

HOKKAIDO UNIVERSITY

Title	Redox Behavior of In-O-Ti Interface for Selective Hydrogenation of CO2 to CO in Doped In-TiO2 Catalyst
Author(s)	Dostagir, Nazmul H. Md.; Fukuoka, Atsushi; Shrotri, Abhijit
Citation	ChemCatChem, 15(3), e202201348 https://doi.org/10.1002/cctc.202201348
Issue Date	2023-02-08
Doc URL	http://hdl.handle.net/2115/91223
Rights	This is the peer reviewed version of the following article: [Dostagir, N. H. M., Fukuoka, A., Shrotri, A., ChemCatChem 2023, 15, e202201348.], which has been published in final form at https://doi.org/10.1002/cctc.202201348. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley 's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	In-TiO2_ChemCatChem 20221205.pdf

Redox behavior of In–O–Ti interface for selective hydrogenation of CO₂ to CO in doped In–TiO₂ catalyst

Nazmul H. MD. Dostagir, [a] Atsushi Fukuoka,* [a] Abhijit Shrotri*[a]

 [a] Dr. N. H. MD. Dostagir, Prof. A. Fukuoka, Dr. A. Shrotri Institute for Catalysis Hokkaido University Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan E-mail: ashrotri@cat.hokudai.ac.jp, fukuoka@cat.hokudai.ac.jp

Supporting information for this article is given via a link at the end of the document.

Abstract: In CO₂ hydrogenation reaction, selective synthesis of CO at low temperature and high pressure is needed to integrate the reverse water gas shift reaction with Fischer-Tropsch synthesis. Here, we show that a mixed oxide catalyst prepared by doping indium (In) into TiO₂ produces CO with the formation rate of 22 µmol g⁻¹ s⁻¹. The CO selectivity was more than 99% at 350 °C and 3 MPa pressure. Moreover, the catalyst was durable for over 100 h on stream. During reaction the interfacial In³⁺–O–Ti⁴⁺ sites were first reduced in presence of H₂ and then oxidized back with CO₂ producing CO. Because of the redox mechanism, methanol and methane formation was limited. This study shows the development of a promotor free oxide catalyst for CO₂ hydrogenation and the importance of the redox property at the oxidic interface for selective hydrogenation of CO₂ to CO under unfavorable conditions.

Introduction

Hydrogenation of CO₂ is an attractive way to produce chemicals and fuels without using fossil resources. Production of CO by partial reduction of CO2, also known as reverse water gas shift (RWGS) reaction (Equation 1), is of interest because the conversion of CO to hydrocarbon fuels and useful chemicals through Fischer-Tropsch synthesis (FTS) is already industrially established.^[1-5] Usual operating condition for RWGS is above 500 °C and atmospheric pressure.^[4] Under these conditions several catalysts have been reported for RWGS that achieve high CO yield.^[6,7] However, to effectively couple the two processes, the condition of RWGS reaction should match the subsequent FTS reaction, which is conducted at less than 400 °C and under a pressure of 1-3 MPa.^[8] At lower temperature and high pressure CO selectivity reduces because RWGS reaction is endothermic in nature and formation of methanol and methane is favored.^[9] Therefore, it is important to develop efficient catalysts that are selective for CO formation under unfavorable conditions of low temperature and high pressure to match with the subsequent FTS processes.

$$CO_2 + H_2 \rightarrow CO + H_2O \tag{1}$$

Noble metal-based catalysts containing Pt has been reported for RGWS at low temperature. For example, Pt/mullite and $PtCo/TiO_2$ catalysts showed high selectivity of CO with

activity of 12.5 and 11.4 µmol g⁻¹ s⁻¹, respectively.^[10,11] Single atom Pt catalysts are used to increase the atom efficiency of Pt metal. However, cost of noble metals is prohibitive and they are prone to deactivation due to aggregation of metal sites.^[12–14] Nonnoble metal catalysts containing Ni or Co tend to produce CH4 and higher hydrocarbons instead of CO.[15-17] Cu based catalysts are the exception because of their high activity for RWGS at low temperatures. In particular, Cu supported on reducible supports, especially CeO₂ catalysts, are comparable to noble metals based catalyst for RWGS.^[18-24] Cu supported over hollow nanosphere of CeO₂ containing high density of oxygen vacancy produced 55 µmol g⁻¹ s⁻¹ of CO at 350 °C.^[23] Similarly, Cu/CeO₂ catalyst derived from pyrolysis of a copper containing metal organic framework (MOF), produced CO at a rate of ca. 9.5 µmol g⁻¹ s⁻¹ at 400 °C. Despite the excellent activity achieved by supported Cu catalysts they are prone to deactivation. For example, MOF derived Cu/CeO₂ catalyst lost 25% of activity within the first 24 h.^[18] The cause of deactivation in Cu catalysts is aggregation of Cu metal particles.^[25,26] Mixed metal oxide catalysts are considered as promising alternatives because they are stable under CO₂ hydrogenation condition. Oxygen vacancy on the interface of mixed oxide adsorbs and activates CO2. However, the interfacial sites promote deep hydrogenation of CO₂ to CH₃OH and CH₄ because the oxophilic vacancy tends to stabilize the reaction intermediates such as formate and methoxy species.^[27,28]

In this work, we report the synthesis of an In-TiO₂ mixed oxide catalyst for RWGS reaction by doping In in TiO₂. In atoms were atomically dispersed throughout the anatase TiO₂ framework. In–O–Ti interfacial site was partially reduced under CO₂ hydrogenation condition and acted as a redox center for CO₂ hydrogenation to CO. The reducibility and oxidizability of both In and Ti at the interfacial site facilitated the redox mechanism leading to high activity and CO selectivity. Indium doped TiO₂ produced CO with >99% selectivity with high yield. CO selectivity did not reduce even under high pressure.

Results and Discussion

Catalyst synthesis and characterization

Initially, two types of catalyst with interfacial In–O–Ti sites were synthesized by doping indium in titania (In–TiO₂) and by doping titanium in In_2O_3 (Ti– In_2O_3). Both catalysts were prepared by mixing In and Ti precursors with citric acid to form a sol that was dried and calcined to obtain the doped oxides. The atomic ratio of In:Ti in In–TiO₂ was 1:28 (corresponding to 5 wt.% In loading) and the atomic ratio of Ti:In in Ti- In_2O_3 was also 1:28. Doping of In and Ti had little influence on the physical structure of their parent bulk oxides. Titania showed anatase crystal phase in In–TiO₂, which was same as undoped TiO₂ that was also prepared by the sol gel method (Figure 1a). Conversely, In_2O_3 exhibited cubic phase in Ti– In_2O_3 , same as undoped In_2O_3 . No crystal peak of dopant

oxides was observed in both the doped catalysts. Doped oxides showed shifting of XRD peak as compared to their undoped analogues (Figure S1). When In was doped into TiO₂, the interplanar distance increases because In³⁺ (0.8 Å) is larger than Ti⁴⁺ (0.6 Å). As a result, 20 value of In-TiO₂ XRD patterns decreased as compared to undoped TiO₂ (Figure S1a). Due to the same reason, the XRD patterns of Ti-In₂O₃ shifted towards higher 20 value as compared to undoped In₂O₃ (Figure S1b). The doped catalysts also showed similar N₂ adsorption isotherms and surface area as compared to their undoped counterpart oxides (Figure 1b and Table S1).

Figure 1. (a) XRD pattern of $In-TiO_2$ and $Ti-In_2O_3$ doped catalyst along with undoped single oxides. (b) N_2 adsorption isotherms of $In-TiO_2$, $Ti-In_2O_3$ and undoped analogues. (c) HAADF-STEM image of $In-TiO_2$ showing anatase crystal structure of TiO_2 . EDX elemental mapping of the selected region (d) showing the homogeneous distribution of (e) Ti and (f) In. (g) Diffuse reflectance UV-Vis absorption spectra of $In-TiO_2$ compared with undoped TiO_2 and In_2O_3 .

Further characterization showed that the dopants were highly dispersed without agglomeration. In the high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) analysis of In–TiO₂ (Figure 1c), only anatase titania phase was observed. In was highly dispersed in TiO₂ as seen in elemental mapping by energy dispersive X-ray (EDX) analysis (Figure 1d-f). Also, the results from diffuse reflectance UV-Vis absorption spectroscopy show that In was atomically dispersed in In–TiO₂. In the UV-Vis spectra absorption peak at 340 nm was observed corresponding to the electronic transition from valence band to conductance band for anatase titania (Figure 1g).^[29] Features indicating formation of In₂O₃ crystals, such as electronic transition from valence band to conductance band and broadening until 600 nm, were not present.^[30]

Similar to In-TiO₂, HAADF-STEM image of Ti–In₂O₃ (Figure S2a) showed cubic In₂O₃ and TiO₂ was not observed. Highly dispersed Ti was observed in the elemental mapping analysis (Figure S2b-d). In the UV-Vis analysis, the absorption peak position for Ti–In₂O₃ was shifted towards lower wavenumber as compared to undoped In₂O₃ due to the doping of Ti in In₂O₃

(Figure S3).^[31] These results show that mixed oxide of In–TiO₂ and Ti–In₂O₃ were formed and the dopant was dispersed in the parent oxide without formation of agglomerated particles.

Catalytic activity

After confirming the formation of mixed oxide containing interfacial In–O–Ti sites, these catalysts were tested for CO₂ hydrogenation reaction in a fixed bed flow reactor at 300 °C, 3 MPa, 30,000 mL h⁻¹ g_{cat}⁻¹, H₂:CO₂ = 3:1. In the presence of In–TiO₂ catalyst, CO₂ conversion was 7.4% with CO selectivity of more than 99% with traces of CH₄ (Figure 2a). Undoped TiO₂ showed negligible CO₂ conversion of 0.1%. Therefore, doping indium in TiO₂ enhanced its activity for CO₂ hydrogenation while favoring CO as the only product. For Ti–In₂O₃ catalyst, CO selectivity was 70% along with 4.6% CO₂ conversion. In contrast, undoped In₂O₃ produced methanol as the primary product with a selectivity of 54% and CO₂ conversion of 4.4%. Because Ti–In₂O₃ and undoped In₂O₃ had similar surface area and they showed similar CO₂ conversion, the shift in selectivity from methanol to

CO was attributed to doping of Ti in In_2O_3 . Therefore, presence of In-O-Ti interfacial site favored the formation of CO in $Ti-In_2O_3$ and $In-TiO_2$ catalysts.

Figure 2. (a) Comparison of CO₂ hydrogenation activity of different catalysts. (b) Long term stability of In–TiO₂ during CO₂ hydrogenation. Reaction condition: 300 °C, 3 MPa, 30000 mL h⁻¹ g⁻¹, H₂:CO₂ = 3:1.

Further optimization of reaction condition over $In-TiO_2$ showed that the selective formation of CO was independent of hydrogenation reaction condition. Increasing the temperature to 350 °C increased the CO₂ conversion from 7.4% to 19.5% without any change in CO selectivity (Table 1). Typically, CO selectivity in RWGS reaction is favored at high temperature and low pressure.^[32-34] In contrast, CO selectivity was more than 99% over $In-TiO_2$ irrespective of change in pressure, temperature and space velocity. At 350 °C and 3 MPa, the CO space time yield (STY) was 18 µmol g⁻¹ s⁻¹, which was comparable to that of noble metal-based catalysts under similar reaction condition (Table S2). At an SV of 60,000 the STY increased to 22 μ mol g⁻¹ s⁻¹. The catalyst was stable in long term reaction and did not show any loss in activity or selectivity after 100 h on stream (Figure 2b). Therefore, interfacial In–O–Ti sites formed on In–TiO₂ showed remarkable activity and stability for selectively converting CO₂ to CO over a wide range of reaction condition.

Table 1. Activity of In-TiO ₂ catalyst at different reaction conditions. ^[a]							
T (°C)	P (MPa)	SV (ml h ⁻¹ g ⁻¹)	CO ₂ Conv. (%)	CO Sel. (%)	STY (μmol g ⁻¹ S ⁻¹)		
300	0.1	30,000	1.0	100	0.98		
300	3	30,000	7.4	>99	6.9		
350	3	30,000	19.5	>99	18		
350	3	60,000 ^[b]	11.7	>99	22		

^[a]Catalyst: In-TiO₂ 200 mg, H₂:CO₂ = 3:1.

^[b]Catalyst amount was halved to 100 mg.

Mechanistic Clarification

After confirming the presence of interfacial In–O–Ti active site and its high activity for CO production, In–TiO₂ catalyst was further analyzed to ascertain the mechanism of CO formation and the role of surface interface. Doping of In increased the H₂ dissociation ability of catalysts at lower temperature (Figure 3a). Undoped TiO₂ showed little H₂ consumption below 550 °C during temperature programmed reduction (TPR) under H₂ flow. H₂ consumption in the temperature range of 250-400 °C was observed for In–TiO₂ catalyst, which was assigned to reduction of In–O–Ti interface.

Above 500 °C, surface indium atoms underwent complete reduction to form metal nanoparticles. This was evidenced by XRD of In-TiO₂ treated at 550 °C under H₂ (Figure S4). Above 700 °C anatase TiO₂ transformed to rutile phase. In the XRD spectrum of sample treated at 700 °C metallic In nanoparticle peak increased in size as In withing the bulk crystal also reduced during phase transition of TiO₂ (Figure S4).

Figure 3. (a) H₂ TPR spectra of In–TiO₂ and undoped TiO₂. (b), (c), and (d) XPS spectra of In-TiO₂ catalyst before and after CO₂ hydrogenation for In 3d, Ti 2p and O 1s regions, respectively. (e) UV-Vis analysis for In-TiO₂ before and after treatment under H₂ atmosphere at 350 °C showing formation of Ti³⁺ species.

The partial reduction of In-O-Ti interfacial sites at low temperature (below 400 °C) was evident from ex-situ X-ray photoelectron spectroscopy (XPS) and UV-Vis analysis. In XPS analysis of In-TiO₂ catalyst after CO₂ hydrogenation reaction, a peak for partially reduced In species was present at 443.9 eV (Figure 3b).^[35] Similarly, in the Ti 2p XPS spectra, presence of Ti³⁺ at 458 eV in the used catalyst was also observed (Figure 3c).^[36,37] This suggests that during reaction, both In³⁺ and Ti⁴⁺ present at the interface were partially reduced. As a result, an increase in oxygen defects was observed in the O 1s XPS spectra from 14% to 18% (Figure 3d). In the UV-Vis spectrum for In-TiO₂ a broad shoulder appeared in the range of 400-700 nm after treating the catalyst under H₂ at 350 °C (Figure 3e). This shoulder was assigned to formation of Ti³⁺ species due to reduction of the metal oxide interface.^[29,38] Similar shoulder did not appear when undoped TiO_2 was subjected to H_2 treatment (Figure S5). Therefore, In-O-Ti interface underwent reduction during the reaction to form $In^{0<\delta<3+}-V_o-Ti^{3+}$, where V_o denotes an oxygen vacancy.

Oxide catalysts bearing oxygen vacancies are known to strongly adsorb CO₂, which increases their catalytic activity.^[39] Such CO₂ species, present in bent or carbonate form, undergo hydrogenation to form formate or carboxyl intermediate via associated mechanism. In a CO2 temperature programmed desorption (TPD) these species desorb at temperatures above 300 °C.^[39] However, TPD of CO₂ adsorbed over H₂ pretreated In-TiO₂ only exhibited CO₂ desorption peak at 120 °C assigned to physisorbed and weakly adsorbed CO₂ species (Figure S6a). There was negligible desorption of CO₂ above 300 C indicating absence of strongly adsorbed CO₂ species necessary for CO₂ conversion by associated mechanism. Investigation of adsorbed CO₂ species using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) further confirmed that bicarbonate and carbonate species formed during room temperature adsorption of CO2 disappeared before 250 °C and such species were not detected at 350 °C (Figure S6b). When the DRIFTS experiment was performed under in-situ conditions, intermediate species of RWGS reaction such as formate or carboxyl were not detected over In-TiO₂ catalyst and only peaks for gaseous CO were observed at 2172 and 2109 cm⁻¹ (Figure S7).^[40] Over In₂O₃, carboxyl and formate species are known to be the intermediates for methanol and CO formation through the association mechanism.^[41] Therefore, the formation of CO without the presence of any intermediate indicated that CO might be produced via, redox mechanism (also called reverse Mars-van Krevelen mechanism), where H₂ reduces the In-O-Ti interface and CO₂ directly oxidizes the interface to produce CO.

To confirm the redox nature of mechanism, $In-TiO_2$ was first treated with H_2 at 300 °C for 15 min and then purged with Ar to remove the residual H_2 gas. Then a mixture of Ar and CO_2 was passed over the catalyst and the evolution of CO was recorded using a GC. CO evolution was observed for more than 20 min even in the absence of H_2 (Figure 4a). Repeating the reduction and oxidation cycle a second time gave identical result. In contrast, when undoped In_2O_3 catalyst was used, product evolution was poor (Figure S8). The redox cycle of $In-TiO_2$ catalyst was also observed ex-situ by UV-VIS spectroscopy after each reduction and oxidation cycle (Figure 4b). Formation of Ti^{3+} species was apparent after the first reduction step owing to the appearance of

broad shoulder at 400-500 cm⁻¹ (Figure 4b, spectra a and b)). After CO₂ treatment the intensity of the Ti³⁺ shoulder reduced in UV-Vis spectrum (Figure 4b, spectrum c). This phenomenon was reversible under repetitive reduction and oxidation cycles (Figure 4b, spectra c-e). Therefore, we conclude that In–TiO₂ catalyzed CO₂ reduction to CO through reverse Mars-van Krevelen mechanism, at the interface of In and Ti atoms.

Figure 4. (a) Rate of CO production over pre-reduced In-TiO2 when flowing

CO₂ in the absence of H₂ at 300 °C. For each cycle catalyst was first reduced with H₂ at 300 °C before flowing CO₂. (b) UV-Vis spectra of In–TiO₂ catalyst after successive treatment with H₂ and CO₂ showing transition between Ti⁴⁺ and Ti³⁺ species over the surface.

Scheme 1 depicts the mechanism for CO_2 hydrogenation over the surface of In–TiO₂. Catalyst characterization has shown that doping In in TiO₂ enhances reduction of the catalyst surface under the reaction condition. Formation of partially reduced In species and Ti³⁺ confirms the reduction of In³⁺–O–Ti⁴⁺ interfacial site. Although the surface reduction generated oxygen vacancy, it did not cause chemisorption of CO₂ on the catalyst surface favorable for formate or carboxyl formation. Instead, the partially reduced In and Ti³⁺ at the interfacial site interacted with the O of CO₂ and they were oxidized by CO₂. The oxygen deficient site is replenished to recover In³⁺–O–Ti⁴⁺ species and CO was produced and removed from the catalyst surface. Because intermediates were not formed during the reaction their subsequent hydrogenation to methane or methanol was less likely. Furthermore, owing to high dispersion of In species and lack of

metal nanoparticles, hydrogenation of CO to methane was suppressed. Consequently, high CO selectivity was maintained even at low temperature and high pressure, which are favorable for methane formation. The reversibility of the In–O–Ti interface for redox reaction without undergoing over reduction ensured the stability of the catalyst.

Scheme 1. Catalytic CO $_2$ hydrogenation to CO over In–TiO $_2$ catalyst through reverse Mars-van Krevelen pathway.

Conclusion

In summary, we show that doping of In into TiO₂ led to the formation of highly active and selective interfacial active site for the RWGS reaction. The activity of CO production over In-TiO2 catalyst was comparable to noble metal-based catalysts. More than 99% selectivity of CO was obtained 350 °C and 3MPa pressure. Under the reaction condition, interfacial In³⁺–O–Ti⁴⁺ site was first reduced in presence of H_2 to form $In^{0<\delta<3+}-V_0-Ti^{3+}$ and then oxidized back with CO2 producing CO. Consequently, the reaction proceeded through reverse Mars-van Krevelen mechanism. The formation of methane was suppressed because of lack of metal nanoparticles to catalyze hydrogenation of CO. As a result, RWGS reaction was possible at conditions similar to Fischer-Tropsch synthesis. The redox property at the interfacial site shown in this study can also be applied to reactions other than CO₂ hydrogenation and can help in the development of promoter free oxide catalysts for redox reactions.

Experimental Section

Catalyst preparation

Indium nitrate (In(NO₃)₃·3H₂O), aqueous titanium chloride solution (aqueous solution of 20% TiCl₃ containing 5% HCl) and citric acid were purchased from Fujifilm Wako Pure Chemical Corporation. All catalysts were prepared using a sol-gel method in the presence of citric acid. A typical procedure to obtain In-TiO₂ catalysts is as follows: In(NO₃)₃·3H₂O (0.435 mmol) and TiCl₃ (12.5 mmol) solution were added to a beaker containing 60 mL of H₂O along with 20 mmol of citric acid. The beaker was placed on a hot plate maintained at 150 °C and stirred until a foaming gel was formed. The gel was then dried in an oven maintained at 150 °C for 5 h. The resulting composite was crushed and calcined at 500 °C for 3 h (ramp rate: 2 °C min⁻¹) to obtain the final catalyst. For Ti-In₂O₃, 0.453 mmol of TiCl₃ and 12.5 mmol of In(NO₃)₃·3H₂O were used and same method was followed. Undoped oxides were prepared in the same manner without the presence of the dopant.

Catalyst Characterization

X-ray diffraction (XRD) pattern was measured with Rigaku MiniFlex using CuK α X-ray (λ = 1.54 Å) operating at 40 kV and 20 mA. N₂ adsorption

isotherms were measured at -196 °C using a Belsorp mini analyzer. Prior to the adsorption, all samples were decassed under vacuum at 120 °C for 2 h. Surface area was calculated by using BET theory between the relative pressure range 0.05 to 0.35 in the N2 adsorption isotherm. X-ray photoelectron spectroscopy (XPS) was performed with JEOL JPS-9010MC instrument. Charge correction was done by adjusting the carbon peak to 284.6 eV. STEM images were obtained in a JEOL JEM-ARM200F atomic resolution electron microscope at an acceleration voltage of 200 kV equipped with EDS detector EX-24221M1G5T. Temperature programmed reduction (TPR) of catalysts was carried out in presence of H2-Ar mixture (H₂ = 5%) in a BELCAT II instrument equipped with a TCD detector. Prior to measurement, catalysts were pretreated at 200 °C for 1 hour under Ar flow. Measurements were done at a total flow rate of 50 mL min⁻¹ with ramp rate of 10 °C min-1. CO2 TPD experiment was performed in the BELCAT II instrument equipped with BELMass gas mass spectrometer. Prior to measurement, the samples were pretreated under He at 200 °C for 60 min followed by CO₂ adsorption at room temperature for 30 min. After purging with He for 30 min TPD was performed with a ramp rate of 10 °C min⁻¹. DRIFTS experiments were done using a Perkin Elmer Spectrum 100 FTIR spectrometer equipped with MCT detector cooled with liquid N2. The catalyst was first pretreated under He at 300 °C for 30 min. One spectrum of catalsyt was recorded as background under He before flowing reactant gases (H2:CO2 = 3). Final IR spectrum of the adsorbed species was obtained by subtracting the background spectrum of the catalyst. The UV-Vis analysis was carried out in a JASCO V-650 spectrophotometer. To check the redox property of the catalyst in the reactor, first the catalyst was reduced under H₂ for 15 min at 300 °C followed by the Ar flow to remove H₂ gas. Then the catalyst was treated with a mixture of Ar and CO₂ and the evolution of CO was recorded in GC-TCD. This whole procedure was repeated on the same catalyst bed to ensure the reproducibility of the redox process. The UV-Vis analysis of the redox process was done by treating the same batch of catalyst under different atmospheres and quickly analyzing the treated catalyst in the spectrophotometer. For comparison between different samples, peak intensities were normalized according to the primary peak intensity of undoped TiO₂.

Evaluation of catalytic activity

Catalytic activity for CO₂ hydrogenation was evaluated in a stainless-steel fixed bed flow reactor system. Products were analyzed using an online GC (Shimadzu, GC 8A) equipped with two columns – Porapak Q and Molecular Sieve and a TCD detector. Gas line from the outlet of the reactor to the inlet of the GC was heated at 150 °C to prevent condensation. Typically, 200 mg of catalyst was loaded into the reactor and held in place by quartz wool. A thermocouple was inserted into the reactor to reaction condition using a mixture of H₂ and CO₂ having the ratio H₂:CO₂ = 3:1. After the system pressure was stable, reactor temperature was increased to desired value. Total flow rate was 100 mL min⁻¹ to maintain space velocity at 30,000 mL h⁻¹ g⁻¹. Reactions at space velocity higher than 30,000 mL h⁻¹ g⁻¹ were carried out by reducing the amount of catalyst.

 CO_2 conversion, selectivity of CO and CH₃OH and space time yield (STY) of CH₃OH were calculated using the following equations.

CO₂ conversion (equation 2):

$$X_{(CO_2)} = \left(\frac{nCO_{out} + nCH_3OH_{out} + nCH_4out}{nCO_2out + nCO_{out} + nCH_3OH_{out} + nCH_4out}\right) \times 100\%$$
(2)

CO and CH₃OH selectivity (equation 3-4)

$$S_{(CO)} = \left(\frac{nCO_{out}}{nCO_{out} + nCH_3OH_{out} + nCH_4out}\right) \times 100\%$$
(3)

$$S_{(CH_3OH)} = \left(\frac{nCH_3OH_{out}}{nCO_{out} + nCH_3OH_{out} + nCH_4out}\right) \times 100\%$$
(4)

Space time yield (STY) of CO (equation 5):

$$STY_{(CO)} = \left(\frac{SV \times [CO_2] \times X_{(CO_2)} \times S_{(CO)}}{224 \times 3600}\right)$$
(5)

Where nCO_{2out}, nCO_{out}, nCH₃OH_{out}, nCH_{4out} are moles of CO₂, CO, CH₃OH and CH₄ calculated from GC analysis. SV is space velocity in mL h⁻¹ g⁻¹, [CO₂] is the concentration of CO₂ present in the feed gas mixture in %. STY of CO is reported in μ mol g⁻¹ s⁻¹.

Acknowledgements

This work was supported by JSPS Grant-in-Aid for Scientific Research (C) KAKENHI JP22K04821.

Conflict of Interest

The authors declare no conflict of interest.

Data availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: CO₂ hydrogenation, reverse water gas shift, redox, mixed oxide, reverse Mars-van Krevelen mechanism

- J. Qi, J. Finzel, H. Robatjazi, M. Xu, A. S. Hoffman, S. R. Bare, X.
 Pan, P. Christopher, J. Am. Chem. Soc. 2020, 142, 14178–14189.
- Y. Li, W. Gao, M. Peng, J. Zhang, J. Sun, Y. Xu, S. Hong, X. Liu, X.
 Liu, M. Wei, B. Zhang, D. Ma, *Nat. Commun.* 2020, *11*, 1–8.
- [3] S. Lyu, L. Wang, Z. Li, S. Yin, J. Chen, Y. Zhang, J. Li, Y. Wang, Nat. Commun. 2020, 11, 1–8.
- [4] J. Bao, G. Yang, Y. Yoneyama, N. Tsubaki, ACS Catal. 2019, 9, 3026–3053.
- J. Li, Y. He, L. Tan, P. Zhang, X. Peng, A. Oruganti, G. Yang, H.
 Abe, Y. Wang, N. Tsubaki, *Nat. Catal.* 2018, *1*, 787–793.
- [6] H.-X. Liu, S.-Q. Li, W.-W. Wang, W.-Z. Yu, W.-J. Zhang, C. Ma, C.-J. Jia, *Nat. Commun.* 2022, 13, 867.
- P. C. Zonetti, S. Letichevsky, A. B. Gaspar, E. F. Sousa-Aguiar, L.
 G. Appel, *Appl. Catal. A Gen.* 2014, 475, 48–54.
- [8] Q. Zhang, J. Kang, Y. Wang, ChemCatChem 2010, 2, 1030–1058.
- [9] X. Jiang, X. Nie, X. Guo, C. Song, J. G. Chen, *Chem. Rev.* 2020, 120, 7984–8034.
- [10] B. Liang, H. Duan, X. Su, X. Chen, Y. Huang, X. Chen, J. J. Delgado, T. Zhang, *Catal. Today* **2017**, *281*, 319–326.
- [11] S. Kattel, W. Yu, X. Yang, B. Yan, Y. Huang, W. Wan, P. Liu, J. G. Chen, Angew. Chemie - Int. Ed. 2016, 55, 7968–7973.
- [12] A. Goguet, F. Meunier, J. P. Breen, R. Burch, M. I. Petch, A. Faur Ghenciu, J. Catal. 2004, 226, 382–392.
- [13] S. Mine, T. Yamaguchi, K. W. Ting, Z. Maeno, S. M. A. H. Siddiki, K. Oshima, S. Satokawa, K. I. Shimizu, T. Toyao, *Catal. Sci. Technol.* 2021, *11*, 4172–4180.

WILEY-VCH

[14]	L. Chen, R. R. Unocic, A. S. Hoffman, J. Hong, A. H. Braga, Z. Bao, S. R. Bare, J. Szanyi, <i>JACS Au</i> 2021 , <i>1</i> , 977–986.
[15]	J. Zhu, G. Zhang, W. Li, X. Zhang, F. Ding, C. Song, X. Guo, ACS <i>Catal.</i> 2020 , <i>15</i> , 57.
[16]	A. Parastaev, V. Muravev, E. Huertas Osta, A. J. F. van Hoof, T. F. Kimpel, N. Kosinov, E. J. M. Hensen, <i>Nat. Catal.</i> 2020 , <i>3</i> , 526–533.
[17]	J. Li, Y. Lin, X. Pan, D. Miao, D. Ding, Y. Cui, J. Dong, X. Bao, ACS <i>Catal.</i> 2019 , <i>9</i> , 6342–6348.
[18]	M. Ronda-Lloret, S. Rico-Francés, A. Sepúlveda-Escribano, E. V. Ramos-Fernandez, <i>Appl. Catal. A Gen.</i> 2018 , <i>562</i> , 28–36.
[19]	L. Chen, D. Wu, C. Wang, M. Ji, Z. Wu, <i>J. Environ. Chem. Eng.</i> 2021 , 9, 105183.
[20]	G. Zhou, F. Xie, L. Deng, G. Zhang, H. Xie, <i>Int. J. Hydrogen Energy</i> 2020 , <i>45</i> , 11380–11393.
[21]	L. Lin, S. Yao, Z. Liu, F. Zhang, N. Li, D. Vovchok, A. Martínez- Arias, R. Castaneda, J. Lin, S. D. Senanayake, D. Su, D. Ma, J. A. Rodriguez, <i>J. Phys. Chem. C</i> 2018 , <i>122</i> , 12934–12943.
[22]	S. C. Yang, S. H. Pang, T. P. Sulmonetti, W. N. Su, J. F. Lee, B. J. Hwang, C. W. Jones, <i>ACS Catal.</i> 2018 , <i>8</i> , 12056–12066.
[23]	Y. Zhang, L. Liang, Z. Chen, J. Wen, W. Zhong, S. Zou, M. Fu, L. Chen, D. Ye, <i>Appl. Surf. Sci.</i> 2020 , <i>516</i> , 146035.
[24]	C. S. Chen, J. H. Lin, J. H. You, C. R. Chen, <i>J. Am. Chem. Soc.</i> 2006 , <i>128</i> , 15950–15951.
[25]	D. Vovchok, C. Zhang, S. Hwang, L. Jiao, F. Zhang, Z. Liu, S. D. Senanayake, J. A. Rodriguez, <i>ACS Catal.</i> 2020 , <i>10</i> , 10216–10228.
[26]	M. V Twigg, M. S. Spencer, Appl. Catal. A Gen. 2001, 212, 161– 174.
[27]	J. Wang, C. Tang, G. Li, Z. Han, Z. Li, H. Liu, F. Cheng, C. Li, ACS <i>Catal.</i> 2019 , <i>9</i> , 10253–10259.
[28]	J. Wang, G. Li, Z. Li, C. Tang, Z. Feng, H. An, H. Liu, T. Liu, C. Li, <i>Sci. Adv.</i> 2017 , <i>3</i> , 1–11.
[29]	L. F. Bobadilla, J. L. Santos, S. Ivanova, J. A. Odriozola, A. Urakawa, ACS Catal. 2018, 8, 7455–7467.
[30]	M. Ziemba, L. Schumacher, C. Hess, <i>J. Phys. Chem. Lett.</i> 2021 , <i>12</i> , 3749–3754.
[31]	J. Sánchez-Marcos, I. M. Ochando, R. E. Galindo, R. Martínez- Morillas, C. Prieto, <i>Phys. Status Solidi Appl. Mater. Sci.</i> 2010 , <i>207</i> , 1549–1553.
[32]	S. Roy, A. Cherevotan, S. C. Peter, <i>ACS Energy Lett.</i> 2018 , 3, 1938–1966.
[33]	S. De, A. Dokania, A. Ramirez, J. Gascon, ACS Catal. 2020 , <i>10</i> , 14147–14185.
[34]	S. Kattel, P. Liu, J. G. Chen, <i>J. Am. Chem. Soc.</i> 2017 , <i>139</i> , 9739–9754.
[35]	M. M. J. Li, H. Zou, J. Zheng, T. S. Wu, T. S. Chan, Y. L. Soo, X. P. Wu, X. Q. Gong, T. Chen, K. Roy, G. Held, S. C. E. Tsang, <i>Angew. Chemie - Int. Ed.</i> 2020 , <i>59</i> , 16039–16046.
[36]	G. Liu, H. G. Yang, X. Wang, L. Cheng, H. Lu, L. Wang, G. Q. Lu, H. M. Cheng, <i>J. Phys. Chem. C</i> 2009 , <i>113</i> , 21784–21788.
[37]	X. Chen, L. Liu, P. Y. Yu, S. S. Mao, <i>Science</i> 2011 . <i>331</i> . 746–750.
[38]	H. Liu, H. T. Ma, X. Z. Li, W. Z. Li, M. Wu, X. H. Bao, <i>Chemosphere</i> 2003 , <i>50</i> , 39–46.
[39]	O. Martin, A. J. Martín, C. Mondelli, S. Mitchell, T. F. Segawa, R. Hauert, C. Drouilly, D. Curulla-Ferré, J. Pérez-Ramírez, <i>Angew. Chemie - Int. Ed.</i> 2016 , <i>55</i> , 6261–6265.

- N. H. M. Dostagir, R. Rattanawan, M. Gao, J. Ota, J. Y. Hasegawa,
 K. Asakura, A. Fukouka, A. Shrotri, ACS Catal. 2021, 11, 9450– 9461.
- [41] J. Wang, G. Zhang, J. Zhu, X. Zhang, F. Ding, A. Zhang, X. Guo, C. Song, ACS Catal. 2021, 11, 1406–1423.

Entry for the Table of Contents

Insert graphic for Table of Contents here.

Reverse water gas shift reaction under unfavorable condition of high pressure and low temperature is reported. 99% CO selectivity with high yield was obtained owing to the redox nature of reaction over easily reducible interface of In-TiO₂ mixed oxide.

Institute and/or researcher Twitter usernames: