

HOKKAIDO UNIVERSITY

Title	Effect of Salt on Dynamic Mechanical Behaviors of Polyampholyte Hydrogels
Author(s)	Li, Xueyu; Luo, Feng; Sun, Tao Lin; Cui, Kunpeng; Watanabe, Reina; Nakajima, Tasuku; Gong, Jian Ping
Citation	Macromolecules, 56(2), 535-544 https://doi.org/10.1021/acs.macromol.2c02003
Issue Date	2022
Doc URL	http://hdl.handle.net/2115/91075
Rights	This document is the Accepted Manuscript version of a Published Work that appeared in final form in Macromolecules, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/articlesonrequest/AOR-SNCY2MCWSIK7JBSECBKH.
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supplementary_Material.pdf

Effect of salt on dynamic mechanical behaviors of polyampholyte hydrogels

Xueyu Li^{1,#}, Feng Luo^{1,2,#,*}, Tao Lin Sun^{1,3}, Kunpeng Cui^{4,5}, Reina Watanabe⁶, Tasuku Nakajima^{1,4}, and Jian Ping Gong^{1,4,*}

¹Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan

²College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials

Engineering, Sichuan University, Chengdu 610065, China

³South China Advanced Institute for Soft Matter Science and Technology, South China

University of Technology, Guangzhou 510640, China

⁴Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,

Kita 21, Nishi 11, Kita-ku, Sapporo 001-0021, Japan

⁵Department of Polymer Science and Engineering, University of Science and Technology of

China, Hefei 230026, China

⁶Laboratory of Soft & Wet Matter, Division of Soft Matter, Graduate School of Life Science,

Kita10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan

Figure S1. The appearance of equilibrated PA-p and PA-c (**a**) in water, and (**b**) in $C_{\text{NaCl}} = 4$ M solution. For (b), we put three pieces of salt-free PA gels shown in (a) into 4 M NaCl solution. The mesh size of the background lattice is 5 mm. It shows that the PA-p can completely dissolve into 4 M NaCl solution, while the PA-c swells dramatically.

Figure S2. Comparison between the norm of the complex shear modulus $|G^*|$ against $a_{salt}\omega$ from rheology test and the Young's modulus *E* against $2\pi a_{salt}\varepsilon$ from uniaxial tensile test for (a) PA-p and (b) PA-c. The $|G^*|$ and *E* are rescaled by volume swelling ratio Q_v to normalize the strand density per unit volume taking the salt-free gels as a reference state. Here, $|G^*| = (G'^2 + G''^2)^{0.5}$, where *G'* and *G''* are storage modulus and loss modulus, respectively. The relation $E=3|G^*|$ for incompressible material is adopted. The $Q_v E$ vs. $2\pi a_{salt}\varepsilon$ curve overlap with its counterpart $3Q_v|G^*|$ vs $a_{salt}\omega$ curve, indicating that the tensile strain rate ε is correlated to the angular frequency ω by $\omega=2\pi\varepsilon$.