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1.  Introduction
Large-scale deformation is the fundamental dynamics of planetary bodies and is related to many geophysi-
cal subjects. Because of its high importance, this deformation has been studied for a long time; the governing 
equation system and its analytical solution for a homogeneous sphere have already been obtained more than a 
century ago (Love, 1911), and reformulations more suitable for numerical calculations have also been determined 
decades ago (e.g., Alterman et al., 1959; Pekeris & Jarosch, 1958; Takeuchi & Saito, 1972). In those studies, a 
spherically symmetric, nonrotating, elastic, and isotropic (SNREI) Earth model was adopted. This “elastic gravi-
tational theory” can be applied to various types of studies considering seismic frequencies and static deformation 
(i.e., zero frequency). To describe geophysical phenomena with intermediate timescales, viscoelasticity should 
be taken into account. The “viscoelastic gravitational theory” adopting a spherically symmetric, nonrotating, 
viscoelastic, and isotropic (SNRVEI) model has also been applied to various types of studies, including the tidal 
response of natural satellites (e.g., Harada et al., 2014; Kamata et al., 2015; Tobie et al., 2005).

The tidal response of natural satellites is a major subject in planetary science. A well-known example is the 
heat budget of a small icy satellite, Enceladus. Cassini observations have revealed that the satellite is very hot; 
heat flux from its south pole region is very high (Howett et al., 2011; Spencer et al., 2006), and a thick global 
subsurface ocean exists (e.g., Thomas et al., 2016). Because accretional heating, radiogenic heating, and heating 
due to chemical reactions would be much smaller than the measured value, tidal heating plays an important role 
in the heat budget of this small icy satellite (e.g., Roberts & Nimmo, 2008; Travis & Schubert, 2015). If one 
adopts a simple model in which the satellite is composed of a less viscous pure H2O outer shell and a highly 
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avoided by choosing an appropriate interior structure model that is numerically equivalent. Different simple 
numerical calculations adopting a multilayered, radially varying interior profile reveal that the radial profile of 
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viscous monolithic rocky core, tidal heating is expected to occur not in the rocky core but in the ice shell (e.g., 
Roberts, 2015; Roberts & Nimmo, 2008). However, measurements of plume constituents suggest ongoing hydro-
thermal activities (Hsu et al., 2015; Waite et al., 2017), indicating heating in the core. This observation could be 
explained if the core is fragmented and thus highly dissipative (e.g., Choblet et al., 2017; Roberts, 2015). Because 
the core is overlain by a subsurface ocean, the core can be considered a mixture of rock and water. In fact, such a 
core model is supported by a low effective density of the core suggested from geodetic measurements (e.g., Čadek 
et al., 2016; Hemingway & Mittal, 2019; Thomas et al., 2016).

The presence of a layer that is a mixture of solid and liquid is also proposed for other satellites. Specifically, an 
unusual dependency of the tidal response of the Moon on frequency is explained by the presence of a partially 
molten layer at the base of the mantle (Harada et al., 2014). Also, the electromagnetic induction response of 
Io is explained by the presence of a global partially molten subsurface layer (Khurana et al., 2011), and this 
layer is expected to provide additional heating due to volumetric expansion/contraction (Kervazo et al., 2021). 
Because the viscoelastic gravitational theory cannot address a solid-fluid mixed layer directly, a phenomeno-
logical approach has been adopted; a fluid-saturated porous layer is modeled as a purely solid layer that has an 
extremely low effective viscosity or quality factor. Such an approach limits our understanding of the nature of a 
solid-liquid mixed layer.

An innovative, physics-based approach that directly models a solid-fluid mixed layer was proposed by Liao 
et al. (2020). Using the classic theory of poroelasticity originally developed by Biot (1941), they calculate the 
permeable flow of pore fluid in a core and show that such a flow may produce a large amount of heat in the core. 
Nevertheless, the interior structure model adopted in this study is unrealistic; the porous core is floating in a 
water-saturated universe. In addition, as pointed out by Rovira-Navarro et al. (2022), the amount of heat due to 
permeable flow in the core is overestimated due to inappropriate boundary conditions.

The objective of this study is (a) to establish a theory that unifies the classic viscoelastic gravitational theory 
and the poroelastic theory and (b) to clarify numerical issues one would face when it is applied to geophysical 
studies. This study provides a general theory; assumptions other than those inherited from classic theories are 
not introduced as much as possible to maximize the applicability. This approach is fundamentally different from 
a similar but limited method recently proposed by Rovira-Navarro et al. (2022). Specifically, a low frequency, an 
extremely high permeability, and uniform layer properties are needed. In addition, the gravitation on the fluid is 
not incorporated correctly. On the other hand, the theory given in this study is free from such limitations and thus 
should be applicable not only in studies of tides but also in a wide variety of subjects. For example, an applicabil-
ity to high frequencies of this theory would be beneficial to seismic studies.

In Section 2, the poroviscoelastic gravitational theory is given; the governing equations, the solutions for the 
homogeneous sphere, the boundary conditions, and the equations describing the energy dissipation rate (i.e., 
heating rate) are provided. Section 3 provides some numerical calculations. We first adopt a homogeneous sphere 
model and investigate the behavior of solutions. We find that a numerical instability occurs under typical parame-
ter conditions. A method to overcome the issue is provided. We then adopt a multilayer model and investigate the 
effect of radial variation in interior properties. Concluding remarks are offered in Section 4.

2.  Theory
2.1.  Governing Equation System

The governing equation system consists of (a) a constitutive equation, (b) a Poisson equation of gravity, and 
(c) an equation of motion (i.e., the dynamic equation). These three equations are solved simultaneously in the 
case of a nonporous solid. However, in the case of fluid-saturated porous materials, Equations 1 and 3 are given 
for solid and fluid separately; the equation system now consists of five equations. In the following subsection, 
we derive Fourier transformed equations that are appropriate to describe periodic motions of fluid-saturated 
porous materials assuming a time factor of e iωt, where i is an imaginary number, ω is the frequency of forc-
ing, and t is time, respectively. A replacement of iω with a Laplace transform variable s enables one to calcu-
late not periodic but exponentially decaying motions, though this is not investigated in this study. Following 
Love (1911) and Biot (1956a), the Eulerian formulation is adopted. Below, the summation convention is used 
(i.e., σkk = σ11 + σ22 + σ33), and positive normal stress and strain indicate tensile (i.e., tensor convention), while 
positive pressure is compressive.
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2.1.1.  Constitutive Equation

The constitutive equation of an isotropic porous material with a Maxwellian viscoelasticity is given by (e.g., Liao 
et al., 2020)

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
+

𝜇𝜇

𝜂𝜂𝑠𝑠

(

𝜎𝜎𝑖𝑖𝑖𝑖 −
𝜎𝜎𝑘𝑘𝑘𝑘

3
𝛿𝛿𝑖𝑖𝑖𝑖

)

=

(

𝐾𝐾𝑑𝑑 −
2

3
𝜇𝜇

)𝜕𝜕𝜕𝜕𝑠𝑠
𝑘𝑘𝑘𝑘

𝜕𝜕𝜕𝜕
𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇

𝜕𝜕𝜕𝜕𝑠𝑠
𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
− 𝛼𝛼

𝜕𝜕𝜕𝜕𝑓𝑓

𝜕𝜕𝜕𝜕
𝛿𝛿𝑖𝑖𝑖𝑖 ,� (1)

where the subscripts i and j indicate the direction, σij is the stress tensor, 𝐴𝐴 𝐴𝐴𝑠𝑠
𝑖𝑖𝑖𝑖
 is the solid strain tensor, pf is the 

pore fluid pressure, μ is the shear modulus of the porous material, ηs is the solid viscosity, Kd is the drained bulk 
modulus, α is the Biot effective stress coefficient, and δij is the unit diagonal tensor, respectively. The Biot effec-
tive stress coefficient α is given by

𝛼𝛼 = 1 −
𝐾𝐾𝑑𝑑

𝐾𝐾 ′
𝑠𝑠

,� (2)

where 𝐴𝐴 𝐴𝐴 ′
𝑠𝑠 is the unjacketed frame bulk modulus.

The constitutive equation for the pore fluid is given by Biot and Willis (1957).

𝑝𝑝𝑓𝑓 = −𝑀𝑀
[

(𝛼𝛼 − 𝜙𝜙)𝑒𝑒𝑠𝑠
𝑘𝑘𝑘𝑘
+ 𝜙𝜙𝜙𝜙

𝑓𝑓

𝑘𝑘𝑘𝑘

]

= −𝑀𝑀
(

𝛼𝛼𝛼𝛼𝑠𝑠
𝑘𝑘𝑘𝑘
+ 𝜙𝜙𝜙𝜙rel

𝑘𝑘𝑘𝑘

)

,� (3)

where 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑘𝑘𝑘𝑘
 is the dilatation of the fluid, 𝐴𝐴 𝐴𝐴rel

𝑘𝑘𝑘𝑘
= 𝑒𝑒

𝑓𝑓

𝑘𝑘𝑘𝑘
− 𝑒𝑒𝑠𝑠

𝑘𝑘𝑘𝑘
 is the relative fluid dilatation, ϕ is the porosity, and M is 

the Biot modulus, respectively. The Biot modulus M is given by Biot & Willis (1957), Cheng (2016), and Rice 
and Cleary (1976).

𝑀𝑀 =

(

𝛼𝛼

𝐾𝐾 ′
𝑠𝑠

−
𝜙𝜙

𝐾𝐾 ′′
𝑠𝑠

+
𝜙𝜙

𝐾𝐾𝑓𝑓

)−1

,� (4)

where 𝐴𝐴 𝐴𝐴 ′′
𝑠𝑠  is the unjacketed pore volume bulk modulus and Kf is the fluid bulk modulus, respectively. It should be 

noted here that while the pore fluid is assumed to be viscous, the shear stress of the pore fluid is not considered 
in the framework of classic poroelasticity. As discussed in Section 2.1.3, this is not a self-inconsistency but is 
appropriate when the macroscopic flow of pore fluid is considered.

The Fourier transforms of Equations 1 and 3 are given by (Equations 10.23 and 10.24 of Cheng, 2016).

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑐𝑐𝑒𝑒
𝑠𝑠

𝑘𝑘𝑘𝑘
𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇𝑐𝑐𝑒𝑒

𝑠𝑠
𝑖𝑖𝑖𝑖 − 𝛼𝛼𝛼𝛼𝛼𝑓𝑓𝛿𝛿𝑖𝑖𝑖𝑖 ,� (5)

𝑝𝑝𝑓𝑓 = −𝑀𝑀
(

𝛼𝛼𝛼𝛼𝛼𝑠𝑠
𝑘𝑘𝑘𝑘
+ 𝜙𝜙𝜙𝜙𝜙rel

𝑘𝑘𝑘𝑘

)

,� (6)

respectively, where Fourier transformed variables are denoted by a tilde, λc is the first Lamé parameter given by

𝜆𝜆𝑐𝑐 = 𝐾𝐾𝑑𝑑 −
2𝜇𝜇𝑐𝑐

3
,� (7)

and μc is the second Lamé parameter, or the complex shear modulus, given by

𝜇𝜇𝑐𝑐 =

(

1

𝜇𝜇
+

1

𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠

)−1

.� (8)

For planetary applications, detailed material properties are often unknown. In such cases, an assumption that the 
material is microscopically homogeneous as well as isotropic (i.e., an ideal porous medium) may be used as a first 
step. In this case, two bulk moduli, 𝐴𝐴 𝐴𝐴 ′

𝑠𝑠 and 𝐴𝐴 𝐴𝐴 ′′
𝑠𝑠  , for the solid frame satisfy

𝐾𝐾 ′
𝑠𝑠 = 𝐾𝐾 ′′

𝑠𝑠 = 𝐾𝐾𝑠𝑠,� (9)

where Ks is the bulk modulus of the solid constituent (e.g., Cheng, 2016). Then, we have the following simplified 
expressions for poroelastic parameters:

𝛼𝛼 = 1 −
𝐾𝐾𝑑𝑑

𝐾𝐾𝑠𝑠

,� (10)
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𝑀𝑀 =

(

𝛼𝛼 − 𝜙𝜙 +
𝜙𝜙𝜙𝜙𝑠𝑠

𝐾𝐾𝑓𝑓

)−1

𝐾𝐾𝑠𝑠.� (11)

On the other hand, the use of rheological models other than the Maxwell model may be desired. This is possible 
by simply choosing an appropriate complex shear modulus (i.e., Equation 8). For example, μc = μ is for a purely 
(poro)elastic model, and

𝜇𝜇𝑐𝑐 =

(

1

𝜇𝜇
+

1

𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠
+ 𝛽𝛽(𝑖𝑖𝑖𝑖)

−𝑚𝑚
Γ(𝑚𝑚 + 1)

)−1

� (12)

is for the Andrade rheology model, where β and m are empirical parameters and Γ(m + 1) is the Gamma function 
(e.g., McCarthy & Castillo-Rogez, 2013). In addition, the dissipation due to the volume change in the solid (i.e., 
“bulk dissipation”) can be incorporated by replacing bulk moduli. For example, in the case where the volume change 
is due to the sliding of particles over each other ignoring the viscoelasticity of the solid grain itself, a replacement of

𝐾𝐾𝑑𝑑 →

(

1

𝐾𝐾𝑑𝑑

+
1

𝑖𝑖𝑖𝑖𝑖𝑖𝑏𝑏

)−1

� (13)

where ηb is the bulk viscosity, can be used for an ideal porous medium (Ch. 10 of Cheng, 2016). In this case, α 
and M, which are given by Equations 10 and 11, respectively, are also complex numbers. If grain viscoelasticity 
is considered (i.e., 𝐴𝐴 𝐴𝐴 ′

𝑠𝑠 is a complex number), a more detailed treatment is necessary.

2.1.2.  Poisson Equation of Gravity

The Poisson equation of the gravitational potential is given by (e.g., Love, 1911)

𝜕𝜕2𝜓𝜓

𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖

(𝑟𝑟) = 4𝜋𝜋𝜋𝜋𝜋𝜋(𝑟𝑟)� (14)

where ψ is the gravitational potential, G is the gravitational constant, ρ is the density, and r is the radial distance 
from the center, respectively. It is noted that this study adopts a general notation where the sign of potential is 
opposite from classic geophysical studies (e.g., Alterman et  al.,  1959; Love,  1911; Pekeris & Jarosch,  1958; 
Takeuchi & Saito, 1972). Consider a small perturbation in gravitational potential and density:

𝜓𝜓(𝑟𝑟) = 𝜓𝜓0(𝑟𝑟) + 𝜓𝜓1(𝑟𝑟),� (15)

𝜌𝜌(𝑟𝑟) = 𝜌𝜌0(𝑟𝑟) + 𝜌𝜌1(𝑟𝑟),� (16)

where subscripts 0 and 1 indicate the hydrostatic equilibrium background state and first-order perturbation, 
respectively. The perturbation ρ1 of density is given by the time integration of the continuity equation:

�1 = ∫ ��
��

�� = − ∫ �
���

(

�0
���
��

)

�� = − �
���

(�0��)

= −
(

��
��0
��

+ �0����

)

,
� (17)

where ui is the i-direction displacement. The Poisson equation for the first-order perturbation is then given by 
(e.g., Love, 1911)

𝜕𝜕2𝜓𝜓1

𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖

= 4𝜋𝜋𝜋𝜋𝜋𝜋1 = −4𝜋𝜋𝜋𝜋

(

𝑢𝑢𝑟𝑟
𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑
+ 𝜌𝜌0𝑒𝑒

𝑠𝑠

𝑘𝑘𝑘𝑘

)

.� (18)

For a fluid-saturated solid, these perturbations are decomposed into solid and fluid parts. Specifically, they are 
given by

𝜕𝜕2𝜓𝜓𝑠𝑠

1

𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖

= −4𝜋𝜋𝜋𝜋

(

𝑢𝑢𝑠𝑠𝑟𝑟
𝑑𝑑

𝑑𝑑𝑑𝑑
[(1 − 𝜙𝜙)𝜌𝜌𝑠𝑠0] + (1 − 𝜙𝜙)𝜌𝜌𝑠𝑠0𝑒𝑒

𝑠𝑠

𝑘𝑘𝑘𝑘

)

,� (19)

𝜕𝜕2𝜓𝜓
𝑓𝑓

1

𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖

= −4𝜋𝜋𝜋𝜋

(

𝑢𝑢
𝑓𝑓
𝑟𝑟

𝑑𝑑

𝑑𝑑𝑑𝑑
(𝜙𝜙𝜙𝜙𝑓𝑓0) + 𝜙𝜙𝜙𝜙𝑓𝑓0𝑒𝑒

𝑓𝑓

𝑘𝑘𝑘𝑘

)

,� (20)
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where 𝐴𝐴 𝐴𝐴
𝜉𝜉

1
 is the first-order perturbation of gravitational potential due to displacement and deformation of the 

component ξ (ξ = s for solid and ξ = f for fluid), 𝐴𝐴 𝐴𝐴
𝜉𝜉
𝑟𝑟 is the radial displacement of the component ξ, ρξ0 is the equi-

librium density of the component ξ, and ϕ is the porosity (i.e., the volume fraction of fluid), respectively. The 
total first-order perturbation of gravitational potential is given by the sum of each component:

�2�1

������
= �2

������

(

��
1 + ��

1

)

= −4��
(

���
��
��

+ ����� + �rel
�

�
��

(��� ) + ����rel
��

)

.
� (21)

The Fourier transform of this is given by

𝜕𝜕2𝜓̃𝜓1

𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖

= −4𝜋𝜋𝜋𝜋

(

𝑢̃𝑢𝑠𝑠𝑟𝑟
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝜌𝜌𝜌𝜌𝜌𝑠𝑠

𝑘𝑘𝑘𝑘
+ 𝑢̃𝑢rel

𝑟𝑟

𝑑𝑑

𝑑𝑑𝑑𝑑
(𝜙𝜙𝜙𝜙𝑓𝑓 ) + 𝜙𝜙𝜙𝜙𝑓𝑓𝑒𝑒

rel

𝑘𝑘𝑘𝑘

)

.� (22)

Here,

𝜌𝜌 = (1 − 𝜙𝜙)𝜌𝜌𝑠𝑠0 + 𝜙𝜙𝜙𝜙𝑓𝑓0� (23)

is the local mean density, 𝐴𝐴 𝐴𝐴rel

𝑖𝑖
= 𝑢𝑢

𝑓𝑓

𝑖𝑖
− 𝑢𝑢𝑠𝑠

𝑖𝑖
 is the i-direction fluid displacement relative to the solid, and the subscript 

0 for the density is omitted.

2.1.3.  Equation of Motion (Dynamic Equation)

Let us first revisit the derivation of the linearized equation of motion for a nonporous solid. The equation of 
motion is given by

𝜌𝜌
𝜕𝜕2𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕2
=

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝑏𝑏𝑖𝑖,� (24)

where bi is the i-direction component of the body force. At the hydrostatic equilibrium background state (i.e., 
ui = 0), Equation 24 becomes

0 =
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑖0

𝜕𝜕𝜕𝜕𝑗𝑗

+ 𝑏𝑏𝑖𝑖𝑖0.� (25)

Here, the background stress tensor σij,0 and body force bi,0 satisfy

𝜎𝜎𝑖𝑖𝑖𝑖𝑖0 = −𝑝𝑝0𝛿𝛿𝑖𝑖𝑖𝑖 ,� (26)

𝑏𝑏𝑖𝑖𝑖0 = −𝜌𝜌0
𝜕𝜕𝜕𝜕0(𝑟𝑟)

𝜕𝜕𝜕𝜕𝑖𝑖

= −𝜌𝜌0
𝑥𝑥𝑖𝑖

𝑟𝑟

𝑑𝑑𝑑𝑑0(𝑟𝑟)

𝑑𝑑𝑑𝑑
= −

𝜌𝜌0𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
,� (27)

respectively, where p0 = p0(r) is the hydrostatic pressure and g = g(r)(>0) is gravitational acceleration. Equa-
tions 25–27 yield

𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑
= −𝜌𝜌0𝑔𝑔𝑔� (28)

At a perturbed state, the stress tensor σij and the body force bi, including their background states, are given by

𝜎𝜎𝑖𝑖𝑖𝑖 = −

(

𝑝𝑝0 − 𝑢𝑢𝑟𝑟
𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑

)

𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖1 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑖0 − 𝜌𝜌0𝑔𝑔𝑔𝑔𝑟𝑟𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑖𝑖𝑖𝑖𝑖1,� (29)

𝑏𝑏𝑖𝑖 = −(𝜌𝜌0 + 𝜌𝜌1)
𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

(𝜓𝜓0 + 𝜓𝜓1) ≈ 𝑏𝑏𝑖𝑖𝑖0 − 𝜌𝜌0
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
𝑢𝑢𝑟𝑟
𝑑𝑑𝑑𝑑0

𝑑𝑑𝑑𝑑
+

𝜌𝜌0𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
𝑒𝑒𝑘𝑘𝑘𝑘.� (30)

Then, the equation of motion for the first-order perturbation can be obtained as

𝜌𝜌
𝜕𝜕2𝑢𝑢𝑖𝑖

𝜕𝜕𝜕𝜕2
=

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

− 𝜌𝜌
𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

(𝑔𝑔𝑔𝑔𝑟𝑟) − 𝜌𝜌
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜌𝜌𝜌𝜌𝜌𝜌𝑖𝑖

𝑟𝑟
𝑒𝑒𝑘𝑘𝑘𝑘,� (31)
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where the subscript 0 for density and the subscript 1 for stress tensor are omitted.

Now let us derive the equations of motion for the first-order perturbation for a fluid-saturated porous-case in 
the same manner. In this study, a single-phase isotropic solid frame is assumed to be fully saturated with a 
single-phase single-component fluid. In this case, the equations of motion for solid and fluid parts are given by 
(e.g., Biot, 1956a, 1956b; Corapcioglu & Tuncay, 1996; Equations 9.41 and 9.42 of Cheng, 2016).

𝜕𝜕2

𝜕𝜕𝜕𝜕2

[

(1 − 𝜙𝜙)𝜌𝜌𝑠𝑠0𝑢𝑢
𝑠𝑠
𝑖𝑖 − (1 − 𝜙𝜙)𝐶𝐶𝑎𝑎𝜌𝜌𝑓𝑓0𝑢𝑢

rel

𝑖𝑖

]

=
𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

[

(1 − 𝜙𝜙)𝜎𝜎𝑠𝑠
𝑖𝑖𝑖𝑖

]

+ (1 − 𝜙𝜙)𝑏𝑏𝑠𝑠𝑖𝑖 − 𝑝𝑝𝑓𝑓
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝜙𝜙2𝜂𝜂𝑓𝑓

𝑘𝑘

𝜕𝜕𝜕𝜕rel

𝑖𝑖

𝜕𝜕𝜕𝜕
,� (32)

𝜕𝜕2

𝜕𝜕𝜕𝜕2

[

𝜙𝜙𝜙𝜙𝑓𝑓0𝑢𝑢
𝑓𝑓

𝑖𝑖
+ (1 − 𝜙𝜙)𝐶𝐶𝑎𝑎𝜌𝜌𝑓𝑓0𝑢𝑢

rel

𝑖𝑖

]

= −
𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

(𝜙𝜙𝜙𝜙𝑓𝑓 ) + 𝜙𝜙𝜙𝜙
𝑓𝑓

𝑖𝑖
+ 𝑝𝑝𝑓𝑓

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

−
𝜙𝜙2𝜂𝜂𝑓𝑓

𝑘𝑘

𝜕𝜕𝜕𝜕rel

𝑖𝑖

𝜕𝜕𝜕𝜕
,� (33)

respectively, where 𝐴𝐴 𝐴𝐴𝑠𝑠
𝑖𝑖𝑖𝑖
 is the solid partial stress tensor, 𝐴𝐴 𝐴𝐴

𝜉𝜉

𝑖𝑖
 is the i-direction body force acting on component ξ, ηf 

is the fluid viscosity, k is the intrinsic permeability, and Ca is the porous-medium added-mass coefficient, respec-
tively. The factors of 𝐴𝐴 (1 − 𝜙𝜙) for solid component variables (i.e., 𝐴𝐴 𝐴𝐴𝑠𝑠

𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴𝑠𝑠

𝑖𝑖
 ) and of ϕ for fluid component variables 

(i.e., pf and 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑖𝑖
 ) are introduced to normalize these variables with the volume of each component.

Compared to the classic geodynamic formulation by Love (1911), the solid-fluid interaction terms have been 
added to the equation for the solid part (Equation 32), and obviously, the equation for the fluid part (i.e., Equa-
tion 33) is newly introduced. The added mass is an apparent mass arising due to the fact that an accelerating or 
decelerating solid body in a fluid must move a volume of surrounding fluid (e.g., Ch. 9 of Cheng, 2016). It is clear 
that Equation 32 under the limit of ϕ → 0 is equivalent to that used by Love (1911). Equations 32 and 33 can also 
be compared to a two-phase mantle flow model (McKenzie, 1984), where the terms describing the inertial effects 
have been ignored. On the other hand, compared to the classic poroelastic formulation by Biot (1956a, 1956b), 
the terms describing the body forces have been added. In addition, a term with pore pressure has also been added 
to Equation 32 to allow the spatial variation in porosity.

Equations 32 and 33 yield

𝜌𝜌0
𝜕𝜕2𝑢𝑢𝑠𝑠

𝑖𝑖

𝜕𝜕𝜕𝜕2
=

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

+ (1 − 𝜙𝜙)𝑏𝑏𝑠𝑠𝑖𝑖 + 𝜙𝜙𝜙𝜙
𝑓𝑓

𝑖𝑖
− 𝜙𝜙𝜙𝜙𝑓𝑓0

𝜕𝜕2𝑢𝑢rel

𝑖𝑖

𝜕𝜕𝜕𝜕2
,� (34)

𝜙𝜙2𝜂𝜂𝑓𝑓

𝑘𝑘

𝜕𝜕𝜕𝜕rel

𝑖𝑖

𝜕𝜕𝜕𝜕
= −𝜙𝜙

𝜕𝜕𝜕𝜕𝑓𝑓

𝜕𝜕𝜕𝜕𝑖𝑖

+ 𝜙𝜙𝜙𝜙
𝑓𝑓

𝑖𝑖
− 𝜙𝜙𝜙𝜙𝑓𝑓0

𝜕𝜕2

𝜕𝜕𝜕𝜕2

[(

1 +
1 − 𝜙𝜙

𝜙𝜙
𝐶𝐶𝑎𝑎

)

𝑢𝑢rel

𝑖𝑖 + 𝑢𝑢𝑠𝑠𝑖𝑖

]

,� (35)

where

𝜎𝜎𝑖𝑖𝑖𝑖 = (1 − 𝜙𝜙)𝜎𝜎𝑠𝑠
𝑖𝑖𝑖𝑖 − 𝜙𝜙𝜙𝜙𝑓𝑓𝛿𝛿𝑖𝑖𝑖𝑖� (36)

is the total stress tensor and is given by Equation 1 (Cheng, 2016). Equation 34 describes the bulk motion modi-
fied for the relative fluid motion, and Equation 35 is Darcy's flow law modified for the inertial effect. Below, we 
derive the first-order perturbation components for Equations 34 and 35.

At the hydrostatic equilibrium background state (i.e., 𝐴𝐴 𝐴𝐴
𝜉𝜉

𝑖𝑖
= 0 ), Equations 34 and 35 become

0 =
𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖𝑖0

𝜕𝜕𝜕𝜕𝑗𝑗

+ (1 − 𝜙𝜙0)𝑏𝑏
𝑠𝑠

𝑖𝑖𝑖0
+ 𝜙𝜙0𝑏𝑏

𝑓𝑓

𝑖𝑖𝑖0
,� (37)

0 = −𝜙𝜙0

𝜕𝜕𝜕𝜕𝑓𝑓0

𝜕𝜕𝜕𝜕𝑖𝑖

+ 𝜙𝜙0𝑏𝑏
𝑓𝑓

𝑖𝑖𝑖0
.� (38)

Here, the total stress tensor σij,0 satisfies Equation 26, and the body force 𝐴𝐴 𝐴𝐴
𝜉𝜉

𝑖𝑖𝑖0
 is given by

𝑏𝑏
𝜉𝜉

𝑖𝑖𝑖0
= −𝜌𝜌𝜉𝜉0

𝜕𝜕𝜕𝜕0(𝑟𝑟)

𝜕𝜕𝜕𝜕𝑖𝑖

= −
𝜌𝜌𝜉𝜉0𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
.� (39)

In addition, the subscript 0 is added to the porosity. Equations 38 and 39 yield

𝑑𝑑𝑑𝑑𝑓𝑓0(𝑟𝑟)

𝑑𝑑𝑑𝑑
= −𝜌𝜌𝑓𝑓0𝑔𝑔𝑔� (40)
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At a perturbed state,

��� = ���,0 −
[

(1 − �0)��0���� + �0��0����
]

��� + ���,1

= ���,0 −
(

�0���� + �0��0��rel
�
)

��� + ���,1,
� (41)

�
���
���

=
(

�0 −
[

��� + (1 − �0)�rel
�
]��0

��

)

�
���

(

��0 − ���
���0
��

+ ��1
)

≈ �0
���0
���

+ �
���

(

�0��0����
)

−
�0��0���

�
�rel
�
��0

��
+ �0

���1
���

,
� (42)

(1 − 𝜙𝜙)𝑏𝑏𝑠𝑠𝑖𝑖 = (1 − 𝜙𝜙0)𝑏𝑏
𝑠𝑠

𝑖𝑖𝑖0
− (1 − 𝜙𝜙0)𝜌𝜌𝑠𝑠0

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
𝑢𝑢𝑠𝑠𝑟𝑟

𝑑𝑑

𝑑𝑑𝑑𝑑
[(1 − 𝜙𝜙0)𝜌𝜌𝑠𝑠0] +

(1 − 𝜙𝜙0)𝜌𝜌𝑠𝑠0𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
𝑒𝑒𝑠𝑠
𝑘𝑘𝑘𝑘
,� (43)

𝜙𝜙𝜙𝜙
𝑓𝑓

𝑖𝑖
= 𝜙𝜙0𝑏𝑏

𝑓𝑓

𝑖𝑖𝑖0
− 𝜙𝜙0𝜌𝜌𝑓𝑓0

𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
𝑢𝑢
𝑓𝑓
𝑟𝑟

𝑑𝑑

𝑑𝑑𝑑𝑑
(𝜙𝜙0𝜌𝜌𝑓𝑓0) +

𝜙𝜙0𝜌𝜌𝑓𝑓0𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟
𝑒𝑒
𝑓𝑓

𝑘𝑘𝑘𝑘
.� (44)

Here, the factors that change the porosity other than radial displacement are ignored. More specifically,

� =

(

� �
0 + � �

1

)

(

� �
0 + � �

1

)

+
(

� �
0 + � �

1

)
≈

�0
(

� − ���
)

1 − �0(� − ���) + �0
(

� − ���
)
≈

�0(�) − ���
��0

��

1 + ���
��0

��
− ���

��0

��
≈ �0 −

[

��� + (1 − �0)�rel
�
]��0

��
,

� (45)

where V ξ is the volume of the component ξ. Then, we have

𝜌𝜌
𝜕𝜕2𝑢𝑢𝑠𝑠

𝑖𝑖

𝜕𝜕𝜕𝜕2
=

𝜕𝜕𝜕𝜕𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕𝑗𝑗

− 𝜌𝜌
𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

(𝑔𝑔𝑔𝑔𝑠𝑠𝑟𝑟) − 𝜙𝜙𝜙𝜙𝑓𝑓
𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

(

𝑔𝑔𝑔𝑔rel
𝑟𝑟

)

− 𝜌𝜌
𝜕𝜕𝜕𝜕1

𝜕𝜕𝜕𝜕𝑖𝑖

+
𝑔𝑔𝑔𝑔𝑖𝑖

𝑟𝑟

(

𝜌𝜌𝜌𝜌𝑠𝑠
𝑘𝑘𝑘𝑘
+ 𝜙𝜙𝜙𝜙𝑓𝑓𝑒𝑒

rel

𝑘𝑘𝑘𝑘

)

− 𝜙𝜙𝜙𝜙𝑓𝑓
𝜕𝜕2𝑢𝑢rel

𝑖𝑖

𝜕𝜕𝜕𝜕2
,� (46)

�����

�
��rel

�

��
= −

���
���

− ��
�
���

[

�
(

�rel
� + ���

)]

− ��
��1

���

+
�����

�

(

�rel
�
��
��

+ �rel
�� + ����

)

− ��
�2

��2

[(

1 +
1 − �
�


�

)

�rel
� + ���

]

,
� (47)

and their Fourier transforms are given by

−�2��̃�� =
��̃��

���
− � �

���

(

��̃��
)

− ���
�
���

(

��̃ rel
�
)

− �
��̃1

���
+

���

�
(

��̃ �
�� + ��� �̃ rel

��

)

+ �2��� �̃ rel
� ,� (48)

�
������

�
�̃ rel
� = −

��̃�
���

− ��
�
���

[

�
(

�̃ rel
� + �̃��

)]

− ��
��̃1

���

+
�����

�

(

�̃ rel
�
��
��

+ 
̃ rel
�� + 
̃���

)

+ �2��
[(

1 +
1 − �
�

��

)

�̃ rel
� + �̃��

]

.
� (49)

Here, the subscript 0 for the density and porosity and the subscript 1 for the stress tensor and pore pressure 
are omitted. In addition, the fluid viscosity ηf, which appears on the left-hand sides of Equations 47 and 49, is 
replaced with ηfFf, where Ff is the viscosity correction factor (Biot, 1956b; Cheng, 2016). See Appendix A for 
details of Ff as well as Ca, two parameters that become important when the frequency is high. Equations 46 and 47 
correspond to Equations 29a and 29b of Rovira-Navarro et al. (2022) with some additional terms: describing the 
effects of inertia, of radial variation in porosity, and of gravity on the fluid motion.

In the classic poroelastic formulation, the fluid is assumed to be viscous. In general, the motion of a viscous 
fluid can be described by the Navier-Stokes equation, which contains a term with the Laplacian of the velocity 
that originates from shear stress in the fluid. However, Equation 33 does not contain such a term; instead, the 
fluid viscosity appears in a term linear with the velocity (i.e., the fourth term of the right-hand side), leading 
to Darcy's law. In other words, shear stress in the fluid is not explicitly incorporated in our formulation, as 
mentioned in Section 2.1.1. The relation between the Navier-Stokes equation and Darcy's law for porous media 
has already been investigated in detail, and it is known that the volume averaging of the Navier-Stokes equation 
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leads to Darcy's law. This indicates that Darcy's law is appropriate to describe the macroscopic motion of the 
pore fluid (e.g., Neuman, 1977; Whitaker, 1986). It is possible to consider an extension of Darcy's law to include 
a term with the Laplacian of the velocity (i.e., the Brinkman correction). However, this is appropriate only for 
fluid-dominated conditions, which is not the case for most geologic material (e.g., Allen, 2021; Auriault, 2009).

2.2.  Ordinary Differential Equation System Using y Functions

Periodic spheroidal deformation of a poroviscoelastic planetary body can be calculated by solving Equations 5, 6, 
22, 48, and 49. By assuming small amplitudes, deformation due to multiple forcing components can be described 
as a superposition of deformation due to each component; a spherical harmonic expansion in the spatial domain 
is applicable. Following Takeuchi and Saito (1972), we define yi (i = 1, 2, …, 5) as follows:

𝑢̃𝑢𝑠𝑠𝑖𝑖 =
∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

(

𝑥𝑥𝑖𝑖

𝑟𝑟
𝑦𝑦1(𝓁𝓁, 𝑟𝑟)𝑌𝑌

𝑚𝑚

𝓁𝓁
+ 𝑟𝑟𝑟𝑟3(𝓁𝓁, 𝑟𝑟)

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕𝑖𝑖

)

,� (50)

𝜎𝜎𝑟𝑟𝑟𝑟 =
∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

(

𝑥𝑥𝑖𝑖

𝑟𝑟
𝑦𝑦2(𝓁𝓁, 𝑟𝑟)𝑌𝑌

𝑚𝑚

𝓁𝓁
+ 𝑟𝑟𝑟𝑟4(𝓁𝓁, 𝑟𝑟)

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕𝑖𝑖

)

,� (51)

𝜓̃𝜓1 = −

∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑦𝑦5(𝓁𝓁, 𝑟𝑟)𝑌𝑌
𝑚𝑚

𝓁𝓁
,� (52)

where 𝐴𝐴 𝐴𝐴 𝑚𝑚

𝓁𝓁
 is the unnormalized spherical harmonic function of the degree ℓ and of the order m, and Uℓm is the 

forcing amplitude of the same degree and order. The minus sign appeared in Equation 52 represents the afore-
mentioned difference in the sign of gravitational potential between geophysical and general conventions. Conse-
quently, y5 defined by Equation 52 is the same as that defined by Takeuchi and Saito (1972). The unnormalized 
spherical harmonic function 𝐴𝐴 𝐴𝐴 𝑚𝑚

𝓁𝓁
 is given by

𝑌𝑌 𝑚𝑚

𝓁𝓁
(𝜃𝜃𝜃 𝜃𝜃) = 𝑃𝑃𝑚𝑚

𝓁𝓁
(cos 𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,� (53)

where 𝐴𝐴 𝐴𝐴𝑚𝑚

𝓁𝓁
 is the associated Legendre function, θ is colatitude, and φ is longitude, respectively. It is noted that the 

y functions are independent of the spherical harmonic order m. We define y6 after new variables (i.e., y8, y9, and 
y10) are introduced because our y6 contains one of these new variables.

To describe the motion of the pore fluid (relative to the solid frame), we define y8(ℓ, r), y9(ℓ, r), and y10(ℓ, r) as 
follows:

𝑢̃𝑢rel

𝑖𝑖 =
∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

(

𝑥𝑥𝑖𝑖

𝑟𝑟
𝑦𝑦8(𝓁𝓁, 𝑟𝑟)𝑌𝑌

𝑚𝑚

𝓁𝓁
+ 𝑟𝑟𝑟𝑟10(𝓁𝓁, 𝑟𝑟)

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕𝑖𝑖

)

,� (54)

𝑝𝑝𝑓𝑓 =
∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑦𝑦9(𝓁𝓁, 𝑟𝑟)𝑌𝑌
𝑚𝑚

𝓁𝓁
.� (55)

Equations  54 and  55 are counterparts of Equations  50 and  51, respectively. Equation  55, however, does not 
contain a term with the partial differential of 𝐴𝐴 𝐴𝐴 𝑚𝑚

𝓁𝓁
 because shear stress in the fluid does not appear in the governing 

equation (i.e., Equation 33). It is noted that we do not use y7 here to avoid confusion with y7 that has been used by 
previous studies to describe the motion of a pure liquid layer (Saito, 1974).

Using the newly defined y8, we define y6(r) as follows:

𝑦𝑦6(𝑟𝑟) =
𝑑𝑑𝑑𝑑5

𝑑𝑑𝑑𝑑
− 4𝜋𝜋𝜋𝜋(𝜌𝜌𝜌𝜌1 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑦𝑦8) +

𝓁𝓁 + 1

𝑟𝑟
𝑦𝑦5.� (56)

Compared to y6 defined for the nonporous case (e.g., Takeuchi & Saito, 1972), ρy1, a term accounting for the mass 
surface density induced by deformation, has been replaced with ρy1 + ϕρfy8. This replacement leads to the same 
boundary conditions for y6 (i.e., a continuity in y6 at boundaries).

Substitution of the definitions of y functions to the Fourier transformed governing equations (i.e., Equations 5, 6, 
22, 48, and 49) leads to the following eight-component ordinary differential equation system:

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
= −

2𝜆𝜆𝑐𝑐

(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)𝑟𝑟
𝑦𝑦1 +

1

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

𝑦𝑦2 +
𝓁𝓁(𝓁𝓁 + 1)𝜆𝜆𝑐𝑐

(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)𝑟𝑟
𝑦𝑦3 +

𝛼𝛼

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

𝑦𝑦9,� (57)

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007700 by H
okkaido U

niversity, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Planets

KAMATA

10.1029/2022JE007700

9 of 47

��2
��

=

(

−�2� −
4��
�

+
12����

(�� + 2��)�2
+

�(� + 1)��2� �
2

�2���2

)

�1 −
4��

(�� + 2��)�
�2

+
�(� + 1)

�

[(

� −
��2�
��

)

� −
6����

(�� + 2��)�

]

�3 +
�(� + 1)

�
�4 +

� + 1
�

(

� −
���2� �

�2���

)

�5 − ��6

+

(

−�2��� −
4����

�
+

�(� + 1)��2� �
2

�2���2

)

�8 +
(

−
4���

(�� + 2��)�
+

�(� + 1)����
�2���2

)

�9,

� (58)

𝑑𝑑𝑑𝑑3

𝑑𝑑𝑑𝑑
= −

1

𝑟𝑟
𝑦𝑦1 +

1

𝑟𝑟
𝑦𝑦3 +

1

𝜇𝜇𝑐𝑐

𝑦𝑦4,� (59)

��4
��

=

[(

� −
��2�
��

)

�
�
−

6����

(�� + 2��)�2

]

�1 −
��

(�� + 2��)�
�2

+

[

−�2

(

� −
��2�
��

)

+
2��

�2

(

2�(� + 1)(�� + ��)
�� + 2��

− 1
)

]

�3

−3
�
�4 −

(

� −
��2�
��

)

1
�
�5 +

(

1 −
��
��

)

����
�

�8 +
(

2���

�� + 2��
−

���
��

)

1
�
�9,

� (60)

𝑑𝑑𝑑𝑑5

𝑑𝑑𝑑𝑑
= 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋1 −

𝓁𝓁 + 1

𝑟𝑟
𝑦𝑦5 + 𝑦𝑦6 + 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑓𝑓𝑦𝑦8,� (61)

��6
��

=
4�(� + 1)�

�

(

� −
���2� �

�2���

)

�1 −
4��(� + 1)�

�

(

� −
��2�
��

)

�3 +
4��(� + 1)���2�

�2���2
�5 +

� − 1
�

�6

+
4�(� + 1)����

�

(

1 −
����
�2���

)

�8 −
4��(� + 1)����

�2���2
�9,

� (62)

��8
��

= 1
�

(

−
4���

�(�� + 2��)
+

�(� + 1)���
�2���

)

�1 −
�

�(�� + 2��)
�2 +

�(� + 1)
�

(

2���

�(�� + 2��)
−

��
��

)

�3

−
�(� + 1)��
�2���2

�5 +
(

−2
�
+

�(� + 1)���
�2���2

)

�8 −
[

1
�

(

1
�

+ �2

�� + 2��

)

−
�(� + 1)
�2���2

]

�9,
� (63)

��9
��

=
[

�2�� +
(

4 −
�(� + 1)���

�2���

)

���
�

]

�1 −
�(� + 1)���

�

(

1 −
��
��

)

�3
(� + 1)��

�

(

1 −
����
�2���

)

�5

+ ���6 +
[

�2�� +
(

4 −
�(� + 1)���

�2���
+ �

��
��

)

���
�

− 4���� (� − ��� )
]

�8 −
�(� + 1)���

�2���2
�9,

� (64)

where

𝜌𝜌𝑒𝑒 = 𝜌𝜌𝑓𝑓

(

1 +
1 − 𝜙𝜙

𝜙𝜙
𝐶𝐶𝑎𝑎

)

− 𝑖𝑖
𝜙𝜙𝜙𝜙𝑓𝑓𝐹𝐹𝑓𝑓

𝜔𝜔𝜔𝜔
,� (65)

and

𝑦𝑦10 =
1

𝜔𝜔2𝜌𝜌𝑒𝑒𝑟𝑟

(

𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔1 − 𝜔𝜔2𝜌𝜌𝑓𝑓 𝑟𝑟𝑟𝑟3 − 𝜌𝜌𝑓𝑓𝑦𝑦5 + 𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔8 + 𝑦𝑦9
)

.� (66)

See Appendix B1 for the derivation and Appendix C for the differential equation system under some limiting 
conditions.

While the above equation system is for compressible materials, only slight changes are needed for incompressible 
materials. Specifically, if the solid (but not the fluid) is incompressible (i.e., 𝐴𝐴 𝐴𝐴 ′

𝑠𝑠, 𝐾𝐾
′′
𝑠𝑠 → ∞ ), α = 1, and 1/M = ϕ/

Kf. If the fluid (but not the solid) is incompressible (i.e., Kf → 𝐴𝐴 ∞ ), 𝐴𝐴 1∕𝑀𝑀 = 𝛼𝛼∕𝐾𝐾 ′
𝑠𝑠 − 𝜙𝜙∕𝐾𝐾 ′′

𝑠𝑠  . If both the solid and 
fluid are incompressible, α = 1, and 1/M = 0. Thus, material incompressibility does not simplify the equation 
system largely, which contrasts with the nonporous case, which has 𝐴𝐴 𝐴𝐴𝑐𝑐, 𝐾𝐾

′
𝑠𝑠, 𝐾𝐾

′′
𝑠𝑠 → ∞ . This is because the porous 
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material is compressible (i.e., λc and Kd do not diverge) even if the constituent is incompressible unless the 
undrained condition is applied (e.g., Cheng, 2016; Fjær et al., 2008).

Notably, this equation system is not applicable for static deformation (i.e., ω = 0). Nevertheless, this does not 
mean that one cannot calculate the static deformation of a porous layer. At ω = 0, if the solid is a Maxwellian 
material, the porous layer behaves as a pure liquid layer. On the other hand, if the solid is an elastic material 
(i.e., ηs → 𝐴𝐴 ∞ ), the porous layer behaves as an elastic layer with drained moduli. In either case, the system 
no longer requires an eight-component system and can be solved using a classic method involving either a 
two- or six-component equation system (Saito, 1974; Takeuchi & Saito, 1972). See Appendix D for further 
details.

2.3.  Solution for the Homogeneous Sphere

Although the deformation of a planetary body with radially varying interior properties is considered, the solu-
tion for a homogeneous sphere is important because it is used for the initial values for the numerical integration 
of the ordinary differential equations of y functions (Takeuchi & Saito,  1972). Love  (1911) and Pekeris and 
Jarosch  (1958) provide methods to derive the solution for the homogeneous sphere involving a fourth-order 
differential equation and the quadratic formula. If the same approach is adopted here, a sixth-order differential 
equation and a cubic formula will be involved, and this is not practical. Instead, we obtain the solutions adopting 
an eigenvalue approach.

2.3.1.  Compressible Case

Let us define

𝑋𝑋𝑠𝑠
=

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
+

2

𝑟𝑟
𝑦𝑦1 −

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟
𝑦𝑦3,� (67)

𝑍𝑍𝑠𝑠
=

𝑑𝑑𝑑𝑑3

𝑑𝑑𝑑𝑑
+

1

𝑟𝑟
𝑦𝑦3 −

1

𝑟𝑟
𝑦𝑦1,� (68)

𝑋𝑋rel
=

𝑑𝑑𝑑𝑑8

𝑑𝑑𝑑𝑑
+

2

𝑟𝑟
𝑦𝑦8 −

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟
𝑦𝑦10,� (69)

𝑍𝑍 rel
=

𝑑𝑑𝑑𝑑10

𝑑𝑑𝑑𝑑
+

1

𝑟𝑟
𝑦𝑦10 −

1

𝑟𝑟
𝑦𝑦8,� (70)

𝛾𝛾 =
𝑔𝑔

𝑟𝑟
=

4𝜋𝜋𝜋𝜋𝜋𝜋

3
.� (71)

Then, Equation 48 leads to
(

𝜇𝜇𝑐𝑐∇
2
+ 𝜔𝜔2𝜌𝜌

)

𝑍𝑍𝑠𝑠
+ 𝜔𝜔2𝜙𝜙𝜙𝜙𝑓𝑓𝑍𝑍

rel
= 𝛾𝛾

(

𝜌𝜌𝜌𝜌𝑠𝑠
+ 𝜙𝜙𝜙𝜙𝑓𝑓𝑋𝑋

rel
)

,� (72)

[(

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐 + 𝛼𝛼2𝑀𝑀
)

∇2 + 𝜔𝜔2𝜌𝜌 + 4𝜌𝜌𝜌𝜌
]

𝑋𝑋𝑠𝑠 + 𝜙𝜙
(

𝛼𝛼𝛼𝛼∇2 + 𝜔𝜔2𝜌𝜌𝑓𝑓 + 4𝜌𝜌𝑓𝑓 𝛾𝛾
)

𝑋𝑋rel = 𝓁𝓁(𝓁𝓁 + 1)𝛾𝛾
(

𝜌𝜌𝜌𝜌𝑠𝑠 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑍𝑍
rel
)

,� (73)

while Equation 49 leads to

𝜔𝜔2
(

𝜌𝜌𝑓𝑓𝑍𝑍
𝑠𝑠 + 𝜌𝜌𝑒𝑒𝑍𝑍

rel
)

= 𝜌𝜌𝑓𝑓 𝛾𝛾
(

𝑋𝑋𝑠𝑠 +𝑋𝑋rel
)

,� (74)

[

𝛼𝛼𝛼𝛼∇2 + 𝜔𝜔2𝜌𝜌𝑓𝑓 + 4𝜌𝜌𝑓𝑓 𝛾𝛾
]

𝑋𝑋𝑠𝑠 +

[

𝜙𝜙𝜙𝜙∇2 + 𝜔𝜔2𝜌𝜌𝑒𝑒 +

(

1 +
3𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌

)

𝜌𝜌𝑓𝑓 𝛾𝛾

]

𝑋𝑋rel = 𝓁𝓁(𝓁𝓁 + 1)𝜌𝜌𝑓𝑓 𝛾𝛾
(

𝑍𝑍𝑠𝑠 +𝑍𝑍 rel
)

.� (75)

Here,

∇
2
=

𝑑𝑑2

𝑑𝑑𝑑𝑑2
+

2

𝑟𝑟

𝑑𝑑

𝑑𝑑𝑑𝑑
−

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟2
.� (76)

See Appendix B2 for the derivation. After eliminating Z rel using Equation 74, Equations 72, 73, and 75 can be 
written in a matrix form:
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∇2

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

= �

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

�11 �12 �13

�21 �22 �23

�31 �32 �33

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

,� (77)

where

𝑎𝑎11 = −

(

𝜔𝜔2 + 4𝛾𝛾
)

(𝜌𝜌 − 𝛼𝛼𝛼𝛼𝑓𝑓 )

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

+

𝓁𝓁(𝓁𝓁 + 1)(𝜙𝜙 − 𝛼𝛼)𝜌𝜌2
𝑓𝑓
𝛾𝛾2

𝜔𝜔2𝜌𝜌𝑒𝑒(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)
,� (78)

𝑎𝑎12 =
𝓁𝓁(𝓁𝓁 + 1)𝛾𝛾

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

[(

𝜌𝜌 −
𝜙𝜙𝜙𝜙2

𝑓𝑓

𝜌𝜌𝑒𝑒

)

− 𝛼𝛼𝛼𝛼𝑓𝑓

(

1 −
𝜌𝜌𝑓𝑓

𝜌𝜌𝑒𝑒

)

]

,� (79)

𝑎𝑎13 = −
𝜔𝜔2(𝜙𝜙𝜙𝜙𝑓𝑓 − 𝛼𝛼𝛼𝛼𝑒𝑒)

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

−

[

(𝜙𝜙 − 𝛼𝛼)𝜌𝜌 + 3𝜙𝜙(𝜌𝜌 − 𝛼𝛼𝛼𝛼𝑓𝑓 )
]

𝜌𝜌𝑓𝑓 𝛾𝛾

𝜌𝜌(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)
+

𝓁𝓁(𝓁𝓁 + 1)(𝜙𝜙 − 𝛼𝛼)𝜌𝜌2
𝑓𝑓
𝛾𝛾2

𝜔𝜔2𝜌𝜌𝑒𝑒(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)
,� (80)

𝑎𝑎21 =

(

𝜌𝜌 −
𝜙𝜙𝜙𝜙2

𝑓𝑓

𝜌𝜌𝑒𝑒

)

𝛾𝛾

𝜇𝜇𝑐𝑐

,� (81)

𝑎𝑎22 = −
𝜔𝜔2

𝜇𝜇𝑐𝑐

(

𝜌𝜌 −
𝜙𝜙𝜙𝜙2

𝑓𝑓

𝜌𝜌𝑒𝑒

)

,� (82)

𝑎𝑎23 =

(

1 −
𝜌𝜌𝑓𝑓

𝜌𝜌𝑒𝑒

)

𝜙𝜙𝜙𝜙𝑓𝑓𝛾𝛾

𝜇𝜇𝑐𝑐

,� (83)

𝑎𝑎31 = −

(

𝜔𝜔2 + 4𝛾𝛾
)

𝜌𝜌𝑓𝑓

𝜙𝜙𝜙𝜙
+

𝓁𝓁(𝓁𝓁 + 1)𝜌𝜌2
𝑓𝑓
𝛾𝛾2

𝜔𝜔2𝜙𝜙𝜙𝜙𝑒𝑒𝑀𝑀
−

𝛼𝛼

𝜙𝜙
𝑎𝑎11,� (84)

𝑎𝑎32 =

(

1 −
𝜌𝜌𝑓𝑓

𝜌𝜌𝑒𝑒

)

𝓁𝓁(𝓁𝓁 + 1)𝜌𝜌𝑓𝑓 𝛾𝛾

𝜙𝜙𝜙𝜙
−

𝛼𝛼

𝜙𝜙
𝑎𝑎12,� (85)

𝑎𝑎33 = −

[

𝜔𝜔2𝜌𝜌𝑒𝑒 +

(

1 +
3𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌

)

𝜌𝜌𝑓𝑓 𝛾𝛾

]

1

𝜙𝜙𝜙𝜙
+

𝓁𝓁(𝓁𝓁 + 1)𝜌𝜌2
𝑓𝑓
𝛾𝛾2

𝜔𝜔2𝜙𝜙𝜙𝜙𝑒𝑒𝑀𝑀
−

𝛼𝛼

𝜙𝜙
𝑎𝑎13.� (86)

Let 𝐴𝐴 −
(

𝑘𝑘𝑒𝑒
𝑖𝑖

)2

(𝑖𝑖 = 1, 2, 3) be the eigenvalues of the matrix A, pi be the corresponding eigenvector, and 𝐴𝐴 𝐴𝐴 =
(

𝒑𝒑1,𝒑𝒑2,𝒑𝒑3

)

 . 
Then, we have

� −1�� =

⎛

⎜

⎜

⎜

⎜

⎝

−
(

��
1

)2 0 0

0 −
(

��
2

)2 0

0 0 −
(

��
3

)3

⎞

⎟

⎟

⎟

⎟

⎠

,� (87)

where P −1 is the inverse matrix of P. By multiplying P −1 from the left, the left-hand side of Equation  77 
becomes

� −1∇2

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

= ∇2� −1

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

,� (88)

because P as well as A are independent of r. On the other hand, by multiplying P −1 from the left, the right-hand 
side of Equation 77 becomes
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� −1�

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

= � −1�
(

�� −1
)

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

=
(

� −1��
)

� −1

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

−
(

��
1

)2 0 0

0 −
(

��
2

)2 0

0 0 −
(

��
3

)3

⎞

⎟

⎟

⎟

⎟

⎠

� −1

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

.

� (89)

If we denote

� = � −1

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

,� (90)

we obtain

∇2� =

⎛

⎜

⎜

⎜

⎜

⎝

−
(

��
1

)2 0 0

0 −
(

��
2

)2 0

0 0 −
(

��
3

)3

⎞

⎟

⎟

⎟

⎟

⎠

�.� (91)

The nontrivial (i.e., nonzero) solution of 𝐴𝐴
(

∇2 + 𝑘𝑘2
)

𝑋𝑋(𝑟𝑟) = 0 is given by X(r) = cjℓ(kr), where c is a constant 
and jℓ is the spherical Bessel function of the first kind of the order of ℓ (e.g., Arfken et al., 2013), respectively. 
Consequently, the solution is given by

⎛

⎜

⎜

⎜

⎜

⎝

��

��

�rel

⎞

⎟

⎟

⎟

⎟

⎠

= �� = �

⎛

⎜

⎜

⎜

⎜

⎝

�1��
(

��
1�
)

�2��
(

��
2�
)

�3��
(

��
3�
)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

∑3

�=1
���1���

(

��
� �
)

∑3

�=1
���2���

(

��
� �
)

∑3

�=1
���3���

(

��
� �
)

⎞

⎟

⎟

⎟

⎟

⎠

,� (92)

where ci (i = 1, 2, 3) are constants to be determined by the boundary condition at the surface, and pji is the jth 
component of pi. Using 𝐴𝐴 𝐴𝐴𝑒𝑒

𝑖𝑖
 and pji, three of the four linearly independent solutions for the y functions can be 

expressed as follows:

𝑦𝑦1 =
𝓁𝓁ℎ𝑠𝑠

𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

+
𝑝𝑝1𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖

𝑗𝑗𝓁𝓁+1
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (93)

𝑦𝑦2 = −𝛼𝛼𝛼𝛼9 + (𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)𝑝𝑝1𝑖𝑖𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

+
2𝓁𝓁(𝓁𝓁 − 1)ℎ𝑠𝑠

𝑖𝑖
𝜇𝜇𝑐𝑐

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟2

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

−
2[2𝑝𝑝1𝑖𝑖 − 𝓁𝓁(𝓁𝓁 + 1)𝑝𝑝2𝑖𝑖]𝜇𝜇𝑐𝑐

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟

𝑗𝑗𝓁𝓁+1
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (94)

𝑦𝑦3 =
ℎ𝑠𝑠
𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

+
𝑝𝑝2𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖

𝑗𝑗𝓁𝓁+1
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (95)

𝑦𝑦4 = 𝜇𝜇𝑐𝑐

[(

𝑝𝑝2𝑖𝑖 +
2(𝓁𝓁 − 1)ℎ𝑠𝑠

𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟2

)

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

+
2(𝑝𝑝1𝑖𝑖 − 𝑝𝑝2𝑖𝑖)

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟

𝑗𝑗𝓁𝓁+1
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

]

,� (96)

𝑦𝑦5 = −
3𝛾𝛾

(

𝑘𝑘𝑒𝑒
𝑖𝑖

)2

(

𝑝𝑝1𝑖𝑖 +
𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌
𝑝𝑝3𝑖𝑖

)

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (97)

𝑦𝑦6 = −
3(𝓁𝓁 + 1)𝛾𝛾
(

𝑘𝑘𝑒𝑒
𝑖𝑖

)2

𝑟𝑟

[

𝑝𝑝1𝑖𝑖 − 𝓁𝓁𝑝𝑝2𝑖𝑖 +
𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌
(𝑝𝑝3𝑖𝑖 − 𝓁𝓁𝑝𝑝4𝑖𝑖)

]

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (98)
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𝑦𝑦8 =
𝓁𝓁ℎrel

𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

+
𝑝𝑝3𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖

𝑗𝑗𝓁𝓁+1
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (99)

𝑦𝑦9 = −𝑀𝑀(𝛼𝛼𝛼𝛼1𝑖𝑖 + 𝜙𝜙𝜙𝜙3𝑖𝑖)𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (100)

𝑦𝑦10 =
ℎrel

𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

+
𝑝𝑝4𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖

𝑗𝑗𝓁𝓁+1
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

,� (101)

where

𝑝𝑝4𝑖𝑖 =
𝜌𝜌𝑓𝑓 𝛾𝛾

𝜔𝜔2𝜌𝜌𝑒𝑒
(𝑝𝑝1𝑖𝑖 + 𝑝𝑝3𝑖𝑖) −

𝜌𝜌𝑓𝑓

𝜌𝜌𝑒𝑒
𝑝𝑝2𝑖𝑖,� (102)

ℎ𝑠𝑠
𝑖𝑖 = −

𝑝𝑝1𝑖𝑖 + (𝓁𝓁 + 1)𝑝𝑝2𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖

,� (103)

ℎrel

𝑖𝑖 = −
𝑝𝑝3𝑖𝑖 + (𝓁𝓁 + 1)𝑝𝑝4𝑖𝑖

𝑘𝑘𝑒𝑒
𝑖𝑖

.� (104)

The fourth solution is the trivial solution; X s = Z s = X rel = 0. It is found that it is the same as the trivial solution 
for the nonporous case with no relative fluid motion:

𝑦𝑦1 = 𝓁𝓁𝑟𝑟𝓁𝓁−1,� (105)

𝑦𝑦2 = 2𝓁𝓁(𝓁𝓁 − 1)𝜇𝜇𝑐𝑐𝑟𝑟
𝓁𝓁−2,� (106)

𝑦𝑦3 = 𝑟𝑟𝓁𝓁−1,� (107)

𝑦𝑦4 = 2(𝓁𝓁 − 1)𝜇𝜇𝑐𝑐𝑟𝑟
𝓁𝓁−2,� (108)

𝑦𝑦5 =
(

𝓁𝓁𝛾𝛾 − 𝜔𝜔2
)

𝑟𝑟𝓁𝓁 ,� (109)

𝑦𝑦6 =
2𝓁𝓁 + 1

𝑟𝑟
𝑦𝑦5 − 3𝛾𝛾𝛾𝛾1 =

[

2𝓁𝓁(𝓁𝓁 − 1)𝛾𝛾 − (2𝓁𝓁 + 1)𝜔𝜔2
]

𝑟𝑟𝓁𝓁−1,� (110)

𝑦𝑦8 = 0,� (111)

𝑦𝑦9 = 0,� (112)

𝑦𝑦10 = 0.� (113)

The no relative fluid motion condition can be derived from the equations of motion for solid and fluid.

As discussed in Appendix E, this method can also be applied to the nonporous case. Thus, the eigenvalue approach 
proposed here is not specific to the porous case but is a comprehensive method that can be applicable to both 
porous and nonporous cases.

2.3.2.  Incompressible Case

If both the solid and fluid are incompressible, α → 1, and M → 𝐴𝐴 ∞ . Under these limits, the equation system degen-
erates; both Equations 73 and 75 become

∇
2
(

𝑋𝑋𝑠𝑠
+ 𝜙𝜙𝜙𝜙rel

)

= 0.� (114)

To avoid degeneration, y9, which is given by

𝑦𝑦9 = −𝑀𝑀
(

𝑋𝑋𝑠𝑠
+ 𝜙𝜙𝜙𝜙rel

)

,� (115)

is chosen as a variable to be solved instead of X rel. Note that y9 does not diverge even if M → 𝐴𝐴 ∞ (at the same time, 
X s + ϕX rel → 0). Then, we have
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∇2
⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

= �′
⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

�′11 �′12

�′21 �′22

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

,� (116)

where

�′11 = − �2

�� + 2��

(

� −
��
�

)

+

(

−4� +
��
�

+
3�2�
�

)

�
�� + 2��

−
�(� + 1)

(

1 − �2
)

�2� �
2

�2�2��(�� + 2��)
,� (117)

𝑎𝑎′
12
= 𝓁𝓁(𝓁𝓁 + 1)

(

𝜌𝜌 − 𝜌𝜌𝑓𝑓 + (1 − 𝜙𝜙)
𝜌𝜌2
𝑓𝑓

𝜌𝜌𝑒𝑒

)

𝛾𝛾

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

,� (118)

𝑎𝑎′
21
=

(

𝜌𝜌 − 𝜌𝜌𝑓𝑓 + (1 − 𝜙𝜙)
𝜌𝜌2
𝑓𝑓

𝜌𝜌𝑒𝑒

)

𝛾𝛾

𝜇𝜇𝑐𝑐

,� (119)

𝑎𝑎′
22
= −

𝜔𝜔2

𝜇𝜇𝑐𝑐

(

𝜌𝜌 −
𝜙𝜙𝜙𝜙2

𝑓𝑓

𝜌𝜌𝑒𝑒

)

,� (120)

and

∇
2𝑦𝑦9 = 𝑎𝑎′

31
𝑋𝑋𝑠𝑠

+ 𝑎𝑎′
32
𝑍𝑍𝑠𝑠,� (121)

where

𝑎𝑎′
31
= −𝜔𝜔2

(

𝜌𝜌𝑓𝑓 −
𝜌𝜌𝑒𝑒

𝜙𝜙

)

− 4𝜌𝜌𝑓𝑓 𝛾𝛾 +

(

1 +
3𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌

)

𝜌𝜌𝑓𝑓 𝛾𝛾

𝜙𝜙
−

𝓁𝓁(𝓁𝓁 + 1)(1 − 𝜙𝜙)𝜌𝜌2
𝑓𝑓
𝛾𝛾2

𝜔𝜔2𝜙𝜙𝜙𝜙𝑒𝑒
,� (122)

𝑎𝑎′
32
= −𝓁𝓁(𝓁𝓁 + 1)

(

1 −
𝜌𝜌𝑓𝑓

𝜌𝜌𝑒𝑒

)

𝜌𝜌𝑓𝑓 𝛾𝛾𝛾� (123)

The following procedure to obtain the solution is similar to the compressible case. Specifically, X s and Z s are 
given by

⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

∑2

�=1
�′� �

′
1���

(

��′
� �
)

∑2

�=1
�′� �

′
2���

(

��′
� �
)

⎞

⎟

⎟

⎠

,� (124)

where 𝐴𝐴 𝐴𝐴′
𝑖𝑖
(𝑖𝑖 = 1, 2) is a constant to be determined by the boundary condition at the surface, 𝐴𝐴 −

(

𝑘𝑘𝑒𝑒′
𝑖𝑖

)2 is the eigen-
values of the matrix A′, and 𝐴𝐴 𝐴𝐴′

𝑖𝑖𝑖𝑖
 is the jth component of the corresponding eigenvector. Then, two sets of solutions 

are given by Equations 93–101 except for replacing 𝐴𝐴 𝐴𝐴𝑒𝑒
𝑖𝑖
 with 𝐴𝐴 𝐴𝐴𝑒𝑒′

𝑖𝑖
 , p1i with 𝐴𝐴 𝐴𝐴′

1𝑖𝑖
 , p2i with 𝐴𝐴 𝐴𝐴′

2𝑖𝑖
 , p3i with 𝐴𝐴 𝐴𝐴′

3𝑖𝑖
= −𝑝𝑝′

1𝑖𝑖
∕𝜙𝜙 , and

𝑦𝑦9 = −
𝑎𝑎′
31
𝑝𝑝′
1𝑖𝑖
+ 𝑎𝑎′

32
𝑝𝑝′
2𝑖𝑖

(

𝑘𝑘𝑒𝑒′
𝑖𝑖

)2
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′
𝑖𝑖 𝑟𝑟
)

,� (125)

respectively. It is noted that since A′ is a 2 × 2 matrix, the eigenvalues 𝐴𝐴 −
(

𝑘𝑘𝑒𝑒′
𝑖𝑖

)2 of A′ can be easily expressed as

−
(

𝑘𝑘𝑒𝑒′
𝑖𝑖

)2

=
1

2

(

𝑎𝑎′
11
+ 𝑎𝑎′

22
±

√

(

𝑎𝑎′
22
− 𝑎𝑎′

11

)2

+ 4𝑎𝑎′
12
𝑎𝑎′
21

)

.� (126)

The other two sets of solutions are given by X s = Z s = 0. One such solution (i.e., the third solution) is given by

𝑦𝑦1 = 𝓁𝓁𝑟𝑟𝓁𝓁−1,� (127)

𝑦𝑦2 = −𝑦𝑦9 + 2𝓁𝓁(𝓁𝓁 − 1)𝜇𝜇𝑐𝑐𝑟𝑟
𝓁𝓁−2,� (128)

𝑦𝑦3 = 𝑟𝑟𝓁𝓁−1,� (129)
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𝑦𝑦4 = 2(𝓁𝓁 − 1)𝜇𝜇𝑐𝑐𝑟𝑟
𝓁𝓁−2,� (130)

𝑦𝑦5 = 0,� (131)

𝑦𝑦6 = −3𝓁𝓁𝛾𝛾

(

1 +
𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌
𝑏𝑏1

)

𝑟𝑟𝓁𝓁−1,� (132)

𝑦𝑦8 = 𝑏𝑏1𝓁𝓁𝑟𝑟
𝓁𝓁−1,� (133)

𝑦𝑦9 = 𝑏𝑏2𝑟𝑟
𝓁𝓁 ,� (134)

𝑦𝑦10 = 𝑏𝑏1𝑟𝑟
𝓁𝓁−1,� (135)

where

𝑏𝑏1 =

(

𝓁𝓁𝛾𝛾 − 𝜔𝜔2
)

(𝜌𝜌 − 𝜌𝜌𝑓𝑓 )

𝜔𝜔2(𝜙𝜙𝜙𝜙𝑓𝑓 − 𝜌𝜌𝑒𝑒) + (1 − 𝜙𝜙)𝓁𝓁𝜌𝜌𝑓𝑓 𝛾𝛾
,� (136)

𝑏𝑏2 =
(

𝜔𝜔2
− 𝓁𝓁𝛾𝛾

)

(𝜌𝜌 + 𝑏𝑏1𝜙𝜙𝜙𝜙𝑓𝑓 ).� (137)

The fourth solution is the trivial solution for a compressible case given by Equations 105–113.

Similar to the compressible case, the eigenvalue approach can be applicable to the nonporous incompressible 
case. In this case, only one solution can be written using spherical Bessel functions, and the other two solutions 
can be written using a power of r. See Appendix E for details.

2.4.  Boundary Conditions

This theory can be applied to various kinds of problems by choosing appropriate boundary conditions. The bound-
ary conditions for y1–y6 are the same for the nonporous case and are already given in previous studies (e.g., 
Saito, 1974). The boundary conditions for the newly defined y8 and y9 depend on whether the boundary is permea-
ble or not. Below, the boundary conditions not only at the surface but also at a layer boundary inside the body that 
are relevant for planetary applications are summarized. Note that y1 and y2 describe radial displacement and stress, 
y3 and y4 describe shear displacement and stress, y5 and y6 describe gravitational potential and radial acceleration 
(Takeuchi & Saito, 1972), y8 describes radial displacement of fluid relative to solid, and y9 describes pore pressure.

2.4.1.  Free Surface Under Tidal Potential

This is the condition when tidal Love numbers are calculated. In this case, the pore pressure as well as radial and 
shear stresses needs to be zero. Thus, the boundary conditions are given by

𝑦𝑦2 = 0, 𝑦𝑦4 = 0, 𝑦𝑦6 =
2𝓁𝓁 + 1

𝑅𝑅
, 𝑦𝑦9 = 0,� (138)

where R is the surface radius of the body.

2.4.2.  Loaded Surface

This is the condition when load Love numbers are calculated. A difference from the free surface is that radial 
stress is not zero. For a permeable load,

𝑦𝑦2 = −
(2𝓁𝓁 + 1)𝑔𝑔(𝑅𝑅)

4𝜋𝜋𝜋𝜋𝜋𝜋
, 𝑦𝑦4 = 0, 𝑦𝑦6 =

2𝓁𝓁 + 1

𝑅𝑅
, 𝑦𝑦9 = −𝑦𝑦2,� (139)

while for an impermeable load,

𝑦𝑦2 = −
(2𝓁𝓁 + 1)𝑔𝑔(𝑅𝑅)

4𝜋𝜋𝜋𝜋𝜋𝜋
, 𝑦𝑦4 = 0, 𝑦𝑦6 =

2𝓁𝓁 + 1

𝑅𝑅
, 𝑦𝑦8 = 0,� (140)

where g(R) is the gravitational acceleration at the surface (e.g., Saito, 1974).
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2.4.3.  Pressed Surface

This is the condition when press (or pressure) Love numbers are calculated. This is similar to the case of the 
loaded surface, but the surface is free from the potential. Thus,

𝑦𝑦2 = −
(2𝓁𝓁 + 1)𝑔𝑔(𝑅𝑅)

4𝜋𝜋𝜋𝜋𝜋𝜋
, 𝑦𝑦4 = 0, 𝑦𝑦6 = 0, 𝑦𝑦9 = −𝑦𝑦2 or 𝑦𝑦8 = 0.� (141)

The last condition for the pore fluid depends on the permeability of the surface.

2.4.4.  Shear-Stressed Surface

This is the condition when shear Love numbers are calculated. In this case, a potential-free shear stress is applied, 
and shear stress does not introduce pore pressure. Thus, the boundary conditions for this case are (e.g., Saito, 1978):

𝑦𝑦2 = 0, 𝑦𝑦4 =
(2𝓁𝓁 + 1)𝑔𝑔(𝑅𝑅)

4𝜋𝜋𝓁𝓁(𝓁𝓁 + 1)𝐺𝐺𝐺𝐺
, 𝑦𝑦6 = 0, 𝑦𝑦9 = 0.� (142)

2.4.5.  Perfect Contact With a Permeable Solid Layer

If two porous layers contact each other, solid displacements, stresses and pore pressure, and gravitational poten-
tial and acceleration are continuous. However, the relative displacement of fluid in the vertical direction is not 
necessarily continuous because the volume of the fluid expelled from a layer must be the same as that entered to 
the other layer. Then we have

𝑦𝑦
up

𝑖𝑖
= 𝑦𝑦low

𝑖𝑖 (𝑖𝑖 = 1, 2, 3, 4, 5, 6, 9),� (143)

𝜙𝜙up𝑦𝑦
up

8
= 𝜙𝜙low𝑦𝑦low

8
,� (144)

where superscripts “up” and “low” indicate the upper and lower porous layers, respectively.

2.4.6.  Perfect Contact With an Impermeable Solid Layer

In this case, solid displacements, stresses, and gravitational potential and acceleration are continuous. In addition, 
and the relative displacement of fluid in the vertical direction should be zero. Thus, there are seven conditions 
as follows:

𝑦𝑦
𝑝𝑝

𝑖𝑖
= 𝑦𝑦𝑠𝑠𝑖𝑖 (𝑖𝑖 = 1, 2, 3, 4, 5, 6),� (145)

𝑦𝑦
𝑝𝑝

8
= 0,� (146)

where superscripts p and s indicate the porous and nonporous solid layers, respectively.

2.4.7.  Shear-Free Contact With a Liquid Layer

In this case, radial and shear stresses and gravitational potential and accelaraton are continuous. On the other 
hand, displacements are not continuous. Specifically, the effective radial displacement (y1 + ϕy8) of the porous 
layer should be continuous with the radial displacement (y1) of the liquid layer. In addition, the pore pressure (y9) 
equals the liquid pressure (−y2). Thus, there are six conditions as follows:

𝑦𝑦
𝑝𝑝

1
+ 𝜙𝜙𝜙𝜙

𝑝𝑝

8
= 𝑦𝑦𝑙𝑙

1
,� (147)

𝑦𝑦
𝑝𝑝

𝑖𝑖
= 𝑦𝑦𝑙𝑙𝑖𝑖 (𝑖𝑖 = 2, 5, 6),� (148)

𝑦𝑦
𝑝𝑝

4
= 0,� (149)

𝑦𝑦
𝑝𝑝

9
= −𝑦𝑦𝑙𝑙

2
,� (150)

where superscripts p and l indicate the porous and liquid layers, respectively.

If a liquid layer is modeled as dynamic (i.e., ω ≠ 0), y1, y2, and y6 in the liquid layer can be determined separately 
(Kamata et al., 2015). However, if a liquid layer is modeled as static (i.e., ω = 0), not all y functions can be 
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determined separately (e.g., Saito, 1974); Only two variables, y5 and y7 = y6 + 4πGy2/g, can be calculated, and 
y2 = ρgy1 − ρy5 is satisfied in the liquid layer. For such a case, there are five conditions as follows:

𝑦𝑦
𝑝𝑝

2
= 𝑦𝑦𝑙𝑙

2
= 𝜌𝜌𝑙𝑙𝑔𝑔

(

𝑦𝑦
𝑝𝑝

1
+ 𝜙𝜙𝜙𝜙

𝑝𝑝

8

)

− 𝜌𝜌𝑙𝑙𝑦𝑦𝑙𝑙
5
,� (151)

𝑦𝑦
𝑝𝑝

4
= 0,� (152)

𝑦𝑦
𝑝𝑝

5
= 𝑦𝑦𝑙𝑙

5
,� (153)

𝑦𝑦
𝑝𝑝

6
+

4𝜋𝜋𝜋𝜋

𝑔𝑔
𝑦𝑦
𝑝𝑝

2
= 𝑦𝑦𝑙𝑙

7
,� (154)

𝑦𝑦
𝑝𝑝

9
= −𝑦𝑦𝑙𝑙

2
.� (155)

It is noted that Equation A18b of Rovira-Navarro et al. (2022), which corresponds to Equation 151 of this work, 
ignores the contribution of the radial displacement of the fluid relative to the solid.

2.5.  Heating Rate (Energy Dissipation Rate)

In this subsection, we derive some useful expressions for the heating rate per unit volume. More specifically, 
we derive the local heating rate (as a function of radius, latitude, and longitude), a horizontally averaged heating 
rate (which is a function of only radius), and a horizontally and radially integrated heating rate using y functions.

The work 𝐴𝐴 𝐴𝐴 per unit volume of a fluid-saturated porous material is given by (e.g., Biot, 1956a; Cheng, 2016)

𝛿𝛿 = 𝜎𝜎𝑖𝑖𝑖𝑖𝛿𝛿𝛿𝛿
𝑠𝑠
𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑓𝑓

𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

(

𝜙𝜙𝜙𝜙𝜙𝜙rel

𝑖𝑖

)

= 𝜎𝜎𝑖𝑖𝑖𝑖𝛿𝛿𝛿𝛿
𝑠𝑠
𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑓𝑓

(

𝜙𝜙𝜙𝜙𝜙𝜙rel

𝑘𝑘𝑘𝑘
+

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝛿𝛿𝛿𝛿rel

𝑟𝑟

)

.� (156)

On the other hand, the dissipation 𝐴𝐴 𝐴𝐴 due to a small fluid motion relative to the solid is given by (e.g., Biot, 1956a; 
Cheng, 2016)

𝛿𝛿 =
𝜙𝜙2𝜂𝜂𝑓𝑓 Re(𝐹𝐹𝑓𝑓 )

𝑘𝑘

𝜕𝜕𝜕𝜕rel

𝑖𝑖

𝜕𝜕𝜕𝜕
𝛿𝛿𝛿𝛿rel

𝑖𝑖 ,� (157)

where 𝐴𝐴 Re(𝑥𝑥) indicates the real part of x. The imaginary part of Ff introduces an apparent force called the Basset 
force (e.g., Cheng, 2016), which is in phase with the forcing and thus does not contribute to the energy dissipation.

Then, the rate 𝐴𝐴  of energy dissipation (i.e., heating rate) per unit volume at a given location 𝐴𝐴 (𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) averaged over 
a forcing period T is given by (e.g., Beuthe, 2013; Biot, 1956a; Cheng, 2016; Liao et al., 2020)

(�, �, �) = 1
�

∫ �
0

�
��

�� + 1
�

∫ �
0

�
��

��

= �
2
Im

(

�̃�� �̃�∗�� − ��̃� �̃rel∗


 −

��
��

�̃� �̃rel∗
�

)

+
�2�2�� Re(
� )

2

|

|

�̃rel
�
|

|

2,
� (158)

where 𝐴𝐴 Im(𝑥𝑥) indicates the imaginary part of x, and the superscript * indicates the complex conjugate, respectively. 
Equations 5 and 6 yield

�̃�� �̃�∗�� = ��|
|

�̃���||
2 + 2��

(

|

|

�̃���|
|

2 + |

|

�̃���||
2 + |

|

�̃���|
|

2 + 2|
|

�̃���||
2 + 2|

|

�̃���|
|

2 + 2||
|

�̃���
|

|

|

2
)

+ ��
(

�|
|

�̃���||
2 + ��̃ rel

�� �̃
�∗
��

)

,� (159)

�̃� �̃ rel∗
�� = −�

(

��̃ �
���̃

rel∗
�� + �|

|

�̃ rel
��
|

|

2
)

.� (160)

Then, 𝐴𝐴  can be written as the sum of four components

(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) = 𝐾𝐾 + 𝜇𝜇 + 𝑀𝑀 + 𝜂𝜂,� (161)

where

𝐾𝐾 =
𝜔𝜔 Im(𝐾𝐾𝑑𝑑)

2
|

|

𝑒𝑒𝑠𝑠
𝑘𝑘𝑘𝑘
|

|

2� (162)
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is the heating due to dilatation of the solid,

𝜇𝜇 = 𝜔𝜔 Im(𝜇𝜇𝑐𝑐)

(

|

|

𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟|
|

2
+ |

|

𝑒𝑒𝑠𝑠
𝜃𝜃𝜃𝜃
|

|

2
+ |

|

𝑒𝑒𝑠𝑠𝜑𝜑𝜑𝜑|
|

2
+ 2|

|

𝑒𝑒𝑠𝑠
𝑟𝑟𝑟𝑟
|

|

2
+ 2|

|

𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟|
|

2
+ 2

|

|

|

𝑒𝑒𝑠𝑠
𝜃𝜃𝜃𝜃

|

|

|

2

−
1

3

|

|

𝑒𝑒𝑠𝑠
𝑘𝑘𝑘𝑘
|

|

2

)

� (163)

is that due to the change of solid shape,

𝑀𝑀 =
𝜔𝜔 Im(𝑀𝑀)

2
|

|

𝛼𝛼𝛼𝛼𝛼𝑠𝑠
𝑘𝑘𝑘𝑘
+ 𝜙𝜙𝜙𝜙𝜙rel

𝑘𝑘𝑘𝑘
|

|

2
=

𝜔𝜔 Im(𝑀𝑀)

2

|

|

|

|

𝑝𝑝𝑓𝑓

𝑀𝑀

|

|

|

|

2

� (164)

is that due to dilatation of fluid (relative to solid), and

� =
�2�2�� Re(�� )

2�

(

|

|

�̃ rel
� |

|

2 + |

|

�̃ rel
�
|

|

2 + |

|

�̃ rel
� |

|

2
)

− �
2
��
��

Im
(

�̃� �̃ rel∗
�

)

� (165)

is due to the fluid flow relative to the solid, respectively. The forms of 𝐴𝐴 𝐾𝐾 and 𝐴𝐴 𝜇𝜇 derived above are the same as 
those found for a nonporous solid material (e.g., Beuthe, 2013). Consequently, the total heating rate is simply 
the sum of the heating in the solid and that due to relative fluid deformation. It is noted that 𝐴𝐴 Im(𝐾𝐾𝑑𝑑) and 𝐴𝐴 Im(𝑀𝑀) 
(consequently, 𝐴𝐴 𝐾𝐾 and 𝐴𝐴 𝑀𝑀 ) are zero if bulk dissipation is not considered (see Section 2.1.1). The relationship 
between y functions and strains and displacements can be found in Appendix F.

Next, let us consider the horizontally averaged heating rate. For each 𝐴𝐴 𝜉𝜉 (𝜉𝜉 = 𝐾𝐾𝐾 𝐾𝐾𝐾𝐾𝐾𝐾 𝐾𝐾) , we find

ℎ� (�) =
1
4� ∫

2�

�=0 ∫

�

�=0
�sin � �� �� =

∑

�

�� 2
�

2�2
Im(��)��

�,� (166)

ℎ𝜇𝜇(𝑟𝑟) =
1

4𝜋𝜋 ∫

2𝜋𝜋

𝜑𝜑=0
∫

𝜋𝜋

𝜃𝜃=0

𝜇𝜇sin 𝜃𝜃 𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃 =
∑

𝓁𝓁

𝜔𝜔𝜔𝜔 2

𝓁𝓁

2𝑟𝑟2
Im(𝜇𝜇𝑐𝑐)𝐻𝐻

𝓁𝓁
𝜇𝜇 ,� (167)

ℎ𝑀𝑀 (𝑟𝑟) =
1

4𝜋𝜋 ∫

2𝜋𝜋

𝜑𝜑=0
∫

𝜋𝜋

𝜃𝜃=0

𝑀𝑀sin 𝜃𝜃 𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃 =
∑

𝓁𝓁

𝜔𝜔𝜔𝜔 2

𝓁𝓁

2𝑟𝑟2
Im(𝑀𝑀)𝐻𝐻𝓁𝓁

𝑀𝑀
,� (168)

ℎ𝜂𝜂(𝑟𝑟) =
1

4𝜋𝜋 ∫

2𝜋𝜋

𝜑𝜑=0
∫

𝜋𝜋

𝜃𝜃=0

𝜂𝜂sin 𝜃𝜃 𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃 =
∑

𝓁𝓁

𝜔𝜔𝜔𝜔 2

𝓁𝓁

2𝑟𝑟2
𝜔𝜔𝜔𝜔𝑓𝑓Re(𝐹𝐹𝑓𝑓 )𝐻𝐻

𝓁𝓁
𝜂𝜂 ,� (169)

where

𝑈𝑈 2

𝓁𝓁
=
∑

𝑚𝑚

𝑁𝑁𝑚𝑚

𝓁𝓁
|𝑈𝑈𝓁𝓁𝑚𝑚|

2
,� (170)

𝐻𝐻𝓁𝓁
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=
|

|

|

|

𝑟𝑟
𝑑𝑑𝑑𝑑1
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𝐻𝐻𝓁𝓁
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=
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|

|

|

𝑟𝑟

𝑀𝑀
𝑦𝑦9
|

|

|
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𝐻𝐻𝓁𝓁
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,� (174)

and 𝐴𝐴 𝐴𝐴𝑚𝑚

𝓁𝓁
 is the normalization factor given by
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2
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� (cos �)�
�
� (cos �)sin � �� = 1
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Consequently, the horizontally averaged volumetric heating rate h as a function of radial position r is given by

ℎ(�) = 1
4�

∫ 2�
�=0 ∫

�
�=0 (�, �, �)sin � �� �� = ℎ� + ℎ� + ℎ� + ℎ�

=
∑

�

�� 2
�

2�2
[

Im(��)��
� + Im(��)��

� + Im(�)��
� + ���Re(�� )��

�
]

.
� (176)

Here, 𝐴𝐴 𝐴𝐴𝓁𝓁

𝐾𝐾
 and 𝐴𝐴 𝐴𝐴𝓁𝓁

𝜇𝜇  under the limit of α → 0 are equivalent to HK and Hμ, respectively, defined by previous studies 
(Beuthe, 2013; Tobie et al., 2005). In addition, 𝐴𝐴 𝐴𝐴𝓁𝓁

𝜂𝜂  under the limit of dϕ/dr → 0 leads to the result equivalent to 
Equation D12b of Rovira-Navarro et al. (2022). Consequently, above formulation is a generalized expression that 
can reproduce previous expressions assuming limiting conditions.

Finally, we consider the total heating rate in a poroviscoelastic layer. The horizontally and radially integrated 
volumetric heating rate Q between r = rl and r = ru is given by

�(��, ��) = ∫ 2�
�=0 ∫

�
�=0 ∫

��
�=��

(�, �, �)�2sin � �� �� ��

= 4� ∫ ��
��

ℎ(�) �2 ��

=
∑

�
2��� 2

�

[

�2 Im
(

�∗1�2 + �(� + 1)�∗3�4 +
1

4��
�∗5�6 − ��∗8�9

)]��

��
,

� (177)

where 𝐴𝐴 [ 𝑦𝑦(𝑟𝑟) ]
𝑟𝑟𝑢𝑢
𝑟𝑟𝑏𝑏
= 𝑦𝑦(𝑟𝑟𝑢𝑢) − 𝑦𝑦(𝑟𝑟𝑏𝑏) , and ru and rl are the upper and lower bound radii, respectively. See Appendix B3 

for the derivation.

It is instructive to derive a well-known formula under a special case: the global tidal heating rate for eccentricity 
tides considering only degree-2 tidal potentials. In this case,

𝑈𝑈 2

𝓁𝓁=2
=

21

5
𝜔𝜔4𝑅𝑅4𝑒𝑒2,� (178)

where R is the radius of the body and e is the eccentricity. See Appendix G for further details. Using the 
values of y at the surface given in Section 2.4.1, the global tidal heating rate 𝐴𝐴 𝐴𝐴ecc

global
 for eccentricity tides is 

found to be

𝑄𝑄ecc
global

= 𝑄𝑄(𝑅𝑅𝑅 0) = −
21𝜔𝜔5𝑅𝑅5𝑒𝑒2

2𝐺𝐺
Im(𝑘𝑘2),� (179)

which is a well-known equation (e.g., Segatz et al., 1988). Thus, this well-known equation is valid even if the 
body contains a porous layer.

3.  Numerical Calculation
3.1.  Numerical Procedure

The ordinary differential equation system given by Equations  57–64 is integrated from the center to the 
surface. Since there are terms with r −1 and r −2, the integration needs to be carried out from a small but 
non-zero radius r0 using the homogeneous sphere solution given in Section  2.3. Note that the values of 

𝐴𝐴 𝐴𝐴𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟0
)

 and 𝐴𝐴 𝐴𝐴𝓁𝓁+1
(

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟0
)

 are not required independently; only the ratio 𝐴𝐴 𝐴𝐴𝑒𝑒
𝑖𝑖
𝑟𝑟0𝑗𝑗𝓁𝓁+1

(

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟0
)

∕𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟0
)

 is required 
(Takeuchi & Saito, 1972).

In the case where the body is an entirely porous sphere, the number of linearly independent solutions are four:

𝑦𝑦𝑖𝑖(𝑟𝑟) =

4
∑

𝑗𝑗=1

𝐶𝐶𝑗𝑗𝑦𝑦𝑖𝑖𝑖𝑖(𝑟𝑟),� (180)

where the subscript j is the index specifying the linearly independent solution, and Cj (j = 1, 2, 3, 4) is the coeffi-
cient determined by the surface boundary condition given in Section 2.4. For example, when tidal Love numbers 
are calculated, Cj is given by
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,� (181)

where R is the surface radius.

In the case where the body consists of porous and nonporous layers, the number of linearly independent solutions 
changes. First, let us consider a two-layer body consisting of an inner nonporous solid layer and an outer porous 
layer. In this case, the number of linearly independent solutions increases from three to four. The first step is to 
calculate three sets of y1–y6 in the inner layer from a small radius r0 to the internal boundary radius rb using a 
six-component equation system (see Appendix C2). The next step is to calculate four sets of y1–y9 in the outer 
layer from rb to the surface R using an eight-component equation system given by Equations 57–64. The three 
sets of y1–y6 are simply continuous from the inner layer with y8 = y9 = 0, and one additional set is the one that 
determines y9 at rb. Consequently, the initial values 𝐴𝐴 𝐴𝐴

𝑝𝑝

𝑖𝑖𝑖𝑖
 for the outer layer are given by

𝑦𝑦
𝑝𝑝

𝑖𝑖𝑖𝑖
(𝑟𝑟𝑏𝑏) = 𝑦𝑦𝑠𝑠𝑖𝑖𝑖𝑖(𝑟𝑟𝑏𝑏) (𝑖𝑖 = 1, . . . , 6; 𝑗𝑗 = 1, 2, 3),� (182)

𝑦𝑦
𝑝𝑝

𝑖𝑖𝑖𝑖
(𝑟𝑟𝑏𝑏) = 0 (𝑖𝑖 = 8, 9; 𝑗𝑗 = 1, 2, 3),� (183)

𝑦𝑦
𝑝𝑝

𝑖𝑖4
(𝑟𝑟𝑏𝑏) = 0 (𝑖𝑖 = 1, . . . , 6, 8),� (184)

𝑦𝑦
𝑝𝑝

94
(𝑟𝑟𝑏𝑏) = 1,� (185)

where 𝐴𝐴 𝐴𝐴𝑠𝑠
𝑖𝑖𝑖𝑖
(𝑟𝑟𝑏𝑏) is the y values at the upper bound of the inner layer obtained by the first step. It is clear that these 

initial values satisfy the boundary condition given in Section 2.4.6. The coefficient of four solutions can be deter-
mined by the surface boundary conditions (i.e., Equation 181).

Next, let us consider an inverted case; a two-layer body consisting of an inner porous layer and an outer nonporous 
solid layer. In this case, the number of linearly independent solutions decreases from four to three. Thus, three 
conditions for the coefficients such as C1/C4, C2/C4, C3/C4 are necessary to determine the initial values. However, 
at the internal boundary rb, there is only one condition except for the continuity in y1–y6:

𝑦𝑦
𝑝𝑝

8
(𝑟𝑟𝑏𝑏) =

4
∑

𝑗𝑗=1

𝐶𝐶
𝑝𝑝

𝑗𝑗
𝑦𝑦
𝑝𝑝

8𝑗𝑗
(𝑟𝑟𝑏𝑏) = 0.� (186)

Thus, it is not possible to determine the initial values for the outer layer. In practice, this problem can be avoided 
by considering four solutions even in the nonporous layer with the initial values 𝐴𝐴 𝐴𝐴𝑠𝑠

𝑖𝑖𝑖𝑖
 given by

𝑦𝑦𝑠𝑠𝑖𝑖𝑖𝑖(𝑟𝑟𝑏𝑏) = 𝑦𝑦
𝑝𝑝

𝑖𝑖𝑖𝑖
(𝑟𝑟𝑏𝑏) (𝑖𝑖 = 1, . . . , 6; 𝑗𝑗 = 1, . . . , 4).� (187)

After the integration in the outer layer, the coefficients of the solutions can be determined from the boundary 
conditions at the surface and the internal boundary:
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.� (188)

For more complex layered structures, it may be simpler to calculate n solutions for a layer where a n-component 
equation system is applied (i.e., eight solutions for a porous layer and six solutions for a nonporous solid layer). In 
this case, a simple set of the initial values can be used. For example, in the case of a porous layer,

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007700 by H
okkaido U

niversity, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Planets

KAMATA

10.1029/2022JE007700

21 of 47

𝑦𝑦
𝑝𝑝

𝑖𝑖𝑖𝑖
(𝑟𝑟𝑏𝑏) = 𝛿𝛿𝑖𝑖𝑖𝑖 (𝑖𝑖 = 1, . . . , 6, 8, 9, 𝑗𝑗 = 1, . . . , 6),� (189)

𝑦𝑦
𝑝𝑝

𝑖𝑖7
(𝑟𝑟𝑏𝑏) = 𝛿𝛿𝑖𝑖8 (𝑖𝑖 = 1, . . . , 6, 8, 9),� (190)

𝑦𝑦
𝑝𝑝

𝑖𝑖8
(𝑟𝑟𝑏𝑏) = 𝛿𝛿𝑖𝑖9 (𝑖𝑖 = 1, . . . , 6, 8, 9).� (191)

Then, the integration can be carried out separately in each layer. The coefficients for the linearly independent 
solutions in each layer can be calculated from boundary conditions given in Section 2.4 and boundary values.

3.2.  Homogeneous Model

Here, we investigate the dependence of deformation of a macroscopically and microscopically homogeneous 
porous sphere on permeability and frequency. These two parameters can vary by several orders of magnitude, 
depending on the subject to be investigated. Table 1 lists the parameter values adopted. Other parameters can be 
calculated from parameters listed in Table 1. For example, the drained bulk modulus Kd can be calculated from Ks 
and α using Equation 10. The results shown below assume 𝐴𝐴 |

|

𝑘𝑘𝑒𝑒

1
|

|

≥ |

|

𝑘𝑘𝑒𝑒

2
|

|

≥ |

|

𝑘𝑘𝑒𝑒

3
|

|

 , and the eigenvectors are normalized 
(i.e., 𝐴𝐴

√

𝑝𝑝2
1𝑖𝑖
+ 𝑝𝑝2

2𝑖𝑖
+ 𝑝𝑝2

3𝑖𝑖
= 1 ).

As discussed in Section 2.3, y functions for the homogeneous sphere are given by a linear combination of four 
linearly independent solutions. An example of such solutions is shown in Figure 1. Here, the real parts of y1 (i.e., 
the radial displacement of the solid normalized by the loading potential) and y8 (i.e., the radial displacement of the 
fluid relative to the solid normalized by the loading potential) are shown. This figure shows that the first nontriv-
ial solution (labeled 𝐴𝐴 𝐴𝐴𝑒𝑒

1
 ) has the largest absolute value near the surface. Figure 2 shows the dependence of this first 

nontrivial solution on permeability, demonstrating that a decrease in permeability leads to a large increase in the 
absolute value of y8. The physical meaning of this trend is simple: a decrease in permeability leads to a thinning 
of the region where the pore fluid flows, as can be easily understood from Figure 2b. In this particular case, the 
flow of the pore fluid occurs in the entire body if permeability is ≥10 −9 m 2 but only within a thin surficial layer 
if permeability is ≤10 −13 m 2.

Quantity Symbol Value Unit

Radius R 230 km

Biot effective stress coefficient α 0.5 –

Porosity ϕ 0.1 –

Permeability k 10 −14–10 −6 m 2

Density of solid ρs 3,000 kg m −3

Density of fluid ρf 1,000 kg m −3

Bulk modulus of solid Ks 40 GPa

Bulk modulus of pore fluid Kf 2 GPa

Shear modulus of porous medium μ 10 GPa

Viscosity of solid ηs 10 20 Pa s

Viscosity of pore fluid ηf 10 –3 Pa s

Harmonic degree ℓ 2 –

Angular frequency ω 10 −10–10 2 rad s −1

Porous-medium added-mass coefficient Ca Equation A1 –

Fluid viscosity correction factor a Ff Equation A2, with δp = 4 –

 aδp is the pore geometry factor.

Table 1 
Model Parameters for the Homogeneous Model
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This thinning of the layer where the pore fluid flows causes a problem when carrying out numerical radial inte-
grations of y functions; unless the layer is very thin, the absolute value of y functions increases rapidly and can 
exceed the upper limit for the numerical computation (i.e., ∼10 308 in the case of a double-precision floating-point 
format). For example, for the angular frequency of 10 −5 rad/s, the use of a permeability lower than ∼4 × 10 −14 m 2 
results in this problem (see Figure  2a). This value of permeability is not unrealistically low but is a typical 
terrestrial crustal value at a depth of a few km (Gleeson & Ingebritsen, 2017). Thus, unfortunately, it is difficult 
to carry out numerical calculations assuming a thick porous layer possessing a permeability typical of terrestrial 
crust.

However, this numerical problem can be avoided if one adopts an appropriate interior structure model. Because 
the flow of the pore fluid is limited to a shallow zone, it is reasonable to assume that the inner region is perfectly 
undrained. The behavior of such a region is equivalent to that of an impermeable pure solid with reduced elastic 
moduli. Thus, a low-permeability layer can be modeled as a combination of a thin porous layer and a thick nonpo-
rous solid layer (Figure 3). Here, the density and the shear modulus of the undrained layer are given by the local 
mean density and the effective shear modulus, respectively, of the porous case. The bulk modulus of this layer is 
the undrained bulk modulus Ku given by Cheng (2016).

Figure 2.  Dependence of the first nontrivial solution for y8 on permeability. Results for the angular frequency of 10 −5 rad/s 
are shown. The left Panel (a) shows the unnormalized (dimensionalized) results, while the right Panel (b) shows the same but 
normalized results.

Figure 1.  Radial profiles of the real part of the linearly independent solutions of (a) y1 and (b) y8. The results for the 
permeability of 10 −10 m 2 and the angular frequency of 10 −5 rad/s are shown. The solid line labeled 𝐴𝐴 𝐴𝐴𝑒𝑒

1
 , the dashed line labeled 

𝐴𝐴 𝐴𝐴𝑒𝑒

2
 , and the dotted line labeled 𝐴𝐴 𝐴𝐴𝑒𝑒

3
 represent the first, second, and third nontrivial solutions, respectively. The dot-dashed line 

labeled T represents the trivial solution.
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=
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(

� − � +
���

��

)−1
]

��.
� (192)

In the case of the parameter values listed in Table 1, Ku ≈ 24.167 GPa.

The important question that should be addressed here would be where to place the boundary between the drained 
and undrained layers. Let us first consider a specific calculation condition; as an example, the permeability of 
10 −14 m 2 and the angular frequency of 10 −5 rad/s are chosen here. Figure 4a shows a shallow part of the radial 
profile of the amplitude of y8. Here, the four linearly independent solutions are combined using the boundary condi-
tions given in Section 2.4.1. In this case, a porous layer thicker than ∼5 km leads to numerical instability, while a 
layer thinner than ∼1 km leads to inaccurate results. Thus, a porous layer thickness of approximately 3 ± 2 km is 
appropriate. The same conclusion can be obtained from the y values at the surface, as demonstrated in Figure 4b.

Let us now investigate the solution from a mathematical point of view to obtain a guideline value for this porous 
layer thickness under various calculation conditions. As discussed in Section 2.3, the nontrivial solutions can be 

Figure 3.  Two numerically equivalent interior structure models. Numerical calculations using the left model may be 
impossible. In that case, the use of the right model makes numerical calculations possible.

Figure 4.  Dependence of the numerical stability and accuracy of the solution on the porous layer thickness. Results for a 
permeability of 10 −14 m 2 and an angular frequency of 10 −5 rad/s are shown. The left Panel (a) shows radial profiles of y8 for 
different porous layer thicknesses, while the right Panel (b) shows the value of y8 at the surface as a function of the porous 
layer thickness.
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written using spherical Bessel functions (i.e., jℓ and jℓ+1). In general, the spherical Bessel function for a complex 
argument can be approximated as

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒
𝑖𝑖 𝑟𝑟
)

≈
𝑒𝑒|Im(𝑘𝑘

𝑒𝑒
𝑖𝑖
𝑟𝑟)|

2𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟

𝑖𝑖±(𝓁𝓁+1)𝑒𝑒∓𝑖𝑖Re(𝑘𝑘
𝑒𝑒
𝑖𝑖
𝑟𝑟)� (193)

for a large 𝐴𝐴
|

|

|

Im
(

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟
)

|

|

|

 . Here, the upper (lower) sign is for a positive (negative) 𝐴𝐴 Im
(

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟
)

 . See Appendix H for the 
derivation. Thus, one can expect that the conditions that result in a numerical instability for a given radius (r) 
have large 𝐴𝐴

|

|

|

Im
(

𝑘𝑘𝑒𝑒

1

)

|

|

|

 values. As expected, Figure 5a shows that a decrease in permeability leads to an increase in 

𝐴𝐴
|

|

|

Im
(

𝑘𝑘𝑒𝑒

1

)

|

|

|

 . Figure 5b shows that an increase in angular frequency also leads to an increase in 𝐴𝐴
|

|

|

Im
(

𝑘𝑘𝑒𝑒

1

)

|

|

|

 , indicating 

that the attenuation is stronger for a higher frequency. In either case, a rough estimate of an increase in y values 
due to an increase Δr in the radius is given by

|

|

|

|

𝑦𝑦(𝑟𝑟 + Δ𝑟𝑟)

𝑦𝑦(𝑟𝑟)

|

|

|

|

∼

|

|

|

|

|

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒

1
(𝑟𝑟 + Δ𝑟𝑟)

)

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒

1
𝑟𝑟
)

|

|

|

|

|

≈ 𝑒𝑒

|

|

|

|

Im

(

𝑘𝑘𝑒𝑒
1
Δ𝑟𝑟

)

|

|

|

|.� (194)

Here, 𝐴𝐴
|

|

|

Im
(

𝑘𝑘𝑒𝑒
𝑖𝑖
𝑟𝑟
)

|

|

|

≫ 1 and Δr ≪ r are assumed. In the case of a permeability of 10 −14 m 2 and an angular frequency 
of 10 −5 rad/s, where the appropriate thickness is about 3 ± 2 km, 𝐴𝐴 Im

(

𝑘𝑘𝑒𝑒

1

)

= −5.81 × 10−3  m −1 (see the left end of 

Figure 5a). If we substitute 3 km into Δr, we obtain 𝐴𝐴 𝐴𝐴

|

|

|

|

Im

(

𝑘𝑘𝑒𝑒
1
Δ𝑟𝑟

)

|

|

|

| = 3.71 × 107 . Consequently, a rough estimate of 
the porous layer thickness Δr may be given by

Δ𝑟𝑟 ∼
ln
(

3.71 × 107
)

|

|

|

Im
(

𝑘𝑘𝑒𝑒

1

)

|

|

|

∼
17

|

|

|

Im
(

𝑘𝑘𝑒𝑒

1

)

|

|

|

.� (195)

Figure 6 shows that Equation 195 provides an appropriate porous layer thickness under different parameter condi-
tions. This is found to be true even if we change a parameter other than permeability and frequency (i.e., porosity, 
density, shear modulus, viscosity, …). Thus, if a porous layer has a large thickness and a large 𝐴𝐴

|

|

|

Im
(

𝑘𝑘𝑒𝑒
𝑖𝑖

)

|

|

|

 , such 
a layer should be divided into two layers, and Equation 195 can be used to obtain a first-order estimate on the 
boundary depth.

Figure 5.  Dependence of the eigenvalue 𝐴𝐴

(

−
(

𝑘𝑘𝑒𝑒
𝑖𝑖

)2
)

 on the (a) permeability and (b) angular frequency. Results for (a) an 
angular frequency of 10 −5 rad/s and (b) a permeability of 10 −10 m 2, respectively, are shown. 𝐴𝐴 |

|

𝑘𝑘𝑒𝑒

1
|

|

≥ |

|

𝑘𝑘𝑒𝑒

2
|

|

≥ |

|

𝑘𝑘𝑒𝑒

3
|

|

 is assumed.
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3.3.  Multilayered, Radially Varying Model

Here, we investigate the effect of the radial variation in porosity on the energy dissipation rate in the porous layer. 
As an example, we consider tidal heating in the porous rocky core of the Saturnian satellite Enceladus. It is noted 
that the aim of this subsection is not to constrain parameter ranges that can explain the observed high heating rate 
of Enceladus; such an investigation is left for another study.

3.3.1.  Model

We adopt a simple three-layered Enceladus model consisting of an ice shell, a subsurface ocean, and a rocky core. 
Table 2 lists the parameter values adopted.

3.3.1.1.  Ice Shell

The outermost layer is assumed to be a nonporous, Maxwellian viscoelastic ice shell. Its density is the nominal 
value adopted in Hemingway and Mittal (2019), and the corresponding thickness is chosen. The bulk and shear 
moduli of polycrystalline ice are used (Petrenko & Whitworth, 1999).

The viscosity ηi is calculated from a simple Arrhenius-type rheology controlled by temperature T (e.g., Kamata 
& Nimmo, 2017):

𝜂𝜂𝑖𝑖 = 𝜂𝜂refexp

(

𝐸𝐸𝑎𝑎

𝑅𝑅𝑔𝑔

(

1

𝑇𝑇
−

1

𝑇𝑇ref

))

,� (196)

where ηref is the reference viscosity, Ea is the creep activation energy, Rg is the gas constant, and Tref is the reference 
temperature, respectively. The temperature profile in the ice shell is calculated by solving the one-dimensional 
steady-state thermal conduction equation without heating:

0 =
1

𝑟𝑟2
𝑑𝑑

𝑑𝑑𝑑𝑑

(

𝑟𝑟2𝑘𝑘th

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)

,� (197)

where kth is the thermal conductivity. We use a temperature-dependent thermal conductivity:

𝑘𝑘th(𝑇𝑇 ) =
𝑘𝑘0

th

𝑇𝑇
,� (198)

where 𝐴𝐴 𝐴𝐴0

th
= 651 W m −1 (Petrenko & Whitworth, 1999). Then, the temperature profile T(r) is given by

𝑇𝑇 (𝑟𝑟) = 𝑇𝑇𝑠𝑠

(

𝑇𝑇𝑜𝑜

𝑇𝑇𝑠𝑠

)

𝑟𝑟−1−𝑅𝑅−1
𝑠𝑠

𝑅𝑅−1
𝑜𝑜 −𝑅𝑅−1

𝑠𝑠
,� (199)

Figure 6.  Dependence of the numerical stability and accuracy of the solution on the porous layer thickness under an angular 
frequency of 10 −2 rad/s. The results for a permeability of (a) 10 −14 m 2 and (b) 10 −8 m 2 are shown. The vertical dashed lines 
indicate the guideline value given by Equation 195.

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007700 by H
okkaido U

niversity, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Planets

KAMATA

10.1029/2022JE007700

26 of 47

where Ro = Rs − Hi = 230.22 km is the radius of the ice shell-subsurface ocean boundary, Ts = T(Rs) = 75 K is 
the surface temperature, and To = T(Ro) = 273 K is the temperature at the base of the ice shell. It is noted that 
we do not intend to obtain a precise heating rate profile under steady-state conditions. If so, one should include 
the heating term in Equation 197, and an iterative calculation would be necessary. Instead, we intend to obtain a 
simple viscosity profile that decreases significantly with depth. If one needs a precise heating rate profile, a more 
detailed and consistent thermal modeling is needed.

3.3.1.2.  Subsurface Ocean

The intermediate layer is assumed to be an inviscid fluid layer. Similar to the ice shell, its density is the nominal 
value adopted in Hemingway and Mittal (2019), and the corresponding thickness is chosen.

3.3.1.3.  Rocky Core

The bottom layer is assumed to be a microscopically homogeneous, porous, water-saturated, Maxwellian viscoe-
lastic rocky core. The densities and thicknesses of the outer layers as well as the satellite mass and radius lead to 

Quantity Symbol Value Unit

Satellite mass a Ms 1.080 × 10 20 kg

Satellite radius b , c Rs 252.22 km

Ice shell thickness c Hi 22 km

Subsurface ocean thickness c Ho 37 km

Density of the ice shell c ρi 925 kg m −3

Density of the subsurface ocean c ρo 1,020 kg m −3

Density of rocky frame ρs 2,800 kg m −3

Density of pore fluid ρf =ρo kg m −3

Porosity ϕ Equation 201 –

Porosity at the core surface ϕmax 0.2375–0.4 –

Permeability k Equation 203 m 2

Bulk modulus of ice d Ki 8.9 GPa

Bulk modulus of rocky frame Ks 74.85 GPa

Bulk modulus of fluid Kf 2.103 GPa

Shear modulus of ice d μi 3.52 GPa

Shear modulus of rocky frame μs 53.58 GPa

Viscosity of ice ηi Equation 196 Pa s

Viscosity of rocky frame ηs 10 20 Pa s

Viscosity of pore fluid ηf 1.860 × 10 −3 Pa s

Reference viscosity of ice ηref 10 14 Pa s

Reference temperature Tref 273 K

Activation energy of ice creep Ea 6 × 10 4 J mol −1

Harmonic degree ℓ 2 –

Angular frequency e ω 5.31 × 10 −5 rad s −1

Eccentricity e e 0.0047 –

Obliquity e θo 4.5 × 10 −4 Degree

Porous-medium added-mass coefficient Ca Equation A1 –

Fluid viscosity correction factor f Ff Equation A2, with δp = 4 –

 aIess et al. (2014).  bTajeddine et al. (2017).  cHemingway and Mittal (2019).  dPetrenko and Whitworth (1999).  eMatsuyama 
et al. (2018).  fδp is the pore geometry factor.

Table 2 
Model Parameters for the Three-Layer Enceladus Model
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a bulk density of the rocky core of 2,377 kg m −3. For simplicity, we use a solid frame density of 2,800 kg m −3, 
and the fluid density is assumed to be the same as that of the subsurface ocean. These assumptions lead to a bulk 
porosity ϕbulk of 0.2375.

We consider porosity profiles that decrease exponentially with depth:

𝜙𝜙(𝑟𝑟) = 𝜙𝜙maxexp(𝜆𝜆𝜙𝜙(𝑟𝑟 −𝑅𝑅𝑐𝑐)),� (200)

where Rc = Rs − Hi − Ho = 193.22 km is the core radius, ϕmax is the porosity at the core surface (i.e., r = Rc), 
and λϕ is a constant, respectively. If we denote the porosity at the center (i.e., 𝐴𝐴 𝐴𝐴(𝑟𝑟 = 0) = 𝜙𝜙max𝑒𝑒

−𝜆𝜆𝜙𝜙𝑅𝑅𝑐𝑐 ) as ϕmin, 
Equation 200 can be written as

𝜙𝜙(𝑟𝑟) = 𝜙𝜙min

(

𝜙𝜙max

𝜙𝜙min

)𝑟𝑟∕𝑅𝑅𝑐𝑐

,� (201)

and the bulk porosity ϕbulk can be written as

𝜙𝜙bulk = 3𝜙𝜙min

[

ln

(

𝜙𝜙max

𝜙𝜙min

)]−3
[(

𝑥𝑥2
+ 2𝑥𝑥 + 2

)

𝑒𝑒𝑥𝑥
]ln(𝜙𝜙max∕𝜙𝜙min)

𝑥𝑥=0
.� (202)

See Appendix I for the derivation. We consider different values of ϕmax between ϕbulk and 0.4, but ϕbulk is fixed 
to 0.2375. It is found that ϕmin takes a value between ϕbulk and 0.0333. The resulting porosity profiles are shown 
in Figure 7a.

For simplicity, the permeability k is calculated using the Kozeny-Carman equation calibrated for pure sands:

𝑘𝑘 =
1

5𝜌𝜌𝑠𝑠𝜌𝜌𝑓𝑓𝑆𝑆
2
𝑠𝑠

(𝜙𝜙 − 𝜙𝜙𝑡𝑡)
3

(1 − 𝜙𝜙 + 𝜙𝜙𝑡𝑡)
2
,� (203)

where Ss = 14.8 m 2 kg −1 is the specific surface and ϕt = 0.027 is the percolation threshold porosity, respectively 
(Gleeson & Ingebritsen, 2017). The permeability profiles obtained are shown in Figure 7b. In the case of uniform 
porosity, Equation 203 leads to a permeability of 4.79 × 10 −12 m 2. On the other hand, in the case of ϕmax = 0.4, 
permeability varies between 8.01 × 10 −17–4.22 × 10 −11 m 2. It is noted that permeability depends on many factors 
in addition to porosity; clays are much lower than those estimated from Equation 203, fault permeability is much 
higher than sediment permeability, and porosity-permeability relations found for granular materials do not work 
well for vesicular rocks in general (Gleeson & Ingebritsen, 2017; Saar & Manga, 1999). Thus, it is necessary to 
choose an appropriate model if one specifies a structural model for porous materials.

The bulk and shear moduli of the solid frame are calculated from the Hashin-Shtrikman bounds assuming that 
the solid frame is composed of a mixture of hydrated (antigorite) and unhydrated (olivine) silicate minerals. First, 
using the densities of these minerals (Christensen, 2004) as well as the assumed solid density ρs, the volume 
fraction ϕA of antigorite and that ϕO of olivine are calculated. Specifically, ϕA = 0.793 and ϕO = 0.207, respectively. 

Figure 7.  Radial profile of (a) the porosity and (b) permeability for different values of ϕmax.
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Second, the bulk and shear moduli of each component at zero pressure are calculated from pressure-dependent 
values listed in Christensen (2004). The Hashin-Shtrikman upper limits for the bulk and shear moduli are given 
by Hashin and Shtrikman (1963).

𝐾𝐾up = 𝐾𝐾2 +
𝜙𝜙1

1

𝐾𝐾1−𝐾𝐾2

+
3𝜙𝜙2

3𝐾𝐾2+4𝜇𝜇2

,� (204)

𝜇𝜇up = 𝜇𝜇2 +
𝜙𝜙1

1

𝜇𝜇1−𝜇𝜇2
+

6𝜙𝜙2(𝐾𝐾2+2𝜇𝜇2)

5𝜇𝜇2(3𝐾𝐾2+4𝜇𝜇2)

,� (205)

respectively, and the lower limits for the bulk and shear moduli are given by Hashin and Shtrikman (1963).

𝐾𝐾low = 𝐾𝐾1 +
𝜙𝜙2

1

𝐾𝐾2−𝐾𝐾1

+
3𝜙𝜙1

3𝐾𝐾1+4𝜇𝜇1

,� (206)

𝜇𝜇low = 𝜇𝜇1 +
𝜙𝜙2

1

𝜇𝜇2−𝜇𝜇1
+

6𝜙𝜙1(𝐾𝐾1+2𝜇𝜇1)

5𝜇𝜇1(3𝐾𝐾1+4𝜇𝜇1)

,� (207)

respectively, where ϕ1 and ϕ2 are the volume fractions of softer and stiffer materials, K1 and K2 are bulk moduli 
of softer and stiffer materials, and μ1 and μ2 are shear moduli for softer and stiffer materials, respectively. In our 
model, the softer and stiffer materials are antigorite and olivine, respectively. We adopt the means of these limits 
as the bulk and shear moduli, Ks and μs, of the solid:

𝐾𝐾𝑠𝑠 =
1

2

(

𝐾𝐾up +𝐾𝐾low

)

,� (208)

𝜇𝜇𝑠𝑠 =
1

2

(

𝜇𝜇up + 𝜇𝜇low

)

.� (209)

The calculated values are listed in Table 2.

The drained bulk modulus and the effective shear modulus of the porous medium are also calculated using the 
Hashin-Shtrikman bounds. In this case, the softer and stiffer materials are void and solid, respectively. Conse-
quently, ϕ1 = ϕ, 𝐴𝐴 𝐴𝐴2 = (1 − 𝜙𝜙) , K1 = 0, K2 = Ks, μ1 = 0, and μ2 = μs, respectively (Cheng, 2016). Then, we have

𝐾𝐾𝑑𝑑 =
1 − 𝜙𝜙

2

(

1

𝐾𝐾𝑠𝑠

+
3𝜙𝜙

4𝜇𝜇𝑠𝑠

)−1

,� (210)

𝜇𝜇 =
(1 − 𝜙𝜙)𝜇𝜇𝑠𝑠

2

(

1 +
6𝜙𝜙(𝐾𝐾𝑠𝑠 + 2𝜇𝜇𝑠𝑠)

9𝐾𝐾𝑠𝑠 + 8𝜇𝜇𝑠𝑠

)−1

.� (211)

Here, we again adopt the means of the upper and lower limits. In the case of uniform porosity, the drained bulk 
modulus and the effective shear modulus are 22.85 and 16.54 GPa, respectively. On the other hand, in the case 
of ϕmax = 0.4, they range between 15.82–34.96 GPa and 11.51–25.07 GPa, respectively. The other poroelastic 
parameters, such as the Biot effective stress coefficient α and the undrained bulk modulus Ku, can be determined 
from other parameter values.

The parameters for pore fluids are calculated assuming that the pores are filled by sea water. First, the density ρf 
is assumed to be the same as the ocean density ρo. Second, using the formulation by Millero et al. (1982) with 
this density, the ocean temperature of 0°C, and the mean ocean pressure of 4.610 MPa, the salinity is calculated 
to be 22.18 g/kg. Then, the bulk modulus Kf and the viscosity ηf are calculated using the formulation by Millero 
et al. (1982) and by Sharqawy et al. (2010), respectively. The calculated values are listed in Table 2.

3.3.2.  Results

As discussed above, a thick porous layer may need to be divided into porous and nonporous layers. In this model 
calculation, the porous core is thick (i.e., ∼200 km), and the permeability can be low (i.e., <10 −16 m 2). Consequently, 
we first estimate the appropriate porous layer thickness and then conduct a numerical stability and accuracy test. 
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Figure 8a shows the guideline thickness for the porous layer obtained using Equation 195. In the case of ϕmax = 0.4, 
the permeability at the center is lower than 10 −16 m 2, leading to a guideline porous layer thickness of <1 km. Such 
a small thickness, however, is not appropriate because the fluid flow is concentrated near the core surface where the 
permeability is much higher and thus the permeable (drained) layer is even thicker than the uniform porosity case 
(i.e., >30 km). Figure 8b shows the results of the numerical stability and accuracy test, demonstrating that the porous 
layer thickness of ∼10–25 km can be used as a common porous layer thickness under all calculation conditions.

First, we compare the profile of the heating rate in the core for the porous and nonporous cases. Figure 9 shows 
the radial profile for the volumetric heating rate in the rocky core, assuming uniform porosity (i.e., ϕmax = ϕbulk) 

and a porous layer thickness of 25 km. This figure shows that (a) the amount 
of heating due to fluid flow is several orders of magnitude higher than that of 
solid frame deformation, and (b) while heating due to fluid flow is concen-
trated near the surface, heating due to solid frame deformation is highest at the 
center. These results are consistent with previous studies (Liao et al., 2020; 
Rovira-Navarro et al., 2022). In this porous case, the total heating rate in the 
core is ∼0.5 MW. Figure 9 also shows the volumetric heating rate profile for 
the nonporous case. Here, the bulk and shear moduli for the solid constituent 
(i.e., Ks and μs, respectively) and a viscosity ηs of 4.6 × 10 16 Pa s are used. This 
viscosity is chosen so that the total heating rate in the core becomes the same 
as that in the porous case. As shown in this figure, the porous and nonporous 
models lead to an opposite conclusion; the highest heating rate for the porous 
and nonporous cases is found at the surface and the center, respectively. Thus, 
a reduction in the viscosity does not mimic the effect of fluid flow, and a 
porous layer should not be modeled as a nonporous low-viscosity layer.

Next, we quantify the effect of radial variation in porosity. Figure 10a shows the 
radial profiles for the volumetric heating rate in the upper 20 km of the rocky 
core. Again, a porous layer thickness of 25 km is assumed. This figure shows 
that the thickness of the fluid flow region for ϕmax = ϕbulk is ∼5 km, while 
that for ϕmax = 0.4 is ∼10 km; an increase in near-surface porosity doubles the 
thickness of the fluid flow region. In addition, the heating rate due to fluid flow 
at 5 km depth for ϕmax = ϕbulk is ∼2 × 10 −13 W m −3, while that for ϕmax = 0.4 
is ∼3 × 10 −11 W m −3; the latter is more than a hundredfold that of the former. 
Figure 10b shows the effect of an increase in near-surface porosity on the total 
heating rate in the core. The total heating rate for ϕmax = ϕbulk is ∼0.5 MW, 
while that for ϕmax = 0.4 is ∼1.9 MW; a fourfold increase is observed. Conse-
quently, an increase in the maximum porosity increases the heating rate.

Figure 8.  (a) The guideline thickness of the porous layer under different parameter conditions. The solid and dashed curves 
are obtained using parameter values at the core surface (r = Rc) and at the center (r = 0), respectively. The filled circle 
indicates the uniform porosity case. (b) Dependence of the numerical stability and accuracy of the solution on the porous 
layer thickness. The absolute value of y8 at the core surface is shown.

Figure 9.  (a) The radial profiles of the volumetric heating rate in the core 
assuming uniform interior profiles. The solid and dashed lines represent 
energy dissipation due to fluid flow and solid-frame deformation, respectively. 
The dotted line shows the result for a nonporous, low-viscosity case, with 
K = Ks, μ = μs, and ηs = 4.6 × 10 16 Pa s.
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In the above calculations, the bulk porosity ϕbulk is fixed to 0.2375. Consequently, a reduced fluid flow (and a 
decreased heating) in the deep interior for a high ϕmax case is expected. Figure 7b shows that a porosity lower than 
ϕbulk can be seen at a depth of >∼40 km from the core surface. This is much deeper than the region of the fluid 
flow (i.e., <10 km, as mentioned above). Thus, a decrease in the porosity near the center does not contribute to 
reducing the total heating rate.

The above results demonstrate the importance of the use of a detailed interior structure model when quantifying 
deformation and energy dissipation in a planetary body. Thus, future works should consider a wide variety of 
interior profiles. In such works, the theory and numerical procedures described in this work can be used.

4.  Concluding Remarks
This study provides poroviscoelastic gravitational theory. This theory combines the classic viscoelastic gravi-
tational theory and the classic poroelastic theory. The governing equations, the ordinary differential equation 
system of y-functions, and boundary conditions are given. The analytical expression of linearly independent 
solutions for a uniform sphere is obtained using the eigenvalue approach.

It is found that a low permeability and a high frequency result in numerical instability. The solution for a 
homogeneous sphere is used to investigate this issue in detail. This instability can be avoided by dividing a 
porous layer into porous and nonporous layers. The guideline boundary depth for this division is also obtained.

Furthermore, tidal heating in the core of Enceladus is investigated using simple interior models. While a nonpo-
rous model can lead to the same total heating rate as the porous model by reducing the viscosity, the radial profile 
of the heating rate is completely different. In addition, a radial variation in porosity is found to have significant 
effects on the thickness of the fluid flow region and the heating rate. These results highlight the importance of 
detailed modeling of the interior structure when quantifying the tidal heating rate.

The theory provided in this study is based on classic theories by Love (1911) and Biot  (1956a). Each theory 
has already been extended in many ways. For example, while this study assumes an isotropic medium, anisot-
ropy can be introduced. In addition, while this study assumes that a porous solid frame is fully saturated with a 
single-component fluid, partial saturation and multicomponent fluids can be considered. Also, while this study 
adopts linearized equations in the Eulerian formulation, nonlinear equations and a Lagrangian formulation could 
be important. Such extensions to the theory are left for future studies.

Appendix A:  Poroelastodynamic Parameters
A1.  Added-Mass Coefficient Ca

When the frequency is high so that the inertial term (i.e., terms with ω 2) cannot be neglected, the effect of added 
mass needs to be considered. The porous-medium added-mass coefficient Ca depends on the shape of the body, 
which is unknown for planetary applications. For such a case,

Figure 10.  (a) The radial profiles of the volumetric heating rate in the core. The solid and dashed lines represent energy 
dissipation due to fluid flow and solid-frame deformation, respectively. (b) Tidal heating rate in the core as a function of the core 
surface porosity. The corresponding core surface permeability is also shown. The filled circle indicates the uniform porosity case.
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𝐶𝐶𝑎𝑎 =
𝜙𝜙

1 − 𝜙𝜙

(

1
√

𝜙𝜙
− 1

)

,� (A1)

where ϕ is the porosity, may be used as a guideline value (Equation 9.28 of Cheng, 2016).

A2.  Fluid Viscosity Correction Factor Ff

When the frequency is high, the boundary layer effect on the motion of pore fluid, described by the fluid viscos-
ity correction factor Ff, may need to be considered (e.g., Biot, 1956b). Ff depends on the geometry of the pores, 
which is unknown for planetary applications. For such a case,

𝐹𝐹𝑓𝑓 =

√

1 + 𝑖𝑖

(

𝛿𝛿𝑝𝑝

4

)2
𝜔𝜔

𝜔𝜔𝑐𝑐

,� (A2)

may be used as a guideline value (Equations 9.57, 9.66, and 9.68 of Cheng, 2016). Here, i is the imaginary 
number, δp is the pore geometry factor, ω is the (angular) frequency, and ωc is the characteristic frequency, respec-
tively. The characteristic frequency ωc is given by

𝜔𝜔𝑐𝑐 =
𝜙𝜙𝜙𝜙𝑓𝑓

𝑘𝑘𝑘𝑘𝑓𝑓
,� (A3)

where ηf is the fluid viscosity, k is the intrinsic permeability, and ρf is the fluid density, respectively. The pore 
geometry factor δp is 3.2 for spheres and 6.3 for slits (Cheng, 2016). It is noted that the sign before the imaginary 
number is opposite to the formulation by Cheng (2016) who assumes a time factor of e −iωt.

For simplicity, this study uses an intermediate value of δp = 4, which leads to 𝐴𝐴 𝐴𝐴𝑓𝑓 (𝛿𝛿𝑝𝑝 = 4) =
√

1 + 𝑖𝑖𝑖𝑖∕𝜔𝜔𝑐𝑐  . It can be 
shown that Ff(δp = 4) ≈ 1 for ω/ωc < 0.1. For ϕ = 0.1, ηf = 2 × 10 −3 Pa s (viscosity of water), ρf = 1,000 kg m −3 
(density of water), and k  =  10 −10  m 2 (typical crustal permeability), the characteristic frequency fc (=ωc/2π) 
is ≈ 318 Hz. Consequently, under this parameter condition, one can assume Ff = 1 if deformation of a frequency 
f (=ω/2π) less than ∼30 Hz is considered.

Appendix B:  Derivation
B1.  Ordinary Differential Equation System for the y Functions

In this study, a linearized equation system is adopted. Consequently, when deriving the differential equation 
system for y functions, we can consider deformation only due to a single forcing component. For example, Equa-
tion 50 can be replaced with

𝑢̃𝑢𝑠𝑠𝑖𝑖 =
𝑥𝑥𝑖𝑖

𝑟𝑟
𝑦𝑦1(𝓁𝓁, 𝑟𝑟)𝑌𝑌

𝑚𝑚

𝓁𝓁
+ 𝑟𝑟𝑟𝑟3(𝓁𝓁, 𝑟𝑟)

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕𝑖𝑖

� (B1)

without loss of generality. Below we adopt this simplified definition of y functions.

First, the constitutive equation (Equation 5) and the pore pressure equation (Equation 6) are expressed using y 
functions. Specifically,

𝑦𝑦2 = 𝜆𝜆𝑐𝑐

(

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
+

2

𝑟𝑟
𝑦𝑦1 −

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟
𝑦𝑦3

)

+ 2𝜇𝜇𝑐𝑐

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
− 𝛼𝛼𝛼𝛼9,� (B2)

𝑦𝑦4 = 𝜇𝜇𝑐𝑐

(

𝑑𝑑𝑑𝑑3

𝑑𝑑𝑑𝑑
+

1

𝑟𝑟
𝑦𝑦1 −

1

𝑟𝑟
𝑦𝑦3

)

,� (B3)

𝑦𝑦9 = −𝑀𝑀

[

𝛼𝛼

(

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
+

2

𝑟𝑟
𝑦𝑦1 −

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟
𝑦𝑦3

)

+ 𝜙𝜙

(

𝑑𝑑𝑑𝑑8

𝑑𝑑𝑑𝑑
+

2

𝑟𝑟
𝑦𝑦8 −

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟
𝑦𝑦10

)]

.� (B4)

These equations yield Equations 57 and 59, and
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��8
��

= −
4���

�(�� + 2��)�
�1 −

�
�(�� + 2��)

�2 +
2�(� + 1)���

�(�� + 2��)�
�3 −

2
�
�8

− 1
�

(

1
�

+ �2

�� + 2��

)

�9 +
�(� + 1)

�
�10.

� (B5)

Second, the Poisson equation (Equation 22) is expressed using y functions. Its left-hand side is given by

𝜕𝜕2𝜓̃𝜓1

𝜕𝜕𝜕𝜕𝑖𝑖𝜕𝜕𝜕𝜕𝑖𝑖

= −

(

𝑑𝑑2𝑦𝑦5

𝑑𝑑𝑑𝑑2
+

2

𝑟𝑟

𝑑𝑑𝑑𝑑5

𝑑𝑑𝑑𝑑
−

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟2
𝑦𝑦5

)

𝑌𝑌 𝑚𝑚

𝓁𝓁
,� (B6)

and its right-hand side is given by

−4𝜋𝜋𝜋𝜋

(

𝑢̃𝑢𝑠𝑠𝑟𝑟
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝜌𝜌𝜌𝜌𝜌𝑠𝑠

𝑘𝑘𝑘𝑘
+ 𝑢̃𝑢rel

𝑟𝑟

𝑑𝑑

𝑑𝑑𝑑𝑑
(𝜙𝜙𝜙𝜙𝑓𝑓 ) + 𝜙𝜙𝜙𝜙𝑓𝑓𝑒𝑒

rel

𝑘𝑘𝑘𝑘

)

= −4𝜋𝜋𝜋𝜋

(

𝑑𝑑

𝑑𝑑𝑑𝑑
(𝜌𝜌𝜌𝜌1 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑦𝑦8) +

2

𝑟𝑟
(𝜌𝜌𝜌𝜌1 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑦𝑦8) −

𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟
(𝜌𝜌𝜌𝜌3 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑦𝑦10)

)

𝑌𝑌 𝑚𝑚

𝓁𝓁
.

� (B7)

By introducing y6, which is a function of dy5/dr, Equation B6 can be divided into two first-order ordinary differ-
ential equations (e.g., Alterman et al., 1959; Takeuchi & Saito, 1972). As mentioned in the main text, this study 
adopts a new definition of y6 that is modified for the relative motion of fluid (i.e., Equation 56). Equation 56 leads 
to Equation 61 and substituting Equations 56, B6, and B7 into Equation 22 yields

𝑑𝑑𝑑𝑑6

𝑑𝑑𝑑𝑑
=

4𝜋𝜋(𝓁𝓁 + 1)𝐺𝐺𝐺𝐺

𝑟𝑟
𝑦𝑦1 −

4𝜋𝜋𝓁𝓁(𝓁𝓁 + 1)𝐺𝐺𝐺𝐺
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𝓁𝓁 − 1
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4𝜋𝜋(𝓁𝓁 + 1)𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓

𝑟𝑟
𝑦𝑦8 −

4𝜋𝜋𝓁𝓁(𝓁𝓁 + 1)𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓

𝑟𝑟
𝑦𝑦10.� (B8)

Third, the dynamic equation for the bulk motion (Equation 48) is expressed using y functions. Specifically,
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� (B9)

Here, the divergence of the stress tensor is given by
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� (B10)

See Appendix B4 for the derivation. Consequently,
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Then, two equations are obtained:
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and
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Equation B12 yields
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On the other hand, Equation B13 yields
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� (B15)

Finally, the dynamic equation for the fluid (Equation 49) is expressed using y functions. Specifically,
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� (B16)

The term proportional to Yℓ leads to
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On the other hand, the term proportional to ∂Yℓ/∂xi yields

𝑦𝑦10 =
𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔1 − 𝜔𝜔2𝜌𝜌𝑓𝑓 𝑟𝑟𝑟𝑟3 − 𝜌𝜌𝑓𝑓𝑦𝑦5 + 𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔8 + 𝑦𝑦9

𝜔𝜔2

[

𝜌𝜌𝑓𝑓

(

1 +
1−𝜙𝜙

𝜙𝜙
𝐶𝐶𝑎𝑎

)

− 𝑖𝑖
𝜙𝜙𝜙𝜙𝑓𝑓 𝐹𝐹𝑓𝑓

𝜔𝜔𝜔𝜔

]

𝑟𝑟

.� (B18)

Substitution of Equation B18 into Equations B14, B15, B8, B5, and B17 leads to Equations 58, 60 and 62–64, 
respectively.

B2.  Fundamental Equations for the Homogeneous Solution

If one differentiates Equation B13 (multiplied by r) and subtracts Equation B12 from the result, one can obtain 
Equation  72. Additionally, if one differentiates Equation  B12 (multiplied by r) and adds multiples of Equa-
tion B13 to the results to give ω 2ρX s, one can obtain Equation 73. On the other hand, if one differentiates Equa-
tion 66 (multiplied by r) and subtracts Equation B17 from the result, one can obtain Equation 74. Additionally, 
if one differentiates Equation B17 and adds multiples of Equations B17 and 66 to the results to give ω 2ρfX s, one 
can obtain Equation 75.

B3.  Total Heating Rate

The radial integration of the volumetric heating rate h can be obtained as follows (e.g., Takeuchi & Saito, 1972; 
Tobie et al., 2005). For any smooth function x within a layer (i.e., rl < r < ru), one can obtain
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If 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑦𝑦∗
𝑖𝑖
 ,
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Consequently,

𝑑𝑑

𝑑𝑑𝑑𝑑

(

𝑟𝑟2𝑦𝑦∗
1
𝑦𝑦2
)

+ 𝓁𝓁(𝓁𝓁 + 1)
𝑑𝑑

𝑑𝑑𝑑𝑑

(

𝑟𝑟2𝑦𝑦∗
3
𝑦𝑦4
)

+
1

4𝜋𝜋𝜋𝜋

𝑑𝑑

𝑑𝑑𝑑𝑑

(

𝑟𝑟2𝑦𝑦∗
5
𝑦𝑦6
)

−
𝑑𝑑

𝑑𝑑𝑑𝑑

(

𝜙𝜙𝜙𝜙2𝑦𝑦∗
8
𝑦𝑦9
)

= 𝐾𝐾𝑑𝑑𝐻𝐻
𝓁𝓁

𝐾𝐾
+ 𝜇𝜇𝑐𝑐𝐻𝐻

𝓁𝓁
𝜇𝜇 +𝑀𝑀𝑀𝑀𝓁𝓁

𝑀𝑀
+ 𝑖𝑖𝑖𝑖𝑖𝑖𝑓𝑓Re(𝐹𝐹𝑓𝑓 )𝐻𝐻

𝓁𝓁
𝜂𝜂

− 𝜔𝜔2𝜌𝜌
(

|𝑟𝑟𝑟𝑟1|
2
+ 𝓁𝓁(𝓁𝓁 + 1)|𝑟𝑟𝑟𝑟3|

2
)

− 𝜔𝜔2𝜙𝜙 Re(𝜌𝜌𝑒𝑒)
(

|𝑟𝑟𝑟𝑟8|
2
+ 𝓁𝓁(𝓁𝓁 + 1)|𝑟𝑟𝑟𝑟10|

2
)

− 2𝜔𝜔2𝜙𝜙𝜙𝜙𝑓𝑓 𝑟𝑟
2

Re
(

𝑦𝑦∗
1
𝑦𝑦8 + 𝓁𝓁(𝓁𝓁 + 1)𝑦𝑦∗

3
𝑦𝑦10

)

− 4𝜌𝜌𝜌𝜌𝜌𝜌|𝑦𝑦1|
2
+

1

4𝜋𝜋𝜋𝜋
|𝑟𝑟𝑟𝑟6|

2

− 𝜙𝜙

(

4𝜌𝜌𝑓𝑓𝑔𝑔

𝑟𝑟
− 4𝜋𝜋𝜋𝜋𝜋𝜋𝑓𝑓 (𝜌𝜌 − 𝜙𝜙𝜙𝜙𝑓𝑓 ) + 𝜌𝜌𝑓𝑓𝑔𝑔

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

)

|𝑟𝑟𝑟𝑟8|
2

+2𝓁𝓁(𝓁𝓁 + 1)𝑔𝑔𝑔𝑔 Re
(

𝜌𝜌𝜌𝜌∗
1
𝑦𝑦3 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑦𝑦

∗

3
𝑦𝑦8 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑦𝑦

∗

1
𝑦𝑦10 + 𝜙𝜙𝜙𝜙𝑓𝑓𝑦𝑦

∗

8
𝑦𝑦10

)

− 8𝜙𝜙𝜙𝜙𝑓𝑓𝑔𝑔𝑔𝑔 Re
(

𝑦𝑦∗
1
𝑦𝑦8
)

−
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
𝑟𝑟2 Re

(

𝑦𝑦∗
8
𝑦𝑦9
)

+2(𝓁𝓁 + 1)𝑟𝑟 Re
(

𝑦𝑦∗
5

[

𝜌𝜌(𝑦𝑦1 − 𝓁𝓁𝑦𝑦3) + 𝜙𝜙𝜙𝜙𝑓𝑓 (𝑦𝑦8 − 𝓁𝓁𝑦𝑦10)
])

.

� (B27)

Thus,
𝑑𝑑

𝑑𝑑𝑑𝑑

[

𝑟𝑟2Im

(

𝑦𝑦∗
1
𝑦𝑦2 + 𝓁𝓁(𝓁𝓁 + 1)𝑦𝑦∗

3
𝑦𝑦4 +

1

4𝜋𝜋𝜋𝜋
𝑦𝑦∗
5
𝑦𝑦6 − 𝜙𝜙𝜙𝜙∗

8
𝑦𝑦9

)]

= Im
(

𝐾𝐾𝑑𝑑𝐻𝐻
𝓁𝓁

𝐾𝐾
+ 𝜇𝜇𝑐𝑐𝐻𝐻

𝓁𝓁
𝜇𝜇 +𝑀𝑀𝑀𝑀𝓁𝓁

𝑀𝑀
+ 𝜔𝜔𝜔𝜔𝑓𝑓Re(𝐹𝐹𝑓𝑓 )𝐻𝐻

𝓁𝓁
𝜂𝜂

)

.

� (B28)

Equations B28 and 176 lead to Equation 177.

B4.  Divergence of Stress Tensor

From Equation 5, the divergence of the stress tensor is given by

��̃��

���
= �

���

(

���̃������ + 2���̃��� − ��̃� ���
)

= �
���

(

���̃��� − ��̃�
)

+ �
���

(

2���̃���
)

.
� (B29)

The first term of the right-hand side of this equation is given by

�
���

(

���̃��� − ��̃�
)

= �
���

(

�2�� − 2��
��1
��

��

)

= ��

�
�
��

(

�2 − 2��
��1
��

)

�� + �
(

1
�
�2 −

2��

�
��1
��

)

���

���
,

� (B30)

and the second term is given by

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

(

2𝜇𝜇𝑐𝑐𝑒𝑒
𝑠𝑠
𝑖𝑖𝑖𝑖

)

= 𝜇𝜇𝑐𝑐

(

𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

𝑒𝑒𝑠𝑠
𝑘𝑘𝑘𝑘
+

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

𝑢̃𝑢𝑠𝑠𝑖𝑖

)

+
1

𝑟𝑟

𝑑𝑑𝑑𝑑𝑐𝑐

𝑑𝑑𝑑𝑑

(

𝑥𝑥𝑗𝑗
𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

𝑢̃𝑢𝑠𝑠𝑖𝑖 + 𝑥𝑥𝑗𝑗
𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

𝑢̃𝑢𝑠𝑠𝑗𝑗

)

.� (B31)

Here,

�
���

�
���

�̃�� =
��

�

(

�2�1
��2

+ 2
�
��1
��

−
2 + �(� + 1)

�2
�1 +

2�(� + 1)
�2

�3
)

��

+�
(

�2�3
��2

+ 2
�
��3
��

+ 2
�2
�1 −

�(� + 1)
�2

�3
)

���

���
,

� (B32)

and

𝑥𝑥𝑗𝑗
𝜕𝜕

𝜕𝜕𝜕𝜕𝑗𝑗

𝑢̃𝑢𝑠𝑠𝑖𝑖 + 𝑥𝑥𝑗𝑗
𝜕𝜕

𝜕𝜕𝜕𝜕𝑖𝑖

𝑢̃𝑢𝑠𝑠𝑗𝑗 = 2𝑥𝑥𝑖𝑖

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
𝑌𝑌𝓁𝓁 + 𝑟𝑟

(

𝑟𝑟
𝑑𝑑𝑑𝑑3

𝑑𝑑𝑑𝑑
+ 𝑦𝑦1 − 𝑦𝑦3

)

𝜕𝜕𝜕𝜕𝓁𝓁

𝜕𝜕𝜕𝜕𝑖𝑖

.� (B33)
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Consequently,

�
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(
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)
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��

�
�
��

(

��1
��

+ 2
�
�1 −

�(� + 1)
�

�3
)

��

+��
��

�

(

�2�1
��2

+ 2
�
��1
��

−
2 + �(� + 1)

�2
�1 +

2�(� + 1)
�2

�3
)

�� +
1
�
���

��

(

2��
��1
��

)

��

+��

(

��1
��

+ 2
�
�1 −

�(� + 1)
�

�3
)

���

���
+ ��

(

�
�2�3
��2

+ 2
��3
��

+ 2
�
�1 −

�(� + 1)
�

�3
)

���

���

+
���

��

(

�
��3
��

+ �1 − �3
)

���

���

= ��

�

[

�
��

(

2��
��1
��

)

−
�(� + 1)

�
�4 +

2��

�

(

2
��1
��

− 2
�
�1 +

�(� + 1)
�

�3
)]

��

+�
(

��4
��

+ 3
�
�4 +

2��

�2
[

�1 +
(

1 − � − �2
)

�3
]

)

���

���
.

� (B34)

Equations B29, B30, and B34 lead to

��̃��

���
= ��

�

[

��2
��

−
�(� + 1)

�
�4 +

2��

�

(

2
��1
��

− 2
�
�1 +

�(� + 1)
�

�3
)]

��

+�
(

1
�
�2 −

2��

�
��1
��

+
��4
��

+ 3
�
�4 +

2��

�2
[

�1 +
(

1 − � − �2
)

�3
]

)

���

���
.

� (B35)

Appendix C:  Differential Equation System of y Functions Under Some Limiting 
Conditions
C1.  Slow Deformation

For a slow but not static deformation, the inertial effects may be ignored. This is the limit of ω 2 → 0 (but not ω 
→ 0). In this case, the differential equation system becomes

��2
��

=

(

−
4��
�

+
12����

(�� + 2��)�2
+ �

�(� + 1)��2� �
2

��� �2

)

�1 −
4��

(�� + 2��)�
�2

+
�(� + 1)

�

(

�� −
6����

(�� + 2��)�

)

�3 +
�(� + 1)

�
�4 +

� + 1
�

(

� − �
���2� �

��� �

)

�5 − ��6

+
(

−4� + �
�(� + 1)����

��� �

)

���
�

�8 +
(

−
4���

(�� + 2��)�
+ �

�(� + 1)����
��� �2

)

�9,

� (C1)

��4
��

=
(

��
�

−
6����

(�� + 2��)�2

)

�1 −
��

(�� + 2��)�
�2 +

2��

�2

(

2�(� + 1)(�� + ��)
�� + 2��

− 1
)

�3

−3
�
�4 −

�
�
�5 +

����
�

�8 +
2���

(�� + 2��)�
�9

� (C2)

��6
��

=
4�(� + 1)�

�

(

� − �
���2� �

��� �

)

�1 −
4��(� + 1)��

�
�3 + �

4��(� + 1)���2�
��� �2

�5 +
� − 1
�

�6

+
4�(� + 1)���

�

(

� − �
�����
��� �

)

�8 − �
4��(� + 1)����

��� �2
�9,

� (C3)

��8
��

= 1
��

(

−
4���

�� + 2��
+ �

�(� + 1)����
��� �

)

�1 −
�

�(�� + 2��)
�2 +

2�(� + 1)���

�(�� + 2��)�
�3 − �

�(� + 1)���
���� �2

�5

+
(

−2
�
+ �

�(� + 1)����
���� �2

)

�8 −
1
�

(

1
�

+ �2

�� + 2��
− �

�(� + 1)�
��� �2

)

�9,
� (C4)

��9
��

=
(

4 − �
�(� + 1)����

���� �

)

���
�

�1 −
�(� + 1)���

�
�3 −

(� + 1)��
�

(

1 − �
�����
���� �

)

�5 + ���6

+
[

−�
����
�

+
(

4 − �
�(� + 1)����

���� �
+ �

��
��

)

���
�

− 4���� (� − ��� )
]

�8 − �
�(� + 1)����

���� �2
�9.
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The equations for dy1/dr, dy3/dr, and dy5/dr remain the same. y10 is given by

𝑦𝑦10 = 𝑖𝑖
𝑘𝑘

𝜔𝜔𝜔𝜔𝜔𝜔𝑓𝑓 𝑟𝑟
(𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔1 − 𝜌𝜌𝑓𝑓𝑦𝑦5 + 𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔8 + 𝑦𝑦9).� (C6)

Here, Ff = 1 is also assumed (see Appendix A).

C2.  Nonporous Condition

It would be useful to confirm that the equation system for a nonporous material can be obtained under the limits 
of α → 0 and ϕ → 0. It can be easily shown that

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
= −

2𝜆𝜆𝑐𝑐

(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)𝑟𝑟
𝑦𝑦1 +

1

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

𝑦𝑦2 +
𝓁𝓁(𝓁𝓁 + 1)𝜆𝜆𝑐𝑐

(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐)𝑟𝑟
𝑦𝑦3,� (C7)

��2
��

=
(

−�2� −
4��
�

+
12����

(�� + 2��)�2

)

�1 −
4��

(�� + 2��)�
�2

+
�(� + 1)

�

(

�� −
6����

(�� + 2��)�

)

�3 +
�(� + 1)

�
�4 +

(� + 1)�
�

�5 − ��6,� (C8)

𝑑𝑑𝑑𝑑3

𝑑𝑑𝑑𝑑
= −

1

𝑟𝑟
𝑦𝑦1 +

1

𝑟𝑟
𝑦𝑦3 +

1

𝜇𝜇𝑐𝑐

𝑦𝑦4,� (C9)

��4
��

=
(

��
�

−
6����

(�� + 2��)�2

)

�1 −
��

(�� + 2��)�
�2 +

[

−�2� +
2��

�2

(

2�(� + 1)(�� + ��)
�� + 2��

− 1
)]

�3

−3
�
�4 −

�
�
�5

� (C10)

𝑑𝑑𝑑𝑑5

𝑑𝑑𝑑𝑑
= 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋1 −

𝓁𝓁 + 1

𝑟𝑟
𝑦𝑦5 + 𝑦𝑦6,� (C11)

𝑑𝑑𝑑𝑑6

𝑑𝑑𝑑𝑑
=

4𝜋𝜋(𝓁𝓁 + 1)𝐺𝐺𝐺𝐺

𝑟𝑟
𝑦𝑦1 −

4𝜋𝜋𝓁𝓁(𝓁𝓁 + 1)𝐺𝐺𝐺𝐺

𝑟𝑟
𝑦𝑦3 +

𝓁𝓁 − 1

𝑟𝑟
𝑦𝑦6,� (C12)

can be obtained under these limits. As expected, these equations are exactly the same as those obtained by 
Takeuchi and Saito (1972) for a nonporous material.

C3.  Inviscid Fluid Layer

The differential equation system of y functions for an inviscid fluid layer is given by Kamata et al. (2015) and 
Takeuchi and Saito (1972).

𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
=

(

−
2

𝑟𝑟
+

𝓁𝓁(𝓁𝓁 + 1)𝑔𝑔

𝜔𝜔2𝑟𝑟2

)

𝑦𝑦1 +

(

1

𝜆𝜆
−

𝓁𝓁(𝓁𝓁 + 1)

𝜔𝜔2𝜌𝜌𝜌𝜌2

)

𝑦𝑦2 −
𝓁𝓁(𝓁𝓁 + 1)

𝜔𝜔2𝑟𝑟2
𝑦𝑦5,� (C13)

��2
��

=
(

−�2� −
4��
�

+
�(� + 1)��2

�2�2

)

�1 −
�(� + 1)�

�2�2
�2 +

(� + 1)�
�

(

1 −
��
�2�

)

�5 − ��6,� (C14)

𝑑𝑑𝑑𝑑5

𝑑𝑑𝑑𝑑
= 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋1 −

𝓁𝓁 + 1

𝑟𝑟
𝑦𝑦5 + 𝑦𝑦6,� (C15)

��6
��

=
4�(� + 1)��

�

(

1 −
��
�2�

)

�1 +
4��(� + 1)�

�2�2
�2 +

4��(� + 1)��
�2�2

�5 +
� − 1
�

�6.� (C16)

Here, y3 and y4 are not obtained by the differential equations but are given by

𝑦𝑦3 =
1

𝜔𝜔2𝜌𝜌𝜌𝜌
(𝜌𝜌𝜌𝜌𝜌𝜌1 − 𝑦𝑦2 − 𝜌𝜌𝜌𝜌5),� (C17)

𝑦𝑦4 = 0.� (C18)
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The above equations are not obtained simply by considering the limits of α → 1 and ϕ → 1 because the pore fluid 
is assumed to be a viscous fluid. Instead, it can be obtained by taking the limit of μc → 0 for the equation system 
for a nonporous case given in Appendix C2.

If a static deformation (i.e., ω = 0) is considered, the above equation system cannot be used because it contains 
terms with 1/ω 2. Even if ω ≠ 0, the equation system becomes numerically unstable under a small ω and a large 
liquid-layer thickness. For such cases, one can use the two-component equation system given by Saito (1974).

𝑑𝑑𝑑𝑑5

𝑑𝑑𝑑𝑑
=

(

4𝜋𝜋𝜋𝜋𝜋𝜋

𝑔𝑔
−

𝓁𝓁 + 1

𝑟𝑟

)

𝑦𝑦5 + 𝑦𝑦7,� (C19)

𝑑𝑑𝑑𝑑7

𝑑𝑑𝑑𝑑
=

2(𝓁𝓁 − 1)

𝑟𝑟

4𝜋𝜋𝜋𝜋𝜋𝜋

𝑔𝑔
𝑦𝑦5 +

(

𝓁𝓁 − 1

𝑟𝑟
−

4𝜋𝜋𝜋𝜋𝜋𝜋

𝑔𝑔

)

𝑦𝑦7,� (C20)

where

𝑦𝑦7 =
4𝜋𝜋𝜋𝜋

𝑔𝑔
𝑦𝑦2 + 𝑦𝑦6.� (C21)

Appendix D:  Static Deformation
As mentioned in Section 2.2, static deformation can be calculated using a six-component equation system given 
in Appendix C2 or a two-component equation system given in Appendix C3 depending on the behavior of the 
solid frame at ω = 0. Below, we directly substitute ω = 0 into Equation 49 (i.e., the equation of motion for fluid) 
to show that the equation system degenerates; one cannot use an eight-component system.

Substitution of ω = 0 into Equation B16 yields

0 = ��

�

[

2���
�

�1 −
�(� + 1)���

�
�3 +

(

2���
�

+ ���
��
��

)

�8 −
�(� + 1)���

�
�10 −

��9
��

−��
�
��

[�(�8 + �1)] + ��
(

�
��1
��

+
��5
��

+ �
��8
��

)]

� �
� − (����1 − ���5 + ����8 + �9)

�� �
�

���
.

� (D1)

The term proportional to ∂Yℓ/∂xi leads to

𝑦𝑦9 = −𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔1 + 𝜌𝜌𝑓𝑓𝑦𝑦5 − 𝜌𝜌𝑓𝑓𝑔𝑔𝑔𝑔8.� (D2)

Using Equation D2, the term proportional to Yℓ leads to

0 =
4(� − �)�����

(�� + 2��)�
�1 +

(� − �)���
�� + 2��

�2 −
2�(� + 1)(� − �)�����

(�� + 2��)�
�3

+����
��
��

�8 −
(

���
�

−
(� − �)����
�� + 2��

+
�
��

���
��

)

�9.� (D3)

Using Equations D2 and D3, y8 and y9 (and thus y10 from Equation B4) can be obtained from other y functions. 
Consequently, one can construct a differential equation system free of y8 and y9; the number of ordinary differ-
ential equations becomes six.

The fact that y8 and y9 are calculated uniquely from y1–y6 indicates that the boundary condition given in Section 2.4 
does not necessarily meet. For example, consider a porous layer that has a free surface. In this case, y9 should be 
zero at the surface, although y9 calculated from other y functions may not equal zero.

This apparent inconsistency under the static condition would be the result of a shear-stress-free condition for the 
pore fluid. As mentioned in Section 2.1, we consider the macroscopic motion of the pore fluid, and in this case, 
one can use a shear-free stress tensor for the pore fluid (e.g., Neuman, 1977; Whitaker, 1986). It is known that the 
use of a shear-stress-free constitutive equation leads to the system being overdetermined and causing an apparent 
contradiction; for example, the solution yields an unrealistic cavitation at the core-mantle boundary (e.g., Dahlen 
& Fels, 1978; Longman, 1963; Saito, 1974; Smylie & Mansinha, 1971). A reasonable way to avoid such a contra-
diction is to reduce the number of y functions to be determined and to leave some y functions undetermined (see 
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Appendix C3 and Saito (1974)). However, introducing a new set of y functions for the static case is beyond the 
scope of this study and is left for another study.

Finally, the homogeneous solution under the static condition is summarized below. As expected from the fact that 
the number of ordinary differential equations is six, the number of linearly independent solutions is three for the 
homogeneous sphere. Substitution of ω = 0 into Equation 74 yields

𝑋𝑋rel
= −𝑋𝑋𝑠𝑠.� (D4)

Consequently, Equations 72, 73, and 75 become

𝜇𝜇𝑐𝑐∇
2𝑍𝑍𝑠𝑠

= (𝜌𝜌 − 𝜙𝜙𝜙𝜙𝑓𝑓 )𝛾𝛾𝛾𝛾
𝑠𝑠,� (D5)

[

(𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐 + 𝛼𝛼(𝛼𝛼 − 𝜙𝜙)𝑀𝑀)∇
2
+ 4(𝜌𝜌 − 𝜙𝜙𝜙𝜙𝑓𝑓 )𝛾𝛾

]

𝑋𝑋𝑠𝑠
= 𝓁𝓁(𝓁𝓁 + 1)𝛾𝛾

(

𝜌𝜌𝜌𝜌𝑠𝑠
+ 𝜙𝜙𝜙𝜙𝑓𝑓𝑍𝑍

rel
)

,� (D6)

[

(𝛼𝛼 − 𝜙𝜙)𝑀𝑀∇
2
+ 3

(

1 −
𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌

)

𝜌𝜌𝑓𝑓 𝛾𝛾

]

𝑋𝑋𝑠𝑠
= 𝓁𝓁(𝓁𝓁 + 1)𝜌𝜌𝑓𝑓 𝛾𝛾

(

𝑍𝑍𝑠𝑠
+𝑍𝑍 rel

)

.� (D7)

Equation D7 yields

𝑍𝑍 rel
=

1

𝓁𝓁(𝓁𝓁 + 1)

[

(𝛼𝛼 − 𝜙𝜙)𝑀𝑀

𝜌𝜌𝑓𝑓𝛾𝛾
∇

2
+ 3

(

1 −
𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌

)]

𝑋𝑋𝑠𝑠
−𝑍𝑍𝑠𝑠.� (D8)

Then, one can obtain

∇2
⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

= �′′
⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

�′′11 �′′12

�′′21 �′′22

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

,� (D9)

where

𝑎𝑎′′
11
= −

(

1 −
𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌

)

(4𝜌𝜌 − 3𝜙𝜙𝜙𝜙𝑓𝑓 )𝛾𝛾

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐 + (𝛼𝛼 − 𝜙𝜙)
2
𝑀𝑀

,� (D10)

𝑎𝑎′′
12
=

𝓁𝓁(𝓁𝓁 + 1)(𝜌𝜌 − 𝜙𝜙𝜙𝜙𝑓𝑓 )𝛾𝛾

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐 + (𝛼𝛼 − 𝜙𝜙)
2
𝑀𝑀

,� (D11)

𝑎𝑎′′
21
=

(𝜌𝜌 − 𝜙𝜙𝜙𝜙𝑓𝑓 )𝛾𝛾

𝜇𝜇𝑐𝑐

,� (D12)

𝑎𝑎′′
22
= 0.� (D13)

Equation D9 yields

𝑋𝑋𝑠𝑠
= 𝑐𝑐1𝑝𝑝

′′

11
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

1
𝑟𝑟
)

+ 𝑐𝑐2𝑝𝑝
′′

12
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

2
𝑟𝑟
)

,� (D14)

𝑍𝑍𝑠𝑠
= 𝑐𝑐1𝑝𝑝

′′

21
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

1
𝑟𝑟
)

+ 𝑐𝑐2𝑝𝑝
′′

22
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

2
𝑟𝑟
)

,� (D15)

where ci (i = 1, 2) are constants to be determined by the boundary condition at the surface, 𝐴𝐴 −
(

𝑘𝑘𝑒𝑒′′
𝑖𝑖

)2

(𝑖𝑖 = 1, 2) 
are the eigenvalues of the matrix A″, and 𝐴𝐴 𝐴𝐴′′

𝑖𝑖𝑖𝑖
 is the jth component of the corresponding eigenvector, respectively. 

Equations D4, D8, D14, and D15 yield

𝑋𝑋rel
= 𝑐𝑐1𝑝𝑝

′′

31
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

1
𝑟𝑟
)

+ 𝑐𝑐2𝑝𝑝
′′

32
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

2
𝑟𝑟
)

,� (D16)

𝑍𝑍 rel
= 𝑐𝑐1𝑝𝑝

′′

41
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

1
𝑟𝑟
)

+ 𝑐𝑐2𝑝𝑝
′′

42
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′′

2
𝑟𝑟
)

,� (D17)

where

𝑝𝑝′′
3𝑖𝑖
= −𝑝𝑝′′

1𝑖𝑖
,� (D18)
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𝑝𝑝′′
4𝑖𝑖
=

1

𝓁𝓁(𝓁𝓁 + 1)

[

−
(𝛼𝛼 − 𝜙𝜙)𝑀𝑀

(

𝑘𝑘𝑒𝑒′′
𝑖𝑖

)2

𝜌𝜌𝑓𝑓 𝛾𝛾
+ 3

(

1 −
𝜙𝜙𝜙𝜙𝑓𝑓

𝜌𝜌

)

]

𝑝𝑝′′
1𝑖𝑖
− 𝑝𝑝′′

2𝑖𝑖
.� (D19)

Then, two sets of solutions for the y functions can be obtained from Equations 93–101 replacing 𝐴𝐴 𝐴𝐴𝑒𝑒
𝑖𝑖
 and pij with 

𝐴𝐴 𝐴𝐴𝑒𝑒′′
𝑖𝑖

 and 𝐴𝐴 𝐴𝐴′′
𝑖𝑖𝑖𝑖
 , respectively. The third solution is given by Equations 105–113.

Appendix E:  Solution for a Homogeneous Nonporous Solid Sphere
E1.  Compressible Case

In this case, X rel does not appear, and the matrix A in Equation 77 becomes a 2 × 2 matrix. More specifically,

∇2
⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

= �
⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

�11 �12

�21 �22

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

��

��

⎞

⎟

⎟

⎠

,� (E1)

where

𝑎𝑎11 = −

(

𝜔𝜔2 + 4𝛾𝛾
)

𝜌𝜌

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

,� (E2)

𝑎𝑎12 =
𝓁𝓁(𝓁𝓁 + 1)𝜌𝜌𝜌𝜌

𝜆𝜆𝑐𝑐 + 2𝜇𝜇𝑐𝑐

,� (E3)

𝑎𝑎21 =
𝜌𝜌𝜌𝜌

𝜇𝜇𝑐𝑐

,� (E4)

𝑎𝑎22 = −
𝜔𝜔2𝜌𝜌

𝜇𝜇𝑐𝑐

.� (E5)

The eigenvalues 𝐴𝐴 −
(

𝑘𝑘𝑒𝑒
𝑖𝑖

)2

(𝑖𝑖 = 1, 2) of A are then given by

−
(

��
�

)2 = 1
2

(

�11 + �22 ±
√

(�22 − �11)2 + 4�12�21
)

= −
�
2

⎛

⎜

⎜

⎝

�2 + 4�
�� + 2��

+ �2

��
∓

√

(

�2

��
−

�2 + 4�
�� + 2��

)2

+
4�(� + 1)�2

(�� + 2��)��

⎞

⎟

⎟

⎠

,
� (E6)

and the eigenvectors pji satisfy

𝑝𝑝1𝑖𝑖

𝑝𝑝2𝑖𝑖
=

1

𝛾𝛾

(

𝜔𝜔2
−

𝜇𝜇

𝜌𝜌

(

𝑘𝑘𝑒𝑒
𝑖𝑖

)2

)

.� (E7)

Then, Equations 98 and 99 of Takeuchi and Saito  (1972) can be obtained by substituting 𝐴𝐴 𝐴𝐴2𝑖𝑖 =
(

𝑘𝑘𝑒𝑒
𝑖𝑖

)2 and 
α = p3i = p4i = 0 into Equations 93–98. The third solution is the trivial solution given by Equations 105–110.

E2.  Incompressible Case

In this case, λc → 𝐴𝐴 ∞ , X s → 0, while λcX s approaches a finite value. Thus, Equations 72 and 73 can be written as

∇2
⎛

⎜

⎜

⎝

��

����

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

− �2�
��

0

�(� + 1)�� 0

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

��

����

⎞

⎟

⎟

⎠

.� (E8)

The eigenvalues of the matrix on the right-hand side of this equation are given by 𝐴𝐴 −
(

𝑘𝑘𝑒𝑒′

1

)2

= −𝜔𝜔2𝜌𝜌∕𝜇𝜇𝑐𝑐 and 
𝐴𝐴 −

(

𝑘𝑘𝑒𝑒′

2

)2

= 0 . The first solution for a nonzero eigenvalue is given by

𝑦𝑦1 = −
𝓁𝓁(𝓁𝓁 + 1)

𝑟𝑟
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

,� (E9)
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𝑦𝑦2 = −𝓁𝓁(𝓁𝓁 + 1)

[(

𝜌𝜌𝜌𝜌 +
2(𝓁𝓁 − 1)𝜇𝜇𝑐𝑐

𝑟𝑟2

)

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

−
2𝑘𝑘𝑒𝑒′

1
𝜇𝜇𝑐𝑐

𝑟𝑟
𝑗𝑗𝓁𝓁+1

(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

]

,� (E10)

𝑦𝑦3 = −
𝓁𝓁 + 1

𝑟𝑟
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

+ 𝑘𝑘𝑒𝑒′

1
𝑗𝑗𝓁𝓁+1

(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

,� (E11)

𝑦𝑦4 = 𝜇𝜇𝑐𝑐

[(

(

𝑘𝑘𝑒𝑒′

1

)2

−
2
(

𝓁𝓁
2 − 1

)

𝑟𝑟2

)

𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

−
2𝑘𝑘𝑒𝑒′

1

𝑟𝑟
𝑗𝑗𝓁𝓁+1

(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

]

,� (E12)

𝑦𝑦5 = 0,� (E13)

𝑦𝑦6 =
3𝓁𝓁(𝓁𝓁 + 1)𝛾𝛾

𝑟𝑟
𝑗𝑗𝓁𝓁
(

𝑘𝑘𝑒𝑒′

1
𝑟𝑟
)

,� (E14)

which can be obtained by substituting 𝐴𝐴 𝐴𝐴𝑐𝑐𝑝𝑝11 = −𝓁𝓁(𝓁𝓁 + 1)𝜌𝜌𝜌𝜌 , 𝐴𝐴 𝐴𝐴21 =
(

𝑘𝑘𝑒𝑒′

1

)2

= 𝜔𝜔2𝜌𝜌∕𝜇𝜇𝑐𝑐 , and α = p11 = p31 = p41 = 0 
into Equations 93–98. The second solution is given by

𝑦𝑦1 = 0,� (E15)

𝑦𝑦2 = −𝜌𝜌𝜌𝜌𝓁𝓁 ,� (E16)

𝑦𝑦3 = 0,� (E17)

𝑦𝑦4 = 0,� (E18)

𝑦𝑦5 = 𝑟𝑟𝓁𝓁 ,� (E19)

𝑦𝑦6 =
2𝓁𝓁 + 1

𝑟𝑟
𝑦𝑦5 − 3𝛾𝛾𝛾𝛾1 = (2𝓁𝓁 + 1)𝑟𝑟𝓁𝓁−1.� (E20)

The third solution is the trivial solution for a compressible case given by Equations 105–110.

Appendix F:  Stress and Strain Variables Using y Functions
Below are some fundamental variables of stress and strain expressed using y functions:

𝑢̃𝑢𝑠𝑠𝑟𝑟 =
𝑥𝑥𝑖𝑖𝑢̃𝑢

𝑠𝑠
𝑖𝑖

𝑟𝑟
=
∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑦𝑦1(𝓁𝓁, 𝑟𝑟)𝑌𝑌
𝑚𝑚

𝓁𝓁
=
∑

𝓁𝓁

(

𝑦𝑦1(𝓁𝓁, 𝑟𝑟)
∑

𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑌𝑌
𝑚𝑚

𝓁𝓁

)

,� (F1)

𝑢̃𝑢𝑠𝑠
𝜃𝜃
=

1

𝑟𝑟

(

𝑧𝑧
(

𝑥𝑥𝑥𝑥𝑥𝑠𝑠𝑥𝑥 + 𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦
)

√

𝑥𝑥2 + 𝑦𝑦2
−

√

𝑥𝑥2 + 𝑦𝑦2𝑢̃𝑢𝑠𝑠𝑧𝑧

)

=

∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑦𝑦3(𝓁𝓁, 𝑟𝑟)
𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕
=

∑

𝓁𝓁

(

𝑦𝑦3(𝓁𝓁, 𝑟𝑟)
∑

𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕

)

,� (F2)

𝑢̃𝑢𝑠𝑠𝜑𝜑 =
−𝑦𝑦

(

𝑥𝑥𝑥𝑥𝑥𝑠𝑠𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑠𝑠𝑦𝑦
)

√

𝑥𝑥2 + 𝑦𝑦2
=

∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

𝑦𝑦3(𝓁𝓁, 𝑟𝑟)

sin 𝜃𝜃

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕
=

∑

𝓁𝓁

(

𝑦𝑦3(𝓁𝓁, 𝑟𝑟)

sin 𝜃𝜃

∑

𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕

)

,� (F3)

�̃��� =
��̃��
��

=
∑

�,�

���
��1(�, �)

��
� �
� =

∑

�

(

��1(�, �)
��

∑

�

���� �
�

)

=
∑

�

(

−2���1 + ��2 + �(� + 1)���3 + ���9
(�� + 2��)�

∑

�

���� �
�

)

,
� (F4)

�̃��� = 1
�

(��̃�
��

+ �̃�
)

=
∑

�,�

���

(

�1(�, �)
�

� �
� +

�3(�, �)
�

�2� �
�

��2

)

=
∑

�

(

�1(�, �)
�

∑

�

���� �
� +

�3(�, �)
�

∑

�

���
�2� �

�

��2

)

,
� (F5)
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�̃��� = 1
�

(

1
sin �

��̃�
��

+ cot ��̃� + �̃�
)

=
∑

�,�

���

[

�1(�, �)
�

� �
� +

�3(�, �)
�

(

cos �
sin �

�� �
�

��
+ 1

sin2�

�2� �
�

��2

)]

=
∑

�

[

�1(�, �)
�

∑

�

���� �
� +

�3(�, �)
�

∑

�

���

(

cos �
sin �

�� �
�

��
+ 1

sin2�

�2� �
�

��2

)]

,
� (F6)

�̃��� =
1
2

(��̃��
��

− 1
�
�̃�� +

1
�
��̃��
��

)

=
∑

�,�

���
�4(�, �)
2��

�� �
�

��
=
∑

�

(

�4(�, �)
2��

∑

�

���
�� �

�

��

)

,� (F7)

𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟 =
1

2

(

1

𝑟𝑟sin 𝜃𝜃

𝜕𝜕 𝜕𝜕𝜕𝑟𝑟

𝜕𝜕𝜕𝜕
+

𝜕𝜕 𝜕𝜕𝜕𝜑𝜑

𝜕𝜕𝜕𝜕
−

1

𝑟𝑟
̃𝑢𝑢𝜑𝜑

)

=

∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

𝑦𝑦4(𝓁𝓁, 𝑟𝑟)

2𝜇𝜇𝑐𝑐sin 𝜃𝜃

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕
=

∑

𝓁𝓁

(

𝑦𝑦4(𝓁𝓁, 𝑟𝑟)

2𝜇𝜇𝑐𝑐sin 𝜃𝜃

∑

𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕

)

,� (F8)

�̃��� = 1
2�

(

��̃�
��

− cot ��̃� + 1
sin �

��̃�
��

)

=
∑

�,�

���
�3(�, �)

�

(

1
sin �

�2� �
�

����
− cos �

sin2�

�� �
�

��

)

=
∑

�

[

�3(�, �)
�

∑

�

���

(

1
sin �

�2� �
�

����
− cos �

sin2�

�� �
�

��

)]

,
� (F9)

�̃��� =
��̃��
���

=
∑

�,�

���

(

��1(�, �)
��

+
2�1(�, �)

�
−

�(� + 1)�3(�, �)
�

)

� �
�

=
∑

�

(

4���1 + ��2 − 2�(� + 1)���3 + ���9
(
� + 2��)�

∑

�

���� �
�

)

,
� (F10)

�̃rel
� =

���̃ rel
�

�
=
∑

�,�

����8(�, �)� �
� =

∑

�

(

�8(�, �)
∑

�

���� �
�

)

,� (F11)

�̃ rel
� = 1

�

(

�
(

��̃ rel
� + ��̃ rel

�
)

√

�2 + �2
−
√

�2 + �2�̃ rel
�

)

=
∑

�,�

����10(�, �)
�� �

�

��
=
∑

�

(

�10(�, �)
∑

�

���
�� �

�

��

)

,� (F12)

�̃ rel
� =

−�
(

��̃ rel
� + ��̃ rel

�
)

√

�2 + �2
=
∑

�,�

���
�10(�, �)
sin �

�� �
�

��
=
∑

�

(

�10(�, �)
sin �

∑

�

���
�� �

�

��

)

,� (F13)

�̃ rel
�� =

��̃ rel
�

���
=
∑

�,�

���

(

��8(�, �)
��

+
2�8(�, �)

�
−

�(� + 1)�10(�, �)
�

)

� �
�

= −
∑

�

[

�
�

(

4���1 + ��2 − 2�(� + 1)���3 + ���9
(
� + 2��)�

+
�9
��

)

∑

�

���� �
�

]

,
� (F14)

𝜎𝜎𝑟𝑟𝑟𝑟 =
𝑥𝑥𝑖𝑖𝜎̃𝜎𝑟𝑟𝑟𝑟

𝑟𝑟
=
∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑦𝑦2(𝓁𝓁, 𝑟𝑟)𝑌𝑌
𝑚𝑚

𝓁𝓁
=
∑

𝓁𝓁

(

𝑦𝑦2(𝓁𝓁, 𝑟𝑟)
∑

𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑌𝑌
𝑚𝑚

𝓁𝓁

)

,� (F15)

𝜎𝜎𝑟𝑟𝑟𝑟 =
1

𝑟𝑟

(

𝑧𝑧
(

𝑥𝑥𝑥𝑥𝑥𝑟𝑟𝑟𝑟 + 𝑦𝑦𝑦𝑦𝑦𝑟𝑟𝑟𝑟

)

√

𝑥𝑥2 + 𝑦𝑦2
−

√

𝑥𝑥2 + 𝑦𝑦2𝜎𝜎𝑟𝑟𝑟𝑟

)

=

∑

𝓁𝓁,𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚𝑦𝑦4(𝓁𝓁, 𝑟𝑟)
𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕
=

∑

𝓁𝓁

(

𝑦𝑦4(𝓁𝓁, 𝑟𝑟)
∑

𝑚𝑚

𝑈𝑈𝓁𝓁𝑚𝑚

𝜕𝜕𝜕𝜕 𝑚𝑚

𝓁𝓁

𝜕𝜕𝜕𝜕

)

.� (F16)

Here, no summation is applied for the left hand sides of Equations F4–F6 and F15.

Appendix G:  Spherical Harmonic Expansion of the Tidal Potential
The tidal potential U can be written as (e.g., Beuthe, 2013; Matsuyama et al., 2018)

𝑈𝑈 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) = Re

[

∑

𝓁𝓁,𝑚𝑚𝑚𝑚𝑚

𝑈𝑈
𝜉𝜉

𝓁𝓁𝑚𝑚
(𝑟𝑟)𝑃𝑃𝑚𝑚

𝓁𝓁
(cos 𝜃𝜃)𝑒𝑒𝑖𝑖(𝑚𝑚𝑚𝑚−𝜔𝜔𝜉𝜉 𝑡𝑡)

]

,� (G1)
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where θ is the colatitude, φ is the latitude, ℓ is the spherical harmonic degree, m is the spherical harmonic order, 
𝐴𝐴 𝐴𝐴

𝜉𝜉

𝓁𝓁𝑚𝑚
 is the coefficient describing the amplitude of the forcing traveling in the ξ-direction, 𝐴𝐴 𝐴𝐴𝑚𝑚

𝓁𝓁
 is the associated 

Legendre function, and ωξ is the frequency. The direction ξ = E denotes eastward, while ξ = W denotes westward. 
In this notation, positive and negative frequencies indicate eastward and westward components, respectively (i.e., 
ωE = |ω| and ωW = −|ω|, where ω is the tidal frequency) (Matsuyama et al., 2018). The degree-two coefficients 
for eccentricity tides are given by

𝑈𝑈𝐸𝐸

2,0
= −

3

2
𝜔𝜔2𝑟𝑟2𝑒𝑒𝑒� (G2)

𝑈𝑈𝐸𝐸

2,2
=

7

8
𝜔𝜔2𝑟𝑟2𝑒𝑒𝑒� (G3)

𝑈𝑈𝑊𝑊

2,2
= −

1

8
𝜔𝜔2𝑟𝑟2𝑒𝑒𝑒� (G4)

and those for obliquity tides are given by

𝑈𝑈𝐸𝐸

2,1
= 𝑈𝑈𝑊𝑊

2,1
= −

1

2
𝜔𝜔2𝑟𝑟2sin 𝜃𝜃𝑜𝑜,� (G5)

where e is the eccentricity and θo is the obliquity. The other degree-two coefficients are zero. In contrast to 
Matsuyama et al. (2018), the minus signs appear on the coefficients for obliquity tides because this study uses 𝐴𝐴 𝐴𝐴𝑚𝑚

𝓁𝓁
 

containing the Condon-Shortley phase factor (i.e., (−1) m).

Appendix H:  Approximation of the Spherical Bessel Function of the First Kind for a 
Large Complex Argument
An asymptotic expansion of the Bessel function of the first kind for large values of 𝐴𝐴 |𝑧𝑧| is given by Watson (1966).

𝐽𝐽𝓁𝓁(𝑧𝑧) ≈

√

2

𝜋𝜋𝜋𝜋

[

cos

(

𝑧𝑧 −
𝓁𝓁𝜋𝜋

2
−

𝜋𝜋

4

) ∞
∑

𝑚𝑚=0

(−1)
𝑚𝑚
𝑓𝑓 (𝓁𝓁, 2𝑚𝑚)

(2𝑧𝑧)
2𝑚𝑚

−sin

(

𝑧𝑧 −
𝓁𝓁𝜋𝜋

2
−

𝜋𝜋

4

) ∞
∑

𝑚𝑚=0

(−1)
𝑚𝑚
𝑓𝑓 (𝓁𝓁, 2𝑚𝑚 + 1)

(2𝑧𝑧)
2𝑚𝑚+1

]

,� (H1)

where Jℓ is the Bessel function of the first kind of the order of ℓ, z is a complex number, and

𝑓𝑓 (𝓁𝓁, 𝑚𝑚) =
1

22𝑚𝑚𝑚𝑚!

𝑚𝑚
∏

𝑛𝑛=1

(

4𝓁𝓁
2
− (2𝑛𝑛 − 1)

2
)

.� (H2)

It can be shown that
∞
∑

𝑚𝑚=0

(−1)
𝑚𝑚
𝑓𝑓 (𝓁𝓁, 2𝑚𝑚)

(2𝑧𝑧)
2𝑚𝑚

= 1 + 
(

|𝑧𝑧|
−2
)

,� (H3)

∞
∑

𝑚𝑚=0

(−1)
𝑚𝑚
𝑓𝑓 (𝓁𝓁, 2𝑚𝑚 + 1)

(2𝑧𝑧)
2𝑚𝑚+1

=
4𝓁𝓁2 − 1

8𝑧𝑧
+ 

(

|𝑧𝑧|
−3
)

,� (H4)

cos(Re(�) + � Im(�)) = 1
2
(

��(Re(�)+�Im(�)) + �−�(Re(�)+�Im(�))
)

= 1
2
(

�−Im(�)��Re(�) + �Im(�)�−�Re(�)
)

,
� (H5)

sin(Re(�) + � Im(�)) = 1
2�
(

��(Re(�)+�Im(�)) − �−�(Re(�)+�Im(�))
)

= 1
2�
(

�−Im(�)��Re(�) − �Im(�)�−�Re(�)
)

.
� (H6)

Substitution of Equations H3–H6 into Equation H1 yields

��(�) ≈
�−Im(�)
√

2��

[

��(Re(�)−��∕2−�∕4) + 
(

|�|−1
)]

+ �Im(�)
√

2��

[

�−�(Re(�)−��∕2−�∕4) + 
(

|�|−1
)]

= �−Im(�)
√

2��

[

��Re(�)�
−
(

�+
1
2

)

+ 
(

|�|−1
)

]

+ �Im(�)
√

2��

[

�−�Re(�)��+
1
2 + 

(

|�|−1
)

]

.
� (H7)
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Thus, for the spherical Bessel function, one obtains

��(�) =
√

�
2�

�
�+
1
2
(�)

≈ �−Im(�)

2�
[

�−(�+1)��Re(�) + 
(

|�|−1
)]

+ �Im(�)

2�
[

��+1�−�Re(�) + 
(

|�|−1
)]

,
� (H8)

which is equivalent to Equation 193.

Appendix I:  Bulk Porosity for a Porosity Profile Exponentially Decreasing With 
Depth
The local density ρ(r) is given by

𝜌𝜌(𝑟𝑟) = [1 − 𝜙𝜙(𝑟𝑟)]𝜌𝜌𝑠𝑠 + 𝜙𝜙(𝑟𝑟)𝜌𝜌𝑓𝑓 .� (I1)

Here, the solid and fluid densities, ρs and ρf, are fixed. Then, the total mass M of the core for a porosity profile 
given by Equation 200 is given by

� = 4� ∫ ��
0 �(�)�2��

= 4�
3
���3

� − 4��max(�� − �� ) ∫
��
0 exp(��(� −��))�2��

= 4�
3
���3

� − 4��max(�� − �� )�−3
� �−���� ∫ ����

0 ���2��

= 4�
3
�3

�

⎧

⎪

⎨

⎪

⎩
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Here,

∫

𝑥𝑥0

0
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𝑥𝑥2

0
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Consequently,
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𝑐𝑐

{
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(
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)

𝑒𝑒𝑥𝑥
]ln(𝜙𝜙max∕𝜙𝜙min)

𝑥𝑥=0

}

.� (I4)

On the other hand, using the bulk porosity ϕbulk, the total mass M can be written as

� = 4�
3
{[1 − �bulk]�� + �bulk��}�3

�

= 4�
3
[

�� − (�� − �� )�bulk
]

�3
� .

� (I5)

Comparing Equations I4 and I5, one can obtain Equation 202.

Data Availability Statement
The numerical code developed and scripts used in this study can be obtained at Kamata (2023).

References
Allen, M. B. (2021). The mathematics of fluid flow through porous media. Wiley.
Alterman, Z., Jarosch, H., & Pekeris, C. L. (1959). Oscillations of the Earth. Proceedings of the Royal Society of London A, 252, 80–95. https://

doi.org/10.1098/rspa.1959.0138
Arfken, G. B., Weber, H. J., & Harris, F. E. (2013). Legendre functions. In G. B. Arfken, H. J. Weber, & F. E. Harris (Eds.), Mathematical meth-

ods for physicists (7th ed., pp. 715–772). Academic Press. https://doi.org/10.1016/B978-0-12-384654-9.00015-3
Auriault, J.-L. (2009). On the domain of validity of Brinkman´s equation. Transport in Porous Media, 79(2), 215–223. https://doi.org/10.1007/

s11242-008-9308-7

Acknowledgments
The author thanks Dr. Gabriel Tobie, Mr. 
Ryu Akiba, and an anonymous reviewer 
for careful reviews and constructive 
comments. The author also thanks Dr. 
Jun Kimura and Dr. Taichi Kawamura for 
fruitful discussions. No actual field data 
are used. This work was supported by 
JSPS KAKENHI Grants 17H06457 and 
21K03637.

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007700 by H
okkaido U

niversity, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1098/rspa.1959.0138
https://doi.org/10.1098/rspa.1959.0138
https://doi.org/10.1016/B978-0-12-384654-9.00015-3
https://doi.org/10.1007/s11242-008-9308-7
https://doi.org/10.1007/s11242-008-9308-7


Journal of Geophysical Research: Planets

KAMATA

10.1029/2022JE007700

46 of 47

Beuthe, M. (2013). Spatial patterns of tidal heating. Icarus, 223(1), 308–329. https://doi.org/10.1016/j.icarus.2012.11.020
Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.

org/10.1063/1.1712886
Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. Journal of the Acoustical 

Society of America, 28(2), 168–178. https://doi.org/10.1121/1.1908239
Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. Journal of the Acousti-

cal Society of America, 28(2), 179–191. https://doi.org/10.1121/1.1908241
Biot, M. A., & Willis, D. G. (1957). The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics, 24(4), 594–601. https://

doi.org/10.1115/1.4011606
Čadek, O., Tobie, G., Hoolst, T. V., Massé, M., Choblet, G., Lefèvre, A., et al. (2016). Enceladus's internal ocean and ice shell constrained from 

Cassini gravity, shape and libration data. Geophysical Research Letters, 43(11), 5653–5660. https://doi.org/10.1002/2016GL068634
Cheng, A. H.-D. (2016). Poroelasticity. Springer. https://doi.org/10.1007/978-3-319-25202-5
Choblet, G., Tobie, G., Sotin, C., Běhounková, M., Čadek, O., Postberg, F., & Souček, O. (2017). Powering prolonged hydrothermal activity 

inside Enceladus. Nature Astronomy, 1(12), 841–847. https://doi.org/10.1038/s41550-017-0289-8
Christensen, N. I. (2004). Serpentinites, peridotites, and seismology. International Geology Review, 46(9), 795–816. https://doi.

org/10.2747/0020-6814.46.9.795
Corapcioglu, M. Y., & Tuncay, K. (1996). Propagation of waves in porous media. In Advances in porous media (Vol. 3, pp. 361–440). Elsevier. 

https://doi.org/10.1016/S1873-975X(96)80007-2
Dahlen, F. A., & Fels, S. B. (1978). A physical explanation of the static core paradox. Geophysical Journal International, 55(2), 317–331. https://

doi.org/10.1111/j.1365-246X.1978.tb04274.x
Fjær, E., Holt, R. M., Horsrud, P., Raaen, A. M., & Risnes, R. (2008). Petroleum related rock mechanics. Elsevier.
Gleeson, T., & Ingebritsen, S. E. (2017). Crustal permeability. Wiley. https://doi.org/10.1002/9781119166573
Harada, Y., Goossens, S., Matsumoto, K., Yan, J., Ping, J., Noda, H., & Haruyama, J. (2014). Strong tidal heating in an ultralow-viscosity zone at 

the core-mantle boundary of the Moon. Nature Geoscience, 7(8), 569–572. https://doi.org/10.1038/ngeo2211
Hashin, Z., & Shtrikman, S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechan-

ics and Physics of Solids, 11(2), 127–140. https://doi.org/10.1016/0022-5096(63)90060-7
Hemingway, D. J., & Mittal, T. (2019). Enceladus's ice shell structure as a window on internal heat production. Icarus, 332, 111–131. https://doi.

org/10.1016/j.icarus.2019.03.011
Howett, C. J. A., Spencer, J. R., Pearl, J., & Segura, M. (2011). High heat flow from Enceladus' South Polar Region measured using 10–600 cm −1 

Cassini/CIRS data. Journal of Geophysical Research, 116(E3), E03003. https://doi.org/10.1029/2010JE003718
Hsu, H.-W., Postberg, F., Sekine, Y., Shibuya, T., Kempf, S., Horányi, M., et al. (2015). Ongoing hydrothermal activities within Enceladus. 

Nature, 519(7542), 207–210. https://doi.org/10.1038/nature14262
Iess, L., Stevenson, D. J., Parisi, M., Hemingway, D., Jacobson, R. A., Lunine, J. I., et al. (2014). The gravity field and interior structure of Ence-

ladus. Science, 344(6179), 78–80. https://doi.org/10.1126/science.1250551
Kamata, S. (2023). LNTools (version 230406). Zenodo. https://doi.org/10.5281/zenodo.7804175
Kamata, S., Matsuyama, I., & Nimmo, F. (2015). Tidal resonance in icy satellites with subsurface oceans. Journal of Geophysical Research: 

Planets, 120(9), 1528–1542. https://doi.org/10.1002/2015JE004821
Kamata, S., & Nimmo, F. (2017). Interior thermal state of Enceladus inferred from the viscoelastic state of the ice shell. Icarus, 284, 387–393. 

https://doi.org/10.1016/j.icarus.2016.11.034
Kervazo, M., Tobie, G., Choblet, G., Dumoulin, C., & Behounková, M. (2021). Solid tides in Io´s partially molten interior—Contribution of bulk 

dissipation. Astronomy & Astrophysics, 650, A72. https://doi.org/10.1051/0004-6361/202039433
Khurana, K. K., Jia, X., Kivelson, M. G., Nimmo, F., Schubert, G., & Russell, C. T. (2011). Evidence of a global magma ocean in Io's interior. 

Science, 332(6034), 1186–1189. https://doi.org/10.1126/science.1201425
Liao, Y., Nimmo, F., & Neufeld, J. A. (2020). Heat production and tidally driven fluid flow in the permeable core of Enceladus. Journal of 

Geophysical Research: Planets, 125(9), e2019JE006209. https://doi.org/10.1029/2019JE006209
Longman, I. M. (1963). A green's function for determining the deformation of the Earth under surface mass loads: 2. Computations and numerical 

results. Journal of Geophysical Research, 68, 485–496. https://doi.org/10.1029/JZ068i002p00485
Love, A. E. H. (1911). Some problems of geodynamics. Cambridge University Press.
Matsuyama, I., Beuthe, M., Hay, H. C., Nimmo, F., & Kamata, S. (2018). Ocean tidal heating in icy satellites with solid shells. Icarus, 312, 

208–230. https://doi.org/10.1016/j.icarus.2018.04.013
McCarthy, C., & Castillo-Rogez, J. C. (2013). Planetary ices attenuation properties. In M. S. Gudipati & J. Castillo-Rogez (Eds.), The science of 

solar system ices (pp. 183–225). Springer. https://doi.org/10.1007/978-1-4614-3076-6
McKenzie, D. (1984). The generation and compaction of partially molten rock. Journal of Petrology, 25(3), 713–765. https://doi.org/10.1093/

petrology/25.3.713
Millero, F. J., Chen, C.-T., Bradshaw, A., & Schleicher, K. (1982). A new high pressure equation of state for seawater. Marine Geodesy, 5(4), 

367–370. https://doi.org/10.1080/15210608209379435
Neuman, S. P. (1977). Theoretical derivation of Darcy's law. Acta Mechanica, 25(3–4), 153–170. https://doi.org/10.1007/BF01376989
Pekeris, C. L., & Jarosch, H. (1958). The free oscillations of the Earth. In E. Ingerson (Ed.), Contributions in geophysics (Vol. 1, pp. 171–192). 

Pergamon Press.
Petrenko, V. F., & Whitworth, R. W. (1999). Physics of ice. Oxford University Press.
Rice, J. R., & Cleary, M. P. (1976). Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. 

Review of Geophysics, 14(2), 227–241. https://doi.org/10.1029/RG014i002p00227
Roberts, J. H. (2015). The fluffy core of Enceladus. Icarus, 258, 54–66. https://doi.org/10.1016/j.icarus.2015.05.033
Roberts, J. H., & Nimmo, F. (2008). Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus, 194(2), 675–689. 

https://doi.org/10.1016/j.icarus.2007.11.010
Rovira-Navarro, M., Katz, R. F., Liao, Y., van der Wal, W., & Nimmo, F. (2022). The tides of Enceladus' porous core. Journal of Geophysical 

Research: Planets, 127(5), e2021JE007117. https://doi.org/10.1029/2021JE007117
Saar, M. O., & Manga, M. (1999). Permeability-porosity relationship in vesicular basalts. Geophysical Research Letters, 26(1), 111–114. https://

doi.org/10.1029/1998GL900256
Saito, M. (1974). Some problems of static deformation of the Earth. Journal of Physics of the Earth, 22(1), 123–140. https://doi.org/10.4294/

jpe1952.22.123

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007700 by H
okkaido U

niversity, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.icarus.2012.11.020
https://doi.org/10.1063/1.1712886
https://doi.org/10.1063/1.1712886
https://doi.org/10.1121/1.1908239
https://doi.org/10.1121/1.1908241
https://doi.org/10.1115/1.4011606
https://doi.org/10.1115/1.4011606
https://doi.org/10.1002/2016GL068634
https://doi.org/10.1007/978-3-319-25202-5
https://doi.org/10.1038/s41550-017-0289-8
https://doi.org/10.2747/0020-6814.46.9.795
https://doi.org/10.2747/0020-6814.46.9.795
https://doi.org/10.1016/S1873-975X(96)80007-2
https://doi.org/10.1111/j.1365-246X.1978.tb04274.x
https://doi.org/10.1111/j.1365-246X.1978.tb04274.x
https://doi.org/10.1002/9781119166573
https://doi.org/10.1038/ngeo2211
https://doi.org/10.1016/0022-5096(63)90060-7
https://doi.org/10.1016/j.icarus.2019.03.011
https://doi.org/10.1016/j.icarus.2019.03.011
https://doi.org/10.1029/2010JE003718
https://doi.org/10.1038/nature14262
https://doi.org/10.1126/science.1250551
https://doi.org/10.5281/zenodo.7804175
https://doi.org/10.1002/2015JE004821
https://doi.org/10.1016/j.icarus.2016.11.034
https://doi.org/10.1051/0004-6361/202039433
https://doi.org/10.1126/science.1201425
https://doi.org/10.1029/2019JE006209
https://doi.org/10.1029/JZ068i002p00485
https://doi.org/10.1016/j.icarus.2018.04.013
https://doi.org/10.1007/978-1-4614-3076-6
https://doi.org/10.1093/petrology/25.3.713
https://doi.org/10.1093/petrology/25.3.713
https://doi.org/10.1080/15210608209379435
https://doi.org/10.1007/BF01376989
https://doi.org/10.1029/RG014i002p00227
https://doi.org/10.1016/j.icarus.2015.05.033
https://doi.org/10.1016/j.icarus.2007.11.010
https://doi.org/10.1029/2021JE007117
https://doi.org/10.1029/1998GL900256
https://doi.org/10.1029/1998GL900256
https://doi.org/10.4294/jpe1952.22.123
https://doi.org/10.4294/jpe1952.22.123


Journal of Geophysical Research: Planets

KAMATA

10.1029/2022JE007700

47 of 47

Saito, M. (1978). Relationship between tidal and load love numbers. Journal of Physics of the Earth, 26(1), 13–16. https://doi.org/10.4294/
jpe1952.26.13

Segatz, M., Spohn, T., Ross, M., & Schubert, G. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75(2), 
187–206. https://doi.org/10.1016/0019-1035(88)90001-2

Sharqawy, M. H., Lienhard, J. H., & Zubair, S. M. (2010). Thermophysical properties of seawater: A review of existing correlations and data. 
Desalination and Water Treatment, 16(1–3), 354–380. https://doi.org/10.5004/dwt.2010.1079

Smylie, D. E., & Mansinha, L. (1971). The elasticity theory of dislocations in real Earth models and changes in the rotation of the Earth. Geophys-
ical Journal International, 23(3), 329–354. https://doi.org/10.1111/j.1365-246X.1971.tb01824.x

Spencer, J. R., Pearl, J. C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., et al. (2006). Cassini encounters Enceladus: Background and 
the discovery of a south polar hot spot. Science, 311(5766), 1401–1405. https://doi.org/10.1126/science.1121661

Tajeddine, R., Soderlund, K. M., Thomas, P. C., Helfenstein, P., Hedman, M. M., Burns, J. A., & Schenk, P. M. (2017). True polar wander of 
Enceladus from topographic data. Icarus, 295, 46–60. https://doi.org/10.1016/j.icarus.2017.04.019

Takeuchi, H., & Saito, M. (1972). Seismic surface waves. Methods in Computational Physics, 11, 217–295.
Thomas, P., Tajeddine, R., Tiscareno, M., Burns, J., Joseph, J., Loredo, T., et al. (2016). Enceladus's measured physical libration requires a global 

subsurface ocean. Icarus, 264, 37–47. https://doi.org/10.1016/j.icarus.2015.08.037
Tobie, G., Mocquet, A., & Sotin, C. (2005). Tidal dissipation within large icy satellites: Applications to Europa and Titan. Icarus, 177(2), 

534–549. https://doi.org/10.1016/j.icarus.2005.04.006
Travis, B., & Schubert, G. (2015). Keeping Enceladus warm. Icarus, 250, 32–42. https://doi.org/10.1016/j.icarus.2014.11.017
Waite, J. H., Glein, C. R., Perryman, R. S., Teolis, B. D., Magee, B. A., Miller, G., et al. (2017). Cassini finds molecular hydrogen in the Enceladus 

plume: Evidence for hydrothermal processes. Science, 356(6334), 155–159. https://doi.org/10.1126/science.aai8703
Watson, G. N. (1966). A treatise on the theory of Bessel functions. Cambridge University Press.
Whitaker, S. (1986). Flow in porous media I: A theoretical derivation of Darcy's law. Transport in Porous Media, 1, 3–25. https://doi.org/10.1007/

BF01036523

 21699100, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JE

007700 by H
okkaido U

niversity, W
iley O

nline L
ibrary on [04/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.4294/jpe1952.26.13
https://doi.org/10.4294/jpe1952.26.13
https://doi.org/10.1016/0019-1035(88)90001-2
https://doi.org/10.5004/dwt.2010.1079
https://doi.org/10.1111/j.1365-246X.1971.tb01824.x
https://doi.org/10.1126/science.1121661
https://doi.org/10.1016/j.icarus.2017.04.019
https://doi.org/10.1016/j.icarus.2015.08.037
https://doi.org/10.1016/j.icarus.2005.04.006
https://doi.org/10.1016/j.icarus.2014.11.017
https://doi.org/10.1126/science.aai8703
https://doi.org/10.1007/BF01036523
https://doi.org/10.1007/BF01036523

	Poroviscoelastic Gravitational Dynamics
	Abstract
	Plain Language Summary
	1. Introduction
	2. Theory
	2.1. Governing Equation System
	2.1.1. Constitutive Equation
	2.1.2. Poisson Equation of Gravity
	2.1.3. Equation of Motion (Dynamic Equation)

	2.2. Ordinary Differential Equation System Using y Functions
	2.3. Solution for the Homogeneous Sphere
	2.3.1. Compressible Case
	2.3.2. Incompressible Case

	2.4. Boundary Conditions
	2.4.1. Free Surface Under Tidal Potential
	2.4.2. Loaded Surface
	2.4.3. Pressed Surface
	2.4.4. 
            Shear-Stressed Surface
	2.4.5. Perfect Contact With a Permeable Solid Layer
	2.4.6. Perfect Contact With an Impermeable Solid Layer
	2.4.7. 
            Shear-Free Contact With a Liquid Layer

	2.5. Heating Rate (Energy Dissipation Rate)

	3. Numerical Calculation
	3.1. Numerical Procedure
	3.2. Homogeneous Model
	3.3. Multilayered, Radially Varying Model
	3.3.1. Model
	3.3.1.1. Ice Shell
	3.3.1.2. Subsurface Ocean
	3.3.1.3. Rocky Core

	3.3.2. Results


	4. Concluding Remarks
	Appendix A: Poroelastodynamic Parameters
	A1. 
          Added-Mass Coefficient Ca
	A2. Fluid Viscosity Correction Factor Ff
	Appendix B: Derivation
	B1. Ordinary Differential Equation System for the y Functions
	B2. Fundamental Equations for the Homogeneous Solution
	B3. Total Heating Rate
	B4. Divergence of Stress Tensor
	Appendix C: Differential Equation System of y Functions Under Some Limiting Conditions
	C1. Slow Deformation
	C2. Nonporous Condition
	C3. Inviscid Fluid Layer
	Appendix D: Static Deformation
	Appendix E: Solution for a Homogeneous Nonporous Solid Sphere
	E1. Compressible Case
	E2. Incompressible Case
	Appendix F: Stress and Strain Variables Using y Functions
	Appendix G: Spherical Harmonic Expansion of the Tidal Potential
	Appendix H: Approximation of the Spherical Bessel Function of the First Kind for a Large Complex Argument
	Appendix I: Bulk Porosity for a Porosity Profile Exponentially Decreasing With Depth
	Data Availability Statement
	References


