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Multi-objective Optimization of Permanent Magnet Motors Using Deep 

Learning and CMA-ES 
Ryosuke Mikami1 , Hayaho Sato1 , Shogo Hayashi1 , Hajime Igarashi1 

1Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan 

 

ABSTRACT: This paper proposes a multi-objective 
optimization method for permanent magnet motors using a 
fast optimization algorithm, Covariance Matrix Adaptation 
Evolution Strategy (CMA-ES), and deep learning. Multi-
objective optimization with topology optimization is 
effective in the design of permanent magnet motors. 
Although CMA-ES needs fewer population size than 
genetic algorithm for single objective problems, this is not 
evident for multi-objective problems. For this reason, the 
proposed method generates training data by solving the 
single-objective optimization multiple times using CMA-
ES, and constructs a deep neural network (NN) based on the 
data to predict performance from motor images at high 
speed. The deep NN is then used for fast solution of multi-
objective optimization problems. Numerical examples 
demonstrate the effectiveness of the proposed method. 
KEYWORDS: Deep Learning, CNN, Multi-objective 
Optimization, CMA-ES, NSGA-II, PM Motor 
 

I. INTRODUCTION 
In recent years, the demand for electric vehicles has 

increased due to environmental issues such as global 
warming and air pollution. Reflecting this trend, research 
on permanent magnet (PM) motors for traction of electric 
vehicles has been active. The development of these motors 
focuses on maximizing the output torque and minimizing 
the torque ripple to achieve a PM motor with high efficiency 
and low vibration and noise. 

Parameter optimization (PO) and topology optimization 
(TO) are two major design methods for optimizing the 
shape of PM motors [1]. Since the performance of the 
optimized device highly depends on predetermined 
geometric parameters, it is often difficult in PO to set 
appropriate design parameters. In addition, PO has the 
problem that it is difficult to obtain novel device structure. 
On the other hand, since TO directly searches for the 
optimal material distribution, there is no need to set 
geometric parameters. TO can generate a wide variety of 

devices with novel structures and superior performance. In 
addition, multiple characteristics such as average torque, 
torque ripple, and losses must be considered when 
optimizing a PM motor. By solving a multi-objective 
optimization, it is possible to take these characteristics into 
account simultaneously. For these reasons, multi-objective 
optimization using TO is effective especially in the initial 
design phase of PM motors. 

In general, TO of a PM motor has more design variables 
than PO. Genetic algorithms (GA) have been widely used 
as a method to solve such high-dimensional optimization 
problems [1-3]. When the number of optimization variables 
is n, the population size of a GA would be set proportionally 
to n. On the other hand, the recommended population size 
of the Covariance Matrix Adaptation Evolution Strategy 
(CMA-ES) is 𝑂𝑂(log𝑛𝑛) [4], which would be more suitable 
for problems with many optimization variables, such as TO. 
In fact, CMA-ES has been successfully applied to TO of PM 
motors [5]. However, while CMA-ES has excellent search 
performance for single-objective optimization, it is still 
unclear whether the multi-objective version of CMA-ES 
outperforms NSGA-II [6] which is one of the most widely 
used methods for multi-objective GA with smaller number 
of population size for the former [7], [8]. 

This paper proposes a multi-objective optimization 
method for PM motors using CMA-ES and deep learning. 
In the proposed method, training data is generated by 
performing a single-objective optimization of a PM motor 
using CMA-ES multiple times. The data obtained during 
the optimization process is used to train a convolutional 
neural network (CNN) which predicts the performance 
from the input motor images. The trained CNN is used to 
predict the performance of PM motors to solve the multi-
objective optimization problem at high speed and obtain 
motor shapes with high performance and a variety of 
features, where NSGA-II is used for optimization in this 
study. The CNN trained by the above procedure can be 
applied to multi-objective optimization for different 



objective functions and constraints. 
 

II. NGNET METHOD 
In this study, the shape of the magnetic core of the rotor 

of a PM motor is optimized. The NGnet (Normalized 
Gaussian Network) method is used as the topology 
optimization method [1, 2], which is based on the shape 
function 
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where 𝒙𝒙 is the coordinates in the design region, 𝑤𝑤𝑖𝑖  is the 
weighting coefficient, and 𝑁𝑁  is the total number of 
Gaussian basis functions whose centers are uniformly 
placed in the design region, and 𝑏𝑏𝑖𝑖(𝒙𝒙)  denotes the 
normalized Gaussian basis function defined as 
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The Gaussian basis function in two dimensions used in this 
study is given by 

𝐺𝐺𝑘𝑘(𝒙𝒙) =
1
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where 𝜎𝜎0,𝝁𝝁𝑘𝑘  are the standard deviation and central 
position of the basis function, respectively. In this study, to 
determine the shape of the magnetic core of the rotor, 
material attribute 𝑀𝑀𝑒𝑒 finite element 𝑒𝑒 is determined from 

𝑀𝑀𝑒𝑒 = �𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑦𝑦(𝒙𝒙,𝒘𝒘) ≥ 0
𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦(𝒙𝒙,𝒘𝒘) < 0 (4) 

The flow of the NGnet method is shown in Figure 1. 
 
III. CMA-ES 
CMA-ES is used for pre-optimization to collect training 
data for the CNN. The population is generated according to 
a multivariate normal distribution 𝒩𝒩(𝒎𝒎,𝜎𝜎2C). The search 
for the optimal solution is performed by updating not the 
parameters of the population itself, but the parameters of the 
multivariate normal distribution: center 𝒎𝒎, covariance 
matrix C, and step size 𝜎𝜎 . Because it performs global 
search with relatively small population size, it is suitable for 
optimization with field analysis that needs large computing 
cost. The optimization of CMA-ES proceeds as follows. 
First, the parameters are initialized. Next, the population is 
generated. Let the individuals be 𝒙𝒙𝑘𝑘  and C = BD2BT  is 
the eigenvalue decomposition of the covariance matrix C, 
where B is an orthogonal matrix whose columns consist of 
an orthonormal basis of eigenvectors, and D is a diagonal 

Fig. 1. Flow of NGnet method  
 
 

Fig. 2. Algorithm of CMA-ES 
 
matrix consisting of the square roots of the positive 

eigenvalues. We generate the individuals according to 

𝒙𝒙𝒌𝒌 = 𝒎𝒎 + 𝜎𝜎BD𝒛𝒛𝑘𝑘   ~𝒩𝒩(𝒎𝒎,𝜎𝜎2C) 
 

(5) 

𝒛𝒛𝑘𝑘  ~𝒩𝒩(𝟎𝟎, 𝐈𝐈) (6) 



 The sampled populations are evaluated for the objective 
function, and the top 𝜇𝜇  individuals with the highest 
evaluation values are used to update the center as follows: 

Covariance matrix C and step size 𝜎𝜎 and other parameters 
can be found in [4]. Sampling, population evaluation, and 
parameter updating are repeated until a predetermined 
number of generations is reached. The optimization flow is 
shown in Fig. 2. 
 

IV. CNN FOR PREDICTION OF MOTOR 
PERFORMANCE 

A. Structure of CNN 
A regression model is constructed using a CNN for motor 

performance prediction which works much faster than finite 
element method (FEM). The CNN predicts average torque 
and torque ripple from the cross-sectional images of a PM 
motor [9]. The input image set is composed of normalized 
224 x 224 dimensional RGB images. As shown in Figure 3, 
the convolutional layers of the VGG16 model [10] are used 
for transfer learning, and layers deeper than the ninth layer 
are re-trained [11]. To prevent overlearning, a dropout was 
performed between the two layers shown in Figure 3 as 
Dense1 and Dense2. 
 
B. Preliminary Optimization to Generate Training 

Data 
To generate the training data for the CNN, single-objective 

optimizations are performed for multiple times in advance, 
which is here defined by 

where 𝑇𝑇avg, 𝑇𝑇rip are the average torque and torque ripple, 
the latter being defined as 𝑇𝑇rip = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. Moreover, 
we set 𝑇𝑇avgref = 1.63(Nm),𝑇𝑇ripref = 1.04(Nm) with reference 
to the D model proposed by Institute of Electrical Engineers 
of Japan. This optimization assumes symmetry so that 60 
Gaussian basis functions are placed in half of the design 
domain. Once the shape of one half of the domain is 
determined, the shape of the other half can be determined 
from the symmetry. CMA-ES was used to solve (10), and 

FEM was used for field analysis. Table 1 summarizes the 
optimization settings. By changing the value of the 
weighting coefficient 𝛼𝛼  as 0.1, 0.3, 0.5, 0.6, 0.7  and 0.9 
in equation (10), the obtained 38,784 data, which were used 
to train the CNN. 
  We performed FE analysis of the magnetostatic field in 
the quarter region of the D-model by changing the 
mechanical angle every 6 degrees obtain the training set. 
The computing time was about 86,400 sec. using 16 parallel 
computers with Intel(R) Xeon(R) E5-2667 v3. 
 

V. OPTIMIZATION 
After constructing the trained CNN, we perform multi-

objective optimization in which CNN predicts the 
performance of generated PM motors. The optimization 
problem is defined by 

We employed NSGA-II [5] for the multi-objective
optimization method based on GA. The optimization 

 

Fig. 3. Structure of CNN 
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𝐹𝐹 = −𝛼𝛼
𝑇𝑇avg
𝑇𝑇avgref

+ (1 − 𝛼𝛼)
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𝑇𝑇ripref

→ min. 
 

(10) 

  
Table 1.  Settings of pre-optimization 

Number of generations 100 
Number of individuals 64 

𝑇𝑇avg → max.   𝑇𝑇rip → min. (11) 



settings are listed in Table 2. 
 

VI. RESULTS 
A. Training Results 
The 38,784 data generated by the preliminary optimization 
were split 6:2:2 and used as training, validation, and test 
data, respectively. The training settings are listed in Table 3. 
The loss function is the mean absolute error (MAE). 
Predictions on the test data were performed on the trained  

CNNs. The error distributions between the FEM results and 
the CNN predictions for 𝑇𝑇avg,𝑇𝑇rip are shown in Figure 4.  
These MAEs and correlation coefficients are summarized 
in Table 4. From Table 4 and Figure 4, we concluded that 
the prediction accuracy of the CNN was sufficiently high to 
test the validity of the proposed method especially for 𝑇𝑇avg, 
whereas the prediction accuracy for 𝑇𝑇rip  was lower than 
that for 𝑇𝑇avg . The result of multi-objective optimization 
using these trained CNNs will be described below. 

  
Table 3. Settings of training CNN estimator 

Number of data 38784 
Batch size 256 

Number of epochs 60 
Loss function MAE 

 
  

(a) Average torque 𝑇𝑇avg (b) Torque ripple 𝑇𝑇rip 
Fig. 4. Error distribution for test data 

 
Table 4. Prediction accuracy for test data 

 Average torque 𝑇𝑇avg Torque ripple 𝑇𝑇rip 
MAE (Nm) 0.076 0.097 

Correlation coefficients (-) 0.995 0.901 

B. Optimization Results 
The multi-objective optimization was performed using 

CNN and NSGA-II. Figure 5 shows the resulting Pareto 
solutions whose performances are evaluated by CNN and 
the corresponding values re-computed by FEM, as well as 

the performance values for the six optimal solutions 
obtained by the preliminary optimization. The motor shapes 
corresponding to Pareto solutions A, B, and C are shown in 
Figure 6, and the performance values of these motors are 
summarized in the caption of Table 5. Here, CNN and FEM 

Table 2. Settings of multi-optimization 
Number of parents 96 
Number of children 96 

Number of generations 300 
Crossover method Simulated Binary Crossover 
Mutation method Polynomial Mutation 



refer to the values predicted by CNN and the values 
obtained from the FEM analysis. That is, the latter values 
are the ground truth. From Figures 5 and 6, it can be seen 
that the multi-objective optimization yielded PM motor 
shapes with a variety of featured and characteristics. It can 
also be seen that these shapes have characteristics that could  
not be obtained by the preliminary optimization. Table 6 
shows the prediction accuracy for the optimal solutions. 
Since the population of optimal solutions contains shapes 
that are very close in both shape and performance value, the 
distance d between individuals is measured from 

𝑑𝑑𝑖𝑖𝑖𝑖 = ���𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑗𝑗𝑗𝑗�
2

𝑁𝑁

𝑘𝑘=1
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where 𝑤𝑤𝑖𝑖𝑖𝑖  denotes the 𝑘𝑘-th design variable of 𝑖𝑖-th motor 
geometry. For those individuals for which 𝑑𝑑 ≤ 𝑑𝑑𝑡𝑡ℎ , only 
one of them is included in the calculation, and here we 
assume that 𝑑𝑑𝑡𝑡ℎ = 0.3. 
As shown in Table 6 and Figure 5, there is no significant 
difference between the predictions of CNN and FEM results 
for the optimal solutions, indicating that the optimization is 
performed with sufficient prediction performance. As with 
the prediction results for the test data, the error for 𝑇𝑇rip 
was slightly larger than that for be 𝑇𝑇avg. Therefore, the

 

Fig. 5. Analysis results of optimal solutions by FEM and optimal solutions of pre-optimization 
   

A B C 
Fig. 6. Motor shapes corresponding to Pareto solutions A, B and C 

 
Table 5. Performances of motors shown in Fig. 6 

  A B C 
CNN 𝑇𝑇avg (Nm) 1.688 1.857 1.899 

𝑇𝑇rip (Nm) 0.139 0.646 1.427 
FEM 𝑇𝑇avg (Nm) 1.722 1.748 1.811 

𝑇𝑇rip (Nm) 0.093 0.499 1.228 



  

 
prediction accuracy of 𝑇𝑇rip needs to be improved to obtain 
more accurate Pareto solutions. 
 
C.  Computing Cost 

Table 7 lists the computation time per generation for each 
method when FEM and CNN are used for performance 
analysis of the generated PM motors in multi-objective 
optimization using NSGA-II. In this study, 16 threads of 
CPU (Intel(R) Xeon(R) E5-2637v4) were used for FEM, 
and one GPU (NVIDIA Tesla V100 PCIE 16GB) was used 
for CNN. The computational speed was approximately 18.8 
times faster when using CNN than when using FEM, 
indicating a significant speedup. Although training a CNN 
is computationally expensive, once a CNN is trained to 
predict different properties, multi-objective optimization 
with different objective functions and constraints can be 
effectively performed. 

 
VII.   CONCLUSION 

In this paper, we proposed a method to obtain a variety of 
shapes by performing fast multi-objective optimization 
using a CNN trained on data obtained by single-objective 
optimizations with CMA-ES. The proposed method 
produces a variety of motor shapes with characteristics that 
cannot be obtained by the preliminary optimization through 
fast and accurate multi-objective optimization. The trained 
CNN can be applied to multi-objective optimization with 
additional objective variables, such as iron loss and 
permanent magnet area, and with different constraints. A 
future task is to improve the prediction accuracy, especially 
for torque ripple, to further enhance the optimization 
performance. 
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