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SUMMARY Direction of arrival (DOA) estimation is an antenna array
signal processing technique used in, for instance, radar and sonar systems,
source localization, and channel state information retrieval. As new ap-
plications and use cases appear with the development of next generation
mobile communications systems, DOA estimation performance must be
continually increased in order to support the nonstop growing demand for
wireless technologies. In previous works, we verified that a deep neural
network (DNN) trained offline is a strong candidate tool with the promise
of achieving great on-grid DOA estimation performance, even compared to
traditional algorithms. In this paper, we propose new techniques for further
DOA estimation accuracy enhancement incorporating signal-to-noise ratio
(SNR) prediction and an end-to-end DOA estimation system, which con-
sists of three components: source number estimator, DOA angular spectrum
grid estimator, and DOA detector. Here, we expand the performance of the
DOA detector and angular spectrum estimator, and present a new solu-
tion for source number estimation based on DNN with very simple design.
The proposed DNN system applied with said enhancement techniques has
shown great estimation performance regarding the success rate metric for
the case of two radio wave sources although not fully satisfactory results
are obtained for the case of three sources.
key words: antenna array, DOA estimation, SNR estimation, source number
estimation, deep neural network

1. Introduction

Several practical applications in the field of wireless tech-
nologies such as radar systems, source localization, and
channel state information retrieval have in common the ne-
cessity for predicting the direction of arrival (DOA) of in-
coming radio waves. With the further development of the
current fifth-generation (5G) mobile system, and ongoing
research on the sixth-generation (6G) system, an enormous
expansion of use case ideas is expected [1]. Therefore, it is
vital that the existing technologies, including DOA estima-
tion techniques, remain supporting this envisioned commu-
nications system architecture. In other words, more accurate
and computationally less complex solutions will be greatly
demanded.

Various techniques have been developed to estimate
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the DOA of radio waves, such as the super-resolution mul-
tiple signal classification (MUSIC) algorithm [2], and its
extended version, root-MUSIC [3]. MUSIC is classified as
a subspace-based technique, as the spectral decomposition
of the correlation matrix of the antenna array received signal
is required. Root-MUSIC, being an extension of MUSIC,
achieves better estimation performance [3]. However, matrix
eigendecomposition, a computationally complex procedure,
is required for both algorithms.

Given the sparse radio environment inherent to most
DOA estimation problems, compressed sensing techniques
have also been heavily studied [4], [5]. These are a group of
methods whose purpose is to obtain a unique solution from
an underdetermined linear system taking advantage of the
sparsity propriety of the true solution. Solving these linear
systems is done by minimization of an lp-norm constraint
(0 ≤ p ≤ 1), where methods such as half-quadratic reg-
ularization (HQR) [6] usually assume 0 < p < 1. These
and many other methods are attractive due to their benefit of
requiring a smaller number of snapshots and their ability to
deal with coherent signals.

Recently, artificial intelligence techniques, especially
deep learning, applied to the field of communication sys-
tems has become a trending research topic [7]. Although
offline training of deep neural networks (DNN) is computa-
tionally heavy, once it is over, it can be easily applied to that
specific situation which it was trained for with considerably
low complexity, since only matrix multiplication is done. In
fact, the applicability of DNNs in the DOA estimation prob-
lem has been reported in several studies, such as [8]–[11]. In
[8], a framework for end-to-end channel and DOA estima-
tion in the context of massive multiple-input multiple-output
(massive MIMO) is proposed. In [9], a combination of a
detection and DOA estimation network, which reduces the
training-set size and makes it possible to train several DNNs
corresponding to different position sectors, is presented. In
[10], a low-complexity DOA estimation technique for hybrid
MIMO systems with uniform circular array at a base station
is presented. In [11], a DOA estimation system which is
robust to array imperfections and consists of a multi-task
autoencoder and a series of parallel multi-layer classifiers is
explained.

One of the main goals of this paper is the proposal of
an end-to-end DOA estimation system. It consists of three
components, whose schematics are shown in Fig. 1: Source
number estimator, DOA angular spectrum grid estimator,
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Fig. 1 Proposed system schematics where K̂ and θ̂ denote estimated
values of the number of sources and DOAs, respectively.

and DOA detector. The correlation matrix of the signals
received at the antenna array is used as input data to the first
two components in order to estimate the respective quanti-
ties, that is, source number and angular spectrum grid. In the
first component, the number of radio waves K̂ is predicted
with an offline trained DNN. Note that, this mainly being
a preliminary study, we consider only 2 and 3 sources. In
air-to-air emitter location or radar systems, 2 or 3 flying ob-
jects in the field of view of an antenna array is an imaginable
scenario as stated in [13]. Additionally, as it was verified
in [14], the average number of subpaths, or multipaths, —
whose DOAs estimation is necessary—at sub-terahertz and
line-of-sight environments of 140 GHz is significantly small,
e.g. mostly ranging between 2 and 5, compared to 5G system
frequency bands. Therefore, our 2 and 3 sources considera-
tion is not only realistic in airborne radar applications based
on [13], but also it is a first step towards the goal of radio
propagation measurements at sub-terahertz bands [14]. Yet,
as it will be detailed later, simply expanding our setting from
2 sources [16], [17] to 3 brings new challenges that need to
be addressed prior to fully leveraging DNNs as methods for
DOAestimation. Next, in the second component, the angular
spectrum grid is estimated with an also offline trained DNN.
Finally, in the last component, a DOA detection algorithm
is applied onto this angular spectrum grid in order to extract
the DOA information. Moreover, we design new strategies
for further enhancement of the DOA detector and spectrum
estimator accuracy. Computer simulations will confirm that
they overall manage to surpass not only our past methods but
also root-MUSIC.

In summary, our contributions in this work are: (1)
proposal of a new and more precise DOA detection algo-
rithm, (2) development of new methods for enhanced DOA
angular spectrum grid estimator performance, (3) design of
new SNR estimation schemes incorporated in the new DOA
methods and its detailed verification when used within the
proposed end-to-end system, (4) a powerful DNN with very
simple design specific for source number estimation, and
(5) evaluation of DOA estimation performance by adding a
regularization lp-norm term to the DNN loss function. A
convolutional neural network pooling layer with lp-norm is
presented in [12], but to the authors’ knowledge, a loss func-
tion constrained by this norm has not yet being reported.
Moreover, all the above discussion is thoroughly conducted
based on computer simulationswith the aid of the Tensorflow

framework [15].
The reminder of this paper is structured as follows. The

antenna array model is explained in Sect. 2. Our previous
work results on the DNN design and training for DOA es-
timation are given in Sect. 3. The newly designed DOA
detection algorithm for the DOA detector module of the pro-
posed system is detailed in Sect. 4. Two new approaches
for further enhancement of DOA angular spectrum grid es-
timation are fully explained in Sect. 5. It can also be found
therein detailing about two different schemes for SNR esti-
mation from the received signal correlation matrix, which
are needed for the said DOA enhancement approaches. The
simple-design DNN for the source number estimator is ex-
plained in Sect. 6. Finally, all computer simulation results
and discussion on the viability of the proposed end-to-end
system are given in Sect. 7. Moreover, analysis of adding a
regularization lp-norm term to the DNN loss function is also
briefly presented in Sect. 8. Lastly, in Sect. 9 our results are
summarized.

2. Antenna Array Model

Throughout this study, we consider a uniform linear ar-
ray (ULA)with L omnidirectional antennas. They are placed
at half-wavelength spacing from each other and no mutual
coupling is assumed. K sources located in the ULA far-field
region emit narrowband radio waves that are impinging on
the ULA at angles θ[rad] = [θ1, . . . , θK ]

T , where [·]T indi-
cates the transpose operator. In addition, it is assumed that
they are at least 1◦ mutually separated. As a result, the base-
band received signal x(t) ∈ CL×1 at the ULA can be modeled
by

x(t) = A(θ)s(t) + z(t), (1)

where s(t) ∈ CK×1 is the vector containing the incident radio
waves complex amplitudes, z(t) ∈ CL×1 is the additive white
Gaussian noise vector following a circular complex Gaus-
sian distribution z(t) ∼ CN(0, σ2IL) with zero mean and
variance σ2, where IL represents a L-dimensional identity
matrix, and A(θ) is the steering matrix, which accounts for
the relative delay corresponding to path length difference of
the incident waves on each ULA element and is described as

A(θ) =



1 · · · 1
e−jπ sin θ1 · · · e−jπ sin θK

e−jπ2 sin θ1 · · · e−jπ2 sin θK

...
. . .

...

e−jπ(L−1) sin θ1 · · · e−jπ(L−1) sin θK


. (2)

Another assumption in this work is that the incident radio
waves are non-coherent and are transmitted with equal power
normalized to one.

Traditionally, the received signal correlationmatrixRxx

is used for DOA estimation. However, due to the impossi-
bility of its direct calculation, here the correlation matrix
estimated by N snapshots R̂xx is used instead:
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R̂xx =
1
N

N∑
n=1

x(tn)x(tn)H , (3)

where x(tn) represents the nth snapshot taken from the re-
ceived signal, and (·)H is the conjugate transpose operator.
As it was mentioned in Sect. 1, R̂xx is used as input data to
the first two estimators in our proposed system.

3. Authors’ Previous Work

In [16], [17] a DOA estimation scheme based solely on deep
neural networks was proposed. As a primary assessment
of its performance, just two incoming radio waves and a
rather small-sized array with five antenna elements were
considered. Here, we briefly explain the DNN structure,
and its input-output data generation, which are equally used
throughout this paper. For a more detailed explanation, refer
to [16].

A traditional feed-forward neural network consisting of
one input layer, one output layer and an arbitrary number of
hidden layers is used (Fig. 2). Here, batch normalization, a
powerful regularizer normally used as an improvement of the
overall stability of the learning process, is also used in all lay-
ers [21]. As it can be seen, the overall DNN structure is kept
simple, yet very accurate results were previously achieved.
The next step of our discussion is the design of each layer,
starting from the input and output layers respectively.

First, the estimated correlation matrix R̂xx must be
transformed to a vector and this must be converted to the
real domain. This step in preparing the DNN input data
is necessary due to the fact that inputs to fully connected
DNNs are one-dimensional, and forward and backpropaga-
tion computation is defined in the real domain. Since R̂xx is
a Hermitianmatrix, it can be written as in (4). A proper input

Fig. 2 DNN structure with input, hidden, and output layers.

vector u to the DNN can then be generated as follows: first
we arrange the diagonal elements of (4) on the first input
vector entries; next, we only use the lower triangular ele-
ments, by taking each element real<(·) and imaginary =(·)
part column by column and from left to right and arranging
it in the remaining space of the input vector (See (5)). This
is possible because the lower triangular elements are simply
the complex conjugate of the upper triangular elements.

R̂xx =


r11 r∗21 · · · r∗

L1
r21 r22 · · · r∗

L2
...

...
. . .

...
rL1 rL2 · · · rLL


(4)

u = [r11, . . . ,rLL,<(r21),=(r21), . . . ,<(rL1),

=(rL1), . . . ,<(rL(L−1)),=(rL(L−1))
]T
. (5)

The resulting input vector u has now L2 components, each
corresponding to one unit of the DNN input layer.

In this work, we consider that the DOA angle spectrum
is discretized in angle bins, each corresponding to one output
layer unit. When they range from ymin to ymax in steps of ystep,
then the total amount of angle bins, and thus the total number
of output layer units becomes {(ymax− ymin)/ystep+1}. As it
is shown in (6) below, each bin describes the probability of
radio wave incidence onto it. In case of radio wave presence,
an output 1 is expected, and 0 otherwise.

yj =

{
1 if wave is incident onto the jth bin
0 otherwise

. (6)

Finally the training, validation, and test datasets can
be reproduced by the method described above. The DNN
weights are updated according to the optimizer algorithm
Adam [22] with respect to the gradient calculated from the
loss function, the mean square error (MSE).

Following our previous studies, the success rate (here
also named probability of correct DOA estimation) is the
metric used for verifying 1) the learning progress dur-
ing the validation phase and 2) the DOA estimation per-
formance during the testing phase. A DOA prediction
θ̂ = [θ̂1, . . . , θ̂K ]

T in degrees is counted as a success solely
when all DOAs θ = [θ1, . . . , θK ]

T in a dataset sample are
correctly detected:

Success ⇐⇒ |θ j − θ̂ j | ≤ µ,∀ j ∈ {1, . . . ,K}, (7)

where µ is the estimation tolerance, considered in this study
to be 0.5◦ (prediction to the closest bin). In an effort to
avoid overfitting, the DNNweights corresponding to the best
success rate are saved for further use at the test phase. Yet,
note that these are not necessarily optimal in terms of the
root mean squared error (RMSE), which is another metric
mainly used during the test phase, and can be expressed as:

RMSE =

√√√
1

KNt

K∑
k=1

Nt∑
n=1

(
θ̂
(n)
k
− θ
(n)
k

)2
, (8)
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Fig. 3 Consequence of radio waves incident on the angle bin border. The
j + 1 bin is mistakenly detected as the true DOA.

Fig. 4 Visualization of staggered DNNs. After combining both DNN-A
and DNN-B grids, correct DOA detection is made possible.

where Nt is the total number of test samples.
In [16], [17], we demonstrated that this DNN design

achieved good performance in comparison with the tradi-
tional root-MUSIC and the compressed sensing technique
HQR. However, decline in DOA detection accuracy is heav-
ily influenced by radio waves impinging onto the angle bin
border, which causes neighboring bins to be concurrently
excited. This then blinds the true DOA bin during detection
(see Fig. 3). An effective approach proposed in [17] is to
stack up on top of a main DNN (called DNN-A) a second
one (DNN-B), whose output grid had been shifted by half
DNN-A grid spacing, ranging from −60.5◦ to +60.5◦. This
method was then named staggered DNN, and it is shown
in Fig. 4. A standard peak search algorithm generally suc-
ceeded in correctly detecting the DOA, however a more ac-
curate DOA detection algorithm is developed and presented
in Sect. 4.

4. DOA Detector

In [16], [17], DOA detection from the DNN output spectrum
was carried out with a method here called “Largest Search”,
where the angle bins corresponding to the largest K angle
spectrum values were simply chosen as the DOA estimates.
However, specially when K = 3, “Largest Search” fails to
provide sufficient detection accuracy, due to spurious DNN
output values in the neighborhood of the bins corresponding
to true DOAs. Moreover, at times these spurious outputs are
even larger than the true bin values (see how the probability

of incident radio wave at the spurious bin −41◦ is higher than
both bins −46◦ and −45◦ in Fig. 5, overshadowing them dur-
ing DOA detection with “Largest Search”). The peak search
algorithm, thoughmanaging to solve the case presented here,
has also not proven to be a viable solution overall. For this
reason, we propose a new DOA detection algorithm, here
named “Neighbors Average”. The idea is to first search for
all largely enough excited bins (here we consider all bins
with probability of incident radio wave higher than 0.2), and
then averaging out mutually near bins. For instance, as it
is shown in Fig. 5(b), the estimated DOAs are −45.5◦ and
−41.5◦ within the considered angle bin window.

5. Performance Improvement in Angular Spectrum
Grid Estimation

The other objective of this paper is to further enhance DOA
estimation performance. Therefore, here we present two
new angular spectrum grid estimator approaches: “SNR-
based switching DNN” and “SNR-based Switching Stag-
gered DNN”.

When training the DNN, we use datasets generated at
randomly variable or at different individual SNRs. We veri-
fied that a DNN, which had been offline trained at a specific
SNR and subsequently tested at this SNR, shows the great-
est DOA estimation accuracy. For instance, a DNN offline
trained with a 5 dB dataset and then tested at it presents
better performance than any other DNN offline trained with
a dataset generated at any SNR other than 5 dB. This re-
sult led us to the development of the strategy here named
“SNR-based Switching DNN”, where a new module, SNR
estimator, is introduced to the schematics of Fig. 1.

Now we detail each proposed approach, starting from
the SNR estimator design.

5.1 SNR Estimator

Here we consider only discrete values of SNR: 0, 5, 10, 15,
and 30 dB†. The main idea is to develop a technique able to
detect the SNR from the estimated correlation matrix R̂xx .
Therefore, two different approaches are presented and com-
pared: DNN-based and regression-based SNR estimation.

(a) DNN-based Estimation

The DNN considered for SNR estimation follows the same
layout as shown in Fig. 2. This must be trained using an
input dataset that was generated at a fixed number of sources
K . Therefore, in this study, we must train two DNNs: one
with a dataset generated at K = 2 and another at K = 3 (See
the description of the proposed system in Sect. 1). While we
feed the same input data (the estimated correlation matrix
R̂xx) to this DNN, the output must be fitted to this problem
†It was verified that the DNN trained at 30 dB provides better

DOAdetection performance at 20 and 25 dB. Therefore, complexity
reduction is achieved as training of DNNs at these SNRs becomes
unnecessary.
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Fig. 5 (a) DNN output angle spectrum for a DNN trained offline at 30 dB and tested at 30 dB. Green
arrows represent true DOAs, red thick crosses represent estimated DOAs by “Largest Search”, and purple
thin crosses represent estimated DOAs by “Neighbors Average”. (b) Zoomed-in plot of (a) within the
range [−50◦, −40◦], highlighted by the red dotted rectangle.

accordingly. Since here one SNR value (one label) should
be selected from a set thereof (different labels), this turns
into a multilabel classification problem. For this reason,
the appropriate loss function becomes the categorical cross-
entropy.

(b) Regression-based Estimation

It was verified through computer simulations that the previ-
ous strategy does not provide very high estimation accuracy
specially when K = 3. In an attempt to increase this accu-
racy, here we propose a second approach for SNR estimation.

We observed that the SNR in dB and − log(λs) are lin-
early correlated, where λs represents the smallest eigenvalue
of the correlation matrix R̂xx . In order to obtain a prediction
function for the SNR based on − log(λs) as input, we train a
regressionmodel based on the ordinary least squaresmethod.
Since both our input and output data are one-dimensional,
the linear function that approximates the desired prediction
function has only two coefficients: the y-intercept and the
slope. These can be calculated by minimizing the resid-
ual sum of squares between the observed and the predicted
SNRs. After fitting the training dataset to this model, the
following SNR prediction function when K = 2 is obtained:

SNR (dB) = −0.99644 + 9.98865(− log(λs)). (9)

When K = 3:

SNR (dB) = −0.72178 + 10.01046(− log(λs)). (10)

Next, the closest value within the set {0,5,10,15,30} to the
SNR predicted by (9) and (10) should be chosen as the final
SNR estimate γ̂.

Fig. 6 Schematics of the proposed SNR-based Switching DNN.

5.2 Angular Spectrum Grid Estimator

(a) SNR-based Switching DNN

Leveraging the result explained in the beginning of this sec-
tion, where DNN performance is best at a specific SNRwhen
it had been trained at this SNR, here we propose a technique
consisting of the following steps (Fig. 6): first, estimate SNR
from the estimated correlation matrix; second, select the ap-
propriate DNN (which was previously trained offline at this
estimated SNR); third, estimate the angular spectrum grid
with the selected DNN. By doing so, the most appropriate
DNN is allowed to work at the environment for which it was
trained.

(b) SNR-based Switching Staggered DNN

Our second proposed scheme is simply the combination of
SNR-based SwitchingDNNwith the strategy previously pro-
posed in [17], Staggered DNN. The same issue concerning
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incident radio waves onto the angle grid border vicinity was
also confirmed for the other SNR values. Therefore it is nat-
ural to use the Staggered DNN method in order to overcome
it again. Later simulation results will show that this strategy
is indeed the one achieving best results overall.

First, five pairs of DNN-A and DNN-B must be trained
offline in advance for each considered SNR value (0, 5, 10,
15, and 30 dB). Next, the appropriate DNN pair is selected
based on the SNR estimated from the correlation matrix.
Then, the combined angular spectrum is produced by the
DNN-A andBpairs, and finally theDOAdetection algorithm
is applied on this spectrum in order to estimate the DOA.
The schematics is very similar to that of Fig. 6, with only
the addition of DNN-Bs within the DOA estimator module.
Moreover, all DNN-As and DNN-Bs are designed with the
same architecture (number of hidden layers and units per
layer) as an effort to simplify the processing, since only
shifting of optimized model weights between selected DNNs
is done.

6. Source Number Estimator

The DNN specialized in source number estimation also has
as input data the vectorized form of the correlation matrix
(see (5)). As explained in Sect. 1, only 2 or 3 radio wave
sources are assumed. For this reason, the label data should
be in one-hot representation, where, for instance, [0,1] cor-
responds to 2, and [1,0] to 3 sources.

The first module of our proposed system is the source
number estimator. Consequently, this DNN must guarantee
enough generality so as to correctly predict the number of
incoming radio waves at different SNRs. We generate the
datasets by sampling the SNR from a uniform distribution
from0 to 30 dB, and randomly shifting the number of sources
between 2 and 3 at each sample. The remaining parameters
are kept unchanged as it is detailed in Table 2.

The size of this DNN architecture is relatively small,
as there are only two possible classes in this classification
problem. The input layer has L2 units, the output layer has
2 units, and there are 2 hidden layers with 50 units each.
The hidden layers and the output layers activation functions
are ReLU and Softmax, respectively. The loss function to be
minimized is the categorical cross-entropy. Batch size is 128,
and the total number of epochs is 10. The remaining hyper-
parameters are the same as those for the DOA estimator.

After the conclusion of the training of this DNN, we
have obtained the prediction success rates given in Table 1
at the test phase. Roughly 99% of source number estimation
accuracy has been achieved for all SNRs.

7. Simulation Results

The performance evaluation of all components and ulti-
mately the proposed end-to-end system is now described
here. Since there are in total 4 components that need offline
training in advance (source number, DNN and regression-
based SNR, and angle spectrum grid estimators), 4 training

Table 1 Source number estimator performance for each SNR (in %).

SNR (dB)
0 5 10 15 20 25 30

K
2 99.21 99.87 99.94 99.95 99.96 99.95 99.95
3 99.87 99.84 99.86 99.87 99.87 99.86 99.85

Table 2 Parameters for data generation.

Number of antenna elements
L

5

Number of incident radio waves
K

2, 3

Direction of arrival angles
θ

random from
−60.5◦ to +60.5◦

Number of snapshots
N

100

Number of training data samples 250,000
Number of validation data samples 10,000

Number of test data samples
Nt

150,000

and validation datasets are generated. The peculiarities of
these datasets will be discussed below in their corresponding
subsection. As previously mentioned in Sect. 3, two metrics
are used here for overall performance evaluation: probabil-
ity of correct DOA estimation and RMSE. Their importance
relies on the type of application. The probability of correct
DOA estimation should be of more relevance in such cases
where correct estimation of all DOAs within one sample is
vital. On the other hand, in such cases where average preci-
sion is more important than occasional detection error within
a sample, RMSE should be mostly considered. Neverthe-
less, as the RMSE is very sensitive to outliers, other metrics
should be regarded concurrently, such as the absolute error
median. This is however left as future work.

7.1 DOA Detector

In order to verify the performance of the proposed DOA de-
tector “Neighbors Average” (Sect. 4), we have tested it with
twodifferent angle spectrumgrid estimators: the singleDNN
and Staggered DNN (both previously proposed in [16], [17]
and explained in Sect. 3), while comparing it with the previ-
ous detectors “Largest Search” and conventional peak search,
respectively. These DNNs, whose training parameters can
be seen in Table 3, were offline trained with a dataset gener-
ated according to the parameters listed in Table 2, where the
SNR was set to 30 dB. Then, test data samples are equally
generated at other SNRs, i.e. there are 150,000 samples for
each SNR value.

As it can be seen in Fig. 7, we have verified that, com-
pared to “Largest Search” applied to single DNN output
spectrum, DOA detection accuracy has improved consider-
ably when “Neighbors Average” is used. In addition, spe-
cially in terms of RMSE, “Neighbors Average” has proven
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Fig. 7 Estimation accuracy improvement by the proposed technique named “Neighbors Average”. (a)
Probability of correct DOA estimation. (b) RMSE.

Table 3 Parameters for DNN training.

Input layer units 25
Hidden layers 4

Units per hidden layer
DNN-A: 363
DNN-B: 366

Output layer units
DNN-A: 121
DNN-B: 122

Hidden layers activation function ReLU
Output layer activation function Sigmoid

Loss function MSE
Optimizer Adam
Batch size 256

Number of epochs 300

to be more accurate than peak search applied to Staggered
DNN output spectrum.

It was also noticed that this proposed DOA detection
method does not cover well certain situations, such as the
case of narrowly incident radio waves. Averaging out such
bins corresponding to narrow radio waves leads to incorrect
DOA estimation, as one DOA had been potentially ignored
by the algorithm. Therefore, further investigation for miti-
gation techniques is necessary.

Another possibility to detect the DOA is to train a ma-
chine learning model (such as another DNN), in such a way
that the bin probabilities could provide a better guidance to
where the DOAs are within the angle spectrum grid. How-
ever, this option is costly, since the training of one more
model is needed. Therefore, we believe that, although pos-
sibly not the most optimal technique, “Neighbors Average”
provides sufficient accuracy at low computational cost. In
all subsequent numerical simulations “Neighbors Average”
will be the technique used for the DOA estimator module.

7.2 SNR Estimator

Here we test both our proposed SNR estimators: DNN-based
and regression-based (Sect. 5.1). The training, validation,
and test data samples for the DNN-based estimator are gen-
erated according to the parameters in Table 2. While the
input data samples follow the same format as shown in (5),
the output data samples are in one-hot representation, where
each label corresponds to the SNR class within the set {0, 5,
10, 15, 30} dB. In order to verify the validity of this scheme,
we trained and tested DNNs with varying hidden layers (2,
3, 4, and 5) and units thereof (121, 182, 242, 303, 363,
424, 484, 545, and 605), totaling 36 DNNs. Parameters for
the training phase are the same as those in Table 3, with
the exception that the number of epochs was raised to 1,000
and the number of test data samples was reduced to 50,000.
When the training and test datasets correspond to K = 2, we
concluded that the most optimal architecture was: 3 hidden
layers and 182 units per hidden layer. The achieved SNR
estimation success rate was approximately 80%, where the
error tolerance is considered to be 2.5 dB.

The training, validation, and test data samples for the
regression-based estimator are also generated according to
the parameters in Table 2. In order to generate the input
data samples to the linear regression model, − log(λs) is
calculated for each sample of the estimated correlation ma-
trix R̂xx . As for the output, the SNR at which each corre-
sponding input data was generated is used as the output data
samples. We verified that this second approach achieves ap-
proximately 94% estimation success rate with the same test
dataset as that of the DNN-based estimator when K = 2.
This promptly shows that the regression-based approach is
superior.

The prediction accuracy comparison between both
methods can be seen in Fig. 8, where only 5,000 samples
of the test dataset were used for better visualization. From



ANDO et al.: DEEP NEURAL NETWORKS BASED END-TO-END DOA ESTIMATION SYSTEM
1357

Fig. 8 SNR estimation performance comparison between DNN and linear regression obtained from
5,000 samples. The abscissa label “True SNR” corresponds to the SNR manually set during simulation.
(a) K = 2. (b) K = 3.

Fig. 9 DOA detection accuracy comparison with the “SNR-based Switching DNN” method when the
SNR estimator module is perfect, DNN-based, and regression-based, for the cases K = 2 and 3. (a)
Probability of correct DOA estimation. (b) RMSE.

this figure it is also noticeable how much better the perfor-
mance is when estimating with linear regression, specially
for higher SNR and for both values of source number K . Yet,
as it will be shown next, this regression-based estimation is
not necessarily the only viable option between the two.

7.3 Angular Spectrum Grid Estimator

Here we investigate the performance of the 2 proposed an-
gle spectrum grid estimators “SNR-based Switching DNN”
and “SNR-based Switching Staggered DNN”. The training,
validation, and test datasets are reproduced following the
parameters listed in Table 2. Although these datasets were
randomly generated for this work, thorough verification by
means of resampling methods [19], [20], such as K-fold
cross validation, needs to be addressed in the future study.

In addition, the DNN training parameters are summarized in
Table 3.

First, we verify the influence of perfect and imperfect
SNR estimation over the performance of the proposed “SNR-
based Switching DNN”, using the success rate and RMSE
metrics explained in Sect. 3. From Fig. 9, surprisingly the
probability of correct DOA is virtually unchanged, whether
using one approach or the other. Even compared to the
ideal case of perfect SNR estimation, no significant changes
are seen. These results suggest that, even when imperfect
SNR prediction is carried out, the selected DNNs for DOA
estimation maintain their robustness. In the upcoming dis-
cussions, we have opted to use the regression approach for
its low complexity under the considered array dimension in
this paper.

Next, we compare the performance of the 2 proposed
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Fig. 10 Metrics comparison from same test dataset between Root-MUSIC and the two previous and
two newly proposed DOA estimation methods. “30 dB DNN” corresponds to a DNN trained with a
dataset generated from 30 dB data; “30 dB Staggered DNN” corresponds to DNN-A and DNN-B trained
with a dataset generated from 30 dB data; “SNR-based Switching DNN” corresponds to the method
of selecting the appropriate DNN based on SNR estimation; “SNR-based Switching Staggered DNN”
is the method combining SNR-based Switching and Staggered DNNs. (a) Probability of correct DOA
estimation when K = 2. (b) RMSE when K = 2. (c) Probability of correct DOA estimation when
K = 3. (d) RMSE when K = 3.

methods “SNR-based Switching DNN” and “SNR-based
Switching Staggered DNN” with root-MUSIC and our 2
previous techniques “30 dB DNN” and “30 dB Staggered
DNN” [16], [17]. “30 dB DNN” corresponds to the DNN
trained offline with a 30 dB dataset and “Neighbors Average”
(Sect. 4) as the DOA detection algorithm; “30 dB Staggered
DNNs” corresponds to both DNN-A and DNN-B trained
offline with a 30 dB dataset and also “Neighbors Average”
as the DOA detection algorithm; The results can be seen in
Fig. 10, where we use the same test dataset for all methods.

When the proposed approaches are contrastedwith root-
MUSIC for the case K = 2, it can be seen that “SNR-based
Switching Staggered DNN” demonstrates the best perfor-
mance in terms of success rate (Fig. 10(a)). While both
proposedmethods “SNR-based Switching DNN” and “SNR-

based Switching Staggered DNN” showed the best RMSE
performance at lower SNRs, none fully stands out at higher
ones. All curves reach a floor at higher SNRs, thus losing
against root-MUSIC. However, this outcome was expected
due to the limitation that our DNN solutions are classified as
on-grid DOA estimation, so quantization error is inevitable.

Observing first the success rate for the case K = 3
(Fig. 10(c)) both “SNR-based Switching DNN” and “SNR-
based Switching Staggered DNN” achieve better preci-
sion than root-MUSIC until 20 dB. At 30 dB, root-MUSIC
surpasses all methods. Contrarily, regarding the RMSE
(Fig. 10(d)), root-MUSIC presents much lower precision
than the other methods, specially “SNR-based Switching
DNN” and “SNR-based Switching Staggered DNN”. It was
verified that, specially when K = 3, “Neighbors Average”
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Fig. 11 Proposed system performance comparison when source number estimation is perfect (perfect
K̂) and not perfect, and when SNR-based (1) Switching DNN or (2) Switching Staggered DNNs are
used as spectrum estimation techniques. SNR estimation is done with the regression-based method. (a)
Probability of correct DOA estimation. (b) RMSE.

paired with “SNR-based Switching Staggered DNN” is very
accurate in detecting DOA. Nevertheless, comparing the
K = 3 case with K = 2, estimation precision is still largely
lower. At this configuration of number of ULA elements
L = 5 and of sources K = 3, DOA estimation becomes more
difficult not only for root-MUSIC, but also for the proposed
DNN solutions. Therefore, it is an urgent issue to develop
new strategies to enhance the estimation performance at such
configuration before we deploy the proposed techniques at
environments with more antenna elements and/or radio wave
sources.

7.4 Performance of Proposed End-to-End System

Finally we converge all the previous discussion to analyze
the proposed end-to-end DOA system. For the computer
simulations, we consider the following, where DOA estima-
tion is performed with the angular spectrum grid estimator
and DOA detector:

• DOA detector: “Neighbors Average” (Sect. 4),
• Angular spectrum grid estimator: “SNR-based Switch-
ing DNN” and “SNR-based Switching Staggered
DNN”, where SNR estimation is done with the
regression-based method (Sect. 5),

• Source number estimator: DNN-based (Sect. 6).
All the training, validation, and test datasets for the corre-
sponding models are generated in the same fashion as it has
been described within this section. All DNNs and regression
model have been trained offline prior to testing following the
same parameters discussed in the corresponding sections.
Here, we analyze the effect of perfect and imperfect source
number estimators on the proposed system performance, as
it is shown in Fig. 11. While RMSE degradation is evident
from Fig. 11(b) even when the achieved source number es-
timation accuracy was over 99% (Sect. 6), the success rate

remains practically unchanged (see Fig. 11(a)). We can con-
clude that only very few source number estimation errors
are enough to severely degrade the RMSE performance. On
the other hand, success rate is greatly robust to both source
number and SNR estimation errors. For this reason, it is
necessary to develop strategies capable of curbing this non-
desirable influence from incorrect source number prediction.

8. Discussion on Regularized Loss Function

From some DNN output samples we observe that many bins
unrelated to those corresponding to true DOAs end up being
excited. These might in turn provoke incorrect DOA detec-
tion, specially when 5 ULA elements and 3 emitting sources
is assumed. Noting the sparseness in the DNN output and
taking the results from compressed sensing approaches as
inspiration, here we verify the effectiveness of adding a reg-
ularization term, lp-norm, to the MSE loss function. It
is expected that, by doing so, spurious bins might be sup-
pressed, and thus the DNN output spectrum might become
more sparse and cleaner for DOA detection algorithms to
operate.

Let {ti}Nbatch
i=1 be a batch with Nbatch label samples, where

each sample ti ∈ RU×1 and U is the number of units in the
output layer (for instance, U = 121 in case of DNN-A). Let
{vi}Nbatch

i=1 be the Nbatch outputs from the DNN after forward
computation. After adding the lp-norm term, the regularized
MSE loss function L to be minimized can be written as:

L =
1

Nbatch

Nbatch∑
i=1
Li, (11)

Li =
1
U

U∑
j=1
(vi, j − ti, j)2 + a ©«

U∑
j=1

v
p
i, j

ª®¬
1/p

, (12)
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Fig. 12 Performance analysis of the DOA estimator when the MSE loss is regularized by an lp -norm
term, for the case p = 0.95, and varying scaling factor a. Comparison is also made with the case when
no regularization term is added. (a) Probability of correct DOA estimation. (b) RMSE.

where Li is the proposed regularized loss calculated for the
ith sample in the batch, ti, j and vi, j are the jth unit of the
label and output, respectively, in the ith batch sample, a is
the scaling factor and p is the norm value, which satisfies 0 <
p < 1. However, due to its non-differentiability around the
origin when p ≤ 1, here a smooth approximation suggested
in [6] is used:

a ©«
U∑
j=1

v
p
i, j

ª®¬
1/p

≈ a

U∑
j=1
(v2

i, j + ε)
p/2


1/p

, (13)

where ε is a very small value. For this study we have only
considered p = 0.95 and ε = 1.0 × 10−7 during simulation
trials. The number of epochs was raised from 300 (Table 3)
to 1,000, since the time required for training is longer with
the addition of the lp-norm. All other parameters are kept
unchanged. Results of the performance analysis of the pro-
posed approach can be seen in Fig. 12, where the number of
epochs for theDNNwithout lp-normwas also raised to 1,000
for fair comparison. In Fig. 13, we show two samples of the
DNN output when the lp-norm is and is not included in the
loss calculation. Both DNN output samples were calculated
under the same test data.

When a is larger than 0.003, there is a noticeable DOA
detection accuracy degradation. It is believed that a too large
lp-norm added to the MSE masks the gradient computation
done during backpropagation, which results in very poor
DNN model weights. From Fig. 12(a), when a = 0.0007
the probability of correct DOA estimation only degrades a
little compared to the case without regularization. On the
other hand, from Fig. 12(b), subtle RMSE improvement can
be verified when a = 0.0009, surpassing the curve corre-
sponding to no regularization when the SNR is 25 dB and
30 dB.

Although little improvement can be seen from Fig. 12,
the effect of producing a more sparse DNN output with the

Fig. 13 Comparison of the DNN output angular spectrum obtained by a
DNN trained with and without the regularization lp -norm, when p = 0.95
and a = 0.0009. For better visualization, this graph is plotted until the
probability of success of 0.10. Successful DOA detection is achieved in
both cases.

lp-norm regularization can be quickly observed in Fig. 13.
There it is readily visible how well spurious bins have been
suppressed by means of a technique used in conjunction
with deep learning methods (backpropagation) even if it is
primarily used in the context of compressed sensing. We
believe that this result can be beneficial especially for the
case of larger values of source number K and of narrowly
incident waves. It is our future goal of further investigating
the usage of the lp-norm at these other model assumptions.

9. Final Remarks

In this paper, we presented a new end-to-end DOA esti-
mation system consisting of three modules: source number
estimator, angular spectrum grid estimator and DOA detec-
tor. Two new performance enhancement techniques for spec-
trum estimation, which rely on SNR estimation, were also
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described. We designed two different approaches for SNR
estimation, yet it was verified that the DOA detection per-
formance metrics remained virtually unchanged for either of
them, even when perfect SNR prediction had been assumed.
A DNN with simple architecture specific for source number
estimation, which achieved great prediction performance,
was designed. A new DOA detection algorithm more pre-
cise in predicting DOA values from the DNN output angular
spectrum grid in comparison with our previous method was
developed. We verified that one of the proposed enhance-
ment techniques, “SNR-based Switching Staggered DNN”,
had resulted in great estimation performance even compared
to the traditional super-resolution root-MUSIC regarding the
success rate metric for the case of two radio wave sources.
On the other hand, for the case of three sources, not fully
satisfactory results were obtained. Consequently, develop-
ing new approaches capable of raising our DOA estimator
accuracy is our next goal for future works.

We can list the following tasks that need attention: ver-
ification of different DNN architectures and designs, such as
using the binary cross-entropy as the loss function; develop-
ment of backup strategies to avoid RMSE accuracy decline
when the source number estimator fails. It is also an urgent
matter to validate our datasets by means of, for instance,
K-fold, in order to guarantee no overlapping between the
training, validation, and test datasets.
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