the rate of growth of type I collagen fibrils [46]. Keech (1961) reported CS produced individual fibrils of smaller diameter than those from control solutions of 431 type I collagen [47]. Since CS inhibited the lateral aggregation of fibrils, more soluble 432 433 collagen or fine fibrils remained in solution, resulting in a reduced degree of fibril formation. 434 3.6 Morphology observation of fibrils 435

The Col II fibrils formed under different CS concentration conditions were shown in Fig. 7. For no CS sample, the Col II formed a disordered fibril meshwork structure. The fibrils with different thickness were clearly visible. The long fusiform structure was interlaced on the surface and inside of the fine fibrils and the average diameter of Col II fibril was between 10 to 50 nm. The fibril morphology of the samples with added 0.5 and 1 mg/mL CS was similar, but different from the sample
without CS added. The structure of long fibrils was not clearly visible, and the fibrils
were connected by a dense network structure. The formation of this dense network
structure might be due to the interaction between CS and Col II fibrils. So far, most
studies have discussed the effect of CS on type I collagen fibril formation, but there
were few studies on the interaction between CS and Col II.

447 3.7 Binding of CS to Col II fibril

Sulfur elements were located on the side chains of methionine and cystine of Col 448 449 II. However, our previous study showed that methionine and cystine were low in Col II of sturgeon notochord [19]. Meanwhile, sulfur was an abundant element on the CS 450 chain [44]. Thus, the sulfur content on the fibril surface could reflect the interaction of 451 452 CS with Col II fibrils. Sulfur mapping was conducted using SEM-EDX and the results were shown in Fig. 8. To our knowledge, it was the first time that elemental mapping 453 has been used to analyze the interaction between CS and Col II fibrils. The sulfur 454 ratios of 0, 0.5 and 1 mg/mL CS samples were 0.6, 0.8 and 0.8%, respectively. The 455 sulfur elemental mapping shown that the 0.5 and 1 mg/mL CS samples had higher 456 sulfur densities than the sample without CS. It suggested that CS directly bound to 457 Col II fibrils. The interaction between CS and Col II fibrils was thought to be the 458 binding of carboxyl and sulfonic groups on the CS chain to amino groups on the Col 459 II fibrils [48]. 460

461 **4. Conclusion**

462 In this study, a new extraction process was established basing on our previous

463	study. By this method, both CS and undenatured Col II were obtained from sturgeon
464	notochord with the yield of 5.34 \pm 0.74% and 45.25 \pm 5.25%, respectively. The
465	average molecular weight of notochord CS was 39.7 kDa, and the main structure of
466	sturgeon notochord CS was CS-A. CS accelerated the completion of Col II self-
467	assembly, but inhibited the lateral aggregation of fibrils. The new extraction process
468	will improve the utilization rate and avoid the waste of sturgeon notochord.
469	Furthermore, the studies on the interaction between CS and Col II fibrils will promote
470	the application of sturgeon notochord extracts in the field of biomedical materials.
471	Funding
472	This work was partially supported by key laboratory research fund open topics
473	(LFBC1002) from Key Lab of Freshwater Biodiversity Conservation, Ministry of
474	Agriculture and Rural Affairs of China; The discipline innovation and talent
475	introducing program for high education institutions, the 111 project (D21012).
476	Acknowledgments
477	We gratefully acknowledge the Sturgeon Biological Technology Co. Ltd.,
478	Xinchang county, Zhejiang province, China for providing the farmed sturgeon
479	materials for this research. Thanks for Prof. Yasuaki Takagi of Faculty of Fisheries
480	Sciences, Hokkaido University supply to technical support and article modification.
481	Thanks to Prof. Qiwei Wei of Key Lab of Freshwater Biodiversity Conservation,
482	Ministry of Agriculture and Rural Affairs of China provide financial support.
483	Credit Authorship contribution statement
484	Dawei Meng: Conceptualization, Methodology, Data curation, Writing-original draft.

485	Wen Li: Methodology. Xiaoqian Leng: Methodology. Zhiyuan Dai: Resources. Qiwei
486	Wei: Funding acquisition, Resources. Hao Du: Funding acquisition, Resources.
487	Yasuaki Takagi: Methodology, Writing-review & Editing.
488	References
489	[1] X. P. Zhou, J. K. Wang, W. J. Fang, Y. Q. Tao, T. F. Zhao, K. S. Xia, C. Z. Liang, J.
490	M. Hua, F. C. Li, Q. X. Chen, Genipin cross-linked type II collagen/chondroitin
491	sulfate composite hydrogen-like cell delivery system induces differentiation of
492	adipose-derived stem cells and regenerates degenerated nucleus pulposus, Acta.
493	Biomater. 71 (2018) 496-509.
494	[2] O. F. Restaino, C. Schiraldi, Chondroitin sulfate: are the purity and the structural
495	features well assessed? A review on the analytical challenges, Carbohyd. Polym.
496	292 (2022) 119690.
497	[3] D. R. Eyre, H. Muir, Type I and II collagens in intervertebral disc. Interchanging
498	radial distributions in annulus fibrosus, J. Biochem. 157 (1976) 267-270.
499	[4] J. J. Mou, Q. Li, X. H. Qi, J. Yang, Structural comparison, antioxidant and anti-
500	inflammatory properties of fucosylated chondroitin sulfate of three edible sea
501	cucumbers, Carbohyd. Polym. 185 (2018) 41-47.
502	[5] R. Lan, Y. Li, R. Shen, R. Yu, L. H. Jing, S. S. Guo, 2020. Preparation of low-

- molecular-weight chondroitin sulfates by complex enzyme hydrolysis and their
 antioxidant activities. Carbohyd. Polym. 241, 116302.
- 505 [6] D. E. Trentham, R. A. Dynesius-Trentham, E. J. Orav, D. Combitchi, C. Lorenzo,
- 506 K. L. Sewell, D. A. Hafler, H. L. Weiner, Effects of oral administration of Type II

507	collagen on rheumatoid arthritis, Science. 261 (1993) 1727-1730.
508	[7] K. S. Park, M. J. Park, M. L. Cho, S. K. Kwok, J. H. Ju, H. J. Ko, S. H. Park, H. Y.
509	Kim, Type II collagen oral tolerance; mechanism and role in collagen-induced
510	arthritis and rheumatoid arthritis, Modern Rheumatol. 19 (2009) 581-589.
511	[8] F. X. Li, M. Ducker, B. Sun, F. G. Szele, J. T. Czernuszka, Czernuszk.
512	Interpenetrating polymer networks of collagen, hyaluronic acid, and chondroitin
513	sulfate as scaffolds for brain tissue engineering, Acta. Biomater. 112 (2020) 122-
514	135.
515	[9] R. N. Carballal, R. P. Martín, M. Blanco, C. G. Sotelo, D. Fassini, C. Nunes, M. A.
516	Coimbra, T. H. Silva, R. L. Reis, J. A. Vázquez, By-products of Scyliorhinus
517	canicula, Prionace glauca and Raja clavata: A valuable source of predominantly
518	6S sulfated chondroitin sulfate, Carbohyd. Polym. 157 (2017) 31-37.
519	[10] F. Maccari, F. Galeotti, N. Volpi, Isolation and structural characterization of
520	chondroitin sulfate from bony fishes, Carbohyd Polym. 129 (2015) 143-147.
521	[11] A. Jongjareonrak, S. Benjakul, W. Visessanguan, T. Nagai, M. Tanaka, Isolation
522	and characterisation of acid and pepsin-solubilised collagens from the skin of
523	brownstripe red snapper (Lutjanus vitta), Food. Chem. 93 (2005) 475-484.
524	[12] M. Braccini, A. Hesp, B. Molony, 2021. Risk-based weight of evidence
525	assessment of commercial sharks in western Australia. Ocean. Coast. Manage.
526	205, 105501.
527	[13] W. Li, T. Kobayashi, D.W. Meng, N. Miyamoto, N. Tsutsumi, K. Ura, Y. Takagi,
528	2021. Free radical scavenging activity of type II collagen peptides and

- 529 chondroitin sulfate oligosaccharides from by-products of mottled skate
- 530 processing. Food. Biosci. 41, 100991.
- 531 [14] J. A. Vázquez, J. Fraguas, R. N. Carballal, R. L. Reis, R. I. Pérez-Martín,
- 532J.Valcarcel, Optimal isolation and characterisation of chondroitin sulfate from
- rabbit fish *(Chimaera monstrosa)*, Carbohyd. Polym. 210 (2019) 302-313.
- 534 [15] M. Gui, J. Y. Song, L. Zhang, S. Wang, R. Y. Wu, C. W. Ma, P. L. Li, Chemical
- characteristics and antithrombotic effect of chondroitin sulfates from sturgeon
 skull and sturgeon backbone, Carbohyd. Polym. 123 (2015) 454-460.
- [16] H. C. Robinson, J. J. Hopwood, The alkaline cleavage and borohydride reduction
 of cartilage proteoglycan, J. Biochem. 133 (1973) 457-470.
- [17] E. Żelechowska, M. Sadowsk, M. Turk, Isolation and some properties of collagen
 from the backbone of Baltic cod *(Gadus morhua)*, Food. Hydrocoll. 24 (2010)
- 541325-329.
- 542 [18] Q. S. Shen, C. H. Zhang, W. Jia, X. J. Qin, Z. K. Cui, H. Z. Mo, A. Richel, 2019.
- 543 Co-production of chondroitin sulfate and peptide from liquefied chicken sternal 544 cartilage by hot-pressure. Carbohyd. Polym. 222, 115015.
- 545 [19] D. W. Meng, H. Tanaka, T. Kobayashi, H. Hatayama, X. Zhang, K. Ura, S.
- 546 Yunoki, Y. Takagi, The effect of alkaline pretreatment on the biochemical
- 547 characteristics and fibril-forming abilities of types I and II collagen extracted
- from bester sturgeon by-products, Int. J. Biol. Macromol. 131 (2019) 572–580.
- [20] U. K. Laemmli, Cleavage of structural proteins during assembly of head of
- 550 bacteriophage T4, Nature. 277 (1970) 680–685.

- 551 [21] X. Zhang, M. Ookawa, Y. K. Tan, K. Ura, S. Adachi, Y. Takagi, Biochemical
- characterization and assessment of fibril-forming ability of collagens extracted
 from bester sturgeon *Huso huso × Acipenser ruthenus*, Food. Chem. 160 (2014)
 305–312.
- 555 [22] O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall, Protein measurement
 556 with the folin phenol reagent, J. Biol. Chem. 193 (1951) 265–275.
- 557 [23] R. IM, Y. Park, Y. Y. Shik Kim, Isolation and Characterization of Chondroitin
- 558 Sulfates from Sturgeon *(Acipenser sinensis)* and Their Effects on Growth of
- 559 Fibroblasts, Biolo. Pharm. Bul. 33 (2010) 1268–1273.
- 560 [24] F. Krichen, H. Bougatef, N. Sayari, F. Capitani, I. B. Amor, I. Koubaa, F. Maccari,
- 561 V. Mantovani, F. Galeotti, N. Volpi, A. Bougate, Isolation, Purification and
- 562 Structural Characterestics of Chondroitin Sulfate from Smooth hound Cartilage:
- 563 *In vitro* Anticoagulant and Antiproliferative Properties, Carbohyd. Polym. 197
- 564 (2018b) 451-459.
- [25] L. Yang, Y. H. Wang, S. Yang, Z. H. Lv, Separation, purification, structures and
 anticoagulant activities of fucosylated chondroitin sulfates from Holothuria
 scabra, Int. J. Biol. Macromol. 108 (2018) 710-718.
- 568 [26] S. D'ambrosio, A. Alfano, E. Cassese, O. F. Restaino, S. B. Ferraiuolo, R.
- 569 Finamore, M. Cammarota, C. Schiraldi1, D. Cimini, Production and purifcation
- of higher molecular weight chondroitin by metabolically engineered Escherichia
 coli K4 strains, Sci. Rep. 10 (2020) 13200.
- 572 [27] P. Bronzi, M. Chebanov, J. T. Michaels, Q. W. Wei, H. Rosenthal, J. Gessner,

Sturgeon meat and caviar production: Global update 2017, J. App. Ichthyol. 35 573 574 (2019) 257-266.

575	[28] O. F. Restaino, R. Finamore, P. Diana, M. Marseglia, M. Vitiello, A. Casillo, E.
576	Bedini, M. Parrilli, M. M. Corsaro, M. Trifuoggi, M. D. Rosa, C. Schiraldi, A
577	multi-analytical approach to better assess the keratan sulfate contamination in
578	animal origin chondroitin sulfate, Anal. Chim. Acta, 958 (2017) 59-70.
579	[29] W. M. Zhu, J. Yang, Y. Wang, D. He, Y. S. Yan, N. Su, C. Zhang, X. H. Xing,
580	Structural characterization and in vitro antioxidant activities of chondroitin
581	sulfate purified from Andrias davidianus cartilage, Carbohyd. Polym. 196 (2018)
582	398-404.
583	[30] F. Maccari, F. Ferrarini, N. Volpi, Structure characterization of chondroitin
584	sulfate from sturgeon bone, Carbohyd. Res. 345 (2010) 1575-1580.
585	[31] F. Krichen, H. Bougatef, F. Capitani, I. B. Amor, I. Koubaa, J. Gargouri, F.
586	Maccari, V. Mantovani, F. Galeotti, N. Volpi, A. Bougatef, Purification and
587	structural elucidation of chondroitin sulfate/dermatan sulfate from Atlantic
588	bluefin tuna (Thunnus thynnus) skins and their anticoagulant and ACE inhibitory
589	activities, RSC. Advances. 8 (2018a) 37965-37975.
590	[32] W. Garnjanagoonchorn, L. Wongekalak, A. Engkagul, Determination of
591	chondroitin sulfate from different sources of cartilage, Chem. Eng. Process. 46
592	(2007) 465-471.
593	[33] M. Foot, M. Mulholland, Classification of chondroitin sulfate A, chondroitin

sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using 594

595	chemometric techniques, J. Pharmaceut. Biomed. 8 (2005) 397-407.
596	[34] M. Lopez-Alvarez, P. Gonzalez, J. Serra, J. Fraguas, J. Valcarcel, J. A. Vazquez,
597	Chondroitin sulfate and hydroxyapatite from Prionace glauca shark jaw:
598	physicochemical and structural characterization, Int. J. Biol. Macromol. 156
599	(2020) 329-339.
600	[35] T. Toida, H. Toyoda, T. Imanari, High-resolution proton nuclear magnetic
601	resonance studies on chondroitin sulfates, Anal. Sci. 9 (1993) 53-58.
602	[36] A. Mucci, L. Schenetti, N.Volpi, 1H and 13C nuclear magnetic resonance
603	identification and characterization of components of chondroitin sulfates of
604	various origin, Carbohyd. Polym. 41 (2000) 37-45.
605	[37] A. N. Akram, C. H. Zhang, 2020. Extraction of collagen-II with pepsin and
606	ultrasound treatment from chicken sternal cartilage; physicochemical and
607	functional properties. Ultrason. Sonochem. 64, 105053.
608	[38] P. G. Kumar, T. Nidheesh, P. V. Suresh, Comparative study on characteristics and
609	in vitro fibril formation ability of acid and pepsin soluble collagen from the skin
610	of catla (Catla catla) and rohu (Labeo rohita), Food. Res. Int. 76 (2015) 804-812.
611	[39] B. B. Doyle, E. G. Bendit, E. R. Blout, Infrared spectroscopy of collagen and
612	collagen-like polypeptides, Biopolym. 14 (1975) 937-957.
613	[40] J. H. Muyonga, C. G. B. Cole, K. G. Duodu, Characterisation of acid soluble
614	collagen from skins of young and adult Nile perch (Lates niloticus), Food. Chem.
615	85 (2004) 81-89.
616	[41] A. Veeruraj, M. Arumugam, T. Balasubramanian, Isolation and characterization

- of thermostable collagen from the marine eel-fish *(Evenchelys macrura)*, Process.
- 618 Biochem. 48 (2013) 1592-1602.
- [42] A. M. D. G. Plepis, G. Goissis, D. D. Gupta, Dielectric and pyroelectric
- 620 characterization of anionic and native collagen, Polym. Eng. Sci. 36 (1996)
- 621 **2932-2938**.
- [43] X. Zhang, S. Adachi, K. Ura, Y. Takagi, Properties of collagen extracted from
 Amur sturgeon *Acipenser schrenckii* and assessment of collagen fibrils *in vitro*,
- 624 Int. J. Bio. Macromol. 137 (2019) 809-820.
- 625 [44] S. Yamada, K. Sugahara, Potential therapeutic application of chondroitin
- 626 sulfate/dermatan sulfate, Curr. Drug. Discov. Technol. 5 (2009) 289-301.
- [45] M. B. Mathews, L. Decker, The effect of acid mucopolysaccharides and acid
- 628 mucopolysaccharide-proteins on fibril formation from collagen solutions,
- 629 Biochem. J. 109 (1968) 517-526.
- [46] G. C. Wood, The formation of fibrils from collagen solutions. 3. Effect of
- 631 chondroitin sulphate and some other naturally occurring polyanions on the rate
- 632 of formation, Biochem. J. 75 (1960) 605-612.
- [47] M. K. Keech, The formation of fibrils from collagen solutions: IV. effect of
- 634 mucopolysaccharides and nucleic acids: an electron microscope study, J.
- 635 Biophys. Biochem. Cytol. 9 (1961) 193-209.
- 636 [48] M. Y. Yan, X. J. Jiang, G. C. Wang, A. L. Wang, X. X. Wang, X. Y. Wang, X. C.
- 637 Zhao, H. Xu, X. S. An, Y. P. Li, Preparation of self-assembled collagen fibrillar
- 638 gel from tilapia skin and its formation in presence of acidic polysaccharides.

639 Carbohyd. Polym. 233 (2020) 115831.

640

- 641 Fig. 1. A: SEC-RI-MALLS chromatogram of sturgeon notochord CS. B: SDS-PAGE
- of sturgeon notochord Col II. Lane 1: Molecular weight marker; Lane 2: Col II.
- 643 Fig. 2. UV spectra of the sturgeon notochord CS (A) and Col II (B); FTIR spectra of
- 644 the sturgeon notochord CS (C) and Col II (D).
- 645 Fig. 3. ¹H-NMR (A) and ¹³C-NMR (B) analysis of sturgeon notochord CS. NC: N-
- 646 acetyl-galactosamine; UC: glucuronic acid; Number: Carbon location.
- 647 Fig. 4. Disaccharide composition of sturgeon notochord CS (A); Bovine cartilage CS
- 648 (B); Shark cartilage CS (C).
- 649 Fig. 5. CD spectra of the sturgeon notochord Col II.
- Fig. 6. A: Fibril formation *in vitro* by Col II measured by optical absorbance at 320
- nm. B: The degree of fibril formation of notochord Col II at different reaction times.
- 652 Columns and bars show mean and standard error of the means of three experiments.
- 653 Differences between groups with different letters are significant (Tukey-Kramer post-
- 654 hoc test, p < 0.01).
- 655 Fig. 7. Scanning electron micrographs of sturgeon notochord Col II fibrils formed at
- $656~~21~^\circ\!C$ for 10 h. A: 0 mg/mL CS; B: 0.5 mg/mL CS; C: 1 mg/mL CS. Scale bar: 2 μm
- 657 (1); 1 μm (2); 300 nm (3).
- Fig. 8. Elemental mapping of CS and Col II hybrid fibril surface. A: 0 mg/mL CS; B:
- 0.5 mg/mL CS; C: 1mg/mL CS; (1): Backscattered electron image of SEM; (2): Sulfur
- 660 elemental distribution on the fibril surface; (3): EDX spectra of the Col II fibril

661 surface. Scale bar: 5 μ m.

Highlights

- Chondroitin sulfate (CS) and collagen (Col II) extraction method was developed
- Yields of CS and Col II from sturgeon notochord were suitable for industrialization
- Sturgeon notochord CS was mainly composed by CS-A with molecular weight of

38.4 kDa

- The method had no effect on secondary structure and fibril-forming ability of Col II
- CS bound on Col II fibrils and inhibited the lateral aggregation of fibrils

Abstract

Chondroitin sulfate (CS) and undenatured type II collagen (Col II) are the two major biological macromolecules of cartilage-related tissues. In this study, a new extraction process was developed to obtain CS and Col II simultaneously. By this process, CS and undenatured Col II were extracted from sturgeon notochord with the yields of $5.34 \pm$ 0.74% and $45.25 \pm 5.25\%$, respectively. The SEC-RI-MALLS result showed that the average molecular weight of notochord CS was 38.4 kDa. FTIR, NMR, and SAX-HPLC results indicated the notochord CS was mainly composed of CS-A. The new extraction process had no effect on the triple helical structure of Col II. To analyze the interaction between the two macromolecules, the effect of CS on Col II fibril formation was examined using turbidity assay and SEM observation. CS accelerated the completion of Col II self-assembly and inhibited the lateral aggregation of fibrils. The results of this study suggested that the sturgeon notochord is a valuable source of CS and Col II. The new extraction method not only improves the utilization rate of sturgeon notochord, but also reduces the waste of aquatic resources. CS and Col II derived from sturgeon notochord have the potential for use in biomedical materials.

Keywords

Sturgeon; Notochord; Extraction; Chondroitin sulfate; Type II collagen; Fibril

One extraction-process, obtaining two products ; Hybrid fibril materials

★ Material utilization up ★ Production Waste down

Time of alkaline treatment	Yield of CS	Yield of Col II
12 h	4.14±0.43%	42.53±7.97%
24 h	5.34±0.75%	45.25±5.25%
48 h	5.35±0.22%	40.83±3.17%

Table. 1. The effect of alkaline treatment time on CS and Col II yields (day weight base).

Table. 2. The effect of NaOH concentration on CS and Col II yields (dry weight base).

NaOH concentration	Yield of CS	Yield of Col II
0.01 M	6.80±0.25%	34.48±4.47%
0.1 M	5.34±0.75%	45.25±5.25%

Fig.1

Fig.4

Fig.7

Supplementary Fig.1. Disaccharide analysis of sturgeon notochord CS under different alkaline treatment time and NaOH concentration. (A): 12 h, 0.1 M NaOH; (B): 24 h, 0.1 M NaOH; (C): 48 h, 0.1 M NaOH; (D): 24h, 0.01 M NaOH.