

Instructions for use

Title Policy-based Detection and Blocking System against Abnormal Applications by Analyzing DNS Traffic

Author(s) Ichise, Hikaru; Jin, Yong; Iida, Katsuyoshi

Citation
Conference Proceedings: 2023 22nd International Symposium on Communications and Information Technologies
(ISCIT), 1-6
https://doi.org/10.1109/ISCIT57293.2023.10376042

Issue Date 2023-10-16

Doc URL http://hdl.handle.net/2115/91123

Rights
©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Type proceedings (author version)

Note 2023 22nd International Symposium on Communications and Information Technologies (ISCIT), 16-18 Oct, 2023.
Aerial Function Centre, Sydney, Australia.

File Information m10531-ichise final.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Policy-based Detection and Blocking System
against Abnormal Applications

by Analyzing DNS Traffic
Hikaru Ichise

Tokyo Inst. Tech. Tokyo, Japan
hichise@nap.gsic.titech.ac.jp

Yong Jin
Tokyo Inst. Tech. Tokyo, Japan

yongj@gsic.titech.ac.jp

Katsuyoshi Iida
Hokkaido Univ. Sapporo, Japan

iida@iic.hokudai.ac.jp

Abstract—Bot-infected computers, which are compounded by
botnet communication, conduct botnet-based cyber attacks us-
ing various application protocols. When using legitimate appli-
cations, a computer mostly performs domain name resolutions
via the DNS full-service resolver of the organization network
in advance for further communication with the application
servers. During the domain name resolution, a DNS full-service
resolver at least obtains the DNS NS (Name Server) records,
the corresponding glue A records (IP address of the Name
Server), and the application specific records, such as MX (Mail
Exchange) record in case of mail transmission using Simple
Mail Transfer Protocol (SMTP) of the target domain name.
On the other hand, bot-infected computers with abnormal
applications directly communicate with the application servers
without obtaining these DNS records so that direct outbound
application traffic will be generated. In this paper, we focus on
this kind of direct outbound application traffic and propose a
policy-based detection and blocking system against abnormal
applications by analyzing DNS traffic. Specifically, the direct
outbound application traffic without corresponding domain
name resolutions will be detected and blocked as abnormal
network traffic from bot-infected computers. We implemented
a prototype system and conducted the feature evaluation on the
SMTP protocol. The results confirmed that the proposed system
worked correctly as designed.

Index Terms—Botnet, abnormal application traffic, DNS,
RPZ, SMTP, SIP, SDN, direct outbound communication.

I. INTRODUCTION

Under the influence of COVID-19, many network appli-
cations have become popular among the Internet users for
working at home nowadays. Meanwhile, the Internet users
are still exposed to the risk of specific cyber attacks caused
by botnets. For example, the number of malicious emails,
which is one of the typical attacks of botnets, has increased
drastically in 2022 [1]. However, since email transmissions
also include legitimate communication, it is difficult for
network administrators to simply block email applications.

Botnet has become one of the major threats to organiza-
tion networks [2]. Figure 1 illustrates an overview of the
botnet basis cyber attack scenario. First, a computer (end
terminal or server) is infected by some kinds of malware
via email attachments and browsing, etc. (arrow 1). Then
the bot-infected computer searches and communicates with
the Command and Control (C&C) servers for receiving
instructions and conducting cyber attacks such as sending
spam/phishing emails (arrow 2). This process is named

C&C Server

Target PC＆
Server

Bot infected PC＆
Server

Arrow 2

Arrow 3

Arrow 1 Mail Servers
Web Servers

Malicious Application
Server

Fig. 1. Overview of botnet communication

botnet communication and it can use several communication
protocols such as IRC, HTTP, P2P, and DNS [3], [4]. Finally,
by following the instructions received from C&C servers,
the bot-infected computer conducts cyber attacks such as
spam mail distribution, malicious VoIP calls, etc, to the target
victims (arrow 3). The procedure looks simple but botnet-
based cyber attacks involve a huge number of bot-infected
computers so that the victims consequently suffered heavy
damage. So far, many approaches have been proposed to
detect and block botnet communication [3], [5]–[9].

However, it is not easy to identify the botnet commu-
nication at the early stage of botnet-based cyber attacks.
Thus, in this paper, we consider a detection and blocking
method against abnormal applications by analyzing the DNS
traffic from bot-infected computers. In general, legitimate
applications perform domain name resolutions for the specific
DNS records, such as MX (Mail eXchange) records in case of
an email application, via a DNS full-service resolver in prior
to further communication. Specifically, on receiving the DNS
query from a computer (on which the legitimate applications
are installed), the DNS full-service resolver obtains DNS NS
(Name Server) records and the corresponding glue A records
of the target domain first. Then DNS full-service resolver
queries the specific record (e.g., MX record) to the name
server and replies the results back to the computer. On the
other hand, abnormal applications are not likely to conduct
the same procedure as the above. Instead, the abnormal ap-

plications communicate with the application servers directly
without the corresponding domain name resolutions. Based
on this characteristic, our key idea of this research is that
the analysis of DNS traffic from each internal computer will
lead to identifying the abnormal applications effectively.

To implement the idea, in this paper, a way of creating the
whitelist for the achieved NS as well as the corresponding
glue A records is considered and a policy-based detection and
blocking system against abnormal applications by analyzing
DNS traffic is proposed. In the proposed system, only the
applications that conduct the corresponding previous domain
name resolution will be allowed for further communication,
otherwise, they will be detected and blocked as abnormal
applications. We implemented a prototype system by provid-
ing the whitelist functionality using DNS Response Policy
Zone (RPZ) [10] which is a feature of BIND and evaluated
the feature on an SDN-based local network environment.
The evaluation results confirmed that the prototype system
worked correctly for the application protocols, SIP and
SMTP.

The rest of this paper is organized as follows. In section II,
we introduce the definition of abnormal application in this pa-
per and the related research. Then we describe the proposed
method in section III and the prototype implementation in
section III and IV, respectively. After that, we describe the
discussion regarding some potential issues in the proposed
system in section V and finally, we conclude the paper in
section VI.

II. ABNORMAL APPLICATIONS AND RELATED
RESEARCHES

As stated in the Introduction, the objective of this research
is to devise a method to detect and block abnormal appli-
cations such as spam mail distributors and malicious VoIP
programs. In this section, we describe the scope of abnormal
applications considered in this paper and the related research.

A. Abnormal applications
Before presenting the abnormal application process, we

describe a brief communication process in the legitimate
application using Fig. 2. First, the client sends the DNS query
to the DNS full-service resolver in the organization network
for domain name resolution (arrow 1). Then the DNS full-
service resolver communicates with the authoritative DNS
servers for obtaining the NS record, the corresponding glue
A record, and the specific application related DNS records
(arrows 2 and 3). For example, the DNS full-service resolver
receives MX records in the case of SMTP [11] communi-
cation, and SRV and NAPTR records in the case of SIP
[12] communication as the specific application related DNS
records from the authoritative DNS servers, respectively.
There will be likely to extend specific application related
DNS records for other applications such as HTTPS. After
that, the client receives the DNS response (arrow 4) and
communicates with the application server on the Internet
(arrows 5 and 6).

In contrast, Fig. 3 depicts that an abnormal application has
the process without conducting the corresponding previous

Internet

⑤ Sending legitimate
Application

⑥ Receiving legitimate
Application

Client

DNS Full Resolver

⑤ Sending legitimate
Application

⑥ Receiving legitimate
Application

Router

Organization network

① DNS query

④ DNS response

② DNS query

③ DNS response
（specific record）

Fig. 2. Legitimate Application Process

Internet

① Sending malicious
Application

② Receiving
malicious Application

Client

DNS Full Resolver

① Send malicious
Application

② Receiving
malicious Application

Router

Organization network

Fig. 3. Abnormal Application Process

DNS domain name resolution. The client infected with mali-
cious applications directly communicates with the malicious
application server, which is named a direct outbound applica-
tion in this paper, for stealth behavior (arrows 1 and 2). The
clients transmit spam emails and malicious VoIP messages
based on the applications. Thus, it is essential to detect and
block these kinds of direct outbound applications at the early
stage.

It should keep in mind that the client can also receive
incorrect DNS responses by the hijack of DNS full-service
resolvers and authoritative DNS servers. In this paper, it
is important to process the orthodox DNS name resolution
by focusing on the NS records, the corresponding glue A
record, and the specific application related DNS records in
advance. Therefore, there are beyond the field of this paper
in the cases of the hijack of DNS full-service resolvers and
authoritative DNS servers and we do not include the detailed
discussion here. Consequently, we consider that in the case of
collecting obtained legitimate NS records, including the cor-
responding glue A records and the specific application related
DNS records, and confirming the destination IP addresses of
all the application servers on the Internet, these malicious
applications will be detected and blocked. Therefore, it will

be critical to constitute a system to detect and block these
malicious application behavior.

B. Related researches

Many researches have been done in the literature for
detecting and blocking botnet-based cyber attacks. In [13],
the authors devised a detection system for worm infected
computers sending mass-mailing by analyzing DNS traffic
using the Bayesian method. The DNS traffic was obtained in
about two hours from ISPs (Internet Service Providers). In
particular, the A record and the corresponding MX record
were analyzed using the Bayesian method. As a result,
the proposed system achieved a reduction of 89% in MX
records. In [14], the authors focused on malicious SMTP
communication sending direct email without obtaining an
MX record. The detection technology can detect mass-
mailing activity from clients. Moreover, in [14], the authors
focused on malicious SIP servers and aim to detect malicious
VoIP messages using machine learning technology.

However, none of the existing researches considers detect-
ing and blocking malicious applications at the early stage
by analyzing DNS traffic before the communication of real
attacks happens. In this paper, we intend to establish the de-
tection and blocking system of various malicious applications
for the consideration of network administrators effectively.

III. PROPOSED SYSTEM

In this section, we give an account of the scheme of
the proposed system using RPZ first. Then, we explain the
system architecture to detect and block malicious traffic
generated by bot-infected computers using direct outbound
applications non-via DNS full-service resolver in an organi-
zation network.

A. Overview of proposed system based on DNS RPZ

DNS RPZ is a special authoritative zone in a DNS server
for policy-based control of the target domain name and
it is a special feature of BIND. Figure 4 shows a brief
procedure of domain name resolution involving DNS RPZ.
In a normal name resolution process without involving DNS
RPZ, the client sends a DNS query to the DNS full-service
resolver first. Then the DNS full-service resolver queries
to the authoritative DNS servers iteratively and replies the
answer to the client. Finally, the client receives the DNS
response from the DNS full-service resolver.

On the other hand, in the name resolution process in-
volving DNS RPZ, the client sends the DNS query to the
DNS full-service resolver first. Then the DNS full-service
resolver replies directly to the answer from its RPZ instead
of querying the authoritative DNS servers iteratively. By
using DNS RPZ in the proposed system in reality, a direct
outbound DNS query can be regulated based on the policies
effectually. The proposed system is founded on the following
three observations.

(1) Any destination IP addresses of orthodox applica-
tions should be obtained in accordance with ortho-
dox DNS based domain name resolution including

Client
DNS Full
resolver

Authoritative
Name Server

1. DNS query
(example.com A)

Client

DNS Full
resolver

(RPZ)

Authoritative
Name Server

2. DNS query
(example.com A)

3. DNS response

4. DNS query
(example.com A)

5. DNS response
(example.com

A X.X.X.X)6. DNS response
(example.com

A X.X.X.X)

Name Resolution Process
Name Resolution Process

with RPZ

1. DNS query
(example.com A)

2. DNS response
(example.com
A 127.0.0.1)

RPZ registry information
example.com A 127.0.0.1

Fig. 4. Overview of DNS RPZ

the NS records, the corresponding glue A records,
and the specific application related DNS records.

(2) The abnormal application defines as the direct
outbound application traffic in which destination
IP addresses are not obtained in accordance with
legitimate DNS based domain name resolution.

(3) Some exceptions have the utility of public DNS
servers.

Figure 5 illustrates the overview of system architecture
in an organization network including the proposed system.
In general, most of the internal computers in an organization
network use the internal DNS full-service resolver for domain
name resolutions while some of them use public DNS servers
which cause direct outbound DNS queries. However, this
kind of direct outbound DNS traffic will be treated as
legitimate since the purpose is domain name resolution.

① Sending SMTP ④ Sending Allowed SMTP

Router Internet

Organization network

③Reply the result

② Check the destination
IP address

Fig. 5. Overview of proposed system

The proposed system captures and analyzes all DNS traffic
generated in the organization network, and saves the NS
records, the corresponding glue A records, and the MX
records (in the case of email applications) to the DNS
RPZ. Then all the network traffic will be monitored in the
organization network and the destination IP addresses will
be checked in the DNS RPZ. If the destination IP addresses

are stored in the DNS RPZ, the SMTP traffic will be passed
through, otherwise, the SMTP traffic will be blocked.

B. Data plane and Controller in SDN

Software-Defined Networking (SDN) states one of the new
network technologies to programming language by providing
the feature to brief network behavior management by open
interfaces flexibly. SDN consists of the data plane and the
control plane. The control plane is forwarded the information
from the data plane. In other words, SDN enables network
administrators to develop a program in order to modify the
path of all network traffic easily. With these capabilities, we
can verify if the packets transmitted from the client are a
DNS query and the way to manipulate them. This task can
realize by SDN technology as to isolating the routine of a
switch or router into 3 parts: application, control, and data
plane.

Figure 6 shows that the data plane has no flow. The control
plane makes a logical decision. The data plane is responsible
for transmitting and receiving packets based on commands
received from the control plane. The control plane is the
interface from the application plane to the data plane. The
control plane can manage the information of all data planes
concentratedly [15]. The series of actions means that the
organization network can be managed and scalable easily.
The application plane is where network developers write
programs to control the network traffic. We will write a
program here to check, determine if the DNS query from
the clients has validity, and lose the packet if it is malicious
by transmitting a drop signal to the control plane. There
are many SDN APIs available on the Internet. In this paper,
we create the controller program using Python based SDN
solution Ryu [16] which provides support for the OpenFlow
protocol.

Data Plane
(OpenFlow switch)

Internet

OpenFlow message

Data

(3) (4)

(1)

(2)

(1)

(2)

(5)

(6)

Fig. 6. Overview of OpenFlow

C. System architecture

Our proposed system architecture will use the following
terminologies.

• Query Fully Qualified Domain Name (Query FQDN):
The hostname or domain name that PC queries for
domain name resolution.

• Query destination IP Address: The destination IP ad-
dress to which PC sends the DNS queries.

• DNS RPZ: For storing the legitimate DNS NS and the
corresponding A records and the MX records including
legitimate public DNS servers.

• OpenFlow Switch: The network appliances used in the
SDN network for transferring the packets by the flow
tables created under the commands of the OpenFlow
controller.

• OpenFlow Controller: The network software used in the
SDN network to regulate network traffic comprehen-
sively by commanding OpenFlow switch to create flow
tables.

Figure 7 depicts a brief system architecture of our proposed
system using an SDN-based network. We simply explain the
process of the proposed system using a case in which a PC
transmits a direct outbound application to the Internet in the
following.

④ Reply the result

① Sending SMTP ⑥ Sending Allowed SMTP
OpenFlow

Switch
Internet

Organization network

⑤Reply the result

② Check the destination
IP address

③ Check the destination
IP address

Fig. 7. System Architecture

1) In the case of using e-mail, a PC sends SMTP to
the Internet and the OpenFlow switch will receive the
SMTP.

2) The SMTP is received by the OpenFlow switch. Then,
the OpenFlow controller is forwarded the SMTP since
there is no flow table in the information about the
destination IP address of the SMTP.

3) When the SMTP is received by the OpenFlow con-
troller, the information of the SMTP is analyzed to
obtain the query name and the destination IP address.
The OpenFlow controller checks the destination IP
address of the SMTP in the RPZ.

4) The OpenFlow controller receives the corresponding
entry from the RPZ if there is the destination IP address
in the RPZ.

5) The OpenFlow controller makes a decision whether
or not the SMTP blocks based on the result. If the

destination IP address of the SMTP is not in the RPZ,
then the OpenFlow controller blocks it as a malicious
SMTP, otherwise, the OpenFlow controller will pass
through the SMTP.

6) When the destination IP address of the SMTP is
registered in the RPZ, the SMTP will be enabled to
be transmitted to the Internet.

With these process, the direct outbound SMTP with the IP
addresses stored in the RPZ by the legitimate DNS to comply
with domain name resolution in an organization network will
be passable as a legitimate SMTP and others will be detected
and dropped as an anormal SMTP.

IV. IMPLEMENTATION AND EVALUATION

Based on the design, we constructed two programs in
order to implemente the prototype system: the program to
register records in the DNS RPZ and the controller program
of manipulation in the OpenFlow switch. We also evaluated
the prototype system in order to confirm the functionalities
of the proposed system.

A. Implementation and network environment

In order to analyze the DNS traffic and register the
corresponding records in the DNS RPZ, we implemented the
analyzing tool for DNS traffic using a Python program [17],
including the DPKT and dnspython modules. Specifically,
the analyzing tool obtains the NS records, the corresponding
glue A records, and the MX records, then registers the
domain names with “127.0.0.1” as a legitimate A record
and “127.0.0.25” as a legitimate MX record to the DNS
RPZ. In addition, our implemented environment incorporated
Ryu and Open vSwitch, which are OpenFlow controller and
OpenFlow switch as one of the numerous SDN products for
SDN-based network environment. The created Ryu program
checks the destination IP address of the SMTP connection
request in the DNS RPZ and determines how to handle the
flow in the SDN. In the case that the destination IP address is
included in the DNS RPZ, the SMTP connection request will
be passed by the Ryu program, otherwise, it will be dropped.

Client

IP:172.16.101.11IP:172.16.101.12

RYU RPZ

IP:172.16.101.30

OpenVswitch
Internet

SMTP01

IP:172.16.101.17
SMTP02

Fig. 8. Network Environment

Figure 8 illustrates the experimental network used for
the feature evaluation of the prototype system. The Open

vSwitch was installed on a physical machine and the other
components including the Ryu controller, the client, and the
SMTP01 server were installed as KVMs in the host machine.
Then the SMTP02 server which is working as the external
SMTP server is installed in another physical machine.

B. Feature Evaluation

We evaluated the features of the prototype system in an
SDN-based network environment. Particularly, we conducted
the following evaluations: measurement of DNS traffic pro-
cessing time, passing and blocking DNS queries, and passing
and blocking the SMTP connection request.

First, we used the DNS traffic achieved in our campus
network for measuring the processing time of registering the
NS, corresponding glue A, and MX records in the DNS RPZ.
The analysis tool was executed for processing the PCAP file
with a size of 200MB on the KVM running DNS RPZ. As a
result, it took about 35 minutes to extract those DNS records
and register them in the DNS RPZ.

After that, we checked the Ryu program feature for the
DNS RPZ. In particular, we sent a DNS query from the
client and checked the actions of the Ryu controller. We
configured the DNS RPZ with the following two items for
the evaluations.

1) “8.8.8.8”: This IP address is one of the Google Public
DNS server IP addresses [18] and the NS record
and the corresponding glue A record were obtained
beforehand. We registered as “8.8.8.8.rpz.example.com
A 127.0.0.1” in the DNS RPZ.

2) “8.8.4.4”: This IP address is another IP address of
the Google Public DNS server [18] and it was not
registered in the DNS RPZ.

The results of the feature evaluation for the DNS RPZ
are shown in Table I. When the DNS query is recieved by
the Open vSwitch for the first time, it will be transferred
to the Ryu controller through the “packet in” process since
the Open vSwitch has no entries for the packets sent from
the client in the flow table. After that, the Ryu program
queries the DNS RPZ for the destination IP addresses such as
“8.8.8.8.rpz.exmple.com A” and “8.8.4.4.rpz.example.com A”
queries, and confirmes if the queries can achieve the answer
with “127.0.0.1”. In the evaluations, we verified that the
action of Ryu controller blocked the DNS query to “8.8.4.4”
correctly since it is not registered in DNS RPZ and passed
the DNS query to “8.8.8.8” since it received the answer with
“127.0.0.1”.

At last, we checked the passing and blocking features
of the SMTP server connection using the telnet command
[20] from the client. As shown in Table II, the client com-
municated directly with an SMTP01 server(172.16.101.17)
using the “telnet” command. Note that submission port
587 [19] in the SMTP01 server(172.16.101.17) was used
for the consideration in actual network environment.
First, the SMTP02 server (192.168.12.18) in the exter-
nal network blocked the telnet from the client in the
case of not storing as “192.168.12.18.rpz.example.com
A 127.0.0.25” the DNS RPZ. After that, we registered

TABLE I
THE RESULTS OF FEATURE EVALUATION IN DIG COMMAND

command run on client check from Ryu to RPZ using dnspython check result on Ryu Behavior of OpenFlow switch

dig @8.8.4.4 google.com mx 8.8.4.4.rpz.example.com A null blocked
dig @8.8.8.8 google.com mx 8.8.8.8.rpz.example.com A 127.0.0.1 pass

TABLE II
THE RESULTS OF FEATURE EVALUATION IN TELNET COMMAND

Command Behavior of OpenFlow switch

telnet 172.16.101.17 587 pass
(RPZ: 127.0.0.25)
telnet 192.168.12.18 25 block
(RPZ: empty)
telnet 192.168.12.18 25 pass
(RPZ: 127.0.0.25)

“192.168.12.18.rpz.example.com A 127.0.0.25” in the DNS
RPZ. Therefore, when we tried again, the SMTP connection
request was passed through as we expected. We also con-
firmed that the Ryu controller worked correctly based on the
DNS RPZ.

V. DISCUSSION

We have mentioned the SMTP application in the previ-
ous section. In this section, we refer to the extension of
the numerous applications based on the proposed system.
DNS full resolver and authoritative name server have not
only the NS, A, and MX records but also other resource
records like TXT record [4], DNSKEY record [21], etc.
DNS resource records severally determine the usage so that
some applications need to acquire specific records such as
the MX, SRV, NAPTR records, and so on. Analyzing the
specific record and storing it in RPZ allow our proposed
system to detect and block other direct outbound applica-
tions. Thus, our proposed system can detect and block the
flexible system against abnormal applications. Furthermore,
we consider the reverse direct outbound application (direct
inbound application) of our proposed system. IP addresses
of the organization network are also stored in the DNS RPZ
beforehand. As a consequence, the source IP address of the
direct inbound application is checked by the DNS RPZ. If
the source IP address and the destination IP addresses are
contained in the DNS RPZ, the applications can pass through.
Otherwise, the application traffic will be blocked. With these
designs, network administrators will be able to maintain the
internal network securely for legitimate applications.

VI. SUMMARY

The objective of this research is to have a proposition
for a solution to detect and block abnormal applications by
analyzing DNS traffic using DNS RPZ. We have established
a virtual network environment. After that, an original system
was implemented based on our proposed method by using
SDN technologies. Furthermore, we made an evaluation of
the feature in the experimental network environment. As
a result, our proposed system showed to detect and block
malicious applications correctly.

In future work, we are planning to use this RPZ in
the actual network environment. Moreover, we will verify
the efficiency of other abnormal applications including SIP
servers, and perform performance evaluations in other large-
scale network environments.

REFERENCES

[1] Cofense, “2023 Cofense annual state of email security
Report,” https://cofense.com/wp-content/uploads/2023/03/
2023-Annual-Report-Cofense.pdf, Accessed at Apr. 28, 2023.

[2] “Avast Threat Labs,” https://decoded.avast.io/martinchlumecky/
dirtymoe-1/, Accessed at Apr. 28, 2023.

[3] Z. Zhu, G. Lu, Y. Chen, Z.J. Fu, P. Roberts, and K. Han, “Botnet
research survey,” Proc. IEEE Int’l Computer Software and Applications
Conf. (COMPSAC2008), Turku, Finland, Jul. 2008, pp. 967–972.

[4] H. Ichise, Y. Jin, and K. Iida, “Analysis of DNS TXT record usage and
consideration of botnet communication detection,” IEICE Trans. Com-
mun., vol. E101-B, no. 1, pp. 70–79, Jan. 2018.

[5] J. Liu, et al. “Botnet: Classification, attacks, detection, tracing,
and preventive measures.” EURASIP J. Wireless Communications &
Networking, article 692654, 11 pages, Aug. 2009.

[6] A.M. Kara, H. Binsalleeh, M. Mannan, A. Youssef, and M. Deb-
babi, “Detection of malicious payload distribution channels in DNS,”
Proc. IEEE Int’l Conf. Communications (ICC2014), Sydney, Australia,
June 2014, pp. 853–858.

[7] S.N.T. Vu, M. Stege, P.I. El-Habr, J. Bang, and N. Dragoni, “A survey
on botnets: Incentives, evolution, detection and current trends,” Future
Internet, vol. 13, no. 8, article 198, July 2021.

[8] H. Ichise, Y. Jin, K. Iida, and Y. Takai, “NS record history based
abnormal DNS traffic detection considering adaptive botnet communi-
cation blocking,” IPSJ J. Information Processing, vol. 28, pp. 112–122,
Feb. 2020.

[9] H. Ichise, Y. Jin, and K. Iida, “Policy-based detection and blocking sys-
tem for abnormal direct outbound DNS queries using RPZ,” Proc. Int’l
Conf. Future Computer & Commun. (ICFCC 2022), Feb. 2022,
pp. 327–332.

[10] Internet Systems Consortium, “Response policy zones (RPZ),” https:
//www.isc.org/rpz/, Accessed on Apr. 28, 2023.

[11] C. Partridge, “Mail routing and the domain system,” IETF RFC974,
Jan. 1986.

[12] J. Rosenberg, and H. Schulzrinne, “Session initiation protocol (SIP):
Locating SIP servers,” IETF RFC3264, June 2002.

[13] K. Ishibashi, T. Toyono, K. Toyama, M. Ishino, H. Ohshima, and
I. Mizukoshi, “Detecting mass-mailing worm infected hosts by min-
ing DNS traffic data.” Proc. ACM SIGCOMM Workshop on Mining
Network Data (MineNet’05), Aug. 2005, pp. 159–164.

[14] D. Whyte, P. Oorschot, and E. Kranakis, “Addressing SMTP-based
mass-mailing activity within enterprise networks,” Proc. IEEE Com-
puter Security Applications Conf. (ACSAC’06), Miami Beach, FL,
USA, Dec. 2006, pp. 393–402.

[15] Open Networking Foundation, “SDN Architecture,”
https://opennetworking.org/wp-content/uploads/2014/11/TR
SDN-ARCH-1.0-Overview-12012016.04.pdf Accessed on Apr. 28,
2023.

[16] NTT, inc., “Ryu: Getting Started,” https://osrg.github.io/ryu-book/en/
html/, Accessed on Apr. 28, 2023.

[17] “Python,” https://www.python.org, Accessed on Apr. 28, 2023.
[18] Google, “Introduction to Google public DNS,” https://developers.

google.com/speed/public-dns/docs/intro, Accessed on Apr. 28, 2023.
[19] R. Gellens, J. Klensin, “Message submission for mail,” IETF RFC6409,

Nov. 2011.
[20] J. Postel, and J. Reynolds, “TELNET protocol specification,” IETF

RFC854, May. 1983.
[21] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNSSEC

resource records ,” IETF RFC4034, Mar. 2005.

