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Abstract 27 

Purpose: To quantitatively evaluate the achievable performance of volumetric imaging based on lung motion 28 

modeling by principal component analysis (PCA).  29 

Methods: In volumetric imaging based on PCA, internal deformation was represented as a linear combination 30 

of the eigenvectors derived by PCA of the deformation vector fields evaluated from patient-specific four-31 

dimensional-computed tomography (4DCT) datasets. The volumetric image was synthesized by warping the 32 

reference CT image with a deformation vector field which was evaluated using optimal principal component 33 

coefficients (PCs). Larger PCs were hypothesized to reproduce deformations larger than those included in the 34 

original 4DCT dataset. To evaluate the reproducibility of PCA-reconstructed volumetric images synthesized to 35 

be close to the ground truth as possible, mean absolute error (MAE), structure similarity index measure (SSIM) 36 

and discrepancy of diaphragm position were evaluated using 22 4DCT datasets of nine patients.  37 

Results: Mean MAE and SSIM values for the PCA-reconstructed volumetric images were approximately 38 

80 HU and 0.88, respectively, regardless of the respiratory phase. In most test cases including the data of which 39 

motion range was exceeding that of the modeling data, the positional error of diaphragm was less than 5 mm. 40 

The results suggested that large deformations not included in the modeling 4DCT dataset could be reproduced. 41 

Furthermore, since the first PC correlated with the displacement of the diaphragm position, the first eigenvector 42 

became the dominant factor representing the respiration-associated deformations. However, other PCs did not 43 

necessarily change with the same trend as the first PC, and no correlation was observed between the coefficients. 44 

Hence, randomly allocating or sampling these PCs in expanded ranges may be applicable to reasonably generate 45 

an augmented dataset with various deformations. 46 

Conclusions: Reasonable accuracy of image synthesis comparable to those in the previous research were shown 47 

by using clinical data. These results indicate the potential of PCA-based volumetric imaging for clinical 48 

applications. 49 
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1 INTRODUCTION 53 

Volumetric imaging1-13, which can visualize three-dimensional (3D) anatomical structures during treatment, 54 

is expected to be clinically practical as a motion management technique in radiation therapy. Some studies 55 

regarding volumetric imaging are based on motion modeling with principal component analysis (PCA). In PCA-56 

based motion modeling2-4,7,9,12,14, internal deformation is represented as a linear combination of the eigenvectors 57 

derived by the PCA of the deformation vector field evaluated from patient-specific four-dimensional-computed 58 

tomography (4DCT) datasets. The volumetric image can be synthesized by warping the reference computed 59 

tomography (CT) image with a deformation vector field evaluated with optimal principal component 60 

coefficients (PCs), serving as eigenvector weights. Some techniques to estimate optimum PCs during treatment 61 

have been reported. One is based on minimizing the difference between the digitally reconstructed radiographs 62 

created from the synthesized CT and actual fluoroscopic images4. Another one is based on the correlation model 63 

between PCs and external surrogate information2. Recently, a method using convolutional neural networks 64 

(CNNs) has also been proposed7. In this approach, PCA was also applied for data augmentation to generate the 65 

training dataset, including various deformations. 66 

PCA has been applied for volumetric imaging and data augmentation in deep learning, as described in the 67 

last paragraph. Although, it is crucial to quantitatively evaluate the achievable performances of volumetric 68 

imaging based on PCA to support clinical feasibility, only a few reports on validation with clinical datasets 69 

simulating actual clinical situations such as the motion difference between treatment and 4DCT acquisition. 70 

Therefore, this study quantitatively evaluated the performance of PCA-based volumetric imaging using multiple 71 

clinical 4DCT datasets.  72 

 73 

2 MATERIALS AND METHODS 74 

2.1 PCA-based motion modeling 75 

 76 
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77 

FIGURE 1 Schematic showing the PCA-based motion modeling and validation processes in this study. 78 

 79 

The PCA-based motion modeling process is shown in Fig. 1. First, the deformation vector field 𝑫  was 80 

evaluated using the deformable image registration (DIR) with each CT data. The CT data at the expiratory phase 81 

of the 4DCT dataset (10 CT datasets for one respiratory cycle) were the reference 𝐶𝑇 . Furthermore, the 82 

number of rows and columns of 𝑫 was the number of voxels multiplied 3 (# of deformation directions) and 10 83 

(# of respiratory phase bins), respectively. Subsequently, the column vector (𝑫  was evaluated as the sample 84 

mean of 𝑫 . Then, eigenvectors 𝒖 ,𝒖 , … ,𝒖  were obtained using the PCA of 𝑫 𝑫 . Finally, using 𝑁 85 

principal eigenvectors, the internal deformation was expressed as follows. 86 

𝑫 𝒘 𝑫 𝒖 𝑤  87 

where 𝒘 𝑤 ,𝑤 , … ,𝑤  is the principal component coefficient (PC). By warping 𝐶𝑇  with 𝑫 𝒘 , a 88 

volumetric image can be generated as a CT image. Larger PCs can then reproduce internal deformations larger 89 

than those not included in the original 4DCT dataset. 90 

 91 

2.2 Patient data 92 
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Twenty-two 4DCT datasets of nine patients with relatively small motion artifacts from The Cancer Image 93 

Archive15,16 were used. This study assumed that these 4DCT datasets had been acquired during normal breathing 94 

at rest because the motion artifacts were small. Two or three 4DCT datasets were included for each patient. The 95 

displacement of the right diaphragm position for each 4DCT dataset is shown in Fig. 2, indicating the respiratory 96 

motion range. To evaluate the performance of PCA-based motion modeling in case of the larger deformations 97 

not included in the modeling data, the 4DCT dataset with smaller diaphragm displacements and the other 4DCT 98 

datasets were used as modeling data to derive eigenvectors and validation data, respectively. Hence, PCA-based 99 

motion model is created for each patient. The resolution of the CT data was 0.98 mm/pixel. The slice thickness 100 

was resampled from the original 3 mm to 1 mm. In the DIR function used in this study, one smoothing factor is 101 

applied to all three axes. Hence, slice thickness was resampled to 1 mm which was same as pixel size in order 102 

to equalize the smoothing effect to all axes. To avoid the influence of anatomical changes that eigenvectors 103 

could not reproduce, such as weight changes during the treatment course, the 4DCT datasets for modeling and 104 

validation were selected within 1 month. Additionally, because the patient setup position in each 4DCT 105 

acquisition was different, six-axis rigid image registration was performed in the spinal cord region, which was 106 

considered rigid, using the 4DCT dataset on the oldest date as a reference. Based on visual inspection of the 107 

registered images, it was confirmed that the anatomical variation between the 4DCT images acquired on 108 

different days was mainly induced by the respiration. 109 

 110 

 111 
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FIGURE 2 Displacement of the diaphragm position for each respiratory phase in nine patients. The 112 

displacement was evaluated on the basis of the phase 50 (expiration) in the modeling data. 113 

 114 

2.3 Evaluation of PCA-based lung deformation modeling 115 

The validation process is shown on the right side of Fig. 1. In this study, MATLAB (MathWorks Inc, USA) 116 

was used for processing the DICOM (Digital Imaging and Communications in Medicine) format image, DIR, 117 

and quasi-Newton method to find the optimal PCs. The deformation vector field obtained by DIR between the 118 

CT image (defined as the ground truth: 𝐶𝑇 ) obtained on a different date from the modeling 4DCT dataset and 119 

the reference CT image (𝐶𝑇 ) included in the modeling 4DCT dataset was defined as the ground truth of 120 

deformation (𝑫 . In this study, the number of PCs was set to three as in previous studies (i.e. 𝒘121 

𝑤 ,𝑤 ,𝑤 ), to consider the modeling accuracy and overfitting balance. It has been confirmed that using three 122 

or more principal components resulted in an accumulated contribution rate more than 80% for each patient. 123 

Then, the objective function was defined as the sum of the absolute differences between 𝑫  and 𝑫 𝒘 : 124 

𝐽 𝒘 𝑫 𝒘 𝑫  125 

After the PCs 𝒘  that minimize 𝐽 𝒘  were obtained using the quasi-Newton method, the CT image (𝐶𝑇  126 

was synthesized by warping the reference image 𝐶𝑇  by the deformation 𝑫 𝒘 ,  followed by 127 

evaluation with the optimum coefficient. In this way, 𝐶𝑇  could be synthesized using the deformation closest 128 

to the ground truth. 129 

This study evaluated the performance of PCA-based volumetric imaging by comparing 𝐶𝑇  with 𝐶𝑇 . 130 

The reproducibility of CT values and anatomical structures were evaluated using mean absolute error (MAE) 131 

and structure similarity index measure (SSIM), respectively. MAE was evaluated as: 132 

MAE
1
𝑛

|𝐼 𝐼∗|  ,  133 

where 𝐼∗ is the actual CT value at voxel 𝑖 in the ground truth image, 𝐼  is the CT value at voxel 𝑖 in the 134 
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synthesized image, and 𝑛 is voxel number. SSIM which is commonly used in pattern matching as a measure 135 

of the similarity of image structures was evaluated as: 136 

SSIM
2𝜇 𝜇 𝐶 2𝜎 𝐶

𝜇 𝜇 𝐶 𝜎 𝜎 𝐶
, 137 

where 𝜇  and 𝜇  are the average CT values in ground truth image and synthesized image respectively, 𝜎  138 

and 𝜎  are variance of CT value in ground truth image and synthesized image respectively, and 𝜎  is a 139 

covariance of ground truth image and synthesized image. 𝐶   and 𝐶   were defined as  𝐶 0.01 𝐿  140 

and 𝐶 0.03 𝐿 , respectively. 𝐿 was dynamic range of the image and was defined as the maximum CT 141 

value in the ground truth image.  142 

In addition, discrepancy of the diaphragm position between ground truth image and PCA-reconstructed 143 

image was evaluated as positional accuracy. The diaphragm position was evaluated with the same area with 144 

motion range evaluation shown in Fig.2. 145 

 146 

3 RESULTS 147 

3.1 MAE of PCA-reconstructed volumetric image 148 

An example of PCA-reconstructed volumetric images with assuming CT data at respiratory phase 0 in test 149 

data 2 of patient 6 as the ground truth are shown in Fig. 3. We observed that the difference in diaphragm 150 

positions between the reference and ground truth images was approximately 20 mm (see the second column 151 

from the right in Fig. 3). As shown in Fig. 2, the diaphragm position at respiratory phase 0 in test data 2 of 152 

patient 6 exceeded 5 mm from that in the modeling data. MAE and SSIM, in this case, were 89.0 HU and 0.85, 153 

respectively, approximately an average of all evaluated cases. Although there was a discrepancy around the 154 

diaphragm dome, the overall synthesized image was close to the actual, including that of the tumor, position 155 

and shape. 156 

 157 
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 158 

FIGURE 3 From the left row: reference image (image to be deformed), ground truth image (respiratory phase 159 

0 in test data 2 of patient 6), PCA-reconstructed volumetric image, difference between reference and ground 160 

truth images, and difference between PCA-reconstructed volumetric and ground truth images. From top to 161 

bottom: axial, coronal, and sagittal images. The dashed line in the reference image indicates the slice position 162 

at the tumor center. 163 

 164 

The MAE between PCA-reconstructed volumetric image and ground truth images for each respiratory phase 165 

is shown in Fig. 4. Subsequently, the MAE between the reference and ground truth images was also evaluated 166 

to show the difference between the original nondeformed reference and the ground truth. Since the expiratory 167 

phase was used as the reference image, we observed that the MAE of the reference image was larger in the 168 

inspiratory phase, whereas the deformation was relatively large. The mean MAE of the PCA-reconstructed 169 

volumetric images for each respiratory phase was approximately 80 HU, and its accuracy was maintained even 170 

in the inspiratory phase. These results suggest that PCA could reproduce large deformations not included in the 171 

modeling data during normal breathing at rest. Moreover, the MAE appeared large in the validation data 172 

containing deformations that were difficult to model with PCA, for example the deformations were different in 173 

the left and right lungs. 174 
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 175 

FIGURE 4 MAE of PCA-reconstructed volumetric image and reference image for the 13 cases from nine 176 

patients at each respiratory phase. 177 

 178 

3.2 SSIM of PCA-reconstructed volumetric image 179 

The SSIM at each respiratory phase is shown in Fig. 5. As in the evaluation of the MAE, the SSIM between 180 

the reference and ground truth images was also evaluated. Since the expiratory phase was used as a reference, 181 

the SSIM of the reference image was decreased on the inspiratory phase. Alternatively, the mean SSIM of the 182 

PCA-reconstructed volumetric images was approximately 0.88 for each respiratory phase, maintaining a high 183 

structural reproducibility, even in the inspiratory phase. 184 

 185 
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FIGURE 5 SSIM of PCA-reconstructed volumetric image and reference image for the 13 cases from nine 186 

patients at each respiratory phase. 187 

 188 

3.3 Positional accuracy of PCA-reconstructed volumetric image 189 

Discrepancy of the diaphragm position between ground truth image and PCA-reconstructed image is shown 190 

in Fig.6. In most cases, the positional error of diaphragm was less than 5 mm. As shown in #1, #2, #3, #4, and 191 

#6 in Fig.2, the motion range of half the test data exceeded that of the modeling data. Therefore, these results 192 

suggested the possibility that PCA-based volumetric imaging could be applied to synthesize images even 193 

when the motion is exceeded from the modeling data. In addition, since the diaphragm is the region that 194 

moves the most due to breathing, the positional error in the lung region is expected to be smaller than that in 195 

the diaphragm. 196 

 197 

FIGURE 6 Discrepancy of the diaphragm position between ground truth image and PCA-reconstructed image 198 

for the 13 cases from nine patients at each respiratory phase. 199 

 200 

4 DISCUSSION 201 

This study quantitatively evaluated the achievable reproducibility of PCA-based volumetric imaging. The 202 

mean values of MAE and SSIM of the PCA-reconstructed volumetric images were approximately 80 HU and 203 

0.88, respectively, regardless of the respiratory phase, and were comparable with those evaluated in previous 204 
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studies5,8, using the same 4DCT dataset or digital phantoms. These results suggest that volume images could be 205 

synthesized with reasonable accuracy if the optimal PCs could be estimated even when the treatment motion 206 

differs from that observed during 4DCT acquisition.  207 

In deep learning-based techniques, which is based on a CNN to estimate PCs from the X-ray fluoroscopic 208 

images, training data is generated by data augmentation with applying various PCs. The quality of the training 209 

data is one of the most important factors that determine the performance of the volumetric imaging. That is, in 210 

the data augmentation, the data which could be clinically observed should be included for the effective training 211 

of CNN. In order to understand actual distribution of PCs in clinical cases, the three PCs that reproduced 212 

deformation closest to the ground truth were evaluated as shown in Fig. 7. Because the first PC (PC1) correlated 213 

with the displacement of the diaphragm position (Fig. 2), the first eigenvector was proposed as the dominant 214 

factor representing the deformation associated with respiration. However, the second and third PCs did not 215 

necessarily change with the same trend as PC1, and no correlation was observed between the coefficients. This 216 

result suggests that equally scaling all coefficients alone does not necessarily reproduce clinical data with large 217 

deformation beyond the original modeling data. Considering that no clear correlation existed between PCs, 218 

randomly allocating PCs7 or sampling PCs in expanded ranges to generate various deformations could be a 219 

solution for data augmentation. 220 

This study evaluated optimal PCs as the coefficients that minimize the difference between the internal 221 

deformations represented as the linear combination of eigenvectors and the ground truth of deformation. 222 

Although PC estimation methods are different in clinical practice, PC1 with the largest contribution is expected 223 

to be similarly estimated because it strongly correlates with respiratory motion. Therefore, the synthesized 224 

volume images could be applied to confirm the target location and evaluate the consistency of the internal 225 

structures between the planned and synthesized CT images as a motion management technique. 226 

There were some error sources in this PCA-based volumetric imaging. One error source was the variation in 227 

the patient's breathing patterns. Assuming that the 4DCT data were acquired during normal breathing at rest, it 228 

could be challenging to reproduce deformation patterns different from those obtained during 4DCT acquisition, 229 

such as during forced breathing using additional muscles. Motion artifacts in 4DCT may also be an error source, 230 
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although the reconstruction algorithm could compensate for it17,18. The anatomical variation during the treatment 231 

course, which cannot be evaluated from the 4DCT dataset, is also an error source. Therefore, it may be useful 232 

to evaluate body shape changes with a 3D body surface measurement system and retake a 4DCT/four-233 

dimensional cone beam CT image to update the model. Tumor shrinkage or growth is also challenging to 234 

reproduce with the PCA of the 4DCT dataset. Nevertheless, a method to simulate the tumor shape variation 235 

based on image warping could be applicable5. 236 

 237 

 238 

FIGURE 7 Three principal component coefficients (PCs) that reproduced the deformation closest to the 239 

ground truth. Solid, dashed, and dotted lines represent evaluations of the modeling test data 1 and 2. 240 

 241 

5 CONCLUSIONS 242 

This study quantitatively evaluated the achievable performance of volumetric imaging based on PCA using 243 

multiple patient 4DCT datasets acquired on different dates. The mean MAE and SSIM of the PCA-reconstructed 244 

volumetric images were approximately 80 HU and 0.88, respectively, regardless of the respiratory phase. In 245 

most test cases including the data of which motion range was exceeding that of the modeling data, the positional 246 

error of diaphragm was less than 5 mm. These results suggest that volume images could be synthesized with 247 

reasonable accuracy for clinical applications by estimating the optimal PCs. 248 

 249 
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