

Title	Evaluation of reduction efficiencies of pepper mild mottle virus and human enteric viruses in full-scale drinking water treatment plants employing coagulation-sedimentation-rapid sand filtration or coagulation-microfiltration
Author(s)	Shirakawa, D.; Shirasaki, N.; Matsushita, T.; Matsui, Y.; Yamashita, R.; Matsumura, T.; Koriki, S.
Citation	Water research, 213, 118160 https://doi.org/10.1016/j.watres.2022.118160
Issue Date	2022-04-15
Doc URL	http://hdl.handle.net/2115/91111
Rights	© <2022>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supplementary materials.pdf

1	Supplementary Information
2	
3	Evaluation of reduction efficiencies of pepper mild mottle virus and human enteric viruses in
4	full-scale drinking water treatment plants employing coagulation-sedimentation-rapid sand
5	filtration or coagulation-microfiltration
6	
7	D. Shirakawa, N. Shirasaki*, T. Matsushita, Y. Matsui, R. Yamashita, T. Matsumura, S. Koriki
8	
9	Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, N13W8,
10	Sapporo 060-8628, Japan
11	
12	* Corresponding author. Tel.: +81-11-706-7282; fax: +81-11-706-7282.
13	E-mail address: nobutaka@eng.hokudai.ac.jp (N. Shirasaki)
14	
15	

Table S1

17 Sequences of primers and probes used in the present study.

Viruses		Oligonucleotide sequences (5'->3') ^a	Positions ^b	References
	Forward primer	GAG TGG TTT GAC CTT AAC GTT TGA	1878–1901	Haramoto et al., 2013
	Reverse primer	TTG TCG GTT GCA ATG CAA GT	1945–1926	
Pepper mild motile virus	TaqMan probe	FAM-CCT ACC GAA GCA AAT G-TAMRA	1906–1921	Zhang et al., 2006
	TaqMan MGB probe	FAM-CCT ACC GAA GCA AAT G-MGB-NFQ	1906–1921	
	Forward primer	GCA TAG TGC TTT CCC GTT CAC	6285-6305	
Cucumber green mottle virus	Reverse primer	TGC AGA ATT ACT GCC CAT AGA AAC	6385–6362	Hongyun et al., 2008
	TaqMan probe	FAM-CGG TTT GCT CAT TGG TTT GCG GA-TAMRA	6316–6338	
	Forward primer	AAC TTT CTC TCT TAA TAG ACG CC	30372-30394	
Adenovirus	Reverse primer	AGG GGG CTA GAA AAC AAA A	30489-30471	Ko et al., 2005
	TaqMan probe	FAM-CTG ACA CGG GCA CTC TTC GC-TAMRA	30405-30424	
	Forward primer	CCT CCG GCC CCT GAA TG	449–465	Shirb et al. 1005
Enteroviruses including coxsackievirus	Reverse primer	ACC GGA TGG CCA ATC CAA	643–626	Smen <i>et al</i> ., 1995
	TaqMan probe	FAM-CCG ACT ACT TTG GGT GTC CGT GTT TC-TAMRA	542–567	Katayama et al., 2002
	Forward primer	GGT AGG CTA CGG GTG AAA C	393–411	
Hepatitis A virus	Reverse primer	AAC AAC TCA CCA ATA TCC GC	481-462	Jothikumar et al., 2005
	TaqMan probe	FAM-CTT AGG CTA ATA CTT CTA TGA AGA GAT GC-TAMRA	414-442	

Table S1 (continued)

Viruses		Oligonucleotide sequences (5'->3') ^a	Positions ^b	References	
	Forward primer	CGY TGG ATG CGI TTY CAT GA	5291-5310		
Human norovirus GI	Reverse primer	CTT AGA CGC CAT CAT CAT TYA C	5375-5354	Vega et al., 2011	
	TaqMan probe	FAM-AGA TYG CGI TCI CCT GTC CA-TAMRA	5340-5321		
	Forward primer	CAR GAR BCN ATG TTY AGR TGG ATG AG	5003-5028		
Human norovirus GII	Reverse primer	TCG ACG CCA TCT TCA TTC ACA	5100-5080	Vega et al., 2011	
	TaqMan probe	FAM-TGG GAG GGC GAT CGC AAT CT-TAMRA	5048-5067		
	Forward primer	CCG CAG GAA CGC TCA GCA G	5028-5046		
Maning and include	Reverse primer	GGY TGA ATG GGG ACG GCC TG	5156-5137	<i>V</i> · · · · · · · · · · · · · · · · · · ·	
iviurine norovirus	TaqMan probe	FAM-ATG AGT GAT GGC GCA-TAMRA	5062-5076	Khajima <i>el al</i> ., 2010	
	TaqMan MGB probe	FAM-ATG AGT GAT GGC GCA-MGB-NFQ	5062-5076		
	Forward primer	GTC GCG GTA ATT GGC GC	632–648		
MS2	Reverse primer	GGC CAC GTG TTT TGA TCG A	708–690	O'Connell et al., 2006	
	TaqMan probe	FAM-AGG CGC TCC GCT ACC TTG CCC T-TAMRA	650–671		

^a FAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine; MGB, minor groove binder; NFQ; nonfluorescent quencher.

^b Genebank accession numbers for sequence positions are AB254821 for pepper mild mottle virus, D12505 for cucumber green mottle mosaic virus, NC_001454 for adenovirus, AF114383 for enteroviruses including coxsackievirus, M14707 for hepatitis A virus, M87661 for human norovirus GI, U07611 for human norovirus GII, NC_008311 for murine norovirus, and NC_001417 for MS2.

Table S2

28 Water quality data for raw and treated water samples collected at Plants A–D.

		Water type	Temperature (°C)	рН	Turbidity (NTU)	DOC (mg/L)	UV260 (cm ⁻¹)	Alkalinity (mg-CaCO ₃ /L)	Coagulant dosage (mg-Al/L)
		Raw water	10.5	7.4	1.4	0.8	0.024	18.2	
	Oct. 2017	After CS	ND^{a}	7.1	0.2	0.5	0.010	15.0	1.7
		After RSF	ND	7.1	0.13	0.5	0.007	15.6	
		Raw water	7.7	7.3	2.4	1.2	0.036	18.4	
	Nov. 2017	After CS	ND	7.3	0.3	0.7	0.013	17.6	1.3
		After RSF	ND	7.4	0.10	0.7	0.010	17.0	
		Raw water	3.3	7.3	1.2	0.9	0.026	17.0	
	Dec. 2017	After CS	ND	7.3	0.3	0.6	0.011	16.4	1.6
		After RSF	ND	7.2	0.11	0.5	0.008	16.0	
		Raw water	6.3	6.7	10.2	0.5	0.031	8.6	
Plant A	May 2018	After CS	ND	6.7	0.7	0.3	0.006	8.6	1.9
		After RSF	ND	6.7	0.13	0.3	0.004	8.4	
		Raw water	13.4	7.0	4.2	0.9	0.040	13.4	
	Jul. 2018	After CS	ND	6.9	0.4	0.5	0.012	12.2	1.2
		After RSF	ND	6.8	0.12	0.6	0.008	12.2	
		Raw water	6.4	7.4	1.7	0.8	0.028	18.2	
	Nov. 2018	After CS	ND	7.2	0.5	0.5	0.012	14.2	1.6
		After RSF	ND	7.3	0.12	0.5	0.007	14.6	
		Raw water	2.5	7.3	1.4	0.7	0.022	16.6	
	Feb. 2019	After CS	ND	7.1	0.4	0.4	0.009	17.4	1.5
		After RSF	ND	7.1	0.11	0.4	0.006	16.4	
		Raw water	10.4	7.7	7.1	0.8	0.018	50.4	
	Nov. 2017	After CS	ND	7.3	0.5	0.7	0.012	39.2	0.9
		After RSF	ND	7.5	0.12	0.6	0.011	39.8	
Plant B		Raw water	26.2	7.2	9.6	1.0	0.024	49.0	
	Aug. 2018	After CS	ND	6.8	0.6	0.6	0.011	33.0	1.0
		After RSF	ND	6.9	0.13	0.6	0.011	32.8	
		Raw water	5.1	7.3	3.1	1.4	0.024	44.8	
	Feb. 2019	After CS	ND	6.9	0.7	1.3	0.013	38.8	1.2
		After RSF	ND	7.0	0.14	12	0.013	39.0	

Table S2 (continued)

		Water type	Temperature (°C)	рН	Turbidity (NTU)	DOC (mg/L)	UV260 (cm ⁻¹)	Alkalinity (mg-CaCO ₃ /L)	Coagulant dosage (mg-Al/L)
		Raw water	9.7	7.0	1.7	0.5	0.013	9.4	
	2010	After pre-chlorination	ND	7.0	1.2	0.5	0.009	10.2	0.2
	May 2018	After MnOx filtration	ND	6.9	1.5	0.5	0.009	10.0	0.3
		After C-MF	ND	7.2	0.11	0.3	0.003	11.8	
		Raw water	15.9	6.6	2.2	0.7	0.022	12.4	
	11 2010	After pre-chlorination	ND	6.7	2.0	0.8	0.018	12.8	0.2
	Jul. 2018	After MnOx filtration	ND	6.8	1.6	0.8	0.016	12.6	0.3
		After C-MF	ND	7.1	0.10	0.6	0.006	15.2	
		Raw water	8.0	6.8	1.0	0.9	0.025	12.8	
		After pre-chlorination	ND	6.8	1.1	0.9	0.022	13.0	
Plant C	Nov. 2018	After MnOx filtration	ND	6.8	0.9	0.9	0.018	12.8	0.3
		After C-MF	ND	7.2	0.10	0.6	0.008	17.2	
		Raw water	0.9	6.8	1.7	0.6	0.014	13.6	0.4
		After pre-chlorination	ND	6.9	0.7	0.6	0.012	12.8	
	Jan. 2019	After MnOx filtration	ND	6.8	0.9	0.6	0.013	14.0	
		After C-MF	ND	7.1	0.10	0.4	0.006	16.4	
		Raw water	20.0	7.1	0.6	1.1	0.027	19.0	0.3
	Jul. 2019	After pre-chlorination	ND	7.0	0.6	1.1	0.022	19.0	
		After MnOx filtration	ND	7.2	0.5	1.1	0.019	20.0	
		After C-MF	ND	7.2	0.11	0.8	0.011	24.0	
	Jul. 2020	Raw water	17.7	7.0	8.7	1.6	0.044	27.0	
		After coagulation	ND	7.0	8.8	1.2	0.021	27.8	0.4
		After MF	ND	7.7	0.08	1.2	0.019	30.0	
		Raw water	8.3	7.3	2.8	1.9	0.056	49.0	
	Nov. 2020	After coagulation	ND	7.3	9.1	1.7	0.037	55.0	0.4
		After MF	ND	7.8	0.12	1.6	0.026	57.0	
		Raw water	0.6	7.7	5.0	1.5	0.036	64.2	
Plant D	Jan. 2021	After coagulation	ND	7.6	7.8	1.2	0.020	63.0	0.4
		After MF	ND	7.8	0.08	1.2	0.017	64.6	
		Raw water	0.6	7.8	10.1	1.7	0.047	51.8	
	Mar. 2021 (9th)	After coagulation	ND	7.7	15.5	1.2	0.021	52.0	0.6
		After MF	ND	7.9	0.13	1.3	0.021	51.4	
		Raw water	1.9	7.5	70.0	1.8	0.053	34.0	
	Mar. 2021	After coagulation	ND	7.4	75.1	1.4	0.027	33.2	0.6
	(16th)	After MF	ND	7.6	0.08	1.4	0.021	34.6	

^a Not determined.

-

- Fig. S1 Total recovery rates of PMMoV and process control viruses from spiked raw and treated water samples collected at Plants A–D. Water samples collected at Plant A in November 2017, July 2018, and February 2019 (a); Plant B in August 2018 and February 2019 (b); Plant C in July 2018 and January 2019 (c); and Plant D in July 2020 and January 2021 (d) were spiked with PMMoV, CGMMV, MNV, and MS2 at initial concentrations of 10^{7-8} copies/mL for PMMoV and MS2, 10^{5-6} copies/mL for CGMMV, and 10^{6-7} copies/mL for MNV. Values are means and error bars indicate standard deviations (n = 2 or 3).
- 49
- 50

- 55
- Fig. S2 Quantification efficiencies of process control viruses in spiked on-site concentrated samples collected at Plants A–D. Samples collected at Plant A in November 2017, December 2017, July 2018, and February 2019 (a); Plant B in November 2017, August 2018, and February 2019 (b); Plant C in July 2018, January 2019, and July 2019 (c); and Plant D in July 2020 and January 2021 (d) were spiked with CGMMV, MNV, and MS2 at initial concentrations of 10^6 copies/mL. Values are means and error bars indicate standard deviations (n = 2–4). Samples of raw water and treated water after coagulation (4 or 20 L) collected at Plant D in July 2020 were concentrated in our laboratory, not on-site.
- 62

- 66
- 67

Fig. S3 – Difference in concentrations of indigenous PMMoV quantified in undiluted and 10fold-diluted samples of raw and treated water collected at Plants A–D. Differences were calculated only when the virus concentrations could be quantified both with and without dilution. Samples of raw water and treated water after coagulation (4 or 20 L) collected at Plant D in July 2020 were concentrated in our laboratory, not on-site.

Fig. S4 – Concentrations of indigenous PMMoV in liquid phase of coagulated water samples
containing powdered activated carbon before and after centrifugal separation of powdered
activated carbon. Treated water samples after coagulation collected at Plant D in July 2020 and
January 2021 were used.

Fig. S5 – Effect of sand type on reduction ratios of PMMoV in lab-scale CS–RSF. Raw water
sample collected at Plant B in August 2018 was spiked with PMMoV at an initial concentration of
10⁸ copies/mL, and then used as experimental raw water. Coagulant, PACl-1.5s (1.08 mg-Al/L). Value
was determined from a single experiment, or is a mean of duplicate experiments; the error bar
indicates standard deviation.

(a) Water sample collected at Plant B

(b) Water samples collected at Plant C

94 Fig. S6 – Effect of coagulant type on reduction ratios of PMMoV in lab-scale CS-RSF (a) and 95 C–MF (b). Raw water sample collected at Plant B in August 2018 (a), and treated water samples after 96 MnOx-coated media filtration collected at Plant C in November 2018 and July 2019 (b) were spiked with PMMoV at an initial concentration of 10^{7-8} copies/mL, and then used as experimental raw water. 97 98 Coagulant dosage, 1.08 (a) or 0.27 (b) mg-Al/L. Silica sand was used. Values were determined from 99 a single experiment, or are the means of duplicate experiments; the error bars indicate standard 100 deviations. Arrow indicates that the virus concentrations were below the limit of quantification of the 101 real-time RT-PCR.

- 102
- 103

Fig. S7 – Occurrence of indigenous PMMoV and human enteric viruses in raw water at Plants
A (a), B (b), C (c), and D (d). Arrows indicate that the virus concentrations were below the limit of
quantification of the real-time PCR or real-time RT-PCR. Sample of raw water collected at Plant D
in July 2020 (4 or 20 L) was concentrated in our laboratory, not on-site.

115 S1. Materials and methods

- 116
- 117 S1.1. Virus quantification by real-time PCR or real-time RT-PCR
- 118

119 Viral DNA or RNA was extracted from 200 µL of sample with a QIAamp MinElute Virus Spin Kit 120 (Qiagen, Tokyo, Japan) to obtain a final volume of DNA or RNA of 20 or 50 µL. Because the 121 concentrations of indigenous PMMoV in the on-site concentrated samples of treated water after 122 manganese oxide (MnOx)-coated media filtration and C-MF collected at Plant C in May 2018 were 123 below the quantification limit of the PCR assay when viral RNA of PMMoV was extracted from 200 124 µL of these samples to 20 µL with the above kit, viral RNA of PMMoV was extracted from 5 mL of these samples to 50 µL with a QIAamp Circulating Nucleic Acid Kit (Qiagen); the quantification 125 126 limit was theoretically improved 10-fold compared with the QIAamp MinElute Virus Spin Kit. 127 Extracted RNA was reverse-transcribed with a High-Capacity cDNA Reverse Transcription Kit with 128 RNase Inhibitor (Applied Biosystems Japan, Tokyo, Japan); the reaction was conducted at 25 °C for 129 10 min, 37 °C for 120 min, and 85 °C for 5 s with subsequent cooling to 4 °C in a thermal cycler 130 (Thermal Cycler Dice Model TP600; Takara Bio Inc., Otsu, Japan). Extracted DNA or cDNA was then amplified with TaqMan Universal Master Mix II, no UNG (Applied Biosystems Japan) with 400 131 132 nM primers (HQ-SEQ grade, Takara Bio Inc.), 250 nM TaqMan or TaqMan MGB probe (Applied 133 Biosystems Japan), and DNase/RNase-free distilled water. The nucleotide sequences of the primers and probes are shown in Table S1. Amplification was conducted at 50 °C for 2 min, 95 °C for 10 min, 134 and then 50 cycles of 95 °C for 15 s and 60 °C for 1 min in an Applied Biosystems 7300 Real-Time 135 136 PCR System (Applied Biosystems Japan). A standard curve for the real-time PCR method was based 137 on the relationship between the quantification cycle (C_q value) and the copy concentration of genomic 138 DNA of AdV type 40 (ATCC VR-931D, ATCC), synthetic RNA of HuNoVs (ATCC VR-3234SD for 139 HuNoV GI, ATCC VR-3235SD for HuNoV GII, ATCC), or synthetic cDNA fragments (590 bp,

- GeneArt Strings DNA Fragments; Thermo Fisher Scientific Inc., Waltham, MA, USA) containing the
 PCR target sequence for PMMoV, CGMMV, EVs including CV, HAV, MNV, or MS2.
- 142

143 S1.2. Characteristics and sampling points of DWTPs

144

Plant A uses river water as raw water, with a treatment capacity of $5-10 \times 10^5 \text{ m}^3/\text{day}$. Treatment consists of CS and RSF. Polyaluminum chloride (PACl) with basicity ($[OH^-]/[Al^{3+}]$) 1.5 (PACl-1.5s) is used as a coagulant with a dosage of 1.2–1.9 mg-Al/L on sampling days. Intermediate- and postchlorination are applied before and after RSF, respectively, throughout the year. From October 2017 to February 2019, samples of raw water and treated water after CS and after RSF were collected seven times. In on-site sampling, filtration volumes through the NanoCeram filter were as follows: raw water, 80–250 L; treated water after CS, 100–550 L; and treated water after RSF, 100–1000 L.

Plant B uses river water as raw water, with a treatment capacity of $1-2 \times 10^6$ m³/day. Treatment 152 153 consists of CS, primary RSF, ozonation, biological activated carbon treatment, and secondary RSF. 154 PACl-1.5s is used as a coagulant with a dosage of 0.9–1.2 mg-Al/L on sampling days. Pre-chlorination 155 is usually applied before CS from December or January to April, and also from May to November or December in case of rapid increases in ammonium ion concentrations in raw water. Intermediate- and 156 157 post-chlorination is applied before and after secondary RSF, respectively, throughout the year. From 158 November 2017 to February 2019, samples of raw water and treated water after CS and after primary 159 RSF were collected three times. In on-site sampling, filtration volumes through the NanoCeram filter 160 were as follows: raw water, 40-230 L; treated water after CS, 150-450 L; and treated water after 161 primary RSF, 500-1000 L.

Plant C uses subsoil water as raw water, with a treatment capacity of $5-10 \times 10^3$ m³/day. Treatment consists of MnOx-coated media filtration and C–MF. PACl-1.5s is used as a coagulant with a dosage of 0.3–0.4 mg-Al/L on sampling days. Throughout the year, pre- and intermediate-chlorination is

165 applied before MnOx-coated media filtration, and post-chlorination is applied after C-MF. In a 166 membrane filtration process, a hollow-fiber MF membrane module (nominal pore size, 0.1 µm; polyvinylidene difluoride) is installed. From May 2018 to July 2019, samples from raw water and 167 168 treated water after pre-chlorination, MnOx-coated media filtration, and C-MF were collected five 169 times. In on-site sampling, filtration volumes through the NanoCeram filter were as follows: raw 170 water and treated water after pre-chlorination, 100-200 L; after MnOx-coated media filtration, 100-171 400 L; and after C-MF, 100-2000 L. In July 2018, 2000 L of treated water after C-MF was filtered 172 through NanoCeram filters in duplicate, and then each filter was separately subjected to virus elution 173 followed by organic flocculation as described in Section 2.3. The supernatant of the floc mixture from 174 each filter (2 L each) were combined, and 4 L was concentrated to 20 mL by TF-UF. On the other hand, the flocs from each filter were dissolved in 10 mL, instead of 20 mL, of 0.15 M sodium 175 176 phosphate buffer (pH 9.0), and floc dissolution samples were combined to a final volume of 20 mL. 177 Thus, 4000 L of treated water after C-MF was concentrated to 20 mL each of the supernatant 178 concentrated sample and the floc dissolution sample.

179 Plant D uses river water as raw water, with a treatment capacity of $5-10 \times 10^3$ m³/day. Treatment 180 consists of C-MF and MnOx-coated media filtration. PACl with basicity 2.1 (PACl-2.1s) is used as a 181 coagulant with a dosage of 0.4-0.6 mg-Al/L on sampling days. Pre-, intermediate-, and post-182 chlorination is applied before C-MF, and before and after MnOx-coated media filtration, respectively, 183 throughout the year. Powdered activated carbon is injected into water after pre-chlorination. In a 184 membrane filtration process, a submerged MF membrane module (nominal pore size, 0.1 µm; 185 ceramic) is installed. From July 2020 to March 2021, samples of raw water and treated water after 186 coagulation and after MF were collected five times. In on-site sampling, filtration volumes through 187 the NanoCeram filter were as follows: raw water, 4–80 L; treated water after coagulation, 4–30 L; 188 and treated water after MF, 100–1000 L.

- 191 S1.3. Evaluation of total recovery rate of viruses from spiked water samples collected at full-scale
 192 DWTPs
- 193

We further investigated the efficacy of the developed virus concentration method in concentrating 194 195 and recovering viruses from raw and treated water in full-scale DWTPs in addition to dechlorinated 196 tap water described in Section S1.2, because water quality can affect virus recovery efficiency during 197 virus concentration processes (Haramoto et al., 2018). On-site virus-spiking experiments at full-scale 198 DWTPs are ideal for directly evaluating virus recovery efficiency during on-site virus concentration 199 processes; however, such experiments are generally impossible due to compliance with biohazard 200 policies (Haramoto et al., 2018). Thus, raw and treated water samples (40 L for Plants A and C, 20 L 201 for Plant B, 10 or 20 L for Plant D) were spiked with viruses, and then concentrated in our laboratory 202 by using the developed method to evaluate the total recovery rates of viruses from spiked water 203 samples. The water samples were spiked simultaneously with the stock solutions of PMMoV and 204 CGMMV, and the purified solutions of MNV and MS2 at initial concentrations of approximately 10⁷⁻ ⁸ copies/mL for PMMoV and MS2, 10⁵⁻⁶ copies/mL for CGMMV, and 10⁶⁻⁷ copies/mL for MNV. 205 Spiked water was then processed with the developed method for virus concentration as described in 206 207 Section 2.3. To completely mitigate inhibition of the PCR assay, all concentrated samples were diluted 208 100-fold with distilled water before the PCR assay, and virus concentrations were back-calculated to 209 account for 100-fold dilution. The total virus recovery rates were calculated by using Equation 1. 210 Because filtration volumes in these experiments (10-40 L) were usually much smaller than those in 211 on-site filtration (4–2000 L), except in the case where 4–20 L of raw water or treated water after 212 coagulation were filtered on-site at Plant D, the total virus recovery rates were not used to back-213 calculate the virus concentrations quantified in on-site concentrated samples.

215	$R_{\rm t} = (N_{\rm cs} + N_{\rm cf}) / N_0 \times 100\%$	(1)
216	$R_{\rm t}$: total virus recovery rate from spiked water (%)	

- 217 *N*_{cs}: number of viruses in supernatant concentrated sample (copies)
- 218 *N*_{cf}: number of viruses in floc dissolution sample (copies)
- 219

220 S1.4. Evaluation of quantification efficiency of viruses in spiked on-site concentrated samples

221

222 The samples (200 µL each; undiluted or diluted 10- or 100-fold with sterilized DNase/RNase-free distilled water) were spiked simultaneously with the stock solution of CGMMV, and the purified 223 solutions of MNV and MS2 at final concentrations of approximately 10⁶ copies/mL. In addition, 224 sterilized DNase/RNase-free distilled water (200 µL) was spiked with the solutions of the three 225 226 viruses, and defined as a control sample without any inhibition of the PCR assay. The spiked samples 227 were subjected to RNA extraction, RT, and real-time PCR. The quantification efficiency was 228 determined according to Equation 2, and used only to evaluate the extent of inhibition of the PCR 229 assay.

230

231 $E_q = N_q / N_{q0} \times 100\%$ (2) 232 E_q : quantification efficiency (%)

- 233 N_q : number of viruses in concentrated sample (copies)
- 234 N_{q0} : number of viruses in control sample (copies)
- 235
- 236 S1.5. Coagulants
- 237

To mimic full-scale CS–RSF (Plants A and B) and C–MF (Plant C), we used the same sulfated PACl products with basicity 1.5 (PACl-1.5s) as used at the three DWTPs (North PACl, 2.4% sulfate [w/w], Hokkaido Soda Co., Tomakomai, Japan; Tai PACl, 2.8% sulfate [w/w], Taimei Chemicals Co.,
Minamiminowa, Japan). To discuss the effect of coagulant type on virus reduction in full-scale CS–
RSF and C–MF, we used sulfated high-basicity PACl with basicity 2.1 (PACl-2.1s; PACl 700A,
2.2%–2.9% sulfate [w/w], Taki Chemical Co., Kakogawa, Japan); and non-sulfated, high-basicity
PACl with basicity 2.1 (PACl-2.1ns; not commercially available, kindly supplied by Taki Chemical
Co.). Immediately prior to use, the coagulants were diluted with Milli-Q water (Milli-Q Advantage;
Millipore Corp.).

247

248 S1.6. Lab-scale virus-spiking CS–RSF experiments

249

Batch virus-spiking CS experiments were conducted with raw water samples collected at Plant A 250 (4 L) and Plant B (2 L) in square plastic beakers at 20 °C. The samples were spiked with the stock 251 252 solution of PMMoV at an initial concentration of approximately 10⁸ copies/mL. As a result of spiking, 253 <0.1 mg/L of dissolved organic carbon was unintentionally introduced. After enough HCl or NaOH 254 was added to bring the final pH to 7.0, a coagulant was injected at 0.54, 1.08, 1.62, or 2.16 mg-Al/L. 255 Coagulant dosages were determined by considering those applied at Plant A (1.2-1.9 mg-Al/L) and Plant B (0.9–1.2 mg-Al/L) on the sampling days. The water was stirred rapidly with an impeller stirrer 256 for 1 min ($G = 200 \text{ s}^{-1}$, 120 rpm for 4 L, 197 rpm for 2 L), then slowly for 10 min ($G = 20 \text{ s}^{-1}$, 26 rpm 257 258 for 4 L, 42 rpm for 2 L), and then was allowed to stand without stirring for 60 min to settle the 259 generated aluminum floc particles. Samples were taken from the beaker for quantification of the virus 260 concentrations (before coagulation, C_{c0} ; after settling, C_{cs}), and quantified by the PCR assay without 261 the virus concentration processes.

After the batch CS experiments, RSF experiments were conducted with a plastic column (diameter, 3.6 cm; length, 100 cm) packed with silica sand or manganese sand at 20 °C. Silica sand was washed with Milli-Q water, and dried at 105 °C for 6 h. To wash manganese sand, tap water supplied by Plant 265 A was filtered through a polytetrafluoroethylene membrane filter (nominal pore size, 0.20 µm; Toyo 266 Roshi Kaisha), and then sodium hypochlorite (NaClO; Fujifilm Wako Pure Chemical Corp., Osaka, 267 Japan) was added to obtain a free-chlorine concentration of 0.7 mg-Cl₂/L. Manganese sand was then 268 washed with filtered and chlorinated tap water, and dried at 105 °C for 6 h. The washed silica sand or 269 manganese sand was gradually added into the column to achieve a 60-cm filter depth. Approximately 270 5 L of Milli-Q water (for silica sand), or filtered and chlorinated tap water (for manganese sand) was 271 pumped upward through the column, and then another volume (approximately 5 L) of Milli-Q water 272 (for silica sand), or filtered and chlorinated tap water (for manganese sand) was pumped downward through the column with the peristaltic pump to remove fines in the filter media. This upward-and-273 274 downward washing procedure was done twice before each experiment. Sufficient removal of fines was confirmed by the fact that the turbidity of the filter effluent after washing was <0.2 NTU. Next, 275 276 approximately 3 L (when 4 L of water was used in CS experiments) or 1.5 L (when 2 L of water was 277 used in CS experiments) of the supernatant from the settled sample was transferred from the beaker 278 to another beaker as raw water for RSF experiments. When raw water samples collected at Plant A 279 were used for CS experiments, NaClO was added to the supernatant from the settled sample to obtain 280 a free-chlorine concentration of 0.7 mg-Cl₂/L, because intermediate-chlorination was applied at Plant 281 A before RSF. Under this condition, the residual free-chlorine concentration in sand filtrates was 282 almost the same as that in treated water after RSF at Plant A on the sampling days (approximately 0.2 283 mg-Cl₂/L). The supernatant from the settled sample was continuously mixed with a magnetic stirrer at 300 rpm (for 3 L of water) or 150 rpm (for 1.5 L of water) during the experiments. After mixing 284 285 for 5 min, the water was fed into the column at a constant flow rate (120 m/day) with the peristaltic 286 pump. Taking the residence time of water in the sand column into consideration, samples were taken 287 from the beaker at three pre-determined sampling times during filtration, and from the sand filtrate 288 after 15, 20, and 25 min (for 3 L of water), or 16.5, 18, and 19.5 min (for 1.5 L of water) of filtration 289 for quantification of virus concentrations (raw water for RSF, C_{r0} ; sand filtrate, C_{rf}), and quantified by the PCR assay without the virus concentration processes. The reduction ratios of PMMoV were expressed as the averages of the three time points for each volume of water, because the reduction ratios were almost independent of filtration time (data not shown). Washed filter medium not yet used in any experiment was used in each experiment to avoid viral and particle cross-contamination.

294

295 S1.7. Lab-scale virus-spiking C–MF experiments

296

297 Experiments were conducted with samples (500 mL) of treated water after MnOx-coated media filtration (i.e., water just before C-MF) collected at Plant C in square plastic beakers at 20 °C. The 298 299 lab-scale MF membrane was rinsed by filtering approximately 500 mL of Milli-Q water, and sterilized 300 for 60 min by circulating a solution containing 2000 mg-Cl₂/L of free chlorine; the rinsing step was 301 repeated prior to use to remove any residual free chlorine. NaClO was added to the samples and mixed 302 for 1 min to obtain a free-chlorine concentration of 0.6 mg-Cl₂/L, similar to that in treated water after 303 MnOx-coated media filtration at Plant C on the sampling days. The samples were then spiked with the stock solution of PMMoV at an initial concentration of approximately 10^{7–8} copies/mL. As a result 304 305 of spiking, <0.1 mg/L of dissolved organic carbon was unintentionally introduced. After enough HCl 306 or NaOH was added to bring the final pH to 7.0, a coagulant was injected at 0.27, 0.54, or 1.08 mg-307 Al/L. Coagulant dosages were determined by considering those applied at Plant C on the sampling 308 days (0.3–0.4 mg-Al/L). The water was stirred rapidly ($G = 200 \text{ s}^{-1}$, 97 rpm) with the impeller stirrer 309 during the experiments. After stirring for 1 min, water filtration through the membrane was started at 310 a constant flow rate (1 m/day) with the peristaltic pump, with a cross-flow volume twice the filtration 311 volume. Taking the residence time of water in the membrane module into consideration, samples were 312 taken from the beaker before coagulation, and from the MF filtrate after 4.5, 5.5, 6.5, 7.5, and 8.5 min 313 of filtration for quantification of virus concentrations (before coagulation, C_{m0} ; MF filtrate, C_{mf}), and 314 quantified by the PCR assay without the virus concentration processes. The reduction ratios of 315 PMMoV were expressed as the averages of the five time points, because the reduction ratios were 316 almost independent of filtration time (data not shown). The membrane was re-used after the rinsing– 317 sterilization procedure described above.

318

319 *S1.8. Development of a virus concentration method*

320

321 In our laboratory at Hokkaido University (Sapporo, Japan), tap water (1000 L) supplied by Plant A (CS-RSF) was dechlorinated with sodium thiosulfate at a final concentration of 5 mg/L, and was 322 spiked with the stock solution of PMMoV at an initial concentration of approximately 10⁸ copies/mL. 323 324 The spiked water was filtered and concentrated as described in Section 2.3, except that supernatant concentrated samples were not filtered through the hydrophilic cellulose acetate membrane filter. 325 326 To completely mitigate inhibition of the PCR assay, all concentrated samples were diluted 100-fold 327 with sterilized DNase/RNase-free distilled water before the PCR assay, and virus concentrations were back-calculated to account for 100-fold dilution. The total recovery rate of PMMoV from spiked 328 329 water was calculated by using Equation 1. The retention rate of PMMoV on the filter and its elution

rate were calculated by using Equations 3 and 4, respectively.

331

332 $R_{\rm r} = (N_0 - N_{\rm f}) / N_0 \times 100\%$ (3)

- R_r : virus retention rate on the NanoCeram filter (%)
- 334 *N*_f: number of viruses in filtrate (copies)
- N_0 : number of viruses in spiked water (copies)
- 336

337 $R_{\rm e} = N_{\rm e} / (N_0 - N_{\rm f}) \times 100\%$ (4)

- R_e : virus elution rate from the NanoCeram filter using BE solution (%)
- 339 *N*e: number of viruses in 2 L of eluate (copies)

341 S1.9. Virus-spiking organic flocculation experiment

343	The BE solution (pH 9.5; 250 mL) was spiked simultaneously with the stock solutions of PMMoV
344	and CGMMV, and the purified solutions of AdV, CV, HAV, MNV, and MS2 at initial concentrations
345	of approximately 10 ⁸⁻⁹ copies/mL for PMMoV, 10 ⁷⁻⁸ copies/mL for CGMMV, CV, and MNV, 10 ⁷
346	copies/mL for AdV, 10 ⁶ copies/mL for HAV, and 10 ¹⁰ copies/mL for MS2. Spiked BE solution was
347	then subjected to organic flocculation as described in Section 2.3. Separated flocs were dissolved in
348	2.5 mL of 0.15 M sodium phosphate buffer (pH 9.0), and virus concentrations in floc dissolution
349	samples (2.5 mL) and in the supernatant of the floc mixture (250 mL; not concentrated by TF-UF)
350	were quantified to determine the virus recovery rate in floc dissolution samples (Equation 5) and in
351	the supernatant of the floc mixture (Equation 6).
352	
353	$R_{\rm f} = N_{\rm cf} / N_{\rm b0} \times 100\% \tag{5}$
354	$R_{\rm f}$: virus recovery rate in floc dissolution sample (%)
355	$N_{\rm cf}$: number of viruses in floc dissolution sample (copies)
356	N_{b0} : number of viruses in spiked BE solution (copies)
357	
358	$R_{\rm s} = N_{\rm s} / N_{\rm b0} \times 100\% \tag{6}$
359	$R_{\rm s}$: virus recovery rate in supernatant of floc mixture (%)
360	Ns: number of viruses in supernatant of floc mixture (copies)
361	
362	S2. Results and discussion

364 S2.1. Effects of pH of BE solution, soaking times for the third and fourth elution, and filter type on
365 virus recovery rates

366

At pH 9.0, the elution rate of PMMoV with a soaking time of 15 min for the third and fourth elution (28%; Table 1, Method 1) was similar to that with a soaking time of 30 min (32%; Table 1, Method 2). At pH 9.5, the elution rate of PMMoV increased to 60% with a soaking time of 30 min (Table 1, Method 3). Thus, a soaking time of 30 min for the third and fourth elution, and pH 9.5 of BE solution were used in subsequent experiments.

The retention rates of PMMoV between two types of the NanoCeram filters (P2.5-5DP and VS2.5-5) were similar (Table 1, Methods 3 and 4), probably because of the same effective filtration area (0.129 m²), and the elution and total recovery rates of PMMoV were also similar (Table 1, Methods 3 and 4). Because VS2.5-5 was developed specifically to concentrate viruses and pre-sterilized, we used it in subsequent experiments.

377

378 *S2.2. Efficacy of the developed virus concentration method in concentrating and recovering MNV*

379

380 To confirm that the developed virus concentration method can also effectively concentrate and 381 recover viruses that are recovered mainly in floc dissolution samples, we evaluated the total recovery 382 rates of PMMoV in addition to MNV. Dechlorinated tap water (100 L) was spiked simultaneously with PMMoV and MNV, and then filtered and concentrated. The total recovery rate was 106% for 383 PMMoV and 30% for MNV (data not shown). Cashdollar et al. (2013) filtered (1) 1500-1900 L of 384 385 non-spiked groundwater followed by 10 L of MNV-spiked groundwater, (2) 80 L of non-spiked 386 surface water followed by 10 L of MNV-spiked surface water, and (3) 10 L of MNV-spiked reagent-387 grade water, and concentrated all volumes to 400 µL by using Method 1615, and reported total 388 recovery rates of 30%, 6%, and 0.6%–8%, respectively. The total recovery rate of MNV obtained in

the present study was similar to or higher than those obtained by Cashdollar et al. (2013), indicating that the developed method can effectively concentrate and recover PMMoV along with MNV, which is recovered mainly in floc dissolution samples, from large volumes of dechlorinated tap water.

392

393 S2.3. Virus reduction by powdered activated carbon adsorption

394

395 Samples of treated water after coagulation from Plant D contained powdered activated carbon, and 396 were directly filtered through the NanoCeram filter. Even if PMMoV was adsorbed on powdered 397 activated carbon, it could be retained on the filter, and desorbed from powdered activated carbon 398 during subsequent virus elution. If so, we may overestimate the concentrations of indigenous PMMoV 399 in treated water after coagulation, and underestimate its reduction ratios by adsorption on powdered 400 activated carbon. To investigate the possible contribution of adsorption on powdered activated carbon 401 to the reduction of PMMoV, coagulated water samples containing powdered activated carbon were 402 centrifuged at 4000 \times g for 10 min to separate powdered activated carbon from the liquid phase of 403 these samples. The concentrations of indigenous PMMoV, as quantified by the PCR assay without 404 the virus concentration processes, in the liquid phase before and after centrifugal separation of 405 powdered activated carbon were similar (Fig. S4), suggesting that the contribution of adsorption on 406 powdered activated carbon to the reduction of PMMoV was negligible.

407

408 S2.4. Effect of sand type on virus reduction in CS–RSF

409

The PMMoV reduction ratios obtained with silica sand and manganese sand were almost the same (Fig. S5), suggesting that sand type did not affect virus reduction efficiency in CS–RSF. Thus, silica sand was used in lab-scale CS–RSF with the raw water sample collected at Plant B in August 2018, because pre-chlorination before CS was not applied on the sampling day.

415 S2.5. Validation of lab-scale virus-spiking CS–RSF and C–MF experiments

417	To validate whether lab-scale virus-spiking CS-RSF and C-MF successfully mimicked full-scale
418	CS-RSF (Plants A and B) and C-MF (Plants C and D) in terms of virus reduction, we compared the
419	reduction ratios of PMMoV in lab-scale CS-RSF and C-MF with those in full-scale CS-RSF and C-
420	MF. In the raw water sample collected at Plant A in July 2018 (Fig. 4a), the reduction ratio of PMMoV
421	in lab-scale CS-RSF at a coagulant dosage of 1.08 mg-Al/L was >1-log10 higher than that in full-
422	scale CS-RSF at 1.24 mg-Al/L; the reason for this difference is unclear. In the raw water sample
423	collected at Plant A in February 2019 (Fig. 4a), the reduction ratios of PMMoV in lab-scale CS-RSF
424	at 1.08 or 1.62 mg-Al/L were similar to that in full-scale CS-RSF at 1.51 mg-Al/L. In the raw water
425	sample from Plant B (Fig. 4b), the reduction ratio of PMMoV in full-scale CS-RSF at 0.98 mg-Al/L
426	was within the range of those in lab-scale CS-RSF at 0.54-1.08 mg-Al/L. These results indicate that
427	lab-scale CS-RSF with the samples collected at Plant A in February 2019 and Plant B in August 2018
428	successfully mimicked full-scale CS-RSF at Plants A and B, respectively, in terms of virus reduction,
429	but that lab-scale CS-RSF with the sample collected at Plant A in July 2018 did not.
430	In treated water samples after MnOx-coated media filtration collected at Plant C in November 2018
431	and July 2019 (Fig. 4c), the reduction ratios of PMMoV in lab-scale C-MF at 0.27 mg-Al/L were
432	similar to those in full-scale C-MF at 0.27 or 0.33 mg-Al/L. This result indicates that lab-scale C-
433	MF successfully mimicked full-scale C-MF in terms of virus reduction.
434	

- *S2.6. Effect of coagulant type on virus reduction in CS–RSF and C–MF*
- 437 In lab-scale CS–RSF, the reduction ratio of PMMoV were increased from 2.9-log₁₀ with PACl-1.5s
- 438 to 3.5-log₁₀ with PACl-2.1s, and reached 4.1-log₁₀ with PACl-2.1ns (Fig. S6a). These results indicate

that coagulant type affected virus reduction efficiency in CS–RSF, and that high-basicity PACls, especially the non-sulfated one, were more effective for virus reduction than PACl-1.5s. Our research group has reported that colloid charge densities of PACl-2.1s and PACl-2.1ns are higher than that of PACl-1.5s; PACl-2.1ns has the highest colloid charge density, probably due to the large amounts of colloidal aluminum species and the absence of sulfate (Shirasaki et al., 2014). Thus, the high colloid charge densities of PACl-2.1ns, especially that of PACl-2.1ns, likely resulted in their high virus reduction ratios compared with that of PACl-1.5s.

The turbidities of sand filtrates obtained with PACI-1.5s and PACI-2.1s were almost the same (data not shown), indicating that the use of PACI-2.1s instead of PACI-1.5s in full-scale CS–RSF could improve virus reduction efficiency without decreasing the ability to reduce turbidity. In contrast, the turbidities of sand filtrates obtained with PACI-2.1ns were higher than those obtained with PACI-1.5s (data not shown), indicating that the use of PACI-2.1ns instead of PACI-1.5s in full-scale CS–RSF is not appropriate for turbidity reduction, despite its highest effectiveness for virus reduction.

In lab-scale C–MF, the reduction ratios of PMMoV were increased from 0.5–1.1-log₁₀ to 1.6–4.4log₁₀ by the use of high-basicity PACls instead of PACl-1.5s; in particular, PACl-2.1ns provided the PMMoV reduction ratios of >4-log₁₀ (Fig. S6b). These results indicate that coagulant type strongly affected virus reduction efficiency in C–MF, and that high-basicity PACls, especially the non-sulfated one, were more effective for virus reduction than PACl-1.5s.

457

458 **References**

459

Cashdollar, J.L., Brinkman, N.E., Griffin, S.M., McMinn, B.R., Rhodes, E.R., Varughese, E.A.,
Grimm, A.C., Parshionikar, S.U., Wymer, L., Fout, G.S., 2013. Development and evaluation of
EPA Method 1615 for detection enterovirus and norovirus in water. Appl. Environ. Microbiol. 79
(1), 215–223.

- Haramoto, E., Kitajima, M., Kishida, N., Konno, Y., Katayama, H., Asami, M., Akiba, M., 2013.
 Occurrence of pepper mild mottle virus in drinking water sources in Japan. Appl. Environ.
 Microbiol. 79 (23), 7413–7418.
- Haramoto, E., Kitajima, M., Hata, A., Torrey, J.R., Masago, Y., Sano, D., Katayama, H., 2018. A
 review on recent progress in the detection methods and prevalence of human enteric viruses in
 water. Water Res. 135, 168–186.
- Hongyun, C., Wenjun, Z., Qinsheng, G., Qing, C., Shiming, L., Shuifang, Z., 2008. Real time TaqMan
 RT-PCR assay for the detection of Cucumber green mottle mosaic virus. J. Virol. Methods. 149 (2),
 326–329.
- 473 Jothikumar, N., Cromeans, T.L., Sobsey, M.D., Robertson, B.H., 2005. Development and evaluation
- 474 of a broadly reactive TaqMan assay for rapid detection of hepatitis A virus. Appl. Environ.
 475 Microbiol. 71 (6), 3359–3363.
- Katayama, H., Shimasaki, A., Ohgaki, S., 2002. Development of a virus concentration method and
 its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl. Environ.
 Microbiol. 68 (3), 1033–1039.
- 479 Kitajima, M., Oka, T., Takagi, H., Tohya, Y., Katayama, H., Takeda, N., Katayama, K., 2010.
- 480 Development and application of a broadly reactive real-time reverse transcription-PCR assay for
- 481 detection of murine noroviruses. J. Virol. Methods. 169 (2), 269–273.
- 482 Ko, G., Jothikumar, N., Hill, V.R., Sobsey, M.D., 2005. Rapid detection of infectious adenoviruses
- 483 by mRNA real-time RT-PCR. J. Virol Methods. 127 (2), 148–153.
- 484 O'Connell, K.P., Bucher, J.R., Anderson, P.E., Cao, C.J., Khan, A.S., Gostomski, M.V., Valdes, J.J.,
- 485 2006. Real-time fluorogenic reverse transcription-PCR assays for detection of bacteriophage MS2.
- 486 Appl. Environ. Microbiol. 72 (1), 478–483.

- Shieh, Y.S.C., Wait, D., Tai, L., Sobsey, M.D., 1995. Methods to remove inhibitors in sewage and
 other fecal wastes for enterovirus detection by the polymerase chain-reaction. J. Virol. Methods.
 54 (1), 51–66.
- Shirasaki, N., Matsushita, T., Matsui, Y., Oshiba, A., Marubayashi, T., Sato, S., 2014. Improved virus
 removal by high-basicity polyaluminum coagulants compared to commercially available
 aluminum-based coagulants. Water Res. 48, 375–386.
- Vega, E., Barclay, L., Gregoricus, N., Williams, K., Lee, D., Vinjé, J., 2011. Novel surveillance
 network for norovirus gastroenteritis outbreaks, United States. Emerg. Infect. Dis. 17 (8), 1389–
 1395.
- 496 Zhang, T., Breitbart, M., Lee, W.H., Run, J.Q., Wei, C.L., Soh, S.W.L., Hibberd, M.L., Liu, E.T.,
- 497 Rohwer, F., Ruan, Y.J., 2006. RNA viral community in human feces: prevalence of plant pathogenic
 498 viruses. PLoS Biol. 4 (1), 108–118.
- 499