

HOKKAIDO UNIVERSITY

Title	Importance of Electron Mediator Transparency : Photocatalytic Hydrogen Production from Polyoxometalate using Dye- double-layered Photocatalysts
Author(s)	Yoshimura, Nobutaka; Tomita, Osamu; Abe, Ryu; Yoshida, Masaki; Kobayashi, Atsushi
Citation	ChemCatChem, 15(4), e202201386 https://doi.org/10.1002/cctc.202201386
Issue Date	2023-02-20
Doc URL	http://hdl.handle.net/2115/91151
Rights	This is the peer reviewed version of the following article: [Yoshimura, N., Tomita, O., Abe, R., Yoshida, M., Kobayashi, A., ChemCatChem 2023, 15, e202201386.], which has been published in final form at https://doi.org/10.1002/cctc.202201386. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley 's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Туре	article (author version)
File Information	Yoshimura-6th-paper-v16.pdf

Importance of Electron Mediator Transparency: Photocatalytic Hydrogen Production from Polyoxometalate using Dye-doublelayered Photocatalysts

Nobutaka Yoshimura,^[a] Osamu Tomita,^[b] Ryu Abe,^[b] Masaki Yoshida,^[c] and Atsushi Kobayashi*^[a]

 Mr. N. Yoshimura and Dr. A. Kobayashi* Department of Chemistry, Faculty of Science, Hokkaido University North-10 West-8, Kita-ku, Sapporo 060-0810, Japan
*E-mail: akoba@sci.hokudai.ac.jp (A.K.).
D. D. Comito and Prof. Dr. B. Aba.

 [b] Dr. O. Tomita and Prof. Dr. R. Abe Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
[c] Dr. M. Yoshida

[c] Dr. M. Yoshida
Department of Applied Chemistry for Environment,
School of Biological and Environmental Sciences, Kwansei Gakuin University,
2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

Supporting information for this article is given via a link at the end of the document.

Abstract: One-directional electron transfer is crucial for two-step photoexcitation (Z-scheme) water-splitting photocatalysis. We investigated the hydrogen evolution activity of PS-double-layered photocatalysts (X-DSP, X-RuCP⁶-Zr-RuP⁶@Pt/K_xH_{4-x}Nb₆O₁₇; X = Zr⁴⁺, H⁺) in the presence of highly charged polyoxometalates- $K_6[SiV^{IV}W_{11}O_{40}] \cdot nH_2O \quad (\textbf{V^{IV}-POM}) \text{ and } K_6[SiW_{11}O_{39}Mn^{II}(H_2O)] \cdot nH_2O$ (Mn^{II}-POM)—as redox-reversible electron donors, to induce effective photocatalyst-donor electrostatic attraction. Surface-phosphonatecomprising H*-DSP completely one-electron oxidized VIV-POM with 0.39% apparent quantum yield in the initial hour (iAQY) in both HCI and phosphate buffer aqueous solutions. Conversely, the Zr4+-DSP iAQY decreased to 0.05% in HCI aq. Considering that the 0.39% iAQY was retained when replacing V^{IV}-POM with Mn^{II}-POM in HCl aq, we supposed that energy transfer deactivation from photoexcited PS* to surface-immobilized V^{IV}-POM is the plausible origin of the lower *i*AQY, owing to the stronger visible-light absorptivity of VIV-POM. This suggests that accumulation of visible-light-transparent electron mediator on the photocatalyst surface is an effective approach for one-directional electron transfer in Z-scheme water-splitting photocatalysis.

Introduction

Photocatalytic water splitting has attracted considerable attention as a promising reaction to resolve the global warming and energy crises.¹⁻⁵ The use of Z-scheme photocatalysts, composed of hydrogen (H₂) and oxygen (O₂) evolution photocatalysts with an appropriate redox-reversible electron mediator, is a promising approach to ensure enough driving force for both electron transfer and catalytic reactions.⁶⁻⁹ For example, Domen et al. recently reported on a Z-scheme photocatalyst composed of ZrO₂/TaON and BiVO₄ as the H₂ and O₂ evolving photocatalysts, respectively, in the presence of [Fe(CN)₆]^{3-/4-} as the electron mediator. This Zscheme system exhibited 0.6% solar-to-hydrogen (STH) energy conversion efficiency and 12.3% apparent quantum efficiency (AQY) at 420 nm.¹⁰ However, most Z-scheme systems developed to date still suffer from the thermodynamically favorable back electron transfer processes at the photocatalyst-mediator interface. Dye-sensitized photocatalysts (DSPs) consisting of a molecular photosensitizer (PS) and semiconductor catalyst have been extensively studied to utilize visible light in the solar spectrum, accounting for approximately half of the solar light energy for H_2 production.¹¹⁻¹⁵ From the viewpoint of electron transfer in Z-scheme water-splitting photocatalysis, the surface modification of DSPs is an interesting and efficient method to control the electron transfer at the photocatalyst-mediator interface.¹⁶⁻²⁰ In fact, several state-of-the-art DSPs have been reported to produce H₂ effectively in the presence of a redoxreversible electron mediator (e.g., I- and [Co(bpy)3]2+) as the electron source for H₂ production.²¹⁻³³ Maeda et al. recently reported that the H₂ evolution activity of a DSP composed of a Ptintercalated HCa₂Nb₃O₁₀ nanosheet and Ru(II) dye was significantly improved by surface modification with both amorphous Al₂O₃ and poly(styrenesulfonate) polymer, to achieve a remarkably high apparent quantum yield (AQY = 4.1% at 420 nm).³⁴ The origin of the high AQY was attributed to the suppression of back electron transfers from both the Pt cocatalyst and Ru(II) photosensitizer (PS) to the oxidized electron mediator, I_{3} , by covering the photocatalyst surface with poly(styrenesulfonate) polymer. We also reported that the surface-modified Ru(II)-PS-double-layered photocatalyst Zr-RuCP⁶-Zr-RuP⁶@Pt/K_xH_{4-x}Nb₆O₁₇ (Scheme 1; Zr⁴⁺-DSP, RuCP⁶ = $[Ru(mpbpy)_3]^{10-}$, where $RuP^6 = [Ru(pbpy)_3]^{10-}$, H₄mpbpy = 2,2'bipyridine-4,4'-bis(methane-phosphonic acid), and H₄pbpy = 2,2'bipyridine-4,4'-bis(phosphonic acid))³⁵ was highly active for H₂ production in the presence of redox-reversible electron donors (RREDs), such as iodide (I^-) anions and $[Co(bpy)_3]^{2+}$ (bpy = 2,2'bipyridine) complex cations. Further, the surface modification drastically improved the activity owing to the electrostatic attraction of the RREDs induced by the photocatalyst surface. However, the number of active DSPs in the presence of RREDs

remains limited. Thus, new strategies for DSPs to not only suppress the back reaction but also accelerate the forward reaction at the photocatalyst-mediator interface are strongly required.

In this work, to design an efficient way to accelerate the forward electron transfer from the RRED to the photocatalyst, we selected two polyoxometalates, namely K₆[SiV^{IV}W₁₁O₄₀]·nH₂O and $K_6[SiW_{11}O_{39}Mn^{II}(H_2O)] \cdot nH_2O$ (**V^{IV}-POM** and Mn^{II}-POM. respectively), as the RREDs for photocatalytic H₂ production by the Ru(II)-PS-double-layered DSP, X-RuCP⁶-Zr-RuP⁶@Pt/K_xH₄₋ _xNb₆O₁₇, which is composed of Pt-cocatalyst-intercalated layeredniobate and doubly-layered Ru(II) photosensitizers (Scheme 1; X-**DSP**, $X = H^+$ and Zr^{4+})³⁵. These POMs were used as the electron mediator in the Z-scheme water-splitting photocatalyst because of their suitable and comparable redox potentials and superior stabilities in aqueous solution.³⁶⁻⁴³ The important feature for this work is that these POMs are hexavalent anionic molecules, suggesting a stronger electrostatic interaction with the photocatalyst surface than that observed with commonly used electron donors. In addition, these two POMs exhibit different light absorption behaviors that significantly affect the energy transfer process with the Ru(II) PS of X-DSP (Figure S1). Herein, we report the photocatalytic H₂ evolution reaction with X-DSP in the presence of V^{IV}-POM and Mn^{II}-POM. H⁺-DSP successfully produced H₂ photocatalytically until it completely oxidized a very dilute 1 mM V^{IV}-POM aqueous solution. Interestingly, the AQY in 1 mM V^{IV}-POM was comparable to those observed in higher concentrations of the other less-charged electron donors (0.5 M KI and 16 mM [Co(bpy)₃]²⁺ aq).³⁵ In contrast, Zr⁴⁺-DSP exhibited almost the same activity as H+-DSP under phosphate buffer conditions; however, its activity remarkably decreased in HCI aq. This drop in activity in the absence of phosphate buffer was attributed to the energy transfer quenching of the photo-excited Ru(II)-PS by the electrostatically immobilized VIV-POM on the Zr4+-DSP surface Zr4+ cations. This hypothesis was supported by the result that Zr4+-DSP maintained its high activity in the presence of visible-light-transparent Mn^{II}-POM electron donor solution.

Scheme 1. Schematic illustration of photocatalytic H₂ production by X-DSPs with redox-reversible M-POM (M = V^{IV}, Mn^{II}) electron donors.

Results and Discussion

Photocatalytic H₂ evolution reaction

Figures 1(a) and 1(b) show the results of the photocatalytic H_2 evolution reactions in 1 mM V^{IV}-POM aqueous solution using H⁺-DSP and Zr⁴⁺-DSP as the photocatalyst, respectively. The estimated turnover numbers and frequencies per one photosensitizing dye (PS TON and PS TOF, respectively) together with the apparent quantum yield (AQY) are listed in Table 1. The total amount of Ru(II) dye in each solution was constant (100 mM) and no H₂ evolution was observed in the absence of Ru(II) dye, light, or electron donor (Table S2). Although H⁺-DSP exhibited near-identical activities in the HCI and phosphate buffer aqueous solutions, in the early stage (<1 h), the activity in HCl aq was slightly higher than that in the phosphate buffer (Figure 1(a)). The produced amount of H₂ after 3 h reaction (~2.5 µmol) corresponded with the expected value when all V^{IV}-POM donors were one-electron oxidized to form V^V-POM. On the other hand, Zr⁴⁺-DSP produced only 1.2 µmol of H₂ after 6 h irradiation in the HCl aq., whereas it generated almost the same amount of H₂ (~2.5 µmol) as did H⁺-DSP after 3 h reaction in the phosphate buffer solution. The photocatalytic H₂ evolution was restarted by the addition of another 5 µmol of V^{IV}-POM (Figure S3), and the supernatant solutions after these reactions afforded UV-vis absorption spectra similar to that of the one-electron oxidized form, V^V-POM (Figure S4). These results indicate that V^{IV}-POM acted as the electron donor of the photocatalytic H₂ evolution reactions

WILEY-VCH

RESEARCH ARTICLE

with H⁺-DSP and Zr⁴⁺-DSP. Notably, the absorption bands of the Ru dyes were hardly observed in the supernatant spectra (Figure S4), suggesting the negligible desorption of these dyes. Negligible XRF spectral change of Zr4+-DSP by immersing to the phosphate buffer solution (Figure S5) suggests that the surfaceimmobilized Zr⁴⁺ cations were hardly removed during the photocatalytic H₂ evolution reaction. The observed photocatalytic activity in the second cycle experiment of H+-DSP was approximately 30% less (PS TOF = 5.16) than that of the first cycle (7.51) (Figure S3). This was attributed to the presence of some back reactions related to the one-electron oxidized V^v-POM. Considering that the ³MLCT emission of [Ru(bpy)₃]²⁺ was strongly quenched by V^{v} -POM (Figure S⁶), the back electron transfer process from the photo-excited Ru^{2**} PS to $V^v\text{-POM}$ was suggested as a plausible back reaction. The AQY values for the initial hour of reaction (iAQY) of H+-DSP and Zr4+-DSP in

phosphate buffer were estimated to be almost identical (0.39%), indicating no dependence on the surface structure of the photocatalytic nanoparticles in the phosphonate buffer. These iAQY values were also comparable to that in 0.5 M KI aq (pH = 2, iAQY = 0.60%) and 20 mM [Co(bpy)₃]²⁺ aq (pH = 2, iAQY = 0.56%),³⁵ even though the reaction conditions—a slightly basic pH and lower donor concentration ([V^{IV}-POM] = 1 mM, pH = 3, iAQY = 0.39%)—were less favorable for the H₂ evolution reaction. Thus, we supposed that redox-reversible POM species are potential materials as electron mediators for dye-sensitized Zscheme water splitting systems. In contrast, the iAQY value of Zr4+-DSP in HCl aq was approximately 87% lower (iAQY = 0.050%) than that in the phosphate buffer. To reveal the origin of this lower activity, H⁺-DSP and Zr⁴⁺-DSP were analyzed by XRF analysis, in the solid state, after photocatalytic H₂ evolution reaction (Figure 2).

Figure 1. Photocatalytic H₂ evolution reactions driven by (a) **H^{*}-DSP** and (b) **Zr⁴⁺-DSP** in the presence 1 mM **V**^{IV}-**POM** as the RRED (closed circles) in HCl aqueous solution and (open triangles) in 40 mM phosphate buffer aqueous solution. Ru(II) dye concentration of all the reactions were adjusted to 100 μ M. Initial pH of all the solutions was adjusted to 3.0 by adding HCl or phosphate buffer aqueous solution (λ = 460 ± 15 nm; 70 mW).

Table 4 Describe of	وبالمربية المثلة بالملام مقدرات		والمتحاج والمتحاج والمتحاج والمستحاج المحاج	
LADIE 1 RESULTS OF	\mathbf{D}	ion experiments with PUW	l electron donor in acidic a	duenus solution
	priotooddary lio 112 of old			iquoodo oolulloll.

Photocatalyst ^[a]	Solution	Initial pH	Electron donor	H₂ (µmol) (0–2 h)	PS TON ^[a] (0–2 h)	PS initial TOF ^[a] (0–1 h)	<i>i</i> AQY ^[a] (%) (0–1 h)
H⁺-DSP	Phosphate buffer	3	V^{IV}-POM , 1 mM	2.55±0.18	10.2	7.67	0.39
H⁺-DSP	HCl aq	3	V[™]POM , 1 mM	2.44±0.04	9.78	7.51	0.39
Zr ⁴⁺ -DSP	Phosphate buffer	3	V^{IV}-POM , 1 mM	2.54±0.06	10.1	7.50	0.39
Zr ⁴⁺ -DSP	HCl aq	3	V^{IV}-POM, 1 mM	0.485±0.079	1.94	0.976	0.050
Zr ⁴⁺ -DSP	HCl aq	3	Mn ^{II} -POM, 1 mM	2.41±0.26	9.62	7.86	0.40
Zr ⁴⁺ -DSP ^{ref35}	HCl aq	2	KI, 0.5 M	5.35±0.93	21.4	11.9	0.60
H⁺-DSP ^{ref35}	HCl aq	2	[Co(bpy)3]SO4, 20 mM	5.33±0.08	21.3	11.1	0.56

[a] Measurement conditions: [Ru-PS] = 100 μ M in total, electron donor = 1 mM, volume = 5 mL aqueous solution, λ_{ex} = 460 ± 15 nm, 70 mW in total. The reaction solution was purged by Ar bubbling for 1 h before light irradiation. Numeral values were an average of more than three repeated experiments. Definitions: PS = photosensitizer, PS TON = turnover number of PS, PS initial TOF = turnover frequency of PS during the initial hour of irradiation (from 0 to 1 h), iAQY = apparent quantum efficiency during the initial hour, V^{IV}-POM = K₆[SiV^{IV}W₁₁O₄₀], Mn^{II}-POM = K₆[SiW₁₁O₃₉Mn^{II}(H₂O)] • nH₂O.

The samples were collected by ultracentrifugation after the reaction and then completely washed twice with HCl aq (pH = 3). The XRF spectra of H^+ -DSP before and after photocatalytic H_2 evolution reaction were almost identical (Figure 2(a)). In contrast, for Zr⁴⁺-DSP, the W Lα radiation derived from V-POM was clearly detected after the reaction in HCl aq (Figure 2(b)) but was hardly observed in the phosphate buffer solution reaction. These results suggest that the V-POM species were immobilized on the surface Zr^{4+} ions of **Zr⁴⁺-DSP** during photocatalytic H₂ evolution in HCl aq. In the phosphate buffer solution, however, immobilization of the V-POM species was suppressed because of the coordination of the phosphate anions to the surface Zr4+ cations. In fact, the zeta potential of Zr4+-DSP in the HCl aq. significantly shifted negatively with the addition of V^{IV}-POM (Table S4; +31 mV \rightarrow -34 mV). On the other hand, in the phosphate buffer solution, the zeta potential was largely negative even without V^{IV}-POM addition (-37 mV \rightarrow -33 mV). These zeta potential changes also indicated the immobilization of V-POM on the Zr4+-DSP surface in HCl aq. Further, the CT absorption band of V^{IV}-POM was detected in the UV-vis diffuse reflectance spectrum of V-POM-immobilized Zr4+-DSP that was prepared by simply immersing Zr4+-DSP to VIV-**POM** ag. in the dark condition (Figure S7), implying that the oxidation state of the surface-immobilized V-POM species is the one-electron donatable V^{IV} state.

As discussed above, the XRF spectra and zeta potential measurements revealed that the V-POM species were immobilized on the Zr4+-DSP surface during the photocatalytic H₂ evolution reaction in HCI aq, resulting in the lower activity. As the reason why Zr4+-DSP exhibited lower activity in the HCl aq condition, the energy transfer quenching of Ru dyes by V^{IV}-POM was presumed because the absorption band of VIV-POM was effectively overlapped with the ³MLCT emission band of Ru(II) dyes (Scheme 2 and Figure S1). In fact, the ³MLCT emission of the simple cation $[Ru(bpy)_3]^{2+}$ was effectively quenched by $\bm{V}^{IV}\mbox{-}$ POM, while that of the negatively charged RuCP⁶, which comprises six phosphonate groups, was hardly quenched (Figure S5). These contrasting results suggest that the electrostatic attraction between the $[Ru(bpy)_3]^{2+}$ cation and V^{IV}-POM anion effectively induce energy transfer quenching. The direct observation of the emission quenching of Ru(II) dyes in H*-DSP and Zr4+-DSP by VIV-POM was difficult because of the strong light scattering of the Pt/K_xH_{4-x}Nb₆O₁₇ particles. However, we supposed that the surface-immobilized V-POM species on Zr4+-DSP should induce energy transfer quenching, resulting in a lower photocatalytic activity than those of the other reaction systems in which the V-POM species were hardly immobilized on the DSP surface.

Figure 2. XRF spectra of (a) H*-DSP and (b) Zr⁴⁺-DSP obtained by centrifugation of the reaction solutions after photocatalytic hydrogen evolution reaction at 298 K under vacuum. All spectra were normalized with the intensity of the Nb L α peak. The marked peak (*) is due to the background of the Cu sample holder.

[Si**V**^{IV}W₁₁O₄₀]^{6−}

Scheme 2. Plausible mechanism of the (a) forward and (b) backward electron/energy transfer processes in the photocatalytic H_2 evolution reaction in the presence of **V**^{IV}-**POM**.

Figure 3. (a) Comparison of the photocatalytic H₂ evolution reaction driven by Zr^{4+} -**DSP** in the presence of 1 mM **Mn^{II}**-**POM** as the RRED in HCl aqueous solution (initial pH = 3.0) under blue light irradiation (λ = 460 ± 15 nm; 70 mW) with that of **Zr^{4+}-DSP** in HCl or phosphonate buffer aq. with 1 mM **VIV-POM** RRED. (b) XRF spectra of **Zr^{4+}-DSP** obtained by centrifugation of the reaction solutions after photocatalytic hydrogen evolution reaction at 298 K under vacuum. All spectra were normalized with the intensity of the Nb Lα peak. The marked peak (*) is due to the background of the Cu sample holder.

To overcome the energy transfer quenching by the V^{IV}-POM electron donor, we next conducted a photocatalytic H₂ evolution experiment in the presence of Mn^{II}-POM, which has almost the same redox potential (+0.73 V) as V^{IV}-POM, however, without the absorptivity in the ³MLCT region of Ru(II) dyes (Figure S1).³⁶ Figure 3(a) compares these results with those of V^{IV}-POM. Interestingly, in the HCl aq. of Mn^{II}-POM, Zr4+-DSP exhibited almost the same activity as that in the V^{IV}-POM solution with phosphate buffer. In the XRF spectrum of the sample obtained after the reaction (Figure 3(b)), Mn Ka radiation at 5.9 keV, which was attributed to the Mn-POM species, was clearly observed in addition to W La radiation, indicating the immobilization of Mn-POM to the Zr⁴⁺-DSP surface, as was the case with V-POM. These two results indicate that Mn-POM species were immobilized on the Zr4+-DSP surface during the photocatalytic reaction, which, however, did not decrease the photocatalytic activity. This is because the energy transfer quenching by Mn^{II}-**POM** is negligible. Although the electron transfer quenching of photoexcited Ru(II)* dyes by the surface-immobilized Mn^{II}- and V^{IV}-POM could be possible because of the redox reversible behavior of W^{VI}/W^V centers in the acidic condition, this quenching pathway should not be dominant factor because of the comparable W^{VI}/W^V potential for **Mn^{II}-** and **V^{IV}-POM**.³⁶ We expected that the photocatalytic activity of Zr4+-DSP would be enhanced by the immobilization of Mn^{II}-POM because of the effective electron donation to the one-electron-oxidized Ru dye. In fact, the activity of **Zr**⁴⁺-**DSP** in **Mn**^{II}-**POM** aq. was more than twice higher than that in the visible-light transparent electron donor KI aq. with the same 1 mM donor concentration (Figure S8). However, the estimated PS TON and AQY values were almost comparable to those of **Zr**⁴⁺-**DSP** in the phosphate buffer solution, thereby preventing the surface immobilization of POM species as discussed above (Table 1). This was attributed to the low immobilization amount of the sterically bulky **Mn**^{II}-**POM**, as suggested by the XRF spectrum, that is, only 6% of the Zr⁴⁺ sites were occupied by the **Mn-POM** species.

Conclusion

In this work, we evaluated the photocatalytic activity of two surface-modified dve-sensitized photocatalysts. H⁺-DSP and Zr⁴⁺-DSP. in the presence of [SiV^{IV}W₁₁O₄₀]⁶⁻ or [SiW₁₁O₃₉Mn^{II}(H₂O)]⁶⁻ (**V^{IV}-POM** or **Mn^{II}-POM**, respectively) as the RRED to find an effective interaction for one-way electron transfer from the electron mediator to the photocatalyst. H+-DSP, comprising phosphonate groups on the photocatalyst surface, exhibited complete one-electron oxidation of V^{IV}-POM with 0.39% apparent quantum vield in the initial hour (*i*AQY) in both HCl and phosphate buffer aqueous solutions, even in the low concentration of 1 mM VIV-POM. This iAQY value was comparable to that in higher concentrations of less charged RREDs (0.5 M I⁻ and 16.4 mM [Co(bpy)₃]²⁺), suggesting that stronger electrostatic interaction between the highly and negatively charged POM and photocatalyst surface can promote the forward electron transfer process. In contrast, the iAQY of Zr4+-DSP in HCl aq was only 0.05%, owing to energy transfer deactivation by the surface-immobilized VIV-POM, whereas almost the same activity (iAQY = 0.39%) was retained in the phosphate buffer solution. This deactivation process was further supported by the result that Zr4+-DSP maintained almost the same activity in the HCI aq solution when V^{IV}-POM was replaced by the visible-light-transparent Mn^{II}-POM, which was also immobilized on the Zr4+-DSP surface. These results suggest that to achieve efficient one-way electron transfer at the photocatalyst-mediator interface it is crucial to (1) ensure the driving force for the forward electron transfer and (2) eliminate non-favorable energy transfer quenching. Specifically, the accumulation of visible-light-transparent electron donors on the H₂ evolving photocatalyst surface should be a promising method for efficient one-directional electron transfer in the Z-scheme water splitting system.

Experimental Section

Essential materials and syntheses

Caution! Although we did not come across any difficulties, most of the chemicals used in this study are potentially harmful and should be used in small quantities and handled with care in a fumehood. All commercially available starting materials were used as received without further purification. Pt/K_xH_4_xNb_6O_{17}, K_6[SiV^{IV}W_{11}O_{40}] (V^{IV}-POM), K_5[SiV^{IV}W_{11}O_{40}] (V^V-POM), and K_6[SiW_{11}O_{39}Mn^{II}(H_2O)] • nH_2O (Mn^{II}-POM) were synthesized according to previously reported methods, ^{11,36} with some modifications. Ru(II) PSs (RuCP⁶, and RuP⁶)^{44,45} and Ru(II)-dye-double-layered Pt/K_xH_4_xNb_6O_{17} nanoparticles (Zr⁴⁺-DSP and H⁺-DSP) were

prepared according to our previously reported method³⁵ (see the Supporting Information for details). The immobilized amounts of Ru(II) PSs were estimated by UV-vis absorption analysis of the supernatant solutions isolated after the immobilization reaction (Figure S2 and Table S1). Further characterization was conducted by powder X-ray diffraction (PXRD) measurement, suggesting that the layered structure of K_xH_{4-x}Nb₆O₁₇ was successfully retained after immobilization of Zr-**RuCP⁶-Zr-RuP⁶** layer (Figure S9).

Measurements

¹H-NMR spectra were recorded at 293 K on an JEOL ECZ-400S NMR spectrometer. UV-vis absorption spectra were recorded on a Shimadzu UV-2400PC spectrophotometer. Luminescence spectra were recorded on a JASCO FP-6600 or FP-8600 spectrofluorometer at 298 K. Each sample solution was deoxygenated by N₂ bubbling for 30 min at 298 K. Energy-dispersive XRF spectra were recorded using a Bruker S2 PUMA analyzer.

Photocatalytic water reduction reaction

1 mM K₆[SiV^{IV}W₁₁O₄₀] (**V^{IV}-POM**) or For all experiments, $K_6[SiW_{11}O_{39}Mn^{II}(H_2O)] \ \cdot \ nH_2O \ (\textbf{Mn^{II}-POM}), \ \text{as the } \ \textbf{RED}, \ \text{with } \ \textbf{HCI}$ aqueous solution or 40 mM phosphonate buffer aqueous solution (pH = 3) was used to ensure the stable redox behavior of the POM species during photocatalytic reaction (Figure S10).³⁶ Under dark conditions, the POM solution containing Zr⁴⁺-DSP or H⁺-DSP nanoparticles (100 µM Ru(II) dye) was placed into an in-house made Schlenk flask-equipped quartz cell (volume: 265 mL) with a small magnetic stirring bar. Each sample flask was doubly sealed with rubber septa. This mixed solution was deoxygenated by Ar bubbling for 1 h. The flask was then irradiated from the bottom with a blue LED lamp (λ = 460 ± 15 nm; 70 mW; Opto Device Lab. Ltd., OP6-4710HP2). The temperature was controlled at 293 K using a homemade aluminum water-cooling jacket with a water circulating temperature controller (EYELA CCA-1111). The gas samples (0.6 mL) for each analysis were collected from the headspace using a gastight syringe (1 mL, Valco Instruments Co. Inc.). The amount of evolved H₂ was determined using a gas chromatograph (Agilent 490 Micro Gas Chromatograph). The turnover number and frequency per one PS (PS TON and PS TOF, respectively) were estimated from the amount of evolved H₂, which requires two photoredox cycles of Ru(II) PS to reduce one water molecule. Each photocatalytic H₂ evolution reaction was conducted thrice under the same conditions and the average value with standard deviation is reported. The detection limit of this gas chromatography analysis for H₂ gas was 0.005 µmol. The apparent quantum yield (AQY) was calculated using the following equation:

 $AQY = N_{\rm e}/Np = 2N_{\rm H2}/N_{\rm p},$

where N_{e} represents the number of reacted electrons, N_{H2} is the number of evolved H_{2} molecules, and N_{p} is the number of incident photons.

Acknowledgements

This study was supported by the ENEOS Hydrogen Trust Fund, Casio Science Promotion Foundation, Iwatani Naoji Foundation, JSPS KAKENHI (grant numbers JP20H05082, 22K19039), and Hokkaido University DX Doctoral Fellowship (grant number JPMJSP2119).

Keywords: Water splitting • Photocatalysis • Dye sensitization • Surface modification • Polyoxometalate

- [1] S. Acharya, D.K. Padhi, K. M. Parida, Catal. Today 2020, 353, 220-231.
- [2] M. Graetzel, Acc. Chem. Res. 1981, 14, 376-384.

- [3] Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 2014, 114, 9987-10043.
- [4] A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253-278.
- [5] X. Fang, S. Kalathil, E. Reisner, Chem. Soc. Rev. 2020, 49, 4926-4952.
- [6] A. Nakada, S. Nishioka, J. J. Vequizo, K. Muraoka, T. Kanazawa, A. Yamakata, S. Nozawa, H. Kumagai, S. Adachi, O. Ishitani, K. Maeda, J. Mater. Chem. A 2017, 5, 11710-11719.
- [7] M. J. Fang, C. Tsao, Y. J. Hsu, J. Phys. D: Appl. Phys. 2020, 53, 143001-143033.
- [8] H. Kumagai, R. Aoyagi, K. Kato, A. Yamakata, M. Kakihata, H. Kato, ACS Appl. Energy Mater. 2021, 2056-2060.
- [9] Q. Wang, T. Hisatomi, Q. X. Jia, H. Tokudome, M. Zhong, C. Z. Wang, Z. H. Pan, T. Takata, M. Nakabayashi, N. Shibata, Y. B. Li, I. D. Sharp, A. Kudo, T. Yamada, K. Domen, *Nat. Mater.* **2016**, *15*, 611-615.
- [10] Y. Zhang, J. Qi, Y. Kong, Y. Zhao, S. Chen, D. Li, W. Liu, Y. Chen, T. Xie, J. Cui, K. Domen, F. Zhang, *Nat. Commun.* **2022**, *13*, 484.
- [11] R. Abe, K. Shinmei, N. Koumura, K. Hara, B. Ohtani, J. Am. Chem. Soc. 2013, 135, 16872-16884.
- [12] R. Abe, K. Shinmei, K. Hara, B. Ohtani, Chem. Commun. 2009, 2009, 3577-3579.
- [13] R. Abe, K. Sayama, H. Arakawa, J. Photochem. Photobiol., A 2004, 166, 115-122.
- [14] E. S. D. Silva, N. M. M. Moura, G. P. M. S. Neves, A. Coutinho, M. Prieto, C. G. Silva, J. Faria, *Appl. Catal.*, B 2018, 221, 56-59.
- [15] J. Warnan, J. Willkomm, J. N. Ng, R. Godin, S. Prantl, J. R. Durrant, E. Reisner, *Chem. Sci.* 2017, 8, 3070-3079.
- [16] A. M. Deetz, G. J. Meyer JACS Au 2022, 2, 985–995.
- [17] L. T. Gautier, M. D. Turlington, S. A. M. Wehlin, A. B. Maurer, M. D. Brady, W. B. Swords, G. J. Meyer, *Chem. Rev.* **2019**, *119*, 4628-4683.
- [18] H. Kusama, T. Funaki, N. Koumura, K. Sayama, Chem. Chem. Phys. 2014, 16, 16166-16175.
- [19] H. Kusama, J. Photochem. Photobiol., A 2018, 365, 110-118.
- [20] A. Kobayashi, S. Takizawa, M. Hirahara, Coord. Chem. Rev. 2022, 467, 214624–22083.
- [21] W. Wang, J. Chen, C. Li, W. Tian, Nat. Commun. 2014, 5, 4647-4654.
- [22] J. Lee, D. Won, W. Jung, H. Son, C. Pac, S. O. Kang, Angew. Chem., Int. Ed. 2017, 56, 976-980.
- [23] E. Aslan, M. K. Gonce, M. Z. Yigit, A. Sarilmaz, E. Stathatos, F. Ozel, M. Can, I. H. Patir, *Appl. Catal.*, B **2017**, 220, 320-327.
- [24] A. Tiwari, N. V. Krishna, L. Giribabu, U. Pal, J. Phys. Chem. C 2018, 122, 495-502.
- [25] F. Yu, S. Cui, X. Li, Y. Peng, Y. Yu, K. Yun, S. Zhang, J. Li, J. Liu, J. Hua, Dyes Pigm. 2017, 139, 7-18.
- [26] Y. Sun, Y. Sun, C. Dall'Agnese, X. Wang, G. Chen, O. Kitao, H. Tamiaki, K. Sakai, T. Ikeuchi, S. Sasaki, ACS Appl. Energy Mater. 2018, 1, 2813-2820.
- [27] T. Oshima, S. Nishioka, Y. Kikuchi, S. Hirai, K. Yanagisawa, M. Eguchi, Y. Miseki, T. Yokoi, T. Yui, K. Kimoto, K. Sayama, O. Ishitani, T. E. Mallouk, K. Maeda, *J. Am. Chem. Soc.* **2020**, *142*, 8412-8420.
- [28] A. Nakada, T. Uchiyama, N. Kawakami, S. Nishioka, R. Kamata, H. Kumagai, O. Ishitani, Y. Uchimoto, K. Maeda, *ChemPhotoChem* **2019**, *3*, 37-45.
- [29] M. V. Sheridan, Y. Wang, D. Wang, L. T. Gautier, C. J. Dares, B. D. Sherman, T. J. Meyer, *Angew. Chem. Int. Ed.* 2018, 57, 3449-3453.

WILEY-VCH

RESEARCH ARTICLE

- [30] N. Yoshimura, A. Kobayashi, M. Yoshida, M. Kato, Bull. Chem. Soc. Jpn. 2019, 92, 1793-1800.
- [31] N. Yoshimura, A. Kobayashi, W. Genno, T. Okubo, M. Yoshida, M. Kato, Sustainable Energy Fuels 2020, 4, 3450-3457.
- [32] N. Yoshimura, A. Kobayashi, M. Yoshida, M. Kato, Chem. Eur. J. 2020, 26, 16939-16946.
- [33] N. Yoshimura, M. Yoshida, M. Kato, A. Kobayashi, *Inorg. Chem.* 2022, 61, 11095-11102.
- [34] S. Nishioka, K. Hojo, L. Xiao, T. Gao, Y. Miseki, S. Yasuda, T. Yokoi, K. Sayama, T. E. Mallouk, K. Maeda, Sci. Adv. 2022, 8, 9115.
- [35] N. Yoshimura, A. Kobayashi, T. Kondo, R. Abe, M. Yoshida, M. Kato, ACS Appl. Energy Mater. 2021, 4, 14352-14362.
- [36] O. Tomita, H. Naito, A. Nakada, M. Higashi, R. Abe, Sustainable Energy Fuels 2022, 6, 664-673.
- [37] Y. Iwase, O. Tomita, H. Naito, M. Higashi, R. Abe, J. Photochem. Photobiol., A 2018, 356, 347-354.
- [38] K. Tsuji, O. Tomita, M. Higashi, R. Abe, ChemSusChem 2016, 9, 2201-2208.
- [39] J. Lei, J. Yang, T. Liu, T.; R. Yuan, D. Deng, M. Zheng, J. Chen, L. Cronin, Q. Dong, *Chem. Eur. J.* **2019**, *25*, 11432-11436.
- [40] Y. B. M'Barek, T. Rosser, J. Sum, S. Blanchard, F. Volatron, G. Izzet, R. Salles, J. Fize, M. Koepf, M. Chavarot-Kerlidou, V. Artero, A. Proust, ACS Appl. Energy Mater. 2020, 3, 163-169.
- [41] H. E. Moll, F. A. Black, C. J. Wood, A. Al-Yasari, A. Marri, I. V. Sazanovich, E. A. Gibson, J. Fielden, *Phys. Chem. Chem. Phys.* **2017**, *19*, 18831-18835.
- [42] H. Cruz, A. L. Pinto, J. C. Lima, L. C. Branco, S. Gago, *Mater. Lett.* 2020, 6, 100033-100038.
- [43] Y. Zhang, J. Liu, S. Li, Z. Su, Y. Lan, Energy Chem. 2019, 1, 100021-100078.
- [44] K. Hanson, M. K. Brennaman, A. Ito, H. Luo, W. Song, K. A. Parker, R. Ghosh, M. R. Norris, C. R. K. Glasson, J. J. Concepcion, R. Lopez, T. J. Meyer, *J. Phys. Chem. C* **2012**, *116*, 14837-14847.
- [45] S. Furugori, A. Kobayashi, A. Watanabe, M. Yoshida, M. Kato, ACS Omega 2017, 2, 3901-3912.

Entry for the Table of Contents

To accelerate electron transfer at photocatalyst-mediator interface, we developed the photocatalytic H_2 evolution system composed of Zr^{4+} -phosphonate-functionalized double-Ru-dye-layered Pt/K_xH_{4-x}Nb₆O₁₇ photocatalyst and highly charged polyoxometalate, M-POM (M = V^{IV}, Mn^{II}). Higher activity and complete oxidation of redox-reversible POM electron donor were achieved by using visiblelight-transparent Mn^{II}-POM because of the negligible energy transfer deactivation from photoexcited Ru-dye to surface-immobilized POM.