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A convergence result for a minimizing movement scheme for

mean curvature flow with prescribed contact angle in a curved

domain

Tokuhiro Eto∗ Yoshikazu Giga †

February 25, 2024

Abstract

We consider a minimizing movement scheme of Chambolle type for the mean curvature
flow equation with prescribed contact angle condition in a smooth bounded domain in
Rd (d ≥ 2). We prove that an approximate solution constructed by the proposed scheme
converges to the level-set mean curvature flow with prescribed contact angle provided that
the domain is convex and that the contact angle is away from zero under some control
of derivatives of given prescribed angle. We actually prove that an auxiliary function
corresponding to the scheme uniformly converges to a unique viscosity solution to the
level-set equation with an oblique derivative boundary condition corresponding to the
prescribed boundary condition.

1 Introduction

Let Ω be a smooth bounded domain in Rd with d ≥ 2. We consider the mean curvature flow
equation for an evolving family {Γt}t≥0 of hypersurfaces in Ω touching the boundary ∂Ω of
Ω with prescribed angle. Namely, we consider its initial value problem of the form:

V = − divΓt ν on Γt, t>0,

∠(ν, νΩ) = θ on ∂Ω,

Γ0 = Γ,

(1.1)

where Γ is a given hypersurface in Ω. Here, ν denotes a unit vector field of Γt, and V
denotes the normal velocity of each point on Γt in the direction of ν; divΓt denotes the
surface divergence of ν on Γt so that − divΓt ν equals the ((d − 1)-times) mean curvature of
Γt in the direction of ν. Thus, the first equation of (1.1) is nothing but the mean curvature
flow equation. The second equation of (1.1) is the boundary condition. The symbol ∠(ν, νΩ)
denotes the angle between ν and νΩ, where νΩ denotes the outward unit normal vector field
of ∂Ω. The function θ : ∂Ω → (0, π) is given and prescribes the contact angle ∠(ν, νΩ).
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The authors [19] extended Chambolle’s scheme [9] to construct an approximate solution
to (1.1). In the sequel, the proposed scheme will be referred as a capillary Chambolle type
scheme. We briefly review the proposed scheme together with some literature. Given an
initial data E0 ⊂ Rd and a time step h > 0, Almgren, Taylor and Wang [1] introduced the
following energy functional:

A(F ) :=

∫
Rd

|∇χF |+
1

h

∫
F∆E0

dist(·, ∂E0) dLd, (1.2)

where χF denotes the characteristic function of F , i.e., χF (x) = 1 if x ∈ F and χF (x) = 0
if x /∈ F , and dist(x,A) denotes the distance between a point x and a set A; h is a positive
parameter, and F∆E0 denotes the symmetric difference of F and E0, namely F∆E0 :=
(F\E0)∪ (E0\F ); the first term of (1.2) denotes the total variation of χF while in the second
term, Ld denotes the d-dimensional Lebesgue measure. They minimized A(F ) among all
Caccioppoli sets F , and its minimizer Th(E0) was regarded as a candidate for the next set
to E0. Repeating this process, an approximate solution of the mean curvature flow was
defined by Tn

h (E0) := Th(T
n−1
h (E0)) for n ∈ N with T 0

h (E0) := E0. Although they showed
its convergence to the smooth mean curvature flow in L1-setting, it is not clear whether a
minimizer of A(F ) is unique or not. Later, Chambolle [9] proposed another energy functional
defined by:

Eh(u) :=

∫
Ω
|∇u|+ 1

2h

∫
Ω
(u− dE0)

2 dLd,

where dE0 denotes the signed distance function to E0. The energy Eh(u) was minimized over
all u ∈ L2(Ω) ∩ BV (Ω). Since it is lower semi-continuous and strictly convex, the minimizer
wh
E0

is unique. Then, the set Th(E0) was defined by the zero sub-level set of wh
E0
. Chambolle

[9] showed that his Th(E) is a minimizer of A(F ), and the approximate solution tends to
the mean curvature flow in L1-setting if the corresponding level-set equation with the initial
condition u0 := χΩ\E0

− χE0 has a unique viscosity solution where χE0 is the characteristic
function of E0. This scheme worked only if E does not touch the boundary ∂Ω hence a
contact angle condition cannot be treated.

To cope with the contact angle problem, the authors [19] proposed a capillary Chambolle
type scheme to construct an approximate solution to the mean curvature flow with prescribed
contact angle condition. For β ∈ L∞(∂Ω) with ‖β‖∞ ≤ 1, they alternately solved the following
variational problem:

min
u
Eβ

h (u) with Eβ
h (u) := Cβ(u) +

1

2h

∫
Ω
(u− dΩ,E0)

2 dLd. (1.3)

Here, the minimum (1.3) should be taken over L2(Ω) ∩ BV (Ω); dΩ,E0 denotes the signed
geodesic distance function to E0 in Ω (see e.g. [19, Definition 4]), and

Cβ(u) :=

∫
Ω
|∇u|+

∫
∂Ω
βγu dHd−1,

where γ : BV (Ω) → L1(∂Ω) is the trace operator and Hd−1 denotes the (d− 1)-dimensional
Hausdorff measure. For (1.1), we take β = cos θ and θ ∈ (0, π) which imply |β(x)| < 1.
Since Cβ is lower semi-continuous (see [34, Proposition 1.2] and [19, Proposition 4]) and the
quantity to be minimized in (1.3) is strictly convex in L2(Ω), the problem (1.3) admits a
unique minimizer wh

E0
∈ L2(Ω) ∩ BV (Ω). Then, the next set Th(E0) to E0 is defined as the
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zero sub-level set of wh
E0
, namely Th(E0) := {wh

E0
≤ 0}. They established well-posedness

of the proposed scheme and some consistency with a capillary Almgren–Taylor–Wang type
scheme. However, the convergence of this scheme as h tends to zero was not discussed in [19].
The aim of this paper is to show the convergence of this scheme in a suitable topology.

Let us state our main results. Since the level-set formulation provides a unique global-
in-time solution (up to fattening) as shown in [16, 22] for Ω = Rd (see also [23]), we consider
the level-set formulation of (1.1). Namely, we consider the initial-boundary value problem for
its level-set equation of the form:

ut = |∇u| div∇ϕ(∇u) in Ω× (0, T ),

〈∇u, νΩ〉+ β|∇u| = 0 on ∂Ω× (0, T ),

u(0, ·) = u0 in Ω,

(1.4)

where T > 0 is a time horizon; u0 : Ω → R is given as an initial condition and ϕ(p) := |p| for
p ∈ Rd. It is natural to consider such an oblique derivative boundary problem because the
second condition of (1.4) implies that the hypersurface {u = 0} intersects the boundary ∂Ω
with the angle arccos β. This condition readily corresponds to the second one of (1.1). Let
F : (Rd\{0})× Sd → R and B : ∂Ω× Rd → R be defined by

F (p,X) := − tr

((
Id −

p⊗ p

|p|2

)
X

)
for (p,X) ∈ (Rd\{0})× Sd, (1.5)

B(x, p) := 〈p, νΩ(x)〉+ β(x)|p|, (1.6)

where Sd denotes the set of all symmetric matrices in Rd×d; Id ∈ Rd×d denotes the identity
matrix. Then, the problem (1.4) can be expressed as

ut + F (∇u,∇2u) = 0 in Ω× (0, T ),

B(·,∇u) = 0 on ∂Ω× (0, T ),

u(·, 0) = u0 in Ω.

(1.7)

In this study, we adopt the notion of viscosity solutions and regard an evolving set by
mean curvature as the level set of an auxiliary function as discussed in [23]. Its well-posedness
is by now well known by [3, 31]. As in [20, 21], for each u ∈ UC(Ω) and a time step h > 0,
we define a function operator Sh by

Shu(x) := sup{λ ∈ R | x ∈ Th({u ≥ λ})}, (1.8)

where UC(Ω) denotes the space of all uniformly continuous functions in Ω. In terms of Sh,
an approximate solution uh : [0, T ]× Ω → R to (1.4) is defined by

uh(t, x) := S
⌊ t
h
⌋

h u(x),

where bkc denotes the largest integer which does not exceed k ∈ (0,∞). Then, our main
theorem reads as follows:

Theorem 1.1. Assume that Ω is a bounded convex set in Rd whose boundary is sufficiently
regular so that the comparison principle holds for (1.4). Suppose that β ∈ C1(∂Ω) and
‖β‖∞ < 1. Assume that |∇∂Ωβ(x)| ≤ k(x) for all x ∈ ∂Ω. Here, k(x) denotes the minimal
nonnegative principal (inward) curvature of ∂Ω at the point x. Then, uh uniformly converges
to the unique viscosity solution to (1.4) as h→ 0.
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By a comparison principle for (1.4) known by [3] (see Theorem 2.1), we immediately obtain
the following corollary:

Corollary 1.1. Let Ω ⊂ Rd be a C2,1 bounded domain. Suppose that Ω and β satisfy the
hypotheses in Theorem 1.1. Then, uh uniformly converges to the unique viscosity solution to
(1.4) as h→ 0.

A key step of the proof for Theorem 1.1 is to confirm that the function operator Sh fulfills
the following properties:

[Monotonicity]

Shu ≤ Shv if u ≤ v. (1.9)

[Translation invariance]

Sh(u+ c) = Shu+ c for all c ∈ R,
Sh(0) = 0.

(1.10)

[Consistency]
For every φ ∈ C2(Ω), and z ∈ Ω either ∇φ(z) 6= 0 or ∇φ(z) = 0 and ∇2φ(z) = O, and
z ∈ ∂Ω with 〈∇φ(z), νΩ(z)〉+ β(z)|∇φ(z)| > 0, it holds that

limsup*

h→0

Shφ(z)− φ(z)

h
≤ −F∗(∇φ(z),∇2φ(z)). (1.11)

Moreover, for every φ ∈ C2(Ω), and z ∈ Ω either ∇φ(z) 6= 0 or ∇φ(z) = 0 and ∇2φ(z) = O,
and z ∈ ∂Ω with 〈∇φ(z), νΩ(z)〉+ β(z)|∇φ(z)| < 0, it holds that

liminf∗h→0
Shφ(z)− φ(z)

h
≥ −F ∗(∇φ(z),∇2φ(z)). (1.12)

Here, for a function Fh on Ω which is parametrized by h > 0, we have used the notation that
for x ∈ Ω,

limsup*

h→0
Fh(x) := lim

h→0
sup{Fh(y) | |x− y| < δ, 0 < δ < h},

liminf∗h→0Fh(x) := lim
h→0

inf{Fh(y) | |x− y| < δ, 0 < δ < h}.

Moreover, we define the upper(resp, lower) semi-continuous envelope F ∗ (resp, F∗) of F by

F ∗(p,X) := lim
ε→0

sup{F (q, Y ) | |p− q| < ε, ‖X − Y ‖2 < ε},

F∗(p,X) := lim
ε→0

inf{F (q, Y ) | |p− q| < ε, ‖X − Y ‖2 < ε},

where for a matrix X = (xij)1≤i,j≤d ∈ Rd×d, ‖X‖2 denotes the Hilbert–Schmidt norm of X,

i.e., ‖X‖2 :=
√∑d

i,j=1 x
2
ij .

If the limit equation (1.4) has a comparison principle and Sh satisfies the conditions (1.9)–
(1.12), a general theory for the monotone scheme [4, Theorem 2.1] yields the desired result.
In our case, we know (1.4) has a comparison principle (Theorem 2.1) so the main task is
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to prove (1.9)–(1.12) for Sh (Theorem 4.1). It is not difficult to prove (1.9) if we take the
geodesic distance in (1.3). The property (1.10) is easy to confirm from the definition of Sh.
Main efforts for the convergence result of our scheme are devoted to prove (1.11) and (1.12).

To this end, we first establish a relation between Sh and Th (Lemma 4.1) to interpret the
formulae (1.11) and (1.12) in that for Th. More explicitly, we show

{Shu ≥ λ} = Th({u ≥ λ}) for all λ ∈ R. (1.13)

The relation (1.13) is expected to hold because of the definition of Sh. One of important
criteria to ensure (1.13) is the continuity of Th (Lemma 3.6) which is defined by

∞⋂
n=1

Th(En) = Th(E) as n→ ∞, (1.14)

where {En}n∈N is an arbitrary non-increasing sequence of sets in Ω with E =
⋂∞

n=1En.
Thanks to the monotonicity of Th, we easily see that the left-hand side of (1.14) includes
the right-hand side. To show the converse inclusion, we seek a subsequence {wh

En
}n which

uniformly converges to a function w in Ω, and observe that w = wh
E in Ω. Since wh

En

is uniformly bounded with respect to n by a maximum principle, the existence of such a
subsequence can be proved by the Ascoli–Arzelà theorem provided that wh

En
is equi-continuous

with respect to n ∈ N. We eventually know that the limit function w must equal wh
E by the

Lipschitz continuity of the map L2(Ω) 3 g 7→ wh
g ∈ L2(Ω) (Proposition 3.1) and the uniform

convergence of dΩ,En to dΩ,E .
To derive the equi-continuity of wh

En
, we show that the gradient ∇wh

En
is bounded by a

constant which is independent of n ∈ N. For this, we adopt Bernstein’s method. Namely, we
are led to show that 1

2 |∇w
h
En

|2 is a subsolution to an elliptic problem with an oblique derivative
boundary condition and to apply a comparison principle (Lemma 3.2) which is available for
the problem. This procedure involving Bernstein’s method requires the convexity of Ω and
the assumption that the contact angle function β is continuously differentiable on ∂Ω and its
gradient is bounded by the minimal nonnegative principal (inward) curvature of ∂Ω at each
point.

Using the relation between Sh and Th that we have obtained so far, we represent the
formulae (1.11) and (1.12) in terms of the super level sets Eφ

µ := {φ ≥ µ} with µ = φ(z), and
intend to prove that the following locally uniform limit in Ω (Proposition 4.2):∣∣∣∣∣w

h
Eφ

µ
− dΩ,Eφ

µ

h
+ κEφ

µ

∣∣∣∣∣→ 0 as h→ 0. (1.15)

For the case when z ∈ Ω, (1.15) indicates that wh
Eφ

µ
approximately solves the inclusion:

w − dΩ,Eφ
µ

h
+ ∂C0(w) 3 0 in Ω,

which is nothing but a discretization of the first equation of (1.4). Meanwhile, if z ∈ ∂Ω,
we need the assumption that ‖β‖∞ < 1 to construct a viscosity super(resp, sub)solution to
(3.10) which approximates the following inclusion:

w − dΩ,Eφ
µ

h
+ ∂Cβ(w) 3 0 in Ω. (1.16)
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In fact, we deduce from the characterization of ∂Cβ(u) (see [19, Theorem 2]) that (1.16)
is equivalent to that w solves (3.10). In [20, 21], a viscosity super(resp, sub)solutions were
constructed by a ball B(0, R) which is expected to approximate Eφ

µ nearby z. This is because

Chambolle’s scheme yields another ball B(0, R̃), and this R̃ can be explicitly computed. Due
to the oblique derivative boundary condition, we require another type of subsets in Ω to
approximate Eφ

µ . Here, we notice that the characterization of ∂Cβ(u) again gives rigorous
solutions to (3.10) in a short time when β is constant (Lemma 4.2). These rigorous solutions
are so-called translating solitons in the literature. In this research, we compare Eφ

µ with these
solitons instead of balls. By geometry, this soliton is available not only for z ∈ Ω but also for
z ∈ ∂Ω whenever ‖β‖∞ < 1. This is the basic idea to prove the main theorem.

Let us review existing works related to an energy minimizing scheme for the mean cur-
vature flow. For the case when interfaces do not touch the boundary, Almgren, Taylor and
Wang [1] derived several properties of a limit of their approximate solution and called it a
flat Φ curvature flow. They proved its convergence to a smooth curvature flow up to the time
when the latter exists. Later, Luckhaus and Sturzenhecker [33] showed its convergence to a
distributional solution χ to the mean curvature flow under no mass loss condition :∫ T

0

∫
Rd

|∇χh| →
∫ T

0

∫
Rd

|∇χ| as h→ 0,

where χh denotes the characteristic function of a minimizer of A(F ). Philippis and Laux [17]
proved that this assumption is not necessary for the convergence result whenever the initial
data E0 is outward minimizing, i.e., it holds that∫

Rd

|∇χE0 | ≤
∫
Rd

|∇χF | if E0 ⊂ F. (1.17)

For instance, if E0 is mean convex, then the condition (1.17) is satisfied. For a bounded initial
data E0 and Ω ⊂ Rd strictly including E0, Chambolle [9] showed that his approximate solution
constructed by the zero level set of the unique minimizer of Eh(u) converges (in L

1 sense) to
a level-set flow (up to fattening). It is known that Th(E0) remains convex if E0 is convex (see
Caselles and Chambolle [8]). For a simple proof of the convergence (also in Hausdorff distance
sense), we refer the reader to Chambolle and Novaga [15, Proposition 2.1, Proposition 4.1].
For an unbounded initial data E0, the authors and Ishii [20, 21] showed the convergence (up
to fattening in the sense of Hausdorff distance) of their approximate solution constructed by
Eh(u). Therein, they translated the set operator Th into a function operator Sh as in (1.8)
and showed that Th is a morphological operator (see e.g., [7, Definition 4.4]). They utilized a
sup-inf representation for Sh to obtain its generator as in (1.11) and (1.12). In particular, if
E0 is the complement of a bounded set, its treatment was explained in [13, §6.2]. Chambolle,
Gennaro and Morini [11] considered such a scheme called a minimizing movement scheme for
the mean curvature flow with a time-dependent spatially inhomogeneous driving force f(x, t),
an inhomogeneous anisotropic interfacial energy density ϕ and a mobility ψ(x, ν(x)), namely
they studied the equation:{

V = ψ(x, ν(x)){− divΓt ∇pϕ(x, ν(x)) + f(x, t)} for x ∈ Γt, t > 0,

Γ0 = Γ,
(1.18)

where Γ is an initial data, and p 7→ ϕ(x, p) is an anisotropy, i.e., a convex, positively 1-
homogeneous function with respect to the variable p ∈ Rd. They showed that a limit of
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approximate solutions constructed by their minimizing movement scheme is a flat flow, and
it is a distributional solution (BV-solution) to the equation (1.18) under no mass loss con-
dition (see [11, Theorem 1.2]). Note that their anisotropy for this result includes crystalline
anisotropy, i.e., ϕ(x, p) need not be C1 in p on {|p| = 1}, typically piecewise linear. They also
proved that their approximate solution converges to the level-set flow, and it is also a way
to construct a solution of the corresponding level-set flow equation (see [11, Theorem 1.4]).
However, crystalline anisotropy was excluded in this result. For spatially homogeneous cases,
i.e., ϕ, ψ and f are independent of x, a level-set crystalline mean curvature flow equation
is well-studied, and its well-posedness was established by [14, 12, 24, 25] (see also a review
paper [27]). However, the case of spatially inhomogeneous crystalline anisotropy is not yet
studied through a perturbed argument by [12] which may lead the existence of a solution.
For homogeneous case, we note that Ishii [32] proved that the minimizing movement scheme
converges to the level-set flow for crystalline mean curvature flow provided that the corre-
sponding level-set flow equation is well-posed. The solution in [24, 25] was constructed by
a solution of an approximate equation, while the solution in [14, 12] was constructed by a
minimizing movement scheme. In [26], spatially inhomogeneous driving force term f(x, t)
was allowed. The method of [24, 25, 26] so far needs to assume that ϕ is piecewise linear but
allows nonlinear dependency on the curvature term in V .

For the case when interfaces touch the boundary ∂Ω, Bellettini and Kholmatov [6] con-
sidered a minimizing problem for a variant energy of (1.2) defined by

Aβ(F ) :=

∫
Rd
+

|∇χF |+
∫
∂Rd

+

βγχFdHd−1 +
1

h

∫
Rd
+∩(F∆E)

dist(·, ∂E) dLd, (1.19)

where Rd
+ := Rd−1 × (0,∞), and the energy (1.19) was minimized among all Caccioppoli sets

in Rd
+. They adopted a set theoretic approach and proved that a minimizing sequence for

(1.19) converges to a generalized minimizing movement (GMM) (see [6, Theorem 7.1]). The
GMM was shown to be a distributional solution to the mean curvature flow equation with a
contact angle condition provided that the (d− 1)-dimensional Hausdorff measure of discrete
solutions converges to that of the GMM (see [6, Theorem 8.6]). They also showed regularity
of the GMM up to the boundary provided that β is Lipschitz continuous on ∂Ω (see [6,
Theorem 5.3]). In fact, the study [19] was inspired by their work to introduce the definition
of the capillary Chambolle type energy (1.3). For a study of the GMM for a partition of Rd

with mobility and driving force, we refer the reader to Bellettini, Chambolle and Kholmatov
[5].

In [19, §7], the authors implemented the proposed scheme using the split Bregman method.

Therein, they calculated the first variation of Eβ
h (u) with respect to ∇u and u separately and

obtained a Neumann boundary problem in a strip Ω ⊂ R2. This problem was solved by the
finite difference method. They gave two examples of open curves with one end on {0} × R
and the other end on {2} × R where Ω = (0, 2) × R. In the first example, we set β ≡ cos π

4 .
In the second example, we set β = cos 3π

4 at x = 0 and β = cos π
4 at x = 2. However, the

discrete definition of β in the second example was missing. Here, we give it for the reader’s
convenience:

βi,j :=


− 1√

2
= cos 3π

4 if j = 1,
1√
2
= cos π

4 if j = Nx,

0 otherwise,

7



where the strip Ω is discretized by mesh points (xj , yi) with 1 ≤ i ≤ Ny and 1 ≤ j ≤ Nx,

say the discretized Ω equals
⋃Ny

i=1

⋃Nx
j=1{(xj , yi)}; the symbol βi,j denotes the value of β at

(xj , yi).
This paper is organized as follows. In Section 2, we collect basic definitions, notations and

facts of convex analysis and viscosity solutions. In Section 3, we recall a capillary Chambolle
type scheme which was proposed in [19]. Therein, we continue to explore its properties
which are crucial to derive main results in this study. Section 4 is devoted to give a proof
for convergence of the proposed scheme under some assumptions on the domain Ω and the
contact angle function β. Finally, we conclude with summarizing consequence of this paper
in Section 5.

A preliminary version of this paper was included in the first author’s phD thesis.

2 Preliminaries

2.1 Convex analysis

In this section, we recall basic facts from the convex analysis. Throughout this section, let X
be a normed space and X∗ be the dual space of X. Let f : X → R ∪ {±∞}.

Definition 2.1 (Subdifferential). For u ∈ X, the subdifferential ∂f(u) ⊂ X∗ is defined by

p ∈ ∂f(u) :⇐⇒ f(v) ≥ f(u) + 〈p, v − u〉 for all v ∈ X.

Definition 2.2 (Conjugate function). The conjugate function f∗ : X∗ → R ∪ {±∞} of f is
defined by

f∗(p) := sup
u∈X

{〈p, u〉 − f(u)} for p ∈ X∗.

Proposition 2.1 (Fenchel identity). Suppose that f is lower semi-continuous and convex.
Then, it holds that for u ∈ X and p ∈ X∗,

p ∈ ∂f(u) ⇐⇒ u ∈ ∂f∗(p) ⇐⇒ f(u) + f∗(p) = 〈p, u〉

Proof. See [18, Proposition 5.1, Corollary 5.2].

Remark 2.1 (Characterization of conjugate functions). Suppose that f is positively homo-
geneous of degree 1 and f(0) = 0. Then, it is easy to see that

f∗(p) =

{
0 if p ∈ K,

∞ if p /∈ K,

where K = ∂f(0).

2.2 Viscosity solution

In this section, we briefly recall the notion of viscosity solutions which is a kind of weak
solutions to degenerate parabolic equations. Partial differential equations under consideration
is of the form: 

ut + F (x, t, u,∇u,∇2u) = 0 in Ω× (0, T ),

B(x, t, u,∇u,∇2u) = 0 on ∂Ω× (0, T ),

u(0, ·) = u0 in Ω,

(2.1)
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where F and B are respectively functions defined on dense subsets in Ω× [0, T ]×R×Rd×Sd
and ∂Ω × [0, T ] × R × Rd × Sd. Here, Sd denotes the set of all symmetric matrices in Rd×d.
In this setting, let us define a viscosity sub- and supersolution to the problem (2.1).

Definition 2.3 (Viscosity solution). A function u : Ω × (0, T ) → R is called a viscosity
subsolution to (2.1) provided that u∗(x, t) < ∞ for all (x, t) ∈ Ω × (0, T ) and for any φ ∈
C2(Ω× (0, T )) and (x̂, t̂) ∈ Ω× (0, T ) such that u∗ − φ takes a local maximum at (x̂, t̂),{

φt(x̂, t̂) + F∗(x̂, t̂, u
∗(x̂, t̂),∇φ(x̂, t̂),∇2φ(x̂, t̂)) ≤ 0 if ∇φ(x̂, t̂) 6= 0,

φt(x̂, t̂) ≤ 0 if ∇φ(x̂, t̂) = 0 and ∇2φ(x̂, t̂) = O
(2.2)

holds if x̂ ∈ Ω and either (2.2) or B∗(x̂, t̂, u
∗(x̂, t̂),∇φ(x̂, t̂),∇2φ(x̂, t̂)) ≤ 0 if x̂ ∈ ∂Ω. A

function u is called a viscosity supersolution to (2.1) provided that u∗(x, t) > −∞ for all
(x, t) ∈ Ω × (0, T ) and for any φ ∈ C2(Ω × (0, T )) and (x̂, t̂) ∈ Ω × (0, T ) such that u∗ − φ
takes a local minimum at (x̂, t̂),{

φt(x̂, t̂) + F ∗(x̂, t̂, u∗(x̂, t̂),∇φ(x̂, t̂),∇2φ(x̂, t̂)) ≥ 0 if ∇φ(x̂, t̂) 6= 0,

φt(x̂, t̂) ≥ 0 if ∇φ(x̂, t̂) = 0 and ∇2φ(x̂, t̂) = O
(2.3)

holds if x̂ ∈ Ω and either (2.3) or B∗(x̂, t̂, u∗(x̂, t̂),∇φ(x̂, t̂),∇2φ(x̂, t̂)) ≥ 0 if x̂ ∈ ∂Ω. A
function u is called a viscosity solution if u is a sub- and supersolution of (2.1).

Definition 2.4 (Degenerate ellipticity). F : Ω × [0, T ]×R × Rd × Sd → R is said to be
degenerate elliptic if for any (x, t, r, p) ∈ Ω× [0, T ]× R× (Rd\{0}), it holds that

F (x, t, r, p,X) ≤ F (x, t, r, p, Y ) for X,Y ∈ Sd with X ≥ Y,

where X ≤ Y means that 〈Xξ, ξ〉 ≤ 〈Y ξ, ξ〉 for every ξ ∈ Rd.

Let us recall a comparison principle for the problem (2.1) from [3, Theorem 3.1]:

Theorem 2.1 (Comparison principle). Let Ω ⊂ Rd be a bounded domain with C2,1 boundary,
and let u0 ∈ C(Ω). Let u and v be respectively a bounded upper semi-continuous subsolution
and a bounded lower semi-continuous supersolution of (2.1). Suppose that F and B fulfill the
following conditions:

(F1) For every R > 0, there exists a constant CR ∈ R such that for every x ∈ Ω, t ∈ [0, T ],
−R ≤ v ≤ u ≤ R, p ∈ Rd and X ∈ Sd, it holds that

F (x, t, u, p,X)− F (x, t, v, p,X) ≥ CR(u− v).

(F2) For any R,K > 0, there exists a function ωR,K : [0,∞) → R such that ωR,K(s) → 0 as
s ↓ 0 and for all η > 0, it holds that

F (y, t, u, q, Y )− F (x, t, u, p,X) ≤ ωR,K

(
η + |x− y|(1 + |p| ∨ |q|) + |x− y|2

ε2

)
for any x, y ∈ Ω, t ∈ [0, T ], u ∈ [−R,R], p, q ∈ Rd\{0} and X,Y ∈ Sd satisfying

− Kη

ε2
I2d ≤

(
X O
O −Y

)
≤ Kη

ε2

(
Id −Id
−Id Id

)
+KηI2d, (2.4)

|p− q| ≤ Kε(|p| ∧ |q|) and |x− y| ≤ Kηε,

where |p| ∨ |q| := max{|p|, |q|} and |p| ∧ |q| := min{|p|, |q|}.
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(F3) F ∈ C(Ω× [0, T ]×R× (Rd\{0})× Sd) and F ∗(x, t, u,0, O) = F∗(x, t, u,0, O) for every
x ∈ Ω, t ∈ [0, T ] and u ∈ R. In other words, F (x, t, u, ·, ·) is continuous at (0, O).

(B1) For any R > 0, there exists CR > 0 such that for all λ > 0, x ∈ ∂Ω, t ∈ [0, T ],
−R ≤ v ≤ u ≤ R and p ∈ Rd, it holds that

B(x, t, u, p+ λνΩ(x))−B(x, t, v, p) ≥ CRλ.

(B2) There exists a constant C > 0 such that for any x, y ∈ Ω, t ∈ [0, T ], u ∈ R and
p, q ∈ Rd, it holds that

|B(x, t, u, p)−B(y, t, u, q)| ≤ C{(|p|+ |q|)|x− y|+ |p− q|}.

Then, it holds that u ≤ v in Ω× [0, T ].

Under regularity assumptions on Ω and the contact angle function β, we confirm that the
problem (1.4) satisfies the comparison principle:

Theorem 2.2. Suppose that Ω is uniformly C2, thus νΩ is uniformly C1. Assume that
‖β‖∞ < 1 and ‖∇∂Ωβ‖∞ <∞. Then, the function F and B defined by (1.5) and (1.6) satisfy
the hypotheses of Theorem 2.1. In particular, if Ω is C2,1, then the comparison principle is
available for the problem (1.4).

Proof. Since F is independent of u, the condition (F1) is clearly fulfilled by setting CR = 0.
To show the condition (F2), fix any K,R, η, ε > 0 and let X,Y ∈ Sd be such that (2.4). Let
{e1, · · · , ed} ⊂ Rd be the standard basis of Rd, i.e., for each 1 ≤ i ≤ d, the j-th element of ei
equals δij , where δij denotes Kronecker’s delta. Letting ξ := (ei, ei) ∈ R2d and applying ξ to
(2.4), we have

−2kη

ε2
≤ −yii + xii ≤ 2kη. (2.5)

Summing up (2.5) through 1 ≤ i ≤ d, we obtain

−2Kηd

ε2
≤ − tr(Y ) + tr(X) ≤ 2Kηd. (2.6)

Meanwhile, letting ξ := ( p
|p| ,

q
|q|) ∈ R2d and applying ξ to (2.4) yield

−2Kη

ε2
≤ tr

(
p⊗ p

|p|2
X

)
− tr

(
q ⊗ q

|q|2
Y

)
≤ 2Kη

ε2

(
1− 〈p, q〉

|p||q|

)
+ 2Kη. (2.7)

Combining (2.6) and (2.7) together with the Schwarz inequality gives

−2K

(
1 +

d+ 2

ε2

)
η ≤ F (q, Y )− F (p,X) ≤ 2K

(
d+

1

ε2

)
η.

Thus, we define ωR,K(s) := 2K
(
d+ 1

ε2

)
s for each s ∈ [0,∞) and observe that lims↓0 ωR,K(s) =

0 and

F (q, Y )− F (p,X) ≤ ωR,K(η) ≤ ωR,K

(
η + |x− y|(1 + |p| ∨ |q|) + |x− y|2

ε2

)
.
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Hence, F satisfies (F2). For (F3), it is known that F∗(0, O) = F ∗(0, O) = 0 by [23, Lemma
1.6.16]. Let us check that B satisfies (B1). We compute

B(u, p+ λνΩ(x))−B(u, p) = 〈p+ λνΩ(x), νΩ(x)〉+ β(x)|p+ λνΩ(x)| − 〈p, νΩ(x)〉 − β(x)|p|
= λ+ β(x)(|p+ λνΩ(x)| − |p|) ≥ λ− ‖β‖∞ ||p+ λνΩ(x)| − |p||
≥ λ− ‖β‖∞|p+ λνΩ(x)− p| = (1− ‖β‖∞)λ.

Thus, letting CR := 1− ‖β‖∞ > 0, we have (B1). For (B2), we compute

|B(x, p)−B(y, q)| = | 〈p, νΩ(x)〉+ β(x)|p| − 〈q, νΩ(y)〉 − β(y)|q||
≤ | 〈p, νΩ(x)〉 − 〈q, νΩ(y)〉 |+ |β(x)|p| − β(y)|q||. (2.8)

The first term of the right-hand side of (2.8) can be estimated as follows.

| 〈p, νΩ(x)〉 − 〈q, νΩ(y)〉 | = | 〈p− q, νΩ(x)〉+ 〈q, νΩ(x)− νΩ(y)〉 |
≤ |p− q|+ |q|‖∇∂ΩνΩ‖∞|x− y| ≤ |p− q|+ ‖∇∂ΩνΩ‖∞(|p|+ |q|)|x− y|. (2.9)

Whereas, for the second term of the right-hand side of (2.8), we compute

|β(x)|p| − β(y)|q|| ≤ |β(x)− β(y)||p|+ |β(y)|p| − β(y)|q||
≤ ‖∇∂Ωβ‖∞|p||x− y|+ ‖β‖∞||p| − |q|| ≤ ‖∇∂Ωβ‖∞(|p|+ |q|)|x− y|+ |p− q|. (2.10)

Combining (2.8), (2.9) and (2.10) and setting C := max{2, ‖∇∂Ωβ‖∞, ‖∇∂ΩνΩ‖∞} > 0, we
derive the desired inequality.

3 Capillary Chambolle type scheme

In this section, we will explore some properties of a minimizer of the energy functional Eβ
h (u)

defined by

Eβ
h (u) := Cβ(u) +

1

2h

∫
Ω
(u− g)2 dLd, (3.1)

where g ∈ L2(Ω) is a given data.

The following lemma asserts the monotonicity of the minimizer of Eβ
h (u) with respect to

the data g:

Lemma 3.1. Let wf denote the unique minimizer of (3.1). Let f, g ∈ L2(Ω) and suppose
that f ≤ g holds a.e. in Ω. Then, wf ≤ wg holds a.e. in Ω.

Proof. Though the proof is quite similar to that of [9], we include it for the reader’s con-
venience. Our present purpose is to show that the set {wf > wg} has zero d-dimensional
Lebesgue measure. Since wf and wg are respectively minimizers of (3.1) for the data f and
g, we have

Cβ(wf ) +
1

2h

∫
Ω
(wf − f)2 dLd ≤ Cβ(wf ∧ wg) +

1

2h

∫
Ω
(wf ∧ wg − f)2 dLd, (3.2)

Cβ(wg) +
1

2h

∫
Ω
(wg − g)2 dLd ≤ Cβ(wf ∨ wg) +

1

2h

∫
Ω
(wf ∨ wg − g)2 dLd. (3.3)
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We now recall a well-known inequality:∫
Ω
|∇(u ∧ v)|+

∫
Ω
|∇(u ∨ v)| ≤

∫
Ω
|∇u|+

∫
Ω
|∇v|. (3.4)

Moreover, it is easily observed that∫
∂Ω
βγ(u ∧ v)dHd−1 +

∫
∂Ω
βγ(u ∨ v)dHd−1 =

∫
∂Ω
βγudHd−1 +

∫
∂Ω
βγvdHd−1. (3.5)

Thus, we obtain ∫
Ω
(wf − f)2 dLd ≤

∫
Ω
(wf ∧ wg − f)2 dLd,∫

Ω
(wg − g)2 dLd ≤

∫
Ω
(wf ∨ wg − g)2 dLd.

(3.6)

Splitting Ω into {wf ≤ wg} and {wf > wg} and summing up (3.6) yield∫
{wf>wg}

(wf − f)2 dLd ≤
∫
{wf>wg}

(wg − f)2 dLd,∫
{wf>wg}

(wg − g)2 dLd ≤
∫
{wf>wg}

(wf − g)2 dLd.

Adding two inequalities yield∫
{wf>wg}

(wf − wg)(g − f) dLd ≤ 0. (3.7)

Since f ≤ g a.e. in Ω, the integral domain {wf > wg} should have zero d dimensional
measure.

We next prove that the map L2(Ω) 3 g 7→ wh
g ∈ L2(Ω) is Lipschitz continuous:

Proposition 3.1. For every h > 0 and f, g ∈ L2(Ω), it holds that

‖wh
f − wh

g ‖2 ≤ ‖f − g‖2.

Proof. Set pf := −(wh
f − f)/h and pg := −(wh

g − g)/h. Then, we see that pf ∈ ∂Cβ(w
h
f ) and

pg ∈ ∂Cβ(w
h
g ). Hence, we get

Cβ(w
h
g ) ≥

∫
Ω
pf (w

h
g − wh

f ) dLd + Cβ(w
h
f ),

Cβ(w
h
f ) ≥

∫
Ω
pg(w

h
f − wh

g ) dLd + Cβ(w
h
g ).

(3.8)

Summing up both sides of (3.8) gives

0 ≤
∫
Ω
(pf − pg)(w

h
f − wh

g ) dLd =

∫
Ω

(
f − g − wh

f + wh
g

h

)
(wh

f − wh
g ) dLd. (3.9)

Thus, we obtain from Cauchy-Schwarz’ inequality that

‖wh
f − wh

g ‖22 ≤ ‖f − g‖2‖wh
f − wh

g ‖2.

The proof is now complete.
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In the sequel, we investigate conditions on the domain Ω and on the contact angle function
β to ensure that a solution wh

g to (3.10) is equi-continuous with respect to h > 0:{
w + h div∇ϕ(∇w) = g in Ω,

B(·,∇w) = 0 on ∂Ω,
(3.10)

where ϕ(p) := |p|, and B(x, p) := 〈p, νΩ(x)〉 + β(x)|p| for x ∈ ∂Ω and p ∈ Rd. Precisely
speaking, we obtain the following result:

Theorem 3.1. Suppose that Ω is a convex domain and β ∈ C1(∂Ω) with ‖β‖∞ < 1. Suppose
that w is a solution to (3.10). Assume that ∇∂Ωβ(x) is orthogonal to the kernel of the
Weingarten map ∇∂ΩνΩ(x) at each x ∈ ∂Ω. Assume that |∇∂Ωβ(x)| ≤ k(x) where k(x) is
the minimal nonnegative principal (inward) curvature of ∂Ω at x ∈ ∂Ω. Then, it holds that

‖∇w‖∞ ≤ ‖∇g‖∞.

In other words, if the gradient of g is bounded, then wh
g is equi-continuous with respect to

h > 0.

Remark 3.1. Our assumption on β implies that β must be a constant function if ∂Ω is flat.
Precisely speaking, if ∂Ω is flat in the direction of xi-axis, then β must be independent of xi.

Remark 3.2. We note that the function wh
g turns out to be equi-continuous with respect to

g in the case when g is the signed geodesic distance function.

To prove Theorem 3.1, we need several lemmas.

Lemma 3.2. Let L be a degenerate elliptic differential operator of the form:

L :=

d∑
i,j=1

aij
∂2

∂xi∂xj
+

d∑
ℓ=1

bℓ
∂

∂xℓ

with a non-positive definite symmetric matrix (aij)1≤i,j≤d and bℓ, where (aij)
1/2 is Lipschitz

and bℓ’s are uniformly continuous in Ω where Ω is a domain in Rd. Assume that ∂Ω is
uniformly C1. Let ξ be a bounded C1 vector field on ∂Ω such that inf∂Ω 〈ξ, νΩ〉 > 0 where νΩ
is the exterior unit normal vector field of ∂Ω. If v ∈ C2(Ω) ∩ C1(Ω) satisfies{

v + Lv ≤ λ in Ω,
〈ξ,∇v〉 ≤ 0 on ∂Ω

(3.11)

for some constant λ, then it holds that v ≤ λ in Ω.

Proof. Since v ≡ λ is a solution, the assertion follows from a classical comparison principle
for linear equations (see e.g. [35]).

Remark 3.3. The comparison principle for the oblique derivative boundary problem is well
known even for a viscosity solution as stated in Theorem 2.1. See e.g. [3, 30].
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Lemma 3.3. Assume that ∂Ω is uniformly C2 so that νΩ is uniformly C1. Assume that
w∈ C3(Ω) is C2 up to the boundary. Assume that w satisfies B(·,∇w(·)) = 0 on ∂Ω. Assume
that β is C1, ‖β‖∞ < 1 and ‖∇∂Ωβ‖∞ <∞. If B satisfies

d∑
i=1

wi(x)
∂B

∂xi
(x,∇w(x)) ≥ 0 for x ∈ ∂Ω,

then for u := 1
2 |∇w|

2, the C1 vector field ξ = ∇pB(·,∇w(·)) satisfies

〈ξ,∇u〉 ≤ 0 on ∂Ω

and
〈ξ, νΩ〉 ≥ 1− ‖β‖∞ > 0 on ∂Ω.

Proof. First differentiate B(x,∇w(x)) = 0 in xi and multiply wi(x) to get

d∑
ℓ=1

wi(x)
∂B

∂pℓ
(x,∇w(x))wiℓ(x) + wi(x)

∂B

∂xi
(x,∇w(x)) = 0. (3.12)

We sum up (3.12) from i = 1 to d to get

d∑
ℓ=1

∂B

∂pℓ
(x,∇w(x)) ∂u

∂xℓ
(x) +

d∑
i=1

wi(x)
∂B

∂xi
(x,∇w(x)) = 0.

By our assumption, we now obtain

〈ξ(x),∇u(x)〉 = ∇pB(x,∇w(x)) · ∇u(x) =
d∑

ℓ=1

∂B

∂pℓ
(x,∇w(x)) ∂u

∂xℓ
(x) ≤ 0.

Meanwhile, a direct calculation shows

∂B

∂pℓ
(x, p) = νℓ(x) + β(x)

pℓ
|p|
,

where νℓ denotes the ℓ-th element of νΩ. We deduce from the Schwarz inequality that

〈ξ(x), νΩ(x)〉 =
d∑

ℓ=1

(
νℓ(x)

2 + β(x)
wℓ(x)νℓ(x)

|∇w(x)|

)
= 1 + β(x)

〈∇w(x), νΩ(x)〉
|∇w(x)|

≥ 1− ‖β‖∞.

We now complete the proof.

Lemma 3.4. Assume that ∂Ω is uniformly C2. Assume that ∇∂Ωβ(x) is orthogonal to the
kernel of the inward Weingarten map ∇∂ΩνΩ(x) for each x ∈ ∂Ω. If |∇∂Ωβ(x)| is bounded by
the minimal nonnegative principal (inward) curvature κ(x) of ∂Ω at each x ∈ ∂Ω, then

d∑
i=1

wi(x)
∂B

∂xi
(x,∇w(x)) ≥ 0

is fulfilled for every x ∈ ∂Ω.
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Proof. Since
∂B

∂xi
(x,∇w(x)) =

〈
∂νΩ
∂xi

(x),∇w(x)
〉
+
∂β

∂xi
(x)|∇w(x)|,

we see that

d∑
i=1

wi(x)
∂B

∂xi
(x,∇w(x)) =

d∑
ℓ,i=1

∂νℓ
∂xi

(x)wℓ(x)wi(x) +

d∑
i=1

wi(x)
∂β

∂xi
(x)|∇w(x)|.

We extend β as constant to the νΩ-direction. Since ∇∂Ωβ is orthogonal to the kernel of the
Weingarten map ∇∂ΩνΩ, we proceed

d∑
ℓ,i=1

∂νℓ
∂xi

(x)wℓ(x)wi(x) +

d∑
i=1

wi(x)
∂β

∂xi
(x)|∇w(x)| ≥ κ(x)|∇w(x)|2 − |∇w(x)|2|∇∂Ωβ(x)|

= (κ(x)− |∇∂Ωβ(x)|)|∇w(x)|2 ≥ 0.

Our assumption guarantees that the right-hand side is positive. The proof is now complete.

We are now in the position to prove Proposition 3.1.

Proof of Proposition 3.1. We define u := 1
2 |∇w|

2 and argue by Bernstein’s method (see e.g.
[28, Chapter 15]). We differentiate the first equation of (3.10) in the direction xk (1 ≤ k ≤ d)
and multiply it by wk(x) to get

wk(x)
2 − h

d∑
i=1

wk(x)∂i

 d∑
j=1

ϕij(∇w(x))wjk(x)

 = wk(x)gk(x). (3.13)

Meanwhile, we calculate

d∑
i=1

wk(x)∂i

 d∑
j=1

ϕij(∇w(x))wjk(x)

 (3.14)

=

d∑
i=1

∂i

 d∑
j=1

wk(x)ϕij(∇w(x))wjk(x)

−
d∑

i,j=1

wik(x)ϕij(∇w(x))wjk(x)

≤
d∑

i=1

∂i

 d∑
j=1

ϕij(∇w(x))wk(x)wjk(x)

 =

d∑
i=1

∂i


d∑

j=1

ϕij(∇w(x))∂j

(
wk(x)

2

2

).
Here, the inequality in (3.14) follows from the positive definiteness of
(ϕij(∇w(x)))1≤i,j≤d. Summing up (3.13) over 1 ≤ k ≤ d and taking (3.14) into account,
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we obtain

2u(x)− h

d∑
i=1

∂i

 d∑
j=1

ϕij(∇w(x))uj(x)


≤

d∑
k=1

wk(x)
2 − h

d∑
i=1

wk(x)∂i

 d∑
j=1

ϕij(∇w(x))wjk(x)


=

d∑
k=1

wk(x)gk(x) ≤
1

2
|∇w(x)|2 + 1

2
|∇g(x)|2 ≤ u(x) +

1

2
‖∇g‖2∞.

Hence, u satisfies the first equation of (3.11) in the case where λ := 1
2‖∇g‖

2
∞ and L(u) =

− div(A(x)∇u) with A(x) := (ϕij(∇w(x)))1≤i,j≤d. We have already seen that 〈ξ,∇u〉 ≤ 0
with ξ := ∇pB(·,∇w(·)) in Lemma 3.3 and Lemma 3.4. Therefore, we conclude from Lemma
3.2 that ‖∇w‖∞ ≤ ‖∇g‖∞.

Remark 3.4. To guarantee that w is C2 up to the boundary, we need a regularity assumption
on Ω which is slightly more than C2, say C2,α. The C2,1 assumption is sufficient to guarantee
C2 regularity for w (see e.g., [28, §6.4]).

We are now in the position to define a set operator Th : P(Ω) → P(Ω) where P(Ω) denotes
the set of all subsets in Ω. For each E ⊂ Ω, we set

Th(E) := {wh
E ≤ 0},

where wh
E is the unique minimizer of Eβ

h (u). Then, we have two important properties of the
set operator Th as follows.

Lemma 3.5 (Monotonicity of Th). Suppose that E ⊂ F ⊂ Ω. Then, it holds that Th(E) ⊂
Th(F ).

Proof. Since dΩ,E ≥ dΩ,F in Ω, we deduce from Lemma 3.1 that wh
E ≥ wh

F in Ω. This readily
yields Th(E) ⊂ Th(F ).

Remark 3.5. It is crucial to use the geodesic signed distance function dΩ,E as an initial data
g for the variational problem (3.1). Thanks to the monotonicity of dΩ,E with respect to E (see
e.g. [19, Lemma 1]), we do not need to assume the convexity of Ω to obtain the monotonicity
of Th(E).

We are now in the position to establish the continuity of the scheme Th:

Lemma 3.6 (Continuity of Th). Let {En}n be a non-increasing sequence of relatively closed
subsets in Ω. Then, it holds that

Th

( ∞⋂
n=1

En

)
=

∞⋂
n=1

Th(En).

Proof. Let E :=
⋂∞

n=1En. Since
⋂∞

n=1 Th(En) ⊃ Th(E) is obvious, we prove the converse
inclusion. Suppose that x /∈ Th(E). Then, we have wh

E(x) > 0. Since dΩ,En → dΩ,E pointwise
as n → ∞ and Ω is bounded, this convergence is uniform in Ω. Hence, we deduce from
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Proposition 3.1 that wh
En

→ wh
E a.e. in Ω as n → ∞. Since |∇dΩ,En | is uniformly bounded

with respect to n ∈ N, we see that {wh
En

}n is equi-continuous by Theorem 3.1 and Remark 3.2.

Moreover, the maximum principle guarantees that wh
En

is uniformly bounded with respect to

n ∈ N. Hence, we can extract a subsequence {wh
Enk

}k by the Ascoli–Arzelà theorem such that

wh
Enk

→ w uniformly in Ω for some w ∈ UC(Ω). This w should correspond to wh
E . Letting

k → ∞, we derive wh
Enk

(x) → wh
E(x) which implies wh

Enk
(x) > 0 holds for sufficiently large

k ∈ N. This leads to x /∈
⋂∞

n=1 Th(En).

As a conclusion of this section, we characterize the unique minimizer of (3.1) as the
projection to the data function onto a closed convex set in L2(Ω):

Proposition 3.2. Let g ∈ L2(Ω). Then, there exists z ∈ X2(Ω) such that

z = argmin

{
‖ div z − g‖2

∣∣∣∣ z∈X2(Ω), ∥z∥∞≤1,

[z·ν]=−β Hd−1-a.e. on ∂Ω

}
. (3.15)

Proof. We take a minimizing sequence {zi}i ⊂ X2(Ω) of (3.15). Since {zi}i is bounded in
L∞(Ω;Rd), up to a subsequence, there exists z ∈ L∞(Ω;Rd) such that

zi ⇀ z weakly- ∗ in L∞(Ω;Rd).

Meanwhile, since {div zi}i is bounded in L2(Ω), there exists zdiv ∈ L2(Ω) such that

div zi ⇀ zdiv weakly in L2(Ω)

by taking a further subsequence. Then, we have div z = zdiv in D′(Ω). Indeed, for any
φ ∈ C∞

0 (Ω), we deduce∫
Ω
zdivφ dLd = lim

i→∞

∫
Ω
(div zi)φ dLd

= lim
i→∞

∫
Ω
−zi · ∇φ dLd = −

∫
Ω
z · ∇φ dLd. (3.16)

Here, the second equality is deduced from [2, Proposition C.4]. Thus, we see z ∈ X2(Ω).
Moreover, the lower semi-continuity of {zi}i in the topology of weakly-∗ L∞(Ω;Rd) yields

‖z‖∞ ≤ lim inf
i→∞

‖zi‖∞ ≤ 1.

For any φ ∈ C∞(Ω), we obtain∫
Ω
zdiv φ dLd = lim

i→∞

∫
Ω
(div zi)φ dLd

= lim
i→∞

(∫
∂Ω

[zi · ν]φdHd−1 −
∫
Ω
zi · ∇φ dLd

)
= lim

i→∞

(∫
∂Ω

−β φdHd−1 −
∫
Ω
zi · ∇φ dLd

)
=

∫
∂Ω

−β φdHd−1 −
∫
Ω
z · ∇φ dLd. (3.17)
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The left-hand side of (3.17) is also deformed as follows:∫
Ω
zdiv φ dLd =

∫
Ω
(div z)φ dLd =

∫
∂Ω

[z · ν]φdHd−1 −
∫
Ω
z · ∇φ dLd. (3.18)

Combining (3.17) and (3.18) gives∫
∂Ω

[z · ν]φdHd−1 =

∫
∂Ω

−β φdHd−1.

Since φ ∈ C∞(Ω) is arbitrary, we see that [z · ν] = −β holds Hd−1-a.e. on ∂Ω. Therefore, we
conclude that z is a minimizer of (3.15).

Proposition 3.3. Let g ∈ L2(Ω). Suppose that w is a solution of

u− g

h
+ ∂Cβ(u) 3 0. (3.19)

Then, w = g − πhKβ
(g) holds where Kβ = ∂Cβ(0) and πhKβ

is the orthogonal projection to
the set hKβ in L2(Ω).

Proof. The variational problem (3.19) is equivalent to w ∈ ∂C∗
β((g−w)/h) due to Proposition

2.1. Setting w := (g − w)/h, the problem is rewritten as

0 ∈ hw − g + ∂C∗
β(w). (3.20)

This implies that

w = argminu∈L2(Ω)

{
‖hu− g‖22

2
+ C∗

β(u)

}
.

Due to Remark 2.1, the above problem is reduced to

w = argminu∈Kβ
‖hu− g‖2. (3.21)

The formula (3.21) implies that

w = argminu∈Kβ
‖hu− g‖2 =

1

h
argminu∈hKβ

‖u− g‖2 =
1

h
πhKβ

(g).

Recalling w = (g − w)/h, we conclude that w = g − πhKβ
(g).

Remark 3.6. Similar arguments as in Proposition 3.2 and Proposition 3.3 can be found in
[10, §3]. Therein, Chambolle considered the dual problem ( (3.20) in our case) instead of the
original one ( (3.19) in our case) to establish a gradient descent algorithm to compute a time
discrete solution to the mean curvature flow.
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4 Convergence of the proposed scheme

In this section, we shall show convergence of the approximate scheme Sh to (1.4). For this
purpose, it is crucial to confirm that Sh fulfills the conditions from (1.9) to (1.12).

We now define an approximate scheme Sh for (1.4) with the aid of the capillary Chambolle
type scheme Th as follows:

Shu0(x) := sup{λ ∈ R | x ∈ Th({u0 ≥ λ})}. (4.1)

In terms of Sh, we define an approximate solution uh to (1.4) by

uh(t, x) := S
⌊ t
h
⌋

h u0(x).

We now state a main result of this section as follows:

Theorem 4.1. Suppose that Ω is convex. Assume that there exist constants β < 0 and β > 0

such that −1 < β ≤ β ≤ β < 1 on ∂Ω. Moreover, assume that β satisfies the hypotheses of
Theorem 3.1. Then, the approximate scheme Sh defined by (4.1) satisfies the conditions from
(1.9) to (1.12).

Once Theorem 4.1 is established, the statement of Theorem 1.1 immediately follows from
the result by Barles and Souganidis:

Theorem 4.2 ([4], Theorem 2.1). Suppose that F : (Rd\{0}) × Sd → R is degenerate el-
liptic, geometric, continuous, and satisfies −∞ < F∗(0, O) = F ∗(0, O) < ∞. Assume that
the approximate scheme Sh fulfills the conditions from (1.9) to (1.12). Then, uh uniformly
converges to the unique viscosity solution of (1.4).

We begin with confirmation that Sh is monotone and translation invariant:

Proposition 4.1 (Monotonicity and translation invariance of Sh). The function operator Sh
satisfies the criteria (1.9) and (1.10).

Proof. Suppose that u ≤ v in Ω. Then, we see that {u ≥ λ} ⊂ {v ≥ λ} for every λ ∈ R. Since
Th is monotone from Lemma 3.5, we have Th({u ≥ λ}) ⊂ Th({v ≥ λ}). Thus, it follows from
the definition of Sh that Shu ≤ Shv in Ω. The formula Sh(u+ c) = Shu+ c is straightforward
by the definition of Sh.

The following lemma states a relationship between Sh and Th which will be crucial for our
study.

Lemma 4.1. For every λ ∈ R2 and u0 ∈ UC(Ω), Shu0(x) ≥ λ holds if and only if x ∈
Th({u0 ≥ λ}).

Proof. The assertion is straightforward by Lemma 3.1, Lemma 3.6 and [20, Lemma 4.3].

We need a soliton-like rigorous solution to the mean curvature flow with the constant
contact angle condition to capture a general flow. A candidate for such a solution is a
translative soliton:
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Definition 4.1 (Translative soliton). A function f : Ω → R is called a translative soliton if
there exist a constant k ∈ (−1, 1) and a function Φk(x

′) on some subset Ω̃ ⊂ Rd−1 such that
f(x′, xd) = Φk(x

′)− xd holds and f solves the following partial differential equation:{
w − h div∇ϕ(∇w) = dΩ,F in Ω,

〈∇w, νΩ〉+ k|∇w| = 0 on ∂Ω,
(4.2)

where F := {(x′, xd) | xd ≤ Φk(x
′) + (arctanα)h} with α := arccos k.

Remark 4.1. A translative soliton is often called either a translator or a translating soliton
in the literature, and it originally means a rigorous solution to the mean curvature flow with a
contact angle condition which can be represented as a graph over an ambient space. We note
that the problem (4.2) is a discrete variant of level-set equations for the mean curvature flow.
The translative soliton which we treat here corresponds to a bowl soliton which is restricted
to a cylindrical domain. For a summary of existing works for translators, see e.g. [29, §4].

To prove Theorem 4.1, we need an assumption and several lemmas:

Lemma 4.2. For every point z ∈ Ω and a vector v, there exists a translative soliton which
evolves in the direction either v or −v and includes z in its level set.

Proof. This is straightforward from the result by Zhou [36, Collorary 4.2].

If Ω is a smooth bounded domain, then the above lemma can be proved by approximating
Ω with a cylindrical domain. We can compute an exact form of Φβ(x

′) if d = 2 and Ω is a
cylindrical domain as follows:

Lemma 4.3. For each α > 0, we define a function uα : [−1, 1]× [0, T ] → R by

uα(x, t) :=
1

arctanα
log |cos ((− arctanα)x)|+ (− arctanα)t. (4.3)

Let Ωb := [−1, 1]× [−b, b] for some large b > 0. Namely, Ωb is supposed to be a long cylinder.
Set Et := {(x, y) ∈ Ωb | y ≤ uα(x, t)} for each t ≥ 0. Then, it holds that Th(Et) = Et+h

for every t ≥ 0 whenever −(t+ h)/ arctanα ≥ −b and α = −β/
√
1− β2. In other words, the

capillary Chambolle type scheme yields the translative soliton.

Proof. Let ν be the unit normal vector field of ∂Et and suppose that ν is extended to whole Ω
by ν(x, y) := ν(x, uα(x, t)) for all y ∈ [−b, b]. Then, we define w := dΩ,Et−h div ν = dΩ,Et−hκ.
We deduce from the assumptions that ν satisfies the conditions on z ∈ L∞(Ω;R2) in [19,

Theorem 2]. Therefore, w is a unique minimizer of Eβ
h (u) with the data Et. We easily observe

that the function uα defined by (4.3) is an exact solution to (1.1) with θ ≡ arccosβ. This
implies that evolving Et in the normal direction by its curvature is equivalent to translate
it downward (parallel to the y-axis) at the speed arctanα. Hence, the resulting Th(Et) is
nothing but Et+h.

Let us prove a key result to show the consistency of the scheme Sh:

Proposition 4.2. Let φ ∈ C2(Ω) and h > 0. Assume that there exist constants β > 0
and β < 0 such that −1 < β ≤ β ≤ β < 1. For each µ ∈ R, we set Eφ

µ := {x ∈ Ω |
φ(x) ≥ µ}. Assume that ∇φ(z) 6= 0 for some z ∈ Ω. If either z ∈ Ω or z ∈ ∂Ω and
〈∇φ(z), νΩ(z)〉 + β(z)|∇φ(z)| > 0 (resp, 〈∇φ(z), νΩ(z)〉 + β(z)|∇φ(z)| < 0), then, up to a
modification of φ in a neighborhood of z, the problem (3.10) with g := dΩ,Eφ

φ(z)
has a viscosity

supersolution w (resp, subsolution w) satisfying the following condition:
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• For every ε > 0, there exist δ > 0, h0 > 0, r > 0 and C > 0 such that

w ≤ dΩ,Eφ
λ
− hκEφ

λ
+ 3εh in Uδ,r (4.4)

(resp, w ≥ dΩ,Eφ
λ
− hκEφ

λ
− 3εh in Uδ,r) (4.5)

for any h ∈ (0, h0) and for any λ ∈ R with |φ(z)− λ| ≤ C
√
h, where

Uδ,r := {x ∈ Ω | x ∈ B(z, δ) and |dΩ,Eφ
λ
(x)| < r}.

• In particular, it holds that∣∣∣wh
Eφ

λ
− dΩ,Eφ

λ
+ hκEφ

λ

∣∣∣ ≤ εh in Uδ,r.

Proof. The proof is a modification of [20, Proposition 5.2]. First, we treat the case where
z ∈ Ω. We define sµ,β(x) := Φβ(x

′)− xd + µ for each x ∈ Ω. Since ∇φ(z) 6= 0, there exists a
δ > 0 for which {φ = µ} ∩ B(z, 3δ) is a smooth hypersurface. We introduce a smooth cutoff
function η : Ω → [0, 1] satisfying

η(x) =

{
1 if x ∈ B(z, δ),

0 if x ∈ Ω\B(z, 2δ).

Then, we replace φ with (1 − η)sµ,β + ηφ. We still write it as φ for simplicity. We observe
that sµ+h,β is a classical supersolution to (3.10) with g := dΩ,Eφ

µ
. Indeed, we have

sµ+h,β − h div∇ϕ(∇sµ+h,β) = d
Ω,E

sµ+h,β
µ

≥ dΩ,Eφ
µ

in Ω.

Here, we note that E
sµ+h,β

µ ⊂ Eφ
µ hence d

Ω,E
sµ+h,β
µ

≥ dΩ,Eφ
µ
. Moreover, we derive〈

∇sµ+h,β , νΩ

〉
+ β|∇sµ+h,β | ≥

〈
∇sµ+h,β , νΩ

〉
+ β|∇sµ+h,β | = 0 on ∂Ω.

We shall construct a viscosity supersolution to (3.10) in a neighborhood of z. To this end, we
introduce a smooth cutoff function η̃ : Ω → [0, 1] satisfying:

η̃(x) =

{
1 if |dΩ,Eφ

µ
(x)| ≤ r,

0 if |dΩ,Eφ
µ
(x)| ≥ 2r,

‖∇η̃‖∞ + ‖∇2η̃‖∞ ≤ L,

where L > 0 is independent of ε, h, and r. Moreover, suppose that τ(ε) ↓ 0 as ε ↓ 0. Then,
we define

w̃ := dΩ,Eφ
µ
− hη̃κτ(ε) + (1− η̃)h+ 2εh.

Here, we have used the notation that κτ := ρτ ∗ κEφ
µ
with the standard mollifying kernel ρτ .

Take τ(ε) so small that ‖κτ(ε) − κEφ
µ
‖C(Eφ

µ ) < ε. Then, as discussed in [20, Proposition 5.2],
the function w̃ turns out to be a classical supersolution of (3.10) with g := dΩ,Eφ

µ
in Uδ,r. In

terms of sµ+h,β and w̃, we define

w :=

{
min{w̃, sµ+h,β} in Uδ,r,

sµ+h,β in Ω\Uδ,r.

21



Since viscosity supersolutions are closed under taking minimum, we see that w is also a
viscosity supersolution of (3.10) with g := dΩ,Eφ

µ
. Thus, we deduce that

w ≤ w̃ = dΩ,Eφ
µ
− hκτ(ε) + 2εh ≤ dΩ,Eφ

µ
− hκEφ

µ
+ 3εh in Uδ,r.

Here, we should take δ > 0 so small that B(z, δ) ⊂ {|dEφ
µ
| < r} if necessary. Consequently,

we derive the desired w. The comparison principle for viscosity solutions implies wh
Eφ

µ
≤ w

and hence

wh
Eφ

µ
≤ w̃ = dΩ,Eφ

µ
− hκτ(ε) + 2εh ≤ dΩ,Eφ

µ
− hκEφ

µ
+ 3εh in Uδ,r.

If z ∈ ∂Ω, φ is already a supersolution of the second equality of (3.10). Moreover, we see
that the hypersurface {φ = µ} ∩ B(z, 3δ) intersects ∂Ω with the angle larger than arccos β.
Thus, we can find a translative soliton whose level set is included in Eφ

µ in a neighborhood
of z. Hence, the whole argument for z ∈ Ω will work. A desired viscosity subsolution can be
obtained in the same manner. We conclude the proof.

Remark 4.2. Let us mention difference from the researches [20, 21] regarding construction
of a sub- and supersolution which approximate a solution of (3.10) in the case where Ω = Rd.
Note that the boundary condition in (3.10) vanishes due to ∂Ω is an empty set. Therein, the
hypersurface {φ = µ} was approximated with the help of an open bounded set V1 ⊂ Rd whose
boundary is tangent to {φ = µ}. Then, the function dΩ,V1 was bounded by rigorous solutions
of (3.10) with Ω := Rd, g := dΩ,B and a ball B. This solution was explicitly computed in [8,
§B]. However, this result is not available in our case due to the boundary condition. We are
forced to modify a test function φ to cope the boundary condition. But, we should notice that
the definition of viscosity solutions only uses local information of φ. Thus, this modification
does not affect the following discussion.

The following lemma establishes a kind of monotonicity of the scheme Sh with respect to
the contact angle function β:

Lemma 4.4. Suppose that β1 : ∂Ω → [−1, 1] and β2 : ∂Ω → [−1, 1] satisfy β1 ≤ β2 on ∂Ω.
Let Sh,b be the associated function operator which is induced from the solution to (3.10) with
β := b and g = dΩ,E for each function b : ∂Ω → [−1, 1]. Then, it holds that

Sh,β2φ ≤ Sh,β1φ in Ω (4.6)

for any function φ ∈ C(Ω).

Proof. For each b : ∂Ω → [−1, 1], let Th,b(E) := {wh
E,b ≤ 0} where wh

E,b the unique solution

to (3.10) with β := b and g = dΩ,E . Then, we observe that wh
E,β1

is a viscosity subsolution

of (3.10) with β := β2. Hence, we deduce from the comparison principle that wh
E,β1

≤ wh
E,β2

in Ω. This estimate implies that Th,β2(E) ⊂ Th,β1(E). Therefore, by the definition of Sh, it
follows that Sh,β2φ ≤ Sh,β1φ.

We are now in the position to prove the consistency of the scheme Sh.
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Theorem 4.3 (Consistency of Sh). Let φ ∈ C2(Ω). Suppose that Ω and β satisfy the criteria
of Proposition 4.2 and Theorem 3.1. Then, it holds that

limsup*

h→0

Shφ(z)− φ(z)

h
≤ −F∗(∇φ(z),∇2φ(z)) (4.7)

(resp, liminf∗h→0
Shφ(z)− φ(z)

h
≥ −F ∗(∇φ(z),∇2φ(z))) (4.8)

whenever z ∈ Ω satisfies one of the following conditions:

• z ∈ Ω and either ∇φ(z) 6= 0 or ∇φ(z) = 0 and ∇2φ(z) = O.

• z ∈ ∂Ω, ∇φ(z) 6= 0 and 〈∇φ(z), νΩ(z)〉+ β(z)|∇φ(z)| > 0
(resp, 〈∇φ(z), νΩ(z)〉+ β(z)|∇φ(z)| < 0).

Proof. Set µ := φ(z). Fix any φ ∈ C2(Ω) and any ε > 0.

[Case z ∈ Ω and ∇φ(z) 6= 0]
Then, we deduce from Lemma 4.2 that there exist a smooth function φ̃ and a positive constant
δ such that the estimate

|wh
Eφ̃

λ

− d
Ω,Eφ̃

λ
+ hκ

Eφ̃
λ
| ≤ εh in Uδ,r (4.9)

holds for sufficiently small h > 0 and r > 0 and λ ∈ R with |µ − λ| ≤ C
√
h with C :=√

2|∇φ(z)| and φ̃ = φ in Uδ,r. For simplicity, we still write φ̃ as φ. We now define

λ±h := φ(z±h ) + {−F (∇φ(z),∇2φ(z)) + ε}h,

where

z±h := z ± ∇φ(z)
|∇φ(z)|

√
2h.

Then, we shall show that Shφ(z
±
h ) ≤ λ±h for sufficiently small h > 0. We note that this

statement is equivalent to z±h /∈ Th(E
φ

λ±
h

) by Lemma 4.1. First, we prove that Shφ(z
−
h ) ≤ λ−h .

We use (4.9) with µ := λ−h to derive

wh
Eφ

λ−
h

(z−h ) ≥ dΩ,Eφ

λ−
h

(z−h )− hκEφ

λ−
h

(z−h )− εh ≥ dΩ,Eφ

λ−
h

(z−h )− (K + ε)h, (4.10)

where K := sup0≤h≤1 ‖κEφ

λ−
h

‖C(Uδ,r)
. Since dΩ,Eφ

λ−
h

is smooth, we have

dΩ,Eφ

λ−
h

(z−h ) = dΩ,Eφ

λ−
h

(z)−
〈
∇dΩ,Eφ

λ−
h

(z̃−h ),
∇φ(z)
|∇φ(z)|

〉√
2h, (4.11)

where z̃−h = z − ∇φ(z)
|∇φ(z)| h̃ for some h̃ ∈ (0,

√
2h). We deduce from the geometry (see Figure 1)

that

dΩ,Eφ

λ−
h

(z) → 0 and

〈
∇dΩ,Eφ

λ−
h

(z̃−h ),
∇φ(z)
|∇φ(z)|

〉
→ −1 (4.12)

as h → 0. Here, we have recalled that |∇dΩ,Eφ

λ−
h

| = 1 to derive the second convergence of

(4.12).
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Figure 1: The location of important points associated with z ∈ Ω.

Combining (4.10), (4.11) and (4.12), we conclude that wh
Eφ

λ−
h

(z−h ) > 0 for sufficiently small

h > 0. Thus, we obtain that z−h /∈ Th(E
φ

λ−
h

).

Second, we show that Shφ(z
+
h ) ≤ λ+h . Comparing the super level sets Eφ

µ and E
s
µ+

Ch
2 ,β

µ

(see Figure 2) and applying Lemma 4.4, we compute

Shφ ≤ Sh

(
s
µ+Ch

2
,β

)
≤ Sh,β

(
s
µ+Ch

2
,β

)
= s

µ−Ch
2

,β
in Ω, (4.13)

where

C := arctan

 −β√
1− β2

.

Figure 2: The boundaries of the super level sets.

Evaluating (4.13) at z+h yields

Shφ(z
+
h ) ≤ s

µ−Ch
2

,β
(z+h ) = µ+ |∇φ(z)|Ch

2
≤ µ+ |∇φ(z)|

√
2h+ h∆φ(z) (4.14)

for sufficiently small h > 0. Here, to derive the last inequality of (4.14), we note that for
every C1 ∈ R and C2 > 0, C1h < C2

√
h holds for sufficiently small h > 0 (we may set

24



C1 := |∇φ(z)|C2 −∆φ(z) and C2 :=
√
2|∇φ(z)|). Meanwhile, the Taylor expansion gives

φ(z+h ) = µ+ |∇φ(z)|
√
2h+

〈
∇2φ(z̃+h )

∇φ(z)
|∇φ(z)|

,
∇φ(z)
|∇φ(z)|

〉
h, (4.15)

where z̃+h = z + ∇φ(z)
|∇φ(z)| h̃ for some h̃ ∈ (0,

√
2h). Combining (4.14) and (4.15), we derive

Shφ(z
+
h ) ≤ φ(z+h ) +

{
∆φ(z)−

〈
∇2φ(z̃+h )

∇φ(z)
|∇φ(z)|

,
∇φ(z)
|∇φ(z)|

〉}
h.

Noting that

−F (∇φ(z),∇2φ(z)) = ∆φ(z)−
〈
∇2φ(z)

∇φ(z)
|∇φ(z)|

,
∇φ(z)
|∇φ(z)|

〉
and that ∇2φ is continuous, we can take h > 0 so small that

Shφ(z
+
h ) ≤ φ(z+h ) + {−F (∇φ(z),∇2φ(z)) + ε}h.

The similar argument yields

Shφ(z
±
h ) ≥ φ(z±h ) + {−F (∇φ(z),∇2φ(z))− ε}h

for sufficiently small h > 0. We complete the proof for this case.

[Case z ∈ ∂Ω and ∇φ(z) 6= 0]
In this case, we have to consider a sequence {zh}h on ∂Ω which converges to z. To this end,
for each z ∈ ∂Ω, we set

τΩ(z) :=
∇φ(z)
|∇φ(z)|

− Φ(z)νΩ(z) with Φ(z) :=

〈
∇φ(z)
|∇φ(z)|

, νΩ(z)

〉
.

Note that τΩ(z) is nothing but the projection of the vector ν(z) onto ∂Ω. Then, we define

z±h := z ± τΩ(z)
√
2h.

First, suppose that 〈∇φ(z), νΩ(z)〉+ β(z)|∇φ(z)| > 0. Then, we have

Φ(z) > −β(z) ≥ −β.

Then, geometrically speaking, it holds that either the graph of φ is bounded by sµ,−β from
above or that it is bounded from sµ,β below. See Figure 3 to grasp the situation.

Figure 3: The graphs of a translating soliton and the level set of φ.
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We assume that the former statement is valid. Then, comparing the level sets of φ and
sµ,−β , we deduce that

sµ,−β ≥ φ in Ω. (4.16)

Applying Sh both sides of (4.16) and the monotonicity of Sh together with Lemma 4.4 yield

sµ−Ch,−β = Sh,−β(sµ,−β) ≥ Sh(sµ,−β) ≥ Shφ, (4.17)

where

C := arctan

 β√
1− β

2

.
We evaluate the equation (4.17) at z+h to obtain

Shφ(z
+
h ) ≤ sµ−Ch−β(z

+
h ) = φ(z) + Ch 〈τΩ(z),∇φ(z)〉

≤ µ+ 〈τΩ(z),∇φ(z)〉
√
2h+ h∆φ(z)

+ 2hΦ(z)

〈
∇2φ(z)

∇φ(z)
|∇φ(z)|

, νΩ(z)

〉
− hΦ(z)2

〈
∇2φ(z)νΩ(z), νΩ(z)

〉
,

(4.18)

where h > 0 is taken small enough, and we have used that 〈τΩ(z),∇φ(z)〉 > 0. Meanwhile,
the Taylor expansion shows

φ(z+h ) = µ+ 〈τΩ(z),∇φ(z)〉
√
2h+

〈
∇2φ(z̃+h )τΩ(z), τΩ(z)

〉
h (4.19)

and 〈
∇2φ(z̃+h )τΩ(z), τΩ(z)

〉
=

〈
∇2φ(z̃+h )

∇φ(z)
|∇φ(z)|

,
∇φ(z)
|∇φ(z)|

〉
+ 2Φ(z)

〈
∇2φ(z̃+h )

∇φ(z)
|∇φ(z)|

, νΩ(z)

〉
− Φ(z)2

〈
∇2φ(z̃+h )νΩ(z), νΩ(z)

〉
,

(4.20)

where z̃+h = z + ∇φ(z)
|∇φ(z)| h̃ with h̃ ∈ (0,

√
2h). Since ∇2φ(z) is continuous, we deduce from

(4.18), (4.19) and (4.20) that

Shφ(z
+
h ) ≤ φ(z+h ) +

{
∆φ(z)−

〈
∇2φ(z̃+h )

∇φ(z)
|∇φ(z)|

,
∇φ(z)
|∇φ(z)|

〉}
h

+ 2Φ(z)

〈{
∇2φ(z̃+h )−∇2φ(z)

} ∇φ(z)
|∇φ(z)|

, νΩ(z)

〉
h

+Φ(z)2
〈{

∇2φ(z̃+h )−∇2φ(z)
}
νΩ(z), νΩ(z)

〉
h

≤ φ(z+h ) +
{
−F (∇φ(z),∇2φ(z)) + ε

}
for sufficiently small h > 0. Let us estimate Shφ at z−h . Fix any ε > 0, we set λ−h :=
φ(z−h ) + {−F (∇φ(z),∇2φ(z)) + ε}h. Then, it suffices to prove that wh

Eφ

λ−
h

(z−h ) > 0 for h > 0
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small enough. We deduce from Proposition 4.2 that

wh
Eφ

λ−
h

(z−h ) ≥ dΩ,Eφ

λ−
h

(z−h )− hκEφ

λ−
h

(z−h )− εh

≥ dΩ,Eφ

λ−
h

(z)−
〈
τΩ(z),∇dΩ,Eφ

λ−
h

(z)

〉√
2h− h(K + ε). (4.21)

Here, we note that the coefficient of
√
2h always positive by geometry. Letting h > 0 small

enough, we see that the left-hand side of (4.21) is positive, which means

Shφ(z
−
h ) ≤ λ−h = φ(z−h ) + {−F (∇φ(z),∇2φ(z)) + ε}h.

In the case where the graph of φ is bounded by sµ,β from below, the previous arguments

still work, replacing −β and −C with β and C respectively. Therefore, we conclude that the
estimate (4.7) is valid whenever z ∈ ∂Ω.

Though, the estimate (4.8) can be deduced by the similar argument, we shall show it for
completeness. Suppose that 〈∇φ(z), νΩ(z)〉+ β(z)|∇φ(z)| < 0. Then, we see that

Φ(z) < −β(z) ≤ −β. (4.22)

As discussed before, it holds that either the graph of φ is bounded by sµ,β from above or that

it is bounded by sµ,−β from below. We only deal with the former case. For z+h , we deduce
from Proposition 4.2 and the Taylor expansion that

wh
Eφ

λ+
h

≤ dΩ,Eφ

λ+
h

(z+h ) + hκEφ

λ+
h

+ εh

≤ dΩ,Eφ

λ+
h

(z) +

〈
τΩ(z),∇dΩ,Eφ

λ+
h

(z̃+h )

〉√
2h+ h(K + ε), (4.23)

where z̃+h = z + τΩ(z)h̃ for some h̃ ∈ (0,
√
2h). Note that the coefficient of

√
2h in (4.23) is

always negative for sufficiently small h > 0. Thus, we see that z+h ∈ Th(E
φ

λ+
h

). In other words,

we obtain
Shφ(z

+
h ) ≥ λ+h = φ(z+h ) + {−F (∇φ(z),∇2φ(z))− ε}h.

We deduce from geometry that

sµ,β ≤ φ in Ω. (4.24)

Applying Sh to both sides of (4.24) and the monotonicity of Sh show

sµ−Ch,β = Sh(sµ,β) ≤ Shφ. (4.25)

Evaluating (4.25) at z−h , we derive

µ− 〈τΩ(z),∇φ(z)〉
√
2h ≤ µ− Ch 〈τΩ(z),∇φ(z)〉 = sµ−Ch,β(z

−
h ) ≤ Shφ(z

−
h ) (4.26)

for sufficiently small h > 0. Here, we have used 〈τΩ(z),∇φ(z)〉 > 0 by geometry. Hence, we
again apply the Taylor expansion to the left-hand side of (4.26) to obtain

Shφ(z
−
h ) ≥ φ(z−h )−

〈
∇2φ(z̃−h )τΩ(z), τΩ(z)

〉
h,
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where z̃−h = z− τΩ(z)h̃ for some h̃ ∈ (0,
√
2h). In the same argument in the previous case, we

deduce that
Shφ(z

−
h ) ≥ φ(z−h ) + {−F (∇φ(z),∇2φ(z))− ε}h

for sufficiently small h > 0.

[Case ∇φ(z) = 0 and ∇2φ(z) = O]
In this case, we note that F ∗(0, O) = F∗(0, O) = 0 (see e.g. [23, Lemma 1.6.16]). Thus, our
aim is to prove that

liminf∗h→0
Shφ(z)− φ(z)

h
= limsup*

h→0

Shφ(z)− φ(z)

h
= 0. (4.27)

Fix any ε > 0 and take h > 0 so small that h2 < εh. We may assume that φ equals a constant
µ ∈ R in B(z, εh) by taking h > 0 much smaller if necessary. For each v ∈ Rd with |v| = 1,
we define

z±h := z ± h2v.

By Lemma 4.2, we can choose a translative soliton which moves to the direction of v. Then,
we easily observe (see Figure 4) that

sµ−εh−Ch,β ≤ φ ≤ sµ+εh+Ch,β in B(z, εh). (4.28)

Figure 4: Level sets of sµ−εh−Ch,β , sµ+εh+Ch,β and φ.

The estimate (4.28) holds in Ω under modification of φ outside B(z, εh). Hence, applying
Sh to (4.28) yields

sµ−εh,β = Sh,β(sµ−εh−Ch,β) ≤ Sh(sµ−εh−Ch,β) ≤ Shφ, (4.29)

Shφ ≤ Sh(sµ+εh+Ch,β) ≤ Sh,β(sµ+εh+Ch,β) = sµ+εh,β . (4.30)

We now evaluate (4.29) and (4.30) at z+h to get

φ(z+h )− εh = µ− εh ≤ sµ−εh,β(z
+
h ) ≤ Shφ(z

+
h ),

Shφ(z
+
h ) ≤ sµ+εh,β(z

+
h ) ≤ µ+ εh = φ(z+h ) + εh.

Here, we note that ∂xd
sµ,k = −1 for every µ ∈ R and k ∈ (−1, 1) and that z+h ∈ B(z, εh).

The same argument works even if z+h is replaced with z−h . Since the vector v can be chosen
arbitrarily, we obtain the equality (4.27).
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Remark 4.3. We note that the convexity of Ω is used only to derive the equi-continuity of wh
E

with respect to h > 0; it yields the continuity of Th and hence Lemma 4.1 follows. Therefore,
we might not need the convexity of Ω to establish the consistency of Sh.

5 Conclusion

In this paper, we have confirmed that the capillary Chambolle type scheme, which was pro-
posed in [19], is convergent under several assumptions on the domain Ω and the contact angle
function β. To this end, it is crucial to derive a generator of the function operator Sh due to
Barles and Souganidis [4]. For this, we have established the equi-continuity of the minimizers
wh
E which leads to an important relation between Sh and Th and have shown that the transla-

tive soliton can be mapped to another translative soliton by Sh and Th. In the course of
acquisition of the generator, we frequently use the comparison principle of viscosity solutions
and compare the hypersurface Γt induced from a test function φ with translative solitons
which bound Γt from above and from below, respectively. Finally, let us give a concluding
remark. When we show that the scheme is convergent, we have assumed that ‖β‖∞ is less
than 1. In other words, the hypersurface Γt must not be tangent to ∂Ω. However, we expect
that ‖β‖∞ might be allowed to equal 1 by approximation of equations for β with ‖β‖∞ < 1.
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