Title	Detailed analysis of failure patterns using deformable image registration in hypopharyngeal cancer patients treated with sequential boost intensity-modulated radiotherapy	
Author(s)	Otsuka, Manami; Yasuda, Koichi; Uchinami, Yusuke; Tsushima, Nayuta; Suzuki, Takayoshi; Kano, Satoshi; Suzuki, Ryusuke; Miyamoto, Naoki; Minatogawa, Hideki; Dekura, Yasuhiro; Mori, Takashi; Nishioka, Kentaro; Taguchi, Jun; Shimizu, Yasushi; Katoh, Norio; Homma, Akihiro; Aoyama, Hidefumi	
Citation	Journal of Medical Imaging and Radiation Oncology, 67(1), 98-110 https://doi.org/10.1111/1754-9485.13491	
Issue Date	2023-02	
Doc URL	http://hdl.handle.net/2115/91127	
Rights	This is the peer reviewed version of the following article: Otsuka, M., Yasuda, K., Uchinami, Y., Tsushima, N., Suzuki, T., Kano, S, Suzuki, R., Miyamoto, N., Minatogawa, H., Dekura, Y., Mori, T., Nishioka, K., Taguchi, J., Shimizu, Y., Katoh, N., Homma, A. and Aoyama, H. (2023), Detailed analysis of failure patterns using deformable image registration in hypopharyngeal cancer patients treated with sequential boost intensity-modulated radiotherapy. J Med Imaging Radiat Oncol, 67: 98-110, which has been published in final form at 10.1111/1754-9485.13491. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.	
Туре	article (author version)	
File Information	JMIRO_1754-9485.13491.pdf	

1	Title page
2	Title: Detailed analysis of failure patterns using deformable
3	image registration in hypopharyngeal cancer patients treated
4	with sequential boost intensity-modulated radiotherapy
5	(SQB-IMRT)
6	
7	
8	Running Head: Dosimetric analysis using DIR in
9	hypopharyngeal cancer treated with SQB-IMRT
10	
11	
12	Authors:
13	Manami Otsuka MD ^{1,3}
14	Koichi Yasuda MD PhD¹
15	Yusuke Uchinami MD PhD ³
16	Nayuta Tsushima MD PhD ⁴
17	Takayoshi Suzuki MD PhD ⁴
18	Satoshi Kano MD PhD ⁴
19	Ryusuke Suzuki PhD ²
20	Naoki Miyamoto PhD ²
21	Hideki Minatogawa MD PhD¹
22	Yasuhiro Dekura MD PhD¹
23	Takashi Mori MD PhD¹
24	Kentaro Nishioka MD PhD ⁵
25	Jun Taguchi MD PhD ⁶
26	Yasushi Shimizu MD PhD ⁶
27	Norio Katoh MD PhD ³
28	Akihiro Homma MD PhD ⁴
29	Hidefumi Aoyama MD PhD ^{1,3}
30	
31	¹ Department of Radiation Oncology, Hokkaido University Hospital
32	² Department of Medical Physics, Hokkaido University Hospital

- 33 ³ Department of Radiation Oncology, Faculty and Graduate School of
- 34 Medicine, Hokkaido University
- ⁴ Department of Otolaryngology-Head and Neck Surgery, Faculty
- and Graduate School of Medicine, Hokkaido University
- ⁵ Department of Radiation Medical Science and Engineering, Faculty
- 38 and Graduate School of Medicine, Hokkaido University
- 39 ⁶ Department of Medical Oncology, Faculty and Graduate School of
- 40 Medicine, Hokkaido University

42

Corresponding author:

- 43 Koichi Yasuda, MD, PhD
- 44 Department of Radiation Oncology
- 45 Hokkaido University Hospital
- 46 North 15 West 7, Sapporo, 060-8638, Japan
- 47 Tel: (+81)11-706-5977
- 48 Fax: (+81)11-706-7876
- 49 E-mail: kyasuda@med.hokudai.ac.jp

50

- 51
- 52 **Funding**: This work was supported by the Japan Society for the
- 53 Promotion of Science (JSPS), Japan, during the conduct of the study
- 54 (Grant Number 19K08088).
- 55 **Conflict of interest**: The authors declare that there are no
- 56 conflicts of interest.
- 57 **Ethical approval**: This retrospective study was approved by the
- institutional ethics review board of Hokkaido University (020-0044).
- 59 **Consent to participate**: Informed consent was waived because of
- 60 the retrospective study design.
- 61 **Type of manuscript:** Original article.

62

63

65 <u>Abstract</u> **Introduction:** Sequential boost intensity-modulated radiotherapy 66 67 (SQB-IMRT) uses two different planning CTs (pCTs) and treatment plans. SQB-IMRT is a form of adaptive radiotherapy that allows for 68 responses to changes in the shape of the tumour and organs at risk 69 (OAR). On the other hand, dose accumulation with the two plans 70 71 can be difficult to evaluate. The purpose of this study was to analyse patterns of locoregional failure using deformable image 72 73 registration (DIR) in hypopharyngeal cancer patients treated with SQB-IMRT. 74 Methods: Between 2013 and 2019, 102 patients with 75 hypopharyngeal cancer were treated with definitive SQB-IMRT at 76 our institution. Dose accumulation with the 1st and 2nd plans was 77 performed, and the dose to the locoregional recurrent tumour 78 79 volume was calculated using the DIR workflow. Failure was classified as follows: (1) in-field (≥ 95% of the recurrent tumour 80 volume received 95% of the prescribed dose), (2) marginal (20-81 95%), or (3) out-of-field (< 20%). 82 **Results:** After a median follow-up period of 25 months, 83 84 locoregional failure occurred in 34 patients. Dose-volume histogram 85 analysis showed that all locoregional failures occurred in the field within 95% of the prescribed dose, with no marginal or out-of-field 86 87 recurrences observed. **Conclusion:** The dosimetric analysis using DIR showed that all 88 89 locoregional failures were within the high-dose region. More 90 aggressive treatment may be required for gross tumours. 91

<u>keywords</u>

Head and Neck; Radiation Oncology

94

92

93

95

97 **Text**

98

Introduction

99 Hypopharyngeal cancer is a relatively rare disease, with an incidence of 84,000 new cases in 2020 worldwide [1, 2]. Most newly 100 diagnosed patients present with locally advanced disease [3], which 101 has the worst treatment outcomes among head and neck cancer 102 103 (HNC) patients, with 5-year overall survival (OS) rates of 25-41% [2-4]. Since radiation therapy (RT) can preserve laryngeal function, 104 105 it is one of the most important treatments for hypopharyngeal 106 cancer. Intensity-modulated radiation therapy (IMRT) is now considered the 107 standard treatment for HNC. In clinical practice for HNC, there are 108 two main IMRT approaches: sequential boost (SQB) and 109 simultaneous integrated boost (SIB) IMRT. SQB-IMRT is similar to 110 111 3D conformal radiation therapy. SQB-IMRT consists of two plans: the gross tumour and prophylactic region are irradiated during the 112 1st plan, and a boost to the gross tumour is delivered during the 113 2nd plan. Although it is necessary to repeat the planning computed 114 tomography (pCT) and create a boost plan, this allows for responses 115 to changes in the shape of the tumour and organs at risk (OAR), 116 117 allowing for a more accurate dose administration. Thus, SQB-IMRT is considered to be an adaptive therapy. Since SQB-IMRT uses two 118 different pCTs and treatment plans, it can be challenging to 119 evaluate the accumulated dose with the two plans. On the other 120 hand, the SIB-IMRT approach requires only one plan for the entire 121 122 treatment by using different doses per fraction for gross tumours 123 and prophylactic regions. Because of its convenience, SIB-IMRT has 124 been widely used. In hypopharyngeal cancer, most previous studies [5-10] have used SIB-IMRT, while reports of SQB-IMRT are lacking. 125 126 Some studies [11-16] have reported the patterns of failure after 127 IMRT for HNC using a rigid image registration (RIR) method. RIR is a simple image registration method using translation and rotation. 128

129	Deformable image registration (DIR) is a technique using a
130	deformation vector field [17]. RIR can be accurate when the
131	anatomy remains almost unchanged, for example, in intracranial
132	lesions [17, 18]. However, RIR may be inadequate when the
133	anatomy and patient setup change significantly due to weight loss
134	or tumour regression [17, 18]. DIR does not move the image
135	uniformly across the entire image as RIR does but rather allows
136	voxel-by-voxel movement of the image in various directions. Using
137	DIR, the anatomical correspondence points between images can be
138	calculated even with differences in the imaging position and
139	changes in body shape and organ geometry. On the other hand,
140	DIR is prone to errors in regions where the difference between the
141	target image and the deformed image is large. After DIR is
142	conducted, the accuracy of registration should be confirmed by a
143	validated DIR algorithm [19] using a quantitative physics approach
144	and visual evaluation. In addition, DIR allows for dose accumulation
145	and evaluation of the two plans when using SQB-IMRT. We
146	evaluated the dosimetric features of locoregional recurrence with
147	DIR. Since 2013, SQB-IMRT has been routinely used to treat
148	hypopharyngeal cancer at our institution to address anatomical
149	changes in the target volume and OARs. In this study, we
150	retrospectively analysed the recurrence patterns of hypopharyngeal
151	cancer patients treated with SQB-IMRT using DIR. The results of
152	this study may provide evidence for a strategy to improve clinical
153	outcomes by increasing the prescribed dose in areas prone to
154	recurrence.
155	
156	Methods
157	Ethical statement
158	This retrospective study was approved by the Ethics Committee of
159	the University Hospital (020-0044); the informed consent

requirement was waived.

161	
162	<u>Patients</u>
163	We performed a retrospective analysis of patients who underwent
164	definitive SQB-IMRT for hypopharyngeal cancer at our institution.
165	Further details on the patients included in this study, such as the
166	inclusion and exclusion criteria, are shown in Appendix 1.
167	
168	Radiotherapy
169	The gross tumour volume (GTV) included the primary tumour (GTV-
170	primary) and metastatic lymph nodes (GTV-node). The clinical
171	target volume-primary tumour (CTV-primary) and CTV-metastatic
172	lymph nodes (CTV-node) were created with a margin of 5-10 mm
173	from the GTV to cover the risk areas of subclinical disease. If
174	induction chemotherapy was given, the initial GTV before
175	chemotherapy was included in the CTV-primary. The CTV-
176	prophylactic lymph nodes (CTV-prophylactic) included bilateral
177	levels II, III, IVa-b, Va-c, VIb, and VIIa. The planning target volume
178	(PTV) was created with a margin of 3 mm from the CTV. PTV1
179	included PTV-primary tumour (PTV-primary), PTV-metastatic lymph
180	nodes (PTV-node) and PTV-prophylactic lymph nodes (PTV-
181	prophylactic) during the 1st plan. PTV2 included PTV-primary and
182	PTV-node during the 2nd plan. PTV1 was delivered with a total dose
183	of 46 Gy in 23 fractions (fr), and PTV2 was boosted with 24 Gy in
184	12 fr. Radiotherapy was performed once a day for five consecutive
185	days per week. Other details on radiotherapy are shown in Appendix
186	2.
187	
188	Follow-up
189	After the completion of radiotherapy, the patients were followed up
190	every 1 month for the first year, 2 months for the second year, 3
191	months for the third year, and 4 to 6 months for the fourth to fifth
192	years. Laryngoscopy was performed every follow-up visit, and CT

was conducted every 3 months. If recurrence was suspected, a 193 194 tissue biopsy was performed. MRI or PET-CT was also performed to 195 consider treatment options. 196 Evaluation of patterns of failure 197 The doses for the 1st and 2nd plans were accumulated and 198 199 registered onto the 2nd pCT with the DIR workflow using MIM Maestro v7.0 (MIM Software, Cleveland, OH, USA). The recurrence 200 tumour volume (V_{rec}) was delineated on follow-up CT at relapse 201 (Recurrence_CT), with registered PET-CT and/or MRI, if available, 202 as a reference. Autosegmentation was not performed. The 203 204 accumulated dose on the 2nd pCT was propagated to 205 Recurrence CT with DIR. The workflow is shown in Fig. 1. The dose-206 volume histogram (DVH) of V_{rec} was analysed. The recurrences were 207 classified according to the method of Dawson et al. [11]: (1) "infield": more than 95% of V_{rec} received 95% of the prescribed dose; 208 (2) "marginal": 20-95% of V_{rec} received 95% of the prescribed 209 dose; and (3) "outside": less than 20% of V_{rec} received 95% of the 210 prescribed dose. The recurrent tumour volume, maximum (D_{max}) , 211 minimum (D_{min}), and mean dose (D_{mean}) of V_{rec} , and volume of 95% 212 213 of the prescribed dose were evaluated. The updated recurrence classification by Mohamed published in 2016 [20] was also used. It 214 215 is based on the dose and the original planning target volume (TV) using centroid-based approaches. Recurrences were classified into 216 217 five types, the details of which are shown in Appendix 3. 218 219 Detailed process and assessment of the accuracy of DIR 220 The details of DIR were as follows: Basically, two DICOM images were imported into MIM, and the default semiautomatic workflow 221 for DIR was applied. First, RIR was automatically performed; after 222 223 visual confirmation, intensity-based DIR was automatically conducted. Finally, the region of interest and/or radiotherapy dose 224

225	were propagated to the target image. For the 1st and 2nd plan dose
226	accumulation, the area of the entire neck was set as the volume of
227	interest (VOI); for the propagation of the accumulated dose to the
228	Recurrence_CT, the area around the recurrent tumour was set as
229	the VOI.
230	To assess the accuracy of DIR, the mean distance to agreement
231	(MDA) and Dice similarity coefficient (DSC) were used [21]. Details
232	of the process are provided in Appendix 4.
233	
234	Statistical analysis
235	OS, locoregional progression-free survival (LRPFS), distant
236	metastasis-free survival (DMFS), and progression-free survival
237	(PFS) were estimated using the Kaplan-Meier method. Univariate
238	and multivariate analyses were performed using Cox proportional
239	hazards models to investigate risk factors for OS and LRPFS.
240	Variables with $P < 0.10$ in the univariate analysis were included in
241	the multivariable analysis. Statistical analysis was performed using
242	JMP software version 14 (SAS Institute Inc., Cary, NC, USA).
243	Patients with less than 6 months of follow-up were excluded from
244	the survival analysis.
245	
246	Results
247	Between 2013 and 2019, 102 patients met the inclusion criteria.
248	The characteristics of these patients are summarized in Table 1. The
249	median age at diagnosis was 66 (range, 40 to 89) years old. The
250	majority of the patients had stage IV disease (56 cases, 55%). We
251	usually contoured the targets using fused MRI (35%) and/or PET
252	(92%). The IMRT delivery techniques were mostly step-and-shoot
253	(84 cases, 82%), some were VMAT (13 cases, 13%), and 5 cases
254	(4.9%) were a combination of step-and-shoot and VMAT. Ninety-
255	seven patients (95%) received 70 Gy/35 fr. Five patients (4.9%)

256	received 71 Gy/33 fr, which consisted of a 1st plan of 46 Gy/23 fr	
257	and a 2nd plan of 25 Gy/10 fr, to compensate for treatment	
258	interruption due to public holidays. The median overall treatment	
259	time for radiotherapy was 51 (47-62) days. Before radiotherapy, 2	
260	patients (2.0%) underwent neck dissection without resection of the	
261	primary site. Details of chemotherapy are shown in Appendix 5.	
262		
263	<u>Clinical outcomes</u>	
264	Of the 102 patients, survival was analysed for 84 patients who were	
265	followed up for more than 6 months. The median follow-up periods	
266	for the 84 patients and the surviving 63 patients were 25 (6.1-82)	
267	months and 27 (6.1-82) months, respectively. The 2-year OS,	
268	LRPFS, DMFS, and PFS rates were 79% (95% confidence interval,	
269	68-87%), 57% (46-68%), 71% (60-80%), and 54% (43-64%),	
270	respectively (Fig. 2). The 3-year OS, LRPFS, DMFS, and PFS rates	
271	were 76% (64-85%), 54% (43-66%), 69% (58-79%), and 49%	
272	(38-61%), respectively. The 5-year OS, LRPFS, DMFS, and PFS	
273	rates were 55% (37-72%), 39% (24-55%), 55% (38-71%), and	
274	40% (26-56%), respectively. The univariate and multivariate	
275	analyses of OS and LRPFS are summarized in Appendix 6. Adverse	
276	events are shown in Appendix 7.	
277		
278	Accuracy of DIR	
279	The MDA and DSC results are shown in Appendix 4. After	
280	quantitative and qualitative evaluation, the accuracy of the DIR	
281	workflow in dose accumulation was determined to be level 0 in all	
282	32 cases. The accuracy of the DIR workflow in V_{rec} analysis was	
283	determined to be level 1 in 17 cases, level 2 in 11 cases and level 3	
284	in 4 cases.	
285		
286	Patterns of failure	

287	The patterns of failure are shown in Fig. 3. Forty-one patients were
288	identified; of them, 34 (33%) had locoregional failure, and 19 had
289	distant metastases. Of the patients experiencing locoregional
290	recurrence, 26 experienced local failure, 15 experienced regional
291	failure, and 7 experienced both local and regional failure. The
292	median time to recurrence after radiotherapy was 5.8 (2.7-34)
293	months. Fourteen patients with local regional recurrence underwent
294	salvage surgery.
295	We performed dosimetric analysis for 32 out of 34 patients with
296	locoregional failure. For the other 2 patients, images of recurrence
297	were not available. The results of the dosimetric analysis are shown
298	in Table 2. The median value of V_{rec} was 4.7 (0.3-60.5) cm ³ . The
299	median of the mean dose of V_{rec} was 72.5 (71.6-74.1) Gy. All DVH
300	curves of V_{rec} are shown in Fig. 4. In the 32 patients, the prescribed
301	dose was 70 Gy, and the 95% dose was calculated to be 66.5 Gy.
302	The median $V_{66.5\;Gy}$ of V_{rec} was 100% (95.2-100%). All recurrences
303	were classified as "in-field" and not "marginal" or "out-field". The
304	location of all failure centroids was within the CTV-primary or CTV-
305	node. All $V_{\text{rec}}s$ were classified as Type A (central high dose).
306	Representative cases are shown in Appendix 8. The mean doses of
307	the CTV-primary and CTV-node were 72.4 Gy (71.5-74.1 Gy), and
308	the mean CTV-prophylactic was 60.1 Gy (54.4-68.4 Gy).
309	
310	Discussion
311	We retrospectively analysed the patterns of failure and the dose for
312	locoregional recurrence in hypopharyngeal cancer patients treated
313	with SQB-IMRT using DIR. All locoregional failures were in the field
314	within the high-dose region; there were no cases of marginal or

region, although those analyses did not use DIR [11-16]. For

315

316

317

outfield recurrence. Several previous studies have also reported

that most cases of locoregional failure occurred in the high-dose

318	example, Tandon et al. [15] analysed 39 failures of HNC after
319	definitive SIB-IMRT using RIR and reported that 27 (69%) of
320	failures were located within the high-dose region and 12 (31%)
321	were located in other areas. Mohamed et al. [20] conducted a
322	detailed comparison of DIR vs. RIR for analysing patterns of failure
323	for HNC. They found that out of 26 cases, 22 cases were in-field
324	failures in DIR vs. 18 cases in RIR, while 1 case was a marginal
325	failure in the high dose region in DIR vs. 5 cases in RIR. They
326	concluded that DIR was more accurate and highly recommended for
327	evaluating locoregional failure for HNC. Since the anatomy of HNC
328	often changes significantly due to weight loss and tumour
329	regression, it is reasonable to assume that DIR, which can
330	compensate for these changes, is more accurate than RIR.
331	According to the previous study by Mohamed et al. [20], if the
332	recurrence cases in this study were analysed by RIR instead of DIR,
333	they would have been incorrectly assessed to have occurred more
334	peripherally. An inaccurate judgment can affect management
335	afterward. Recurrence from the centre indicates biologic
336	radiotherapy resistance, and increased radiation doses or intensified
337	chemotherapy should be considered. However, recurrence from the
338	margins implies an error in the radiotherapy process. Improvement
339	in the accuracy of contouring and dose administration should be
340	considered. Thus, the accurate classification of recurrence is
341	important to improve radiotherapy outcomes. We believe that a
342	more accurate DIR-based recurrence assessment is important, as
343	recommended by Mohamed et al.
344	Our results using DIR strongly suggest that recurrence occurs within
345	high-dose regions. Since SQB-IMRT uses two CTs and two
346	treatment plans, dose accumulation is usually difficult to evaluate,
347	but DIR allowed us to analyse the DVH of recurrent tumours. Since
348	all locoregional failures were within the high-dose region, more
349	aggressive therapy for the GTV may be necessary. Network analysis

- 350 [22] for locally advanced HNC showed that hyperfractionated
- 351 radiotherapy with concomitant chemotherapy had the highest OS
- rate, and this approach may be worth exploring in hypopharyngeal
- 353 cancer.
- We usually use PET-CT (92%) and MRI (35%) to delineate the
- target volume. Some publications [23, 24] have reported that
- coregistration of PET-CT or MRI with pCT could improve the
- delineation of the target volume. Delineation with PET-CT and/or
- 358 MRI can be important for the accurate identification of high-dose
- 359 regions.
- In this study, the mean accumulated dose to the CTV-prophylactic
- was 60.1 Gy (54.4-68.4 Gy). This was analysed only in patients
- with locoregional recurrence (N=32), but we believe it is an overall
- trend. The CTV-prophylactic received 46 Gy during the 1st plan, and
- another low dose was added around the GTV during the 2nd plan,
- resulting in an accumulated dose of 60 Gy to the CTV-prophylactic.
- 366 Dose accumulation over two plans using different CTVs requires
- special equipment, such as DIR software, and is time consuming.
- Therefore, in actual clinical practice, we may tend to ignore the
- 369 effect of a low dose on CTV-prophylactic during the 2nd plan
- without dose accumulation. We should be aware of the risk of
- unexpectedly high doses being administered to the elective nodal
- 372 region.
- The 2-year rates of OS and LRPFS were 79% and 57%, respectively.
- Our literature search did not identify any study mentioning the
- 375 treatment outcomes of SQB-IMRT only for hypopharyngeal cancer.
- 376 Previous reports of hypopharyngeal cancer patients treated with
- definitive IMRT are listed in Table 3 [5-10]. Our results seem to be
- comparable to or slightly worse than those of previous reports. In
- the multidisciplinary HNC board in our institution, patients with
- 380 stage III/IV disease are usually recommended for surgery;
- therefore, patients with more complications, who might have a poor

prognosis, could have received radiotherapy. In fact, the age of the 382 patients tended to be older than that in other reports. However, it is 383 384 difficult to make exact comparisons between these retrospective studies because of some critical limitations, such as our short 385 386 follow-up period. In our study, acute G3 toxicities of mucositis and dysphagia were 387 observed in 34% and 24% of the patients, respectively. At 2 years 388 389 after the completion of radiotherapy, late G2 or higher toxicities 390 (dysphagia and xerostomia) were observed in 22% and 15%, respectively, and any G3 toxicity was observed in 6%. These are 391 roughly in the range of previous reports, and it is difficult to make 392 direct comparisons in retrospective analyses. 393 394 Previous studies [25-29] have reported that SQB-IMRT is equivalent to SIB-IMRT in terms of treatment outcomes for patients with HNC. 395 396 A few prospective randomized trials [27-29] have been conducted, and comparable treatment outcomes were reported. We believe that 397 398 the findings in our study are consistent with these results and 399 provide evidence to support that the clinical outcomes of SQB and SIB-IMRT are comparable, even in patients with hypopharyngeal 400 401 cancer. There is one report indicating the benefit of SQB-IMRT in 402 terms of dose reduction to the parotid gland for distant tumours [30]. This may indicate the potential benefit of SQB-IMRT, but it 403 404 should be verified in a prospective study specifically exploring this 405 aspect. In recent years, the benefits of SIB over SQB with respect 406 to OS have been reported [31]. Although the methodology was 407 retrospective and not described in detail, the study was noteworthy, 408 as it potentially indicated the usefulness of SIB. In fact, SIB-IMRT has been adopted worldwide with the theoretical strengths of 409 greater conformality and higher intratumour doses. The contour 410 411 guidelines and institution and trial protocols almost exclusively use 412 SIB.

413	The DIR workflow could be adapted to SIB-IMRT. The doses and
414	contours of SIB could be deformed to match the 2nd pCT performed
415	during treatment. Dose accumulation would be more complex in SIB.
416	This DIR workflow might then be more closely related to the
417	currently high interest area of biomarker PET-driven treatment
418	adaptation and response assessment [32-34]. Dose adaptation to
419	the GTV or subvolumes within the GTV according to biomarkers
420	during treatment may be more accurate with the use of DIR, and
421	DIR dose accumulation may better represent voxels receiving high
422	doses.
423	DIR has the limitation of being time consuming, but it is an
424	important procedure in adaptive radiotherapy for HNC. One of the
425	purposes of adaptive radiotherapy is to increase the radiation dose
426	to the target. On the other hand, some studies have aimed to
427	decrease adverse effects and improve local control through frequent
428	adaptations [35, 36]. Prospective clinical trials are needed to clarify
429	the benefits of adaptive radiotherapy with DIR.
430	In addition to the limitations mentioned above, (1) this study was a
431	retrospective study at a single institution, (2) the follow-up period
432	was as short as 25 months, and (3) we evaluated adverse events
433	only by a radiation oncologist. Patient-reported outcomes (PROs)
434	and quality of life (QOL) were not assessed. In future prospective
435	studies planning to compare SQB and SIB-IMRT, these evaluations
436	would be necessary.
437	
438	Conclusion
439	In hypopharyngeal cancer patients treated with SQB-IMRT, the
440	analysis using DIR showed that all locoregional failures were within
441	the high-dose region; therefore, more aggressive therapy may be

required for the GTV.

444 **References**

- 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I,
- Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates
- of Incidence and Mortality Worldwide for 36 Cancers in 185
- 448 Countries. *CA Cancer J Clin* 2021; **71**: 209–49.
- 2. Garneau JC, Bakst RL, Miles BA. Hypopharyngeal cancer: A state
- 450 of the art review. *Oral Oncol* 2018; **86**: 244–50.
- 451 3. Gatta G, Botta L, Sánchez MJ, Anderson LA, Pierannunzio D,
- Licitra L, et al. Prognoses and improvement for head and neck
- cancers diagnosed in Europe in early 2000s: The EUROCARE-5
- 454 population-based study. Eur J Cancer 2015; **51**: 2130–43.
- 455 4. Newman JR, Connolly TM, Illing EA, Kilgore ML, Locher JL, Carroll
- WR. Survival trends in hypopharyngeal cancer: A population-based
- 457 review. *Laryngoscope* 2015; **125**: 624–9.
- 5. Studer G, Lütolf UM, Davis JB, Glanzmann C. IMRT in
- 459 hypopharyngeal tumors. *Strahlentherapie und Onkol* 2006; **182**:
- 460 331-5.
- 461 6. Liu WS, Hsin CH, Chou YH, Liu JT, Wu MF, Tseng SW, et al. Long-
- term results of intensity-modulated radiotherapy concomitant with
- 463 chemotherapy for hypopharyngeal carcinoma aimed at laryngeal
- 464 preservation. *BMC Cancer* 2010; **10**: 102.
- 465 7. Huang WY, Jen YM, Chen CM, Su YF, Lin CS, Lin YS, et al.
- 466 Intensity modulated radiotherapy with concurrent chemotherapy for
- larynx preservation of advanced resectable hypopharyngeal cancer.
- 468 Radiat Oncol 2010; **5**: 37.
- 469 8.Edson MA, Garden AS, Takiar V, Glisson BS, Fuller CD, Gunn GB,
- 470 et al. Outcomes for hypopharyngeal carcinoma treated with organ-
- preservation therapy. *Head Neck* 2016; **38**: E2091–9.
- 472 9. Mok G, Gauthier I, Jiang H, Huang SH, Chan K, Witterick IJ, et al.
- 473 Outcomes of intensity-modulated radiotherapy versus conventional
- 474 radiotherapy for hypopharyngeal cancer. *Head Neck* 2015; **37**:
- 475 655-61.

- 476 10. Katsoulakis E, Riaz N, Hu M, Morris L, Sherman E, McBride S, et
- 477 al. Hypopharyngeal squamous cell carcinoma: Three-dimensional or
- 478 Intensity-modulated radiotherapy? A single institution's experience.
- 479 *Laryngoscope* 2016; **126**: 620–6.
- 480 11. Dawson LA, Anzai Y, Marsh L, Martel MK, Paulino A, Ship JA, et
- 481 al. Patterns of local-regional recurrence following parotid-sparing
- 482 conformal and segmental intensity-modulated radiotherapy for head
- and neck cancer. Int J Radiat Oncol Biol Phys 2000; **46**: 1117–26.
- 12. Chao KSC, Ozyigit G, Tran BN, Cengiz M, Dempsey JF, Low DA.
- Patterns of failure in patients receiving definitive and postoperative
- 486 IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2003;
- 487 **55**: 312–21.
- 488 13. Johansen S, Norman MH, Dale E, Amdal CD, Furre T, Malinen E,
- 489 et al. Patterns of local-regional recurrence after conformal and
- intensity-modulated radiotherapy for head and neck cancer. *Radiat*
- 491 *Oncol* 2017; **12**: 87.
- 492 14. Raktoe SAS, Dehnad H, Raaijmakers CPJ, Braunius W, Terhaard
- 493 CHJ. Origin of tumor recurrence after intensity modulated radiation
- 494 therapy for oropharyngeal squamous cell carcinoma. *Int J Radiat*
- 495 *Oncol Biol Phys* 2013; **85**: 136–41.
- 496 15. Tandon S, Gairola M, Ahlawat P, Karimi AM, Tiwari S, Muttagi V,
- 497 et al. Failure patterns of head and neck squamous cell carcinoma
- 498 treated with radical radiotherapy by intensity modulated
- 499 radiotherapy technique using focal volume and dosimetric method.
- 500 Head Neck 2019; **41**: 1632-7.
- 16. Song JH o., Jeong BK, Choi HS, Jeong H, Kang MH e., Kang JH
- 502 u., et al. Comparison of Failure Patterns Between Conventional and
- 503 Intensity-modulated Radiotherapy for Stage III and IV Head and
- Neck Squamous Cell Carcinoma. *Anticancer Res.* 2015; **35**: 6833–
- 505 40.
- 506 17. Crum WR, Hartkens T, Hill DLG. Non-rigid image registration:
- 507 Theory and practice. *Br J Radiol* 2004; **77**: S140–53.

- 18. Oh S, Kim S. Deformable image registration in radiation therapy.
- 509 Radiat Oncol J 2017: **35**: 101–11.
- 19. Mohamed ASR, Ruangskul MN, Awan MJ, Baron CA, Kalpathy-
- 511 Cramer J, Castillo R, et al. Quality assurance assessment of
- 512 diagnostic and radiation therapy-simulation CT image registration
- for head and neck radiation therapy: Anatomic region of interest-
- 514 based comparison of rigid and deformable algorithms. *Radiology*
- 515 2015; **274**:752–63.
- 516 20. Mohamed ASR, Rosenthal DI, Awan MJ, Garden AS, Kocak-Uzel
- 517 E, Belal AM, et al. Methodology for analysis and reporting patterns
- of failure in the Era of IMRT: Head and neck cancer applications.
- 519 *Radiat Oncol* 2016; **11**: 95.
- 520 21. Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image
- registration and fusion algorithms and techniques in radiotherapy:
- 522 Report of the AAPM Radiation Therapy Committee Task Group No.
- 523 132. *Med Phys* 2017; **44**: e43–76.
- 524 22. Petit C, Lacas B, Pignon JP, Le QT, Grégoire V, Grau C, et al.
- 525 Chemotherapy and radiotherapy in locally advanced head and neck
- 526 cancer: an individual patient data network meta-analysis. *Lancet*
- 527 *Oncol* 2021; **22**: 727–36.
- 528 23. Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya M.d K,
- 529 Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for
- radiotherapy planning of oropharyngeal and nasopharyngeal
- carcinomas. Int J Radiat Oncol Biol Phys 2002; **53**: 1051–7.
- 532 24. Emami B, Sethi A, Petruzzelli GJ. Influence of MRI on target
- volume delineation and IMRT planning in nasopharyngeal carcinoma.
- 534 Int J Radiat Oncol Biol Phys 2003; **57**: 481–8.
- 535 25. Jiang L, Zhang Y, Yang Z, Liang F, Wu J, Wang R, et al. A
- 536 comparison of clinical outcomes between simultaneous integrated
- 537 boost (SIB) versus sequential boost (SEQ) intensity modulated
- radiation therapy (IMRT) for head and neck cancer: A meta-analysis.
- 539 *Med* 2019; **98**: e16942.

- 540 26. Kuo YH, Liang JA, Wang TC, Juan CJ, Li CC, Chien CR.
- 541 Comparative effectiveness of simultaneous integrated boost vs
- 542 sequential intensity-modulated radiotherapy for oropharyngeal or
- 543 hypopharyngeal cancer patients: A population-based propensity
- score-matched analysis. *Med* 2019; **98**: e18474.
- 545 27. Songthong AP, Kannarunimit D, Chakkabat C, Lertbutsayanukul
- 546 C. A randomized phase II/III study of adverse events between
- sequential (SEQ) versus simultaneous integrated boost (SIB)
- intensity modulated radiation therapy (IMRT) in nasopharyngeal
- 549 carcinoma; preliminary result on acute adverse events. Radiat Oncol
- 550 2015; **10**: 166.
- 28. Lertbutsayanukul C, Prayongrat A, Kannarunimit D, Chakkabat
- 552 C, Netsawang B, Kitpanit S. A randomized phase III study between
- 553 sequential versus simultaneous integrated boost intensity-
- modulated radiation therapy in nasopharyngeal carcinoma.
- *Strahlentherapie und Onkol* 2018; **194**: 375–85.
- 29. Grover A, Soni TP, Patni N, Singh DK, Jakhotia N, Gupta AK, et
- al. A randomized prospective study comparing acute toxicity,
- compliance and objective response rate between simultaneous
- integrated boost and sequential intensity-modulated radiotherapy
- for locally advanced head and neck cancer. Radiat Oncol J 2021;
- 561 **39**: 15–23.
- 30. Lamers-Kuijper E, Heemsbergen W, Van Mourik A, Rasch C.
- 563 Sequentially delivered boost plans are superior to simultaneously
- delivered plans in head and neck cancer when the boost volume is
- located further away from the parotid glands. *Radiother Oncol*
- 566 2011; **98**: 51–6.
- 31. Stromberger C, Stsefanenka A, Kalinauskaite G, Beck M,
- 568 Coordes A, Zschaeck S, et al. Simultaneous Integrated Boost Or
- 569 Sequential Boost (Chemo)Radiation For Locally Advanced Head And
- Neck Cancer: The Same Is The Same? Int J Radiat Oncol 2020; **108**,
- 571 e849.

- 32. Duprez F, De Neve W, De Gersem W, Coghe M, Madani I.
- 573 Adaptive dose painting by numbers for head-and-neck cancer. *Int J*
- 574 Radiat Oncol Biol Phys 2011; **80**: 1045–55.
- 33. Berwouts D, Olteanu LAM, Duprez F, Vercauteren T, De Gersem
- 576 W, De Neve W, et al. Three-phase adaptive dose-painting-by-
- 577 numbers for head-and-neck cancer: Initial results of the phase i
- 578 clinical trial. *Radiother Oncol* 2013; **107**: 310–6.
- 34. Olteanu LAM, Berwouts D, Madani I, De Gersem W, Vercauteren
- T, Duprez F, et al. Comparative dosimetry of three-phase adaptive
- and non-adaptive dose-painting IMRT for head-and-neck cancer.
- 582 Radiother Oncol 2014; **111**: 348–53.
- 583 35. Castelli J, Simon A, Lafond C, Perichon N, Rigaud B, Chajon E,
- et al. Adaptive radiotherapy for head and neck cancer. *Acta*
- 585 *Oncologica* 2018; **57**: 1284–92.
- 36. Heukelom J, Fuller CD. Head and Neck Cancer Adaptive
- 587 Radiation Therapy (ART): Conceptual Considerations for the
- Informed Clinician. Semin Radiat Oncol 2019; 29: 258-73.

Appendices

591

592

590

Appendix 1. Details on the patients included in this study

593

Inclusion criteria

- (1) Patients with histologically diagnosed squamous cell carcinoma
- (2) Stage I to IVb according to the 7th-8th edition of the UICC TNM classification
- (3) Definitive SQB-IMRT with a total dose of 66 Gy or higher

Exclusion criteria

- (1) Patients who underwent surgery at the primary site before RT
- (2) SIB-IMRT
- (3) Conventional 3D conformal radiation therapy

Staging system

- The 7th edition of the UICC TNM classification (between 2013 and 2017)
- The 8th edition of the UICC TNM classification (from 2018)

Workup before radiation therapy

- Laryngoscopy
- · Biopsy of the primary site
- · CT
- With/without magnetic resonance imaging (MRI)
- With/without ¹⁸F-fluorodeoxyglucose positron emission tomography/ computed tomography (FDG-PET/CT)

Decision making on treatment policy

- All cases were discussed with the multidisciplinary HNC board before treatment to determine the TNM stage and treatment strategy.
- 594 Abbreviations: 3D= 3-dimensional, CT= computed tomography,
- 595 HNC=head and neck cancer, IMRT=intensity-modulated
- radiotherapy, RT=radiation therapy, SQB=sequential boost,
- 597 UICC=Union for International Cancer Control

CT scans

- 2 to 2.5 mm slice thickness
- Usually with contrast enhancement

Radiation treatment planning system

• Pinnacle v9.0 (Phillips, Medical Systems, WI)

Contouring

- Manually contoured by radiation oncology residents based on the guidelines [1, 2]
- Reviewed by radiation oncologists with more than 10 years of experience

Plan optimization

Optimized such that 95% of the PTV received the prescribed dose (PTV D95%)

Dose constraints for target volumes and OARs

Structures	•	Criteria	Acceptable Criteria
PTV1 or PTV2	D ₉₅	= 70 Gy	
	D ₉₈	> 65.1 Gy	> 63 Gy
	D ₁₅	< 77 Gy	< 80.5 Gy
	D_{max}	< 84 Gy	< 87.5 Gy
Brainstem + 3 mm	D_{max}	< 60 Gy	< 64 Gy
	D_{1cc}		< 60 Gy
Spinal cord + 3 mm	D_{max}	< 50 Gy	< 54 Gy
	D_{1cc}		< 50 Gy
Brain	D_{max}	< 70 Gy	< 74 Gy
	D_{1cc}		< 70 Gy
Parotid gland	D_{mean}	< 26 Gy	< 30 Gy
Submandibular gland	D_{mean}	<	39 Gy
Oral cavity	D_{mean}	<	45Gy
Larynx	D_{mean}	As low	as possible
PCM	D_{mean}	As low	as possible
Thyroid gland	D_{mean}	As low	as possible

IMRT methods

 A step-and-shoot method with 7 static ports (until 2017) or volumetric modulated arc therapy (VMAT) with two arcs (since 2018)

Treatment delivery

607

- Clinac iX linear accelerators or TrueBeam (Varian Medical Systems, Palo Alto, CA, USA) with 6 MV photons
- Image-guided radiation therapy using daily cone-beam CT and a 6degree-of-freedom couch for rotational error correction

Abbreviations: D_{1cc}=minimum dose received by the highest irradiated volumes of 1 cc, D_{max}=maximum dose, D_{mean}=mean dose, D_{XX}=dose to XX% of the highest irradiated volume of the target, OAR=organs at risk, PCM=pharyngeal constrictor muscle, PTV1=PTV of 1st plan, PTV2=PTV of 2nd plan

Appendix 3. Details of the updated recurrence classification by Mohamed

610

Туре	Description
A, Central high dose	The centroid of V_{rec} originated in a high-dose TV, and the dose to 95% volume (D95%) of V_{rec} was > 95% of the dose prescribed to the corresponding TV of origin
B, Peripheral high dose	The centroid of V_{rec} was in a high-dose TV, but D95% of V_{rec} was <95% of the dose to this TV
C, Central elective dose	The centroid of V_{rec} was in an intermediate or low-dose TV, D95% of V_{rec} was > 95% of the dose to the respective TV
D, Peripheral elective dose	The centroid of V_{rec} was in an intermediate- or low-dose TV, but D95% of V_{rec} was < 95% of the dose to the respective TV
E, Extraneous dose	The centroid of V _{rec} was outside all TVs

Abbreviations: TV=target volume, V_{rec}=recurrence tumour volume

Appendix 4. Assessment of DIR accuracy and the MDA and DSC results

In the DIR workflow for dose accumulation using the first and second plans, six anatomical structures were identified—the brainstem, right and left parotid glands, mandible, oral cavity, and spinal cord—to assess the accuracy across the entire irradiated field. In the DIR workflow for the analysis of V_{rec} using Recurrence_CT and a 2nd pCT (with the accumulated dose), three anatomic structures were identified—the hyoid bone, cricoid cartilage, and cervical spinal cord—for accuracy around the recurrent tumour. With reference to TGA 132 [3], we basically set the tolerances for quantitative evaluation as 3 mm or less for MDA and 0.8 or greater for DSC on the average of each structure. Finally, a qualitative evaluation was performed by two radiation oncologists, and the

630 0: Whole scan aligned

1: Locally aligned

632 2: Useable with risk of deformation

3: Useable for diagnosis only

4: Alignment not acceptable

The MDA and DSC results are shown in the following table.

accuracy levels were categorized [3] as follows:

D	DIR workflow for dose accumulation using the first and second plans									
	MDA					DSC				_
	Average	Median	SD	Min	Max	Average	Median	SD	Min	Max
	1.45	1.36	0.56	0.56	2.81	0.84	0.84	0.05	0.74	0.93
D	DIR workflow for analysis of V _{rec} using Recurrence_CT and a 2nd pCT									
	MDA					DSC				
	Average	Median	SD	Min	Max	Average	Median	SD	Min	Max
	1.57	1.32	0.79	0.64	4.48	0.67	0.70	0.11	0.35	0.84

Abbreviations: MDA=mean distance to agreement, DSC=Dice similarity coefficient, SD=standard deviation

	N	(%)
Induction chemotherapy	18*	(18%)
TPF (75/75/750 mg/m²) x3 **	16	(16%)
Others	2	(2%)
Concurrent chemotherapy	83	(81%)
Cisplatin-based chemotherapy	73	(72%)
Weekly cisplatin (40 mg/m²) x6	68	(67%)
Tri-weekly cisplatin (100 mg/m²) x3	3	(3%)
Others	2	(2%)
(median cumulative dose of cisplatin: 240 (120-3	300) mg/i	m²)
Cetuximab (400-250 mg/m²) ***	6	(6%)
Weekly carboplatin (AUC 1.5) x7	4	(4%)
No chemotherapy	19	(19%)

* All 18 patients also received concurrent chemotherapy.

** Docetaxel 75 mg/m² on day 1, cisplatin 75 mg/m² on day 1, and 5-fluorouracil 750 mg/m² on days 1 through 5, administered every 3 weeks

*** 400 mg/m² initial dose, followed by 250 mg/m² weekly for 6 cycles

Abbreviations: AUC=area under the curve, N=number of patients

Appendix 6. Univariate and multivariate analyses of overall survival and locoregional progression-free survival

		Univariate an	alysis	Multivariate analysis	
		hazard ratio (95% CI)	p value	hazard ratio (95% CI)	p value
Overall su	rvival				
Age	(65 ≤ y vs. 65 > y)	0.98 (0.41-2.32)	0.959		
Sex	(male vs. female)	0.53 (0.16-1.81)	0.314		
T stage**	(T1/2 vs. T3/4)	0.20 (0.08-0.52)	0.001*	0.28 (0.11-0.74)	0.010*
N stage**	(N0/1 vs. N2/3)	0.21 (0.07-0.63)	0.006*	0.34 (0.11-1.05)	0.061
CCRT	(yes vs. no)	0.58 (0.22-1.50)	0.261		
ICT	(yes vs. no)	3.24 (1.34-7.87)	0.009*	2.15 (0.88-5.28)	0.094
Locoregion	nal progression-free	survival			
Age	$(65 \le y \text{ vs. } 65 > y)$	0.53 (0.26-1.09)	0.084	0.49 (0.24-0.97)	0.042*
Sex	(male vs. female)	0.50 (0.19-1.27)	0.144		
T stage**	(T1/2 vs. T3/4)	0.61 (0.31-1.20)	0.154		
N stage**	(N0/1 vs. N2/3)	0.42 (0.19-0.93)	0.033*	0.31 (0.14-0.66)	0.002*
CCRT	(yes vs. no)	0.39 (0.16-0.97)	0.042*	0.36 (0.15-0.88)	0.026*
ICT	(yes vs. no)	2.01 (0.95-4.27)	0.067	2.01 (0.95-4.26)	0.070

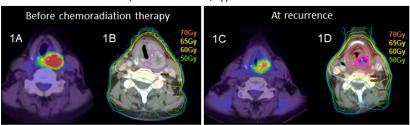
^{*} Statistical significance of difference at p <.05

^{**} According to the UICC TNM classification, 7th-8th edition.

Abbreviations: CCRT=concurrent chemotherapy, CI=confidence

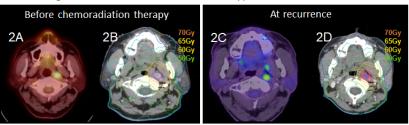
interval, ICT=induction chemotherapy

		Grade 2	Grade 3	Grade 4
Acute adverse event	:s*	N (%)	N (%)	N (%)
(number of at risk)				
Any	(N=78)	37 (47%)	38 (49%)	3 (4%)
Nonhematologic				
dermatitis	(N=102)	81 (79%)	10 (10%)	0 (0%)
mucositis	(N=102)	63 (62%)	35 (34%)	0 (0%)
dysphagia	(N=102)	22 (22%)	24 (24%)	0 (0%)
dysgeusia	(N=85)	65 (76%)	ND	ND
dry mouth	(N=82)	33 (40%)	4 (5%)	ND
Hematologic				
leukopenia	(N=102)	40 (39%)	27 (26%)	2 (2%)
neutropenia	(N=102)	26 (25%)	17 (17%)	1 (1%)
anemia	(N=102)	35 (34%)	7 (7%)	0 (0%)
thrombocytopenia	(N=102)	11 (11%)	5 (5%)	0 (0%)
Late adverse events				
At 6 months after RT				
Any	(N=34)	13 (38%)	1 (3%)	0 (0%)
dysphagia	(N=37)	9 (24%)	1 (3%)	0 (0%)
dysgeusia	(N=42)	1 (2%)	ND	ND
dry mouth	(N=40)	10 (25%)	0 (0%)	ND
At 2 years after RT				
Any	(N=17)	4 (24%)	1 (6%)	0 (0%)
dysphagia	(N=18)	3 (17%)	1 (6%)	0 (0%)
dysgeusia	(N=21)	0 (0%)	ND	ND
dry mouth	(N=20)	3 (15%)	0 (0%)	ND

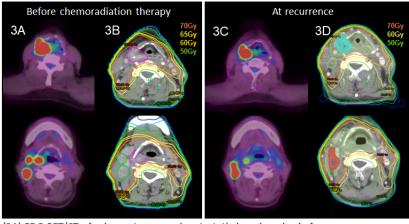

* Evaluated according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0 criteria

Abbreviations: N=number of patients, ND=not defined, RT=radiation therapy

Appendix 8. Recurrence patterns and dose distribution in


673 representative cases

Case 1: local recurrence, in-field failure, type A recurrence.


- (1A) FDG-PET/CT of primary tumor before chemoradiation therapy
- (1B) GTV-primary on planning CT (pink)
- (1C) Recurrence of primary site on FDG-PET/CT
- (1D) Recurrence of primary site (pink) on Recurrence_CT and isodose line using DIR. Recurrence tumors was within high-dose region. Centroid (blue) was located in CTV2 (red).

Case 2: regional recurrence, in-field failure, type A recurrence.

- (2A) FDG-PET/CT of metastatic lymph node before chemoradiation therapy
- (2B) GTV-node on planning CT (pink)
- (2C) Recurrence of metastatic lymph node on FDG-PET/CT
- (2D) Recurrence of metastatic lymph node (pink) on Recurrence_CT and isodose line using DIR. Recurrence lymph node were within high-dose region. Centroid (blue) was located in CTV2 (red).

Case 3: local and regional recurrence, in-field failure, type A recurrence.

- (3A) FDG-PET/CT of primary tumor and metastatic lymph nodes before chemoradiation therapy
- (3B) GTV-primary (pink) and GTV-node (green) on planning CT
- (3C) Recurrence of primary site and lymph node on FDG-PET/CT
- (3D) Recurrence of primary site (blue) and lymph node (red) on Recurrence_CT and isodose line using DIR. Centroids (blue) were located in CTV2 (green). Recurrence tumors were within high-dose region.

676 References (Appendix)

- 1. Grégoire V, Evans M, Le QT, Bourhis J, Budach V, Chen A, et al.
- Delineation of the primary tumor Clinical Target Volumes (CTV-P) in
- 679 laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous
- cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC,
- 681 HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG
- 682 Oncolog. *Radiother Oncol* 2018; **126**: 3–24.
- 683 2. Grégoire V, Ang K, Budach W, Grau C, Hamoir M, Langendijk JA,
- et al. Delineation of the neck node levels for head and neck tumors:
- 685 A 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI,
- 686 RTOG, TROG consensus guidelines. *Radiother Oncol* 2014; **110**:
- 687 **172–81**.

- 3. Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image
- registration and fusion algorithms and techniques in radiotherapy:
- 690 Report of the AAPM Radiation Therapy Committee Task Group No.
- 691 132. *Med Phys* 2017; **44**: e43-76.

693 **Figure Legends**

- 694 Fig. 1. Schematic of the DIR workflow for analysing the dose to
- 695 recurrent tumours.
- 696 Abbreviations: pCT = planning computed tomography, DIR =
- 697 deformable image registration, fr = fractions

698

- 699 Fig. 2. Kaplan–Meier curves for (a) overall survival, (b) locoregional
- 700 progression-free survival, (c) distant metastasis-free survival and
- 701 (d) progression-free survival.
- 702 Abbreviations: OS = overall survival, LRPFS = locoregional
- 703 progression-free survival, DMFS = distant metastasis-free survival,
- 704 PFS = progression-free survival

705

706 Fig. 3. Patterns of failure.

707

- 708 Fig. 4. DVH analysis for the recurrent tumours of 32 locoregional
- 709 recurrences.
- 710 Abbreviations: DVH = dose-volume histogram

Characteristic (N=102))	N (%)
Age	≤ 65 y	59 58%)
	> 65 y	43 (42%)
Sex	Male	93 (91%)
I/DC	Female	9 (9%)
KPS	≤ 80 KPS	100 (98%)
	> 80 KPS	2 (2%)
Anatomic subsite	Pyriform sinus	80 (78%)
	Posterior wall	18 (18%)
	Postcricoid region	4 (4%)
ICT	Yes	18 (18%)
	No	84 (82)
CCRT	Yes	83 (81%)
	No	19 (19%)
T classification*	1	4 (4%)
	2	57 (56%)
	3	31 (30%)
	4	10 (10%)
N classification*	0	35 (34%)
	1	12 (12%)
	2	48 (47%)
	3	7 (7%)
Stage group*	I	3 (3%)
	II	23 (23%)
	III	20 (20%)
	IV	56 (55%)
IMRT delivery technique	Step-and-shoot	84 (82%)
	VMAT	13 (13%)
	Step-and-shoot and VMAT	5 (5%)
Diagnostic image used for IMRT planning	MRI	36 (35%)
I iii piaininig	FDG-PET/CT	94 (92%)

Abbreviations: KPS=Karnofsky performance status, ICT=induction chemotherapy, CCRT=concurrent chemotherapy, IMRT=intensitymodulated radiotherapy, VMAT=volumetric modulated arc therapy,

^{*} According to the UICC TNM classification, 7-8th edition.

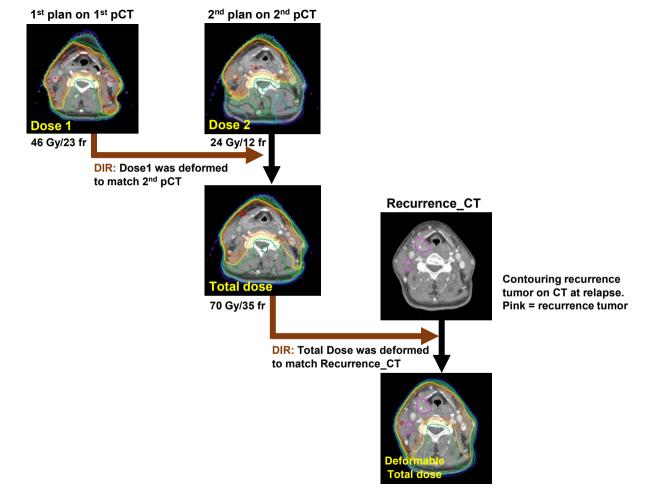
- 720 MRI=magnetic resonance imaging, FDG-PET/CT=18F-
- 721 fluorodeoxyglucose positron emission tomography/computed
- 722 tomography

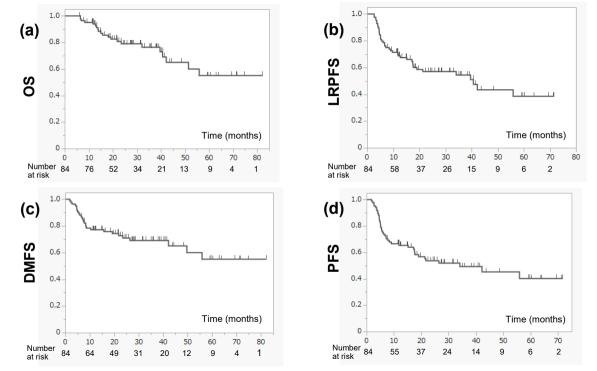
Table 2. Dosimetric analysis for recurrent tumours in 32 patients

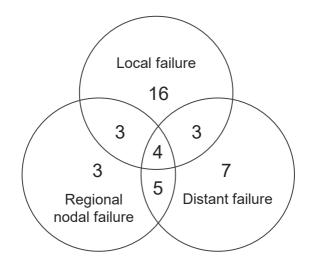
Recurrent to	umour (N=32)	Median	(Range)
Volume		4.7 cm ³	(0.3-60.5 cm ³)
D_{max}		73.8 Gy	(72.3-76.5 Gy)
D_{min}		71.0 Gy	(50.8-72.6 Gy)
D_{mean}		72.5 Gy	(71.6-74.1 Gy)
V _{66.5 Gy}		100%	(95.2 -100%)
> 95%	(in-field)	N=32 (100%)	
20-95%	(marginal)	N=0 (0%)	
≤ 20%	(outside)	N=0 (0%)	
Location of ce	ntroid		
CTV-prima	ary/node	N=32 (100%)	
CTV-prop	hylactic	N=0 (0%)	
Outside C	TVs	N=0 (0%)	

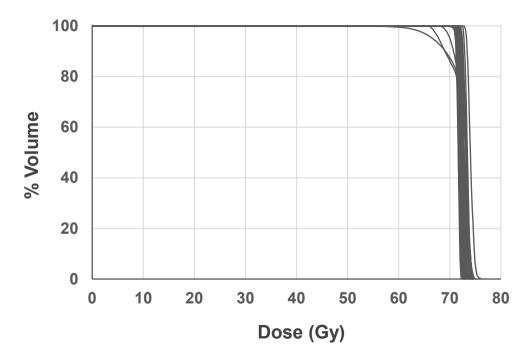
727 Abbreviations: D_{max}=maximum dose, D_{min}=minimum dose,

 D_{mean} =mean dose, $V_{66.5 Gy}$ =the volume receiving more than 66.5 Gy


Table 3. Reports of clinical outcomes and adverse events of hypopharyngeal cancer patients treated with definitive IMRT


Study	IMRT	N	Median age	FU	Dose/fractions	OS	LRPFS
Studer (2006)	SIB	29	60.8	16	60-71 Gy (2.0-2.2 Gy/fr)	NA	NA
Liu (2010)	SIB	27	60.7	36	T2/3: 72.6 Gy/35 fr T4: 76.8 Gy/37 fr	52%, at 3y	LRPFS 68%, at 3y
Huang (2010)	SIB	33	57	19	70 Gy (1.8-2.0 Gy/fr)	44%, at 5y	LRPFS 53%, at 5y
Mok (2014)	SIB	91	67	50	60-70 Gy/25-40 fr	50%, at 3y	NA
Edson (2016)	SIB	98	63.5	35	70 Gy/33-35 fr	74%, at 2y	NA
Katsoulakis (2016)	SIB	100	63	48	70 Gy/33 fr	49%, at 3y	NA
Current study	SQB	84	66	25	70 Gy/35 fr	79%, at 2y	LRPFS 57%, at 2y


_	1	\sim
1	4	4


Study	Acute Toxicities	Late Toxicities
Studer (2006)	G3 mucositis; 21%	G3/4 dysphagia; 7%
Liu (201	≥G3 mucositis; 35% ≥G3 dysphagia; 63%	≥G2 dysphagia (stricture); 26% ≥G2 dry mouth; 48%
0)	_ = = = = = = = = = = = = = = = = = = =	
Huang (2010)	≥G2 mucositis; 39%	≥G2 dysphagia; 6%
Mok (2014)	≥G3 dysphagia (pharyngitis); 30% NA	≥G2 dry mouth; 0% G3 dysphagia at 2y (feeding tube); 19% Any G3 toxicity; 22.6% (at 2y)
Edson (2016)	≥G3 dysphagia (feeding tube); 66%	G3 dysphagia at 2y (feeding tube); 3% Any G3 toxicity; 23% (at 2y)
Katsoulakis (2016)	G3 mucositis or dysphagia; 26%	G3 dysphagia (feeding tube); 6% Any G3 toxicity; 32%
Current study	≥G3 mucositis; 34% ≥G3 dysphagia; 24% Any G3 toxicity; 49%	≥G2 dysphagia at 2y; 22% ≥G2 dry mouth at 2y: 15% Any G3 toxicity; 3% (at 6m), 6% (at 2y)

Abbreviations: IMRT=intensity-modulated radiotherapy, N=number of patients, FU=follow-up period, m=months, OS=overall survival, LRPFS=locoregional progression-free survival, SIB=simultaneous-integrated boost, fr=fractions, NA=not available, SQB=sequential boost, G=grade, y=year

