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Estimation of Hosting Capacity of Photovoltaic Generations in Distribution 
Networks using Particle Swarm and Gradient Descent Optimization 

Esau Zulu 

Abstract 

The excessive dependence on fossil fuels such as coal, oil and gas for energy production has 

led to massive emission of CO2. This huge emission of CO2 in the atmosphere has led to 

deterioration of the ozone layer. The subsequent impact of this has been rapid global 

temperature rise and, ultimately, climate change. To avoid further deterioration of the ozone 

layer and avoid deepening the climate change crisis, the world has, over the last few decades, 

resorted to the use of clean green-energy resources such as wind, photovoltaic (PV) etc., for 

the world’s energy needs. In the same vein, electrical vehicles (EV) with battery energy storage 

systems (BESS) have increased in the share of the transportation industry to replace fossil fuel 

dependent transportation. 

PV power sources have been increasingly adopted in large quantities and accounts for nearly 

ninety percent of green-energy power sources in the electrical power distribution networks 

(DN). This is because PV is relatively easy to install, has higher scalability and is cheaper than

other renewable energy options. However, the adoption of PV in huge quantities can lead to 

various challenges in the operation of the distribution networks. The greatest challenge posed 

by PV is the risk of over-voltages during times of high solar irradiation (with subsequent high-

power output) at times of low power demand. Other risks include, thermal capitulation of 

network lines and cables, reverse power flows, and high harmonics. Therefore, there is a need 

to determine the amount of PV power which a particular DN can accommodate without 

abrogating the network’s operational limits. This amount is referred to as the PV hosting

capacity (PVHC). 

This study proposes an efficient method for estimating the PVHC of a DN. This method uses 

swarm intelligence in combination with gradient descent. The method harnesses the excellent 

exploration capabilities of particle swarm optimization (PSO) and the powerful exploitation of 

the optimum solution espoused by the gradient descent algorithm. In hybridizing the PSO and 

the GD algorithms, the proposed method also gets rid of the ills of each method.  

The proposed method’s efficacy in depth and speed of calculation was tested on several DN 

test systems including the IEEE 33 bus test DN, the IEEE 69 test DN and the existing 136 bus 

in Sao Paulo, Brazil to estimate the PVHC of these networks. The proposed method was also 
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used in the study of the effects of BESS and EV on the PVHC of a DN. The results of the 

calculations were compared with several other methods. The numerical results of the 

simulations proved that the proposed method was more efficient compared with other methods 

found in literature.  

The study also proposes the use of the deterministic approach in combination with the 

stochastic methods to produce a fast optimization algorithm for estimating the PV hosting 

capacity distribution networks operating under the uncertainties which inherent in the network 

variables. In this part of the research, the PSO-GD was combined with the PEM-based 

probabilistic load flow analysis to synthesize a powerful tool for estimating the acceptable limit 

of PV which can be safely installed into the distribution network without violating the network 

performance limits. This tool can be used for network planning purposes at the conception 

stage of the DN or for system expansion planning purposes.   

Keywords: Deterministic load flow, Distribution network, Gradient Descent, Hosting 
capacity, Over-voltage, Photovoltaic, Particle swarm optimization, Probabilistic load flow, 
Stochastic analysis  

  



IV

Table of Contents 
1. Introduction ..................................................................................................................................... 2 

1.1 Background and Significance of the research ............................................................................... 2 

1.2 Challenges of PV integration in power distribution networks ...................................................... 3 

1.2.1 Risk of Overvoltage Occurrence ............................................................................................ 3 

1.2.2 Reverse Power Flow .............................................................................................................. 4 

1.2.3 High Harmonics due to high PV penetration ......................................................................... 4 

1.2.4 Risk of Overheating of Line Conductors and Cables ............................................................. 5 

1.3 State-of-the-art in PV Hosting Capacity Estimation ..................................................................... 5 

1.3.1 Deterministic Approach ......................................................................................................... 5 

1.3.2 Stochastic/Probabilistic Approach ......................................................................................... 7 

1.3.3 Time-series Approach ............................................................................................................ 9 

1.4 Distribution Network PVHC improvement Strategies ................................................................ 10 

1.4.1 Line Capacity enhancement ................................................................................................. 11 

1.4.2 Volt-var control using Smart Inverter .................................................................................. 11 

1.4.3 Battery Energy Storage Systems and Electric vehicles ........................................................ 12 

1.4.4 Network Reconfiguration ..................................................................................................... 12 

1.4.5 Optimal Sizing and Placement of PV generation units ........................................................ 12 

1.5 Motivation ................................................................................................................................... 13 

1.6 Relevance of the Research .......................................................................................................... 14 

1.6.1 Importance of Research ....................................................................................................... 14 

1.6.2 Aim of Research................................................................................................................... 14 

1.6.3 Objectives of the Research ................................................................................................... 14 

1.7 Thesis Structure .......................................................................................................................... 15 

1.8 Chapter Summary ....................................................................................................................... 16 

2. Particle Swarm and Gradient Descent Algorithm ......................................................................... 18 

2.1 Overview ..................................................................................................................................... 18 

2.2 Conceptual Framework of PSO-GD Algorithm .......................................................................... 18 

2.2.1 Gradient Descent Algorithm ................................................................................................ 18 

2.2.2 Original Particle Swarm Optimization ................................................................................. 20 

2.2.3 Challenges of standard particle swarm optimization ........................................................... 23 

2.2.4 The Proposed PSO-GD Algorithm ...................................................................................... 23 



V

2.3 Chapter Summary ....................................................................................................................... 26 

3. PV Hosting Capacity of a Distribution Network .......................................................................... 29 

3.1 PV Hosting Capacity Problem Definition ................................................................................... 29 

3.1.1 PVHC estimation formulation ............................................................................................. 29 

3.1.2 Solution Approach: Estimation of PVHC by PSO-GD ........................................................ 32 

3.2 Case studies ................................................................................................................................. 33 

3.2.1 Case I: Estimation of PVHC of IEEE 33 test bus DN ......................................................... 33 

3.2.2 Performance of PSO-GD against other methods ................................................................. 37 

3.2.3 Case II: Estimation of PVHC of IEEE 69 bus test DN ........................................................ 39 

3.2.4 Case III: Existing Brazilian 136 bus DN.............................................................................. 42 

3.2.5 Case IV Comparison of Proposed PSO-GD and Original PSO .................................... 44 

3.3 Stability Analysis of PSO-GD .................................................................................................... 45 

3.4 Chapter Summary ....................................................................................................................... 46 

4. PVHC Enhancement using PV Inverter Volt-Var Control ........................................................... 49 

4.1 Proposed Reactive Power Compensation technique. .................................................................. 49 

4.2 Implementation of VVC during PVHC estimation ..................................................................... 50 

4.3 Chapter Summary ....................................................................................................................... 55 

5. Estimation of PVHC with Uncertainty Consideration .................................................................. 57 

5.1 Chapter Overview ....................................................................................................................... 57 

5.2 Stochastic PVHC estimation using PSO-GD .............................................................................. 58 

5.2.1 Hong’s PEM Schemes ......................................................................................................... 58 

5.2.2 Implementation of Stochastic PSO-GD for PVHC estimation ............................................ 61 

5.2.3 Probabilistic Modelling of PV Output ................................................................................. 61 

5.2.4 Probabilistic Modelling of Load Demand ............................................................................ 62 

5.3 Case Studies ................................................................................................................................ 63 

5.3.1 Case IA: Conservative Stochastic PVHC ............................................................................ 63 

5.3.2 Case IB: Flexible Stochastic PVHC ..................................................................................... 64 

5.4 Efficacy and Speed of Proposed Method .................................................................................... 69 

5.4.1 Computation Accuracy ........................................................................................................ 69 

5.4.2 Computation Speed .............................................................................................................. 72 

5.5 Chapter Summary ....................................................................................................................... 72 

6. Impacts of BESS and EV on PVHC in DN .................................................................................. 75 



VI

6.1 BESS Charging load demand Model .......................................................................................... 75 

6.2 EV charging load demand model ................................................................................................ 76 

6.3 Quantification of the Effects of BESS and EV deployment in DNs on PVHC .......................... 78 

6.4 Case Studies ................................................................................................................................ 79 

6.4.1 Case A: EV Charging Station and BESS Located at PV Installation Sites .......................... 79 

6.4.2 Case B: EV Charging Station Randomly Located within DN ............................................. 82 

6.5 Chapter Summary ....................................................................................................................... 83 

7. Conclusions ................................................................................................................................... 86 

References ............................................................................................................................................. 89 

Acknowledgements ............................................................................................................................... 99 

Appendix I-A: Line power flows of IEEE 33 without PV .................................................................. 100 

Appendix I-B: Line Flows for IEEE 33 with PV ................................................................................ 101 

Appendix II: PSO-GD Program Code ................................................................................................ 102 

Appendix II-A Main Program Code ........................................................................................... 102 

Appendix II-B: PSO-GD Sub-routine ......................................................................................... 102 

Appendix II-C: PVHC Cost-function Sub-routine ...................................................................... 106 

Appendix II-D: Lagrange Gradient Sub-routine ......................................................................... 107 

Appendix II-E: LoadFlowAnalysis Sub-routine ......................................................................... 108 

Appendix II-F: Volt-Var Control Sub-routine ............................................................................ 111 

Appendix II-G: PEM Moments Generator .................................................................................. 112 

Appendix II-H: Main program for comparison of PSO-GD/PEM and MCS ............................. 115 

Appendix II-I: PEM-based PVHC Estimation sub-routine ......................................................... 116 

Appendix II-J: MCS-based PVHC Estimation sub-routine ........................................................ 118

  



VII

LIST OF FIGURES

Figure 1.1: Percentage of power generation technologies 2015-2021 ............................................2

Figure 1.2: Typical node voltage variations with/without PV installations ....................................3

Figure 1.3: Typical flow chart for deterministic PVHC estimation ................................................6

Figure 1.4: Flowchart of the PVHC estimation using stochastic analysis. .....................................8

Figure 1.5: Typical time-series based PVHC estimation process flow chart. ...............................10

Figure 1.6: Structure of the thesis. ................................................................................................15

Figure 2.1: Solution search for the method steepest gradient descent in the solution space.........20

Figure 2.2:Movement of particles of standard PSO in the solution search space .........................21

Figure 2.3:Movement of a particles of original PSO from one position to the next .....................22

Figure 2.4:Movement of particles in PSO-GD optimization from one position to the next .........24

Figure 2.5:Update process of a single particle in PSO-GD optimization .....................................24

Figure 2.6: Flow chart of the PSO-GD algorithm.........................................................................25

Figure 3.1:PVHC defined under different operational limits........................................................29

Figure 3.2: IEEE 33 bus test network with optimal locations and PV sizes. ................................33

Figure 3.3: Optimal PV locations and sizes for IEEE 33 bus test DN ..........................................34

Figure 3.4: Voltage profiles obtained with/without PV installations in IEEE 33 bus test DN. ....35

Figure 3.5: Line current, actine power, reactive power w/without PV installation ......................36

Figure 3.6: PVHC convergence plots obtained for IEEE 33 bus for different methods. ..............38

Figure 3.7: voltage profiles obtained using different PVHC estimation methods. .......................38

Figure 3.8: Configuration of the IEEE 69 bus test DN with optimal PV locations ......................39

Figure 3.9: Line current, actine power, reactive power w/without PV installation ......................40

Figure 3.10: Comparison of PVHC estimates obtained for IEEE 69 bus test DN ........................41

Figure 3.11: Configuration of existing 136 DN in Sao Paulo, Brazil. ..........................................41

Figure 3.12: 136-bus voltage profile and line flows with/without PV installations .....................43

Figure 3.13: Comparison of convergence plots of original PSO against proposed PSO-GD .......44

Figure 3.14: PVHC values of IEEE-33 bus, and IEEE-69 bus test DNs for stability analysis. ....45

Figure 4.1: Inverter VVC characteristics for node voltage. ..........................................................50

Figure 4.2: Flowchart of PVHC estimation with inverter VVC. ..................................................51

Figure 4.3: Voltage profiles of the IEEE bus network for three different scenarios.....................52



VIII

Figure 4.4: (b) Reactive power generated at the nodes in the IEEE 33 bus for each scenario......53

Figure 5.1: Flow chart for Hong’s 2m+1 PEM scheme ................................................................60

Figure 5.2: Flowchart for the PVHC estimation process in DN using stochastic PSO-GD..........62

Figure 5.3: PDFs of maximum node voltages at each installed PV size.......................................64

Figure 5.4: PVHC (a) with hard voltage constraint (b) with flexible voltage constraint ..............65

Figure 5.5: Probability density functions of maximum node voltages for different PV sizes. .....66

Figure 5.6: PDF of maximum node voltages for Installed PV capacities 3.2 - 5 MW .................67

Figure 5.7: Probability of voltage violations as a function of Installed PV capacity....................67

Figure 5.8: PVHC as a function of flexible voltage limit constraints. ..........................................68

Figure 5.9: Probability of over-voltages as a function of installed PV size..................................70

Figure 5.10: PVHC and error as a function of voltage violation probability................................71

Figure 6.1: Flow chart of multi-stage estimation of PVHC of DNs with EV and BESS..............78

Figure 6.2: PDFs of the maximum node voltages in each EV and BESS penetration scenarios. .79

Figure 6.3: Variations of mean and standard deviation of maximum node voltages ....................80

Figure 6.4: Variations of PVHC estimates with BESS/EV load for each scenario.......................81

Figure 6.5: Net demand on the DN nodes for each scenario ........................................................81

Figure 6.6: Variations of PVHC estimates in simulation runs against number of EVs. ...............82

Figure 6.7: PVHC estimate as a function of EV charging load. ...................................................83



IX

 NOMENCLATURE 

:    Lagrange multipliers on equality constraints of the optimization problem 

:    Lagrange multipliers on inequality constraints of the optimization problem 

:    Relative error in the estimation 

:    Root mean square error in the estimation 


 :    Mean value of a random variable  


 :    Standard deviation of a random variable  

,:    Standard location of the input random variables 

,:    Weights of standard locations of the input random variables 

:    Slope of the PV inverter volt-var control characteristic  

: Phase angle of the voltage at the  −th node


:    Binary variable for the status of the battery energy storage charging  


:    Charging efficiency of battery energy storage system 

 
:    Discharging efficiency of battery energy storage system 


:    Binary variable for the status of the electric vehicle (charging/discharging)  


:    Charging efficiency of electric vehicles 

 
 :    Discharging efficiency of electric vehicles 

ℒ∙:ℝ → ℝ:   Lagrange function resulting from the optimization problem 

:    Gradient of the objective function of the optimization problem 

:    Gradient of the lagrange function of the optimization problem

: Susceptance of the line joining node  to node  

:    Individual acceleration coefficient for the particles 

:    Cultural (population) acceleration coefficient for the particles 

,:    Penalty factor applied for violating the  −th inequality constraint 

: Conductance of the line joining node  to node 

∙:ℝ → ℝ:   Objective function an optimization problem with real valued terms 

∙:ℝ → ℝ:  Equality constraints on active power flows of the optimization problem 

∙:ℝ → ℝ:  Equality constraints on reactive power flows of the optimization problem 

∙: ℝ → ℝ:  Inequality constraints of the optimization problem 

:   Global best position for all particles after  − iterations 



X


:   Best position taken by the  −th particle after  − iterations 


:    Charging power requirement of battery energy storage system 


:    Charging power requirement of electric vehicles 


:    Installed PV size at the  −th node in the distribution network 

:    Net active power at the  −  node in the distribution network 


:    Generated active power by conventional generators at the  −  node 


:    Active power load demand at the  −  node 

 ≥ :   Probability of a variable  being greater than  


:    Reactive power from installed PV inverter at the  −th node  

:    Net reactive power at the  −  node in the distribution network 


:   Generated reactive power by conventional generators at the  −  node 


:    Reactive power load demand at the  −  node 

:    Randomizer for individual acceleration of particles (  ∈ , ) 

:    Randomizer for cultural acceleration of particles (  ∈ , ) 

:    Apparent power flow from node  to node  

:    Voltage magnitude at node   


:    Velocity vector of the  −th particle at the  −th iteration of the PSO 


:    Updated velocity vector of the  −th particle after the  +  −th iteration  

:   Inertia weight on the velocity of the particles 


:    Incumbent position of  −th particle of PSO at the   −th iteration  


:    Updated position of  −th particle of PSO after the   −th iteration  

 

  



XI

LIST OF ABBREVIATIONS 

BESS:      Battery Energy Storage System 

CTLBO:     Comprehensive Teaching Learning-Based Optimization 

CDF:      Cumulative Distribution Function 

DG:      Distributed Generation 

DN:      Distribution Network 

DPF:      Deterministic Power Flow 

DSO:      Distribution System Operator 

EV:      Electric Vehicle 

GA:      Genetic Algorithm 

I-DBEA:     Improved Decomposition -Based Evolutionary Algorithm 

IMOEHA:    Improved Multi-Optimization Elephant Herding Algorithm 

MCS:      Monte Carlo Simulation 

MINLP:     Mixed Integer Non-Linear Programming 

PCC:      Point of Common Coupling 

PDF:      Probability Density Function 

PEM:      Point Estimate Method 

PPF:      Probabilistic Power Flow 

PSO:      Particle Swarm Optimization 

PSO-GD:     Particle Swarm and Gradient Descent Optimization  

PV:      Photo-Voltaic 

PVHC:      Photo-Voltaic generation Hosting Capacity 

QOTLBO:     Quasi-Oppositional Teaching Learning-Based Optimization 

RDN:      Radial Distribution Network 

RE:      Relative Error 

RMSE:      Root Mean Square Error 

SoC:      State-of-Charge 

VVC:      Volt-Var Control 



Chapter One: Introduction

1

  

CHAPTER ONE 

INTRODUCTION 



Chapter One: Introduction

2

1. Introduction 

1.1 Background and Significance of the research 

Photovoltaics (PV) integration in electric power generation and electrical power systems 
has been increasing rapidly for the past few decades. In fact, the global total installed PV 
in 2021 was 168.8 GW from 139.2 GW in 2020 [1]. The projections for future installations 
are even higher with PV set to enjoy 56% of total distributed renewable energy installation. 
This increased use of PV generation has been necessitated by the need to curb the use of 
fossil fuel-based power generation which is leading the way for climate change and global 
warming.  

PV power generation is highly sustainable, offers capacity credit by reducing the demand 
that must be met by conventional generators during periods of high demand and provides 
flexible scalability [2]. With the upsides to solar integration coupled with ever decreasing 
cost associated with PV technologies [3], rooftop PV penetration is projected to reach 
between 44 GW and 76.5 GW globally. 

Figure 1.1 shows the progression of the solar installation from 2015 to 2021 relative to 
other electrical power generation sources. Solar installation has increased its global 
generation footprint from 1.1% to 3.7%. Thus, PV installations have increased their share 
by 2.6 percentage points compared to 2.3 percentage points for other renewables. This is 
significantly a higher increase than all the other renewable energy alternatives combined. 

Figure 1.1: Percentage of power generation technologies 2015-2021 
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1.2 Challenges of PV integration in power distribution networks 

The advantages of PV power generation range from technical benefits such as peak power 
shaving, network reliability enhancement, line power loss reduction [4] to environmental 
impact reduction, such as de-escalation of climate change brought by continued and 
excessive use of fossil fuels [5]. 

However, unlike power from conventional generators such as coal-powered thermal plants 
or nuclear power plants, PV power output is variable during short timescales due the 
dependence on solar irradiation which may be affected by cloud cover its diurnal nature. 
This variability produces several pertinent challenges in its interactions with the power 
distribution network [6]. These challenges include, but are not limited to, reverse power 
flow-which affects the network protection operation, increased harmonics, and line 
congestion-which may lead to thermal capitulation of network cables and conductors, over-
voltages and voltage unbalance [7]-which might affect the insulation of associated 
equipment and devices. They also present a problem of unintentional islanding [8]. 

1.2.1 Risk of Overvoltage Occurrence 

Any kind of distributed generation (DG) raises the local voltage at the point of common 
coupling (PCC). In some instances, this voltage rise might be beyond the acceptable range. 
This situation may be worsened by PV inverters if these inverters inject pure active power 
only.  

Figure 1.2 shows the whole-year variation of voltage at a node in a typical DN with and 
without PV injection. It has been observed that PV injection improves the undervoltage 
issues which may occur in networks without PV installation at high load conditions but, it 
also brings about the challenge of over-voltages at moments of high irradiation and low 
network loading. 

Figure 1.2: Typical node voltage variations with/without PV installations 
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The over-voltage problem brought about by the excessive proliferation of PV generation in 
power distribution networks is perhaps the biggest challenge faced in DNs. This is one of 
the main reasons for limiting the amount of PV connected in the network [9]. Limiting the 
amount of installed PV helps prevent the system from operating at undesirable conditions 
of over-voltages. This technique is referred to as ‘active power curtailment’. It restricts the
PV output to prevent over-voltage occurrences. This technique reduces the PV generator’s
financial potential. The authors in [10] and [11]argue that the loss of green energy and an 
economic loss to curtail generation with near zero marginal costs may, at times, be an 
unacceptable solution.  

To reduce the risks of over-voltages without restricting the PV generator’s output, advanced 
inverters are used. These PV inverters have the capability of voltage control using reactive 
power compensation. During conditions of high PV injections, these PV inverters absorb 
reactive power at the PCC to regulate the voltage downwards. At other times, they inject 
reactive power to support the voltage at the PCC. 

1.2.2 Reverse Power Flow 

In the traditional historical sense, the distribution network was designed to deliver power 
from the generating centers to the consumers in one direction. However, with the increased 
adoption of demand side power generation mainly by widespread PV deployment in 
distribution networks, power can now flow in both directions [12], [13]. At times of high 
demand compared to local generation, power is delivered in the conventional direction from 
the distribution substation to the loads. At times of high local generation, power flows from
the load side into the substations. 

Ideally, there is no fundamental issue with power flowing in either direction as the network 
cables or line conductors can carry as much power in one direction as they would in the 
other direction. The problem with reverse power flows, however, is that they affect the 
operation of control and protection devices [6]. Reverse power flows can cause improperly 
configured controllers and relays to maloperation. These may have catastrophic 
ramifications on the entire network such as wrongful isolation of healthy parts of the power 
network at the expense of the unhealthy sections. 

1.2.3 High Harmonics due to high PV penetration 

PV generates direct current (DC) power. Many distribution networks and devices operate 
with alternating current (AC) power. Therefore, inverters are used to convert the DC power 
from PV sources to AC power required by the distribution network. This conversion 
process usually produces harmonic distortions of the current and voltages [8]. 

Increased penetration of PV power sources increases the amount of harmonic content in 
the currents and voltages the network. Consequently, this heightened level of harmonics 
culminated into poor power quality at the customer PCC [14], [15]. There is a set limit to 
the amount of harmonic content that can be imposed by the power supplier at the PCC. 



Chapter One: Introduction

5

Therefore, the amount of PV that can be interconnected to a network can by restricted by 
the amount of harmonic content in the PV output. 

 1.2.4 Risk of Overheating of Line Conductors and Cables 

The authors [16] contend that, much like the node voltage levels, the feeder current carrying 
capacity (ampacity) is a serious limiter to the maximum amount of PV generated power 
that a particular distribution network can accommodate. In essence, high PV penetration in 
the network potentially results in increased power flows between nodes in a feeder. This 
prospect of an increase in line power flows increases the prospect of thermal line 
congestion. Thus, the PV penetration in the network must be restricted to amounts which 
would not lead to thermal capitulation of conductors or network cables. 

1.3 State-of-the-art in PV Hosting Capacity Estimation 

Considering the challenges of PV integration into the power distribution networks 
highlighted in section 1.2, it is necessary to determine the maximum amount of PV that a 
particular network can hold without violating the network’s performance limits on voltage, 
harmonics, line ampacity et cetera. The authors [17], [18], [19], [20] define the maximum 
amount of PV which can be injected into a distribution  network without violating the 
operational limits of voltages, line thermal capacities, acceptable harmonic content etc., as 
the network’s ‘PV hosting capacity’ (PVHC).  

PVHC is a very important metric in modern power distribution networks with high 
penetration of distributed PV generation. It is used by network planners during the network 
design stage to simulate the network’s capability to accommodate new photovoltaic 
installations [21]. PVHC is also used by network planners and operators to determine areas 
which need structural reinforcements and areas simply needing network reconfigurations 
[22]. PV hosting capacity estimation is aimed at maximizing the return on investment in 
the installed PV in distribution network by the distribution network operators (DSO).   

There are several methods which have been developed for the estimation of PV hosting 
capacity in power distribution networks. The main methods used for PVHC estimation 
include: 

1. deterministic methods,  
2. stochastic/probabilistic approach and,  
3. time-series based estimation.  

1.3.1 Deterministic Approach 

The deterministic approach applies known and fixed input data to a process model [23]. 
The process model then generates a set of fixed output data such as node voltage levels, 
line power flows, network harmonic content and direction of power flow [24], [25] and 
[26]. These outputs are then analyzed to determine the PVHC.  
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In the deterministic approach, the process model uses deterministic load flow (DLF) 
analysis to give information on output variables [27]. The information on the output 
variables is used as a guide to estimate the network operating state. If any of the indices are 
violated by a particular PV installation size, the system has reached its PV absorption 
potential and thus, its PV hosting capacity is estimated using this potential.  

Figure 1.4 provides a crude flowchart of the deterministic approach to PVHC estimation. 
The implementation of the approach starts with inputting the DN data and initialization of 
the installed PV sizes at each site. The system state is then calculated using DLF analysis. 
The obtained output variables are then tested against preset limits. If any of the limits are 
violated, the process is shut down and the PVHC is estimated to be the sum of all initial 
PVs installed otherwise, The PV size is incremented in a predefined step at each site and 
the procedure repeated until there is a violation of any performance variable. 

The procedure described above is a typical analytical method. Another class of the 
deterministic approach employs meta-heuristic optimization strategy to estimate the 
optimal PV sizes and locations. In this approach, PV hosting capacity is set up as a 
maximization problem and the performance indices are set as constraints to the 
optimization problem whose limits are not to be abrogated. 

In [28], a nature inspired improved elephant herding optimization was used to estimate the 
optimal PV sizes in predetermined locations of distribution networks. [29] and [30] used 
the comprehensive teaching-learning-based optimization algorithm (CTLBO) and the 
improved decomposition-based evolutionary algorithm (I-DBEA) respectively to obtain 
optimal locations and sizes of PV systems on the IEEE 33-bus, 69-bus, and 118-bus test 
distribution networks. Furthermore, a framework based on hybrid genetic algorithm and 

Figure 1.3: Typical flow chart for deterministic PVHC estimation 
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particle swarm optimization (GA/PSO) was used to estimate the PV hosting capacity of a 
distribution network with enhanced voltage regulation and voltage stability [31]. 

Table 1.1 lists some of the available literature on deterministic PV hosting capacity.  

Table 1. 1: Representative deterministic methods for estimating PVHC found in literature. 

Method Network Type Reference 
Analytical Existing rural grid - Japan [32] 
Analytical Existing grid - USA [33] 
Analytical IEEE 30 Bus Test DN [34] 
Analytical EPRI J1 - USA [35] 
Analytical EPRI Ckt7 [36] 
Analytical Urban area - Australia [37] 
Meta-heuristic IEEE 33 bus Test DN [30] 
Meta-heuristic IEEE 33 and 69 bus DN [38] 
Meta-heuristic IEEE 33 and 123 bus DN [29] 
Meta-heuristic IEEE 33,69 and 123 [39] 
Meta-heuristic IEEE Test DN [31] 

 

Both the analytical and meta-heuristic deterministic approaches provide a quick and 
computationally sound method of estimating the PV hosting capacity of the distribution 
network. However, because they employ DLF in their analysis, they are unable to handle 
uncertainties in the input variables [19] such as the random nature of PV power generation 
and the variations in the system loading. As a result, the models and results obtained using 
this method are not realistic.  

1.3.2 Stochastic/Probabilistic Approach 

Solar PV power output depends on solar irradiation and temperature to an exceedingly large 
extent [40]. Therefore, the PV output power is characterized by random behavior. Further, 
the load demand imposed on the network is highly variable and is also a random 
phenomenon [41]. Thus, the loading on the network is an uncertain variable. Consequently, 
the PVHC estimated using the stochastic approach is modeled as a stochastic phenomenon 
characterized by randomly generated uncertain parameters and input variables with random 
output variables. Authors [42] and [43] present network parameters, such as plausible 
locations for PV installations, and random variables, such as PV output and installed size, 
and variations in load conditions using their probability density functions (PDF). In fact, 
the output of the PV at installation sites is modeled as a beta distribution [44] while the 
load is modeled as a normal probability distribution. Figure 1.4 shows the flow chart of the 
PVHC estimation using stochastic analysis. 

The PVHC estimation using stochastic methods begins with generating random 
distributions of input variables. Unlike the deterministic approaches which use the DLF, 
the stochastic approach uses these uncertain random variables in conjunction with the 
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probabilistic load flow (PLF) to obtain the probabilistic distributions of output variables of 
interest [19] 

The PVHC estimation using stochastic methods begins with generating random 
distributions of input variables. Unlike the deterministic approaches which use the DLF, 
the stochastic approach uses these uncertain random variables in conjunction with the 
probabilistic load flow (PLF) to obtain the probabilistic distributions of output variables of 
interest [19].  

The most widely used PLF analysis employs the Monte-Carlo simulation (MCS) strategy 
[43], [20].  The MCS is the most straight forward method. It entails running repeated 
simulations with values derived from random variables’ PDFs [45]. However, despite the 
MCS high accuracy, it is computationally heavy because it requires to run DLF analysis at 
every iteration. The alternative to the MCS is the approximate methods. Among the 
approximate methods are the point estimate methods (PEM) which are computationally 
efficient and fast [46]. In [47], Hong’s 3m PEM was used to approximate the PVHC of a

Figure 1.4: Flowchart of the PVHC estimation using stochastic analysis. 
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network with electric vehicle (EV) charging load. Here, it was shown that the PEM method 
is very fast compared to the MCS while giving a very accurate result. A similar conclusion 
was reached by [48] where the  +  PEM was applied in estimating the maximum 
amount of photovoltaic which could be hosted by a DN. 

The weaknesses of the stochastic approach are two fords. As alluded to earlier, they are 
computationally heavy and thus are very slow. Added to this, if the input variables are left 
free to assume any values within the solution space, they may produce an infinite number 
of scenarios which may not give a solution in a plausible time or, give a solution at all. 

Table 1.2 summarizes the reviewed literature detailing the stochastic methods with the 
typical performance characteristics studied. 

Table 1.2: Summary of some Stochastic methods for PVHC estiamtions in literature 

Stochastic technique Impact studied Reference 
PLF using Latin Hypercube Sampling 
with Cholesky Decomposition 

Network demand, voltage 
magnitude, fast voltage variation 

[49] 

PLF using Heuristic Algorithm Node voltage magnitude [50] 
Probabilistic direct voltage unbalance 
calculation 

Voltage unbalance [51] 

Probabilistic power flow using first-
order second-moment method 

Voltage magnitude [52] 

Probabilistic power flow using 
enhanced cumulants 

Voltage magnitude [53] 

probabilistic load flow using 
Unscented Transformation-UT 

Voltage magnitude and Power 
losses 

[54] 

Probabilistic power flow utilizing 
simplified Monte Carlo Simulations 

Voltage magnitude, voltage 
unbalance and loading  

[55] 

Probabilistic power flow formulated 
with a mixed-integer nonlinear 
optimization and genetic algorithm 

voltage magnitude and unbalance [56] 

 

  

1.3.3 Time-series Approach 

Time series methods utilize actual system measurements and historical data of power
consumption and solar PV production as input variables in their PVHC estimation process. 
The process model in this approach uses a time-series power flow-based analysis to 
calculate the output variables of interest at a specific time resolution. These methods are a 
very realistic method of finding correlations between input variables and output variables. 
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In [57], quasi-static time series (QSTS) approach was used to estimate the maximum PV 
which could be hosted by a DN in specific times at a 1 second resolution. Similarly,  [58]  
used fast QSTS with vector quantization determine the time dependent impacts of PV 
installations in the DN. Figure 1.6 shows the basic flow chart for the time series based 
PVHC estimation process.  

The QSTS simulations are not widely used in industry because of the computational burden 
associated with running yearlong simulations at 1 second granularity resolution, which is 
required to capture PV variability. Furthermore, because time-series calculations offer 
point-by-point PVHC estimations in time domain, they may be suitable for DN operational 
PV injection scheduling but fall short on PV installation planning. 

1.4 Distribution Network PVHC improvement Strategies 

Given the need to limit the power generation from fossil fuel-propelled sources to limit the 
carbon emissions, there is a greater need to increase the proportion of power generation 
from renewable sources [59]. However, as alluded to in section 1.1, there is a restriction on 
the maximum amount of renewable energy which can be safely injected into the DN 
without risking violation of the limits on operational performance indicators such as 
voltage, line thermal capacity, and harmonic content [60]. Therefore, ways of improving 
the PVHC of the DN have been devised. 

Figure 1.5: Typical time-series based PVHC estimation process flow chart. 
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The strategies by which the PVHC of a DN are enhanced can be classified in two (2) broad 
categories vis a vie:  

1. Network reinforcement-based enhancement strategies and, 
2. Non-reinforcement-based strategies. 

The first strategy involves system structural equipment improvements while the second 
involves the use of technical solutions. The techniques’ applicability for a particular DN
depend on investment costs, technology readiness, impact on congestion, compliance 
with applied grid codes etc. [61].   

The network reinforcement-based strategies include, but are not limited to: 

1. Line capacity enhancement 
2. Smart inverter utilization (volt-var control VVC strategy) 
3. Battery Energy Storage System (BESS) installation 
4. Electric Vehicle (EV) Charging 

The no-reinforcement strategies include: 

1. Network re-configuration 
2. Strategic optimal sizing and placement of the generating sources 

1.4.1 Line Capacity enhancement 

Line capacity enhancement is a necessity where the thermal rating of the network must 
be increased [62]. It involves either using a larger conductor size with higher current 
carrying capacity or erecting a new set of conductors in parallel with the existing lines. 
This is an expensive undertaking and must only be applied when it is necessary. 

1.4.2 Volt-var control using Smart Inverter  

The most prominent challenge to excess PV installation in DNs is the high risk of over-
voltages [63], [64] and [65]. Therefore, active control of voltage can potentially lead to 
increased space in the network for higher PV size installation vis-a-vie increased PVHC. 
Several techniques are employed to achieve this including, but not restricted to, 
transformer online tap changing (OLTC), static compensation (STATCOM), smarter 
inverter volt-var control (VVC). In [66] proposed a method of node voltage 
approximation and control using OLTC. Reactive power compensation for voltage 
control using active devices to enhance the PVHC was explored by authors [67]. Smarter 
inverters with VVC functionality are the most recent advance in PVHC enhancement. 
The inverter performs dual functionality of power processing and voltage control [68] to 
increase the PVHC [69].  
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1.4.3 Battery Energy Storage Systems and Electric vehicles 

The DN is undergoing many structural and technical changes due to introduction of
Battery Energy Storage Systems (BESS) and Electric Vehicles (EV) [70]. The aggregate 
charging load imposed by different EV fleets at different times is highly stochastic but 
could lead to higher PV self-consumption and increase PVHC. have recently been 
engaged to improve PV self-consumption. [71] and [72] contend that optimal 
coordination of EV aggregators increases PV hosting capacity of DN. Furthermore, 
deployment of EVs in residential settings with rooftop PV is thought to mitigate the 
voltage drop problems for end-use residential customers [73]. 

Similarly, it has been argued by authors [74] that by using BESS to increase PV self-
consumption and network resilience, BESS installation can improve the PVHC of the 
DN. BESS and EV impose similar loading demand on the DN with the only difference 
being that, while the BESS is more or less permanently connected to the network, the 
EVs have to plug-in and plug-out of the DN by the very nature of their operation.  

1.4.4 Network Reconfiguration 

The role of network reconfigurations was explored by [75]. The authors argued that DG 
hosting capacity can be increased by both static and dynamic grid reconfiguration. The 
static reconfiguration of the grid is applied during the planning stages of the DN hosting 
capacity while dynamic reconfiguration is realized through remote switching using active 
network management (ANM) schemes. For large networks, the switching possibilities for 
reconfiguration may be enormous. For this reason, [76] proposed a method of maximizing 
hosting capacity of DN by network reconfiguration by dividing the problem into several 
subproblems. The subproblems were then compressed into zero-suppressed binary 
decision diagram (ZDD) to avoid a huge combinatorial explosion. These ZDDs were thus 
easier to solve than the original problem.  

The practical disadvantage of network reconfiguration is the cost of equipment 
deterioration due to switching. This disadvantage is exacerbated by the need to recalculate 
the reconfiguration problem in several timeframes.   

1.4.5 Optimal Sizing and Placement of PV generation units 

Strategic placement and optimal sizing of the PV generators is cardinal to ensuring that 
the maximum amount of PV in installed without the risks of over-voltages, thermal limit 
violations, voltage quality problems due to high harmonic content, reverse power flows 
etc. As alluded to in section 1.2.1, correct location of PV generation resources can result 
in enhanced PVHC. Authors [77], [78], [79] all conclude that there is a strong correlation 
between the placement of PV and its size in the DN. This is because the location of PV 
influences the subsequent thermal impacts and power flow directions. Furthermore, 
installed PV sizes at respective locations have an impact on the maximum node voltage 
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which could arise in the DN [80], [81]. Therefore, optimal location and sizing of PV 
installation is essential to maximizing the capacity of the DN.  

1.5 Motivation 

This research proposes a combination of deterministic/stochastic approaches to estimating 
the PV hosting capacity (PVHC) of a distribution network. At the center of the deterministic
approach, a hybrid particle swarm with gradient descent mechanism is proposed. The 
gradient mechanism is aimed at regulating and the inertia constant of the standard particle 
swarm optimization through the steepest descent gradient and re-directing the velocity 
component of standard PSO orthogonal to the gradient of the objective function of the 
PVHC problem. This makes the solution approach acquiescent to the structure and nature 
of the problem because it requires the problem’s derivative relationships. 

The stochastic analysis involves the use of approximate probabilistic load flow analysis 
using point estimate method (PEM). These have excellent mechanisms for capturing 
uncertainties in the variables while retaining a reasonable calculation speed. 

Deterministic methods have excellent calculation ability and speed but do not incorporate 
uncertainties in input variables. This makes the results of these methods unrealistic and, 
often, unapplicable in real systems. Stochastic/probabilistic approaches, on the other hand, 
have excellent capabilities of handling uncertainties in input variables. However, just like 
time-series based methods, they usually take an enormous amount of calculation time and 
effort to produce realistic models.  

Because of the above-mentioned upsides and downsides to each method, there a need to 
develop a tool which combines the excellent speed and power of calculation offered by the 
deterministic approaches with the good uncertainty handling capability of the 
stochastic/probabilistic approaches.  

The research presented in this thesis has been devoted to developing an approach that seeks 
to augment the excellent capabilities of both the deterministic and stochastic approaches 
while trying to address the downsides present in each individual approach. To that end, this 
research has managed to: 

1. develop a method for estimating the PVHC of DN using hybrid particle swarm and 
gradient descent (GD) optimization (PSO). 

2. develop a hybrid method of approximating the PVHC of DN under uncertainty of PV 
output power and load demand using PSO-GD and probabilistic analysis, 

3. highlight the impact of use of smart PV inverters, which use the volt-var control 
mechanism to control the node voltages at the PCC, on DN’s PVHC and, 

4. investigate and underpin the impacts of EVs and BESS on the distribution network’s
PVHC by developing models for incorporating EV & BESS charging demand into the 
PVHC formulation. 
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1.6 Relevance of the Research 

1.6.1 Importance of Research  

The research carried out in this study is of utmost importance in modern power distribution 
network design and expansion planning [6].  

The estimation of the PV hosting capacity of the distribution network enables the 
distribution system operator to: 

1. pre-emptively determine or predict the response of the distribution network to various 
scenarios of PV deployments (involving both the PV sizes and the installation 
locations). This is a very important part of the network design to ensure proper 
operation of the network once commissioned but also to ensure appropriate PV sizes in 
different locations are accepted for integration in the network. 

2. identify operational limits which can be relaxed and in which areas this can be 
considered for allowing higher levels of PV to be installed. This is particularly 
important when planning the expansion of PV generation expansion in the distribution 
network.  

3. properly install battery storage facilities to improve system resilience performance by 
optimally locate, size, and control these facilities. Battery energy storage facilities help 
to ensure continuity of power supply in the network when there is disruption to normal 
generation facilities. To ensure the batteries are nearly always charged, they must be 
located near the PV installation sites so that at least they can be charged by PV power. 

1.6.2 Aim of Research 

The main objective of this research is to develop a method for estimating the PV hosting 
capacity of a power distribution network using a combination of the deterministic approach 
and the stochastic approach. This could help alleviate the problems present in each 
approach while augmenting the advantages of each approach. 

1.6.3 Objectives of the Research  

To achieve the aim stated above, and address the importance attached to this research the 
following objectives were set: 

1. develop an accurate and effective PV hosting capacity estimation method. 
2. investigate the effects of relaxing operational limits on certain performance indices in 

relation to PV hosting capacity estimation. 
3. study the impacts of battery energy storage systems (BESS) and electric vehicles (EV) 

deployments in distribution networks on PV hosting capacity of the distribution 
network. 
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1.7 Thesis Structure 

The thesis is structured as shown in figure 1.6. It has seven interrelated chapters starting 
from the introduction all the way to the conclusion. 

Chapter 1 introduces the thesis by giving the background of the study, motivation, 
importance and aims of the research. It also provides a literature review on the state of the 
research on PV hosting capacity. 

In Chapter 2, the proposed particle swarm and gradient descent (PSO-GD) algorithm is 
explained in detail. It begins by giving an overview of both the original particle swarm 
optimization (PSO) and the gradient descent (GD) approaches and ends by explaining how 
the two approaches are combined to realize the proposed PSO-GD method. 

Chapter 3 analyzes the results obtained by applying the proposed PSO-GD method to 
various test systems including the IEEE-33 bus test DN, the IEEE-69 bus test DN and the 
existing 136 bus test DN in Sao Paulo  

Chapter 4 highlights the importance of inverter volt-var control. Chapter 5 describes the 
estimation of PVHC under uncertainty conditions while Chapter 6 gives the results of the 
study of the impacts of BESS and EV on PVHC in DN. Chapter 7 gives the conclusions of 
the research.  

Figure 1.6: Structure of the thesis. 
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1.8 Chapter Summary 

This chapter has presented the significance of estimating the PVHC of a particular DN. It 
has highlighted the main methods used, and the PVHC enhancement techniques which 
maybe be employed. 

The table below is a list of advantages and disadvantages of each of the methods as 
highlighted in the literature considered in this study. 

Table 1.3: Advantages and disadvantages of different PVHC estimation methods 

Method Advantages Disadvantages 
Deterministic  Input parameters are easy 

to access. 
 It is easy to implement. 
 It is fast 

 Does not incorporate uncertainty 
in input variables. 

 PVHC obtained is a 1-snapshot 
scenario thus is not a true 
representation of network 
potential. 

Stochastic  Incorporates uncertainties 
in input variables. 

 Generates realistic models 
and accommodates many 
PDFs 

 Huge computational time and 
storage requirement 

 Becomes increasing more 
complex with increases in 
number of variables. 

 Fails to accommodate time 
dependent nature of variables 

Time-series  Considers correlations in 
grid power and PV 
production. 

 Presents a realistic 
overview of the PVHC at 
different time scales 

 Requires a lot of measurement 
data. 

 Needs a lot of simulations at 
very high time resolutions. 

 Very huge computational and 
storage demand 
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2.  Particle Swarm and Gradient Descent Algorithm 
2.1 Overview 

In the introductory chapter, it was discussed that meta-heuristic optimization methods are 
used as deterministic methods to estimate the PVHC of DNs. In this chapter, a gradient 
descent (GD)-based particle swarm optimization (PSO) proposed in this research is 
described in detail. The chapter begins the chapter by describing the steepest gradient 
descent algorithm based on steepest movement from point to point of in the solution search 
space orthogonal to the gradient of the objective function. It then describes classical PSO 
which mimics natural search behavior before uniting the GD and PSO algorithm into the 
proposed hybrid PSO-GD. The chapter concludes by providing numerical simulation 
results obtained by applying PSO-GD on several test DNs.   

2.2 Conceptual Framework of PSO-GD Algorithm 

2.2.1 Gradient Descent Algorithm 

The generic Newton’s GD has been applied to optimal power flow problems since the
1960s. Authors [82] proposed a method of solving the optimal power flow problem to 
minimize power systems power losses by obtaining optimal values for control variables 
such as real and reactive power and transformer tap ratios.  

The classical optimization problem involves minimizing a function , with a set of 
variables   and   subject to equality and inequality constraints ,  and , 
respectively vis-a-vie: 

 ,     (2.1) 

. :, =      (2.2) 

, ≤      (2.3) 

The problem of (2.1) - (2.3) could be solved using the solution of Lagrange multipliers by 
introducing auxiliary variables on equality constraints and applying penalties on inequality 
constraints. The Lagrange function is then given by: 

ℒ, = , + 
 . ,+ 


. ,  (2.4) 

Where  are the auxiliary variables introduced into the optimization problem for equality 
constraints,   are penalty parameters for violation of inequality constraints.   are the 

indices for the equality constraints,  are the indices for inequality constraints.  

At the optimum point ,  the partial derivatives of the Lagrange function are equal to 
zero, i.e.,  


ℒ′,′


 = 
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and,  
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Where the inequality constraints ,  only become active when the constraints are 
violated otherwise, they are inactive. Therefore, 

 = , {
  , ≥ 

  , < 
    (2.7) 

Where ,  are the penalty constants imposed on the Lagrange function for inequality 

constraint violation.  

Therefore, when no inequality constraint violations are observed, the solutions are obtained 
by using partial derivatives and the Karush-Kuhn-Tucker (KKT) necessary conditions [83]. 
It follows then that, for an optimum solution, the conditions are: 
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The values of the variables which give an optimal solution are obtained by: 

evaluating the auxiliary variables using (2.11): 

 = − 
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     (2.11) 

analyzing the Lagrange gradient using (2.12): 

∇ℒ = 
ℒ


 = 




 + 








.     (2.12) 

If the Lagrange gradient is sufficiently small, the minimum has been reached, otherwise, a
new set of variables is calculated. The common approach is to use the steepest descent in 
the orthogonal direction of the gradient by updating the variables as given by (2.13) and 
depicted in figure 2.1. The update process is repeated using (2.11) to (2.13) until a 
sufficiently small value of the Lagrange gradient is obtained.  

 =  − . ∇ℒ    (2.13)  

 is the step-size which must be selected carefully. Too small a value assures convergence 
but requires too many adjustment cycles. Too big a value causes oscillations around the 
optimum.  
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So far, the problem has been assumed not to violate the inequality constraints. This is not 
a practical assumption and most of the optimization problems are constrained by 
inequalities which may be abrogated from time to time. In [84], the authors proposed a 
method of solving non-linear problems by combining the treatment of equality and 
inequality constraints with the objective function.  

However, Newton’s gradient descent approach has difficulties handling inequality
constraints in mixed integer non-linear, non-convex linear programming (MINLP) 
problems [85]. Thus, new methods involving meta-heuristics have been employed.  

2.2.2 Original Particle Swarm Optimization  

The original PSO was developed by Kennedy and Eberhart [86]. In its concept, it simulates 
flocking of birds (particles) in a two-dimensional space. The flocking of these particles 
optimizes a certain objective function. The value objective function of each particle is a 
function of its position and velocity in the space under consideration. The particles share 
information about their best experiences (personal best). Thus, the best experience is 
determined for the entire flock (global best) is obtained from the particle with the best 
objective value among the flock (population). 

Each particle in the population is characterized by its current position 
 in the solution 

search space.   is the iteration number representing current condition,   is the particle 
number in the population. The objective value of the particle is calculated at the current 

position by 
. The particles in the population move from the current position to the 

next position using equation (2.14). 


 = 

 + 
     (2.14) 

Figure 2.1: Solution search for the method steepest gradient descent in the solution space. 
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Where 
 is the updated velocity component from the current position of the particle to 

the next. This updated velocity is derived relative to the personal best 
 position of 

the particle experiences, the global best experience of all the particles in the population 
 and the initial velocity of the individual particle. Therefore, the velocity is updated 
via equation (2.15). 


 = 

 + 
 − 

+  − 
   (2.15) 

Where  is an inertia constant to the movement of the particles,  ,  are acceleration 
constants for relative movements towards the best position and the global best respectively, 
,  are randomly generated values  ,  ∈ ,. 

Figure 2.2 shows the conceptual movement of particles in an N population original PSO.
Green arrows are the particle movement vectors towards the best particle positions per 
individual experience, red arrows are the particle movement vectors towards the global best 
experience for the entire population and blue for the initial velocity components for the 
individual particles. Blue dots are the particle positions at the  −  iteration while yellow 
dots are the particle positions at the  +  −  iteration. 

Figure 2.3 shows a detailed illustration of how one particle transits from the current position 
to the new position. The final position (yellow dot) is a vector sum (movement) of three 
components, vis-a-vie, the velocity component (blue arrow), the acceleration towards the 
personal best (green arrow) and the acceleration towards the global best position (red 
arrow). 

Figure 2.2:Movement of particles of standard PSO in the solution search space 
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The algorithm for original PSO is as follows:           

1. Initialize control parameters, set fitness function ∙ , population size  , Set 
maximum number of iterations  

2. For each particle  =  to  

A) Initialize particle positions 

= 


, 


, . . . . . . . 


 randomly.  

B) Initialize particle velocities 

= 


, 


, . . . . . . . 


 randomly. 

C) Evaluate each particle’s fitness value at the particles’ initial position 
 

,  


 = 


, 


, . . . . . . . 


. 

D) Compare the particles fitness to select the particle with best position. Set this 
as global best position . 

3. End For, 
4. For  = :  
5. For each particle  =  to  

A. Update velocity component according to (2.2). 
B. Update particle position according to (2.1) 
C. Evaluate particle fitness. 
D. Compare particle with best fitness to global best fitness in previous iteration. 

E. If 


 is better than  

 = 
  

Else 
End If 

6. End For 
7. End For 
8.  Return the global optimal  

The parameters given to the original PSO do not depend on the structure and nature of the 
problem being solved. This makes PSO have a good global search exploration and not 
converge prematurely. However, it has a major disadvantage in exploiting the local optima 

Figure 2.3:Movement of a particles of original PSO from one position to the next 



Chapter Two: Particle Swarm and Gradient Descent Algorithm

23

as the particles are likely to have many oscillations around the optima given the random 
nature of the velocity component update [39]. Therefore, this research proposes a 
modification to the original PSO to improve its local solution exploitation while retaining 
its global exploitation capabilities.   

2.2.3 Challenges of standard particle swarm optimization 

In many versatile domains, PSO has been effectively applied to obtain solutions to a varied 
number of optimization problems [87]. It has been applied in fields in a wide spectrum of 
optimization problems ranging from medical applications, industrial, smart cities to 
engineering problems.  

 It offers the following advantages: 
 It is simple to implement. 
 It has very few parameters and most of these parameters do not require tuning. 
 It is capable of multi-objective and parallel computation. 
 It is highly robust. 
 It has higher efficiency and probability to find the global optimum solution. 
 Requires less computational time. 
 Can be applied to solve complex problems through its ability to build accurate 

mathematical models [88]. 

However, there are many challenges which need to be addressed. Some of the critical 
problems and issues with PSO include: 

 The PSO algorithm does not carry out a sensitivity analysis on the problem being 
addressed. This makes PSO not amiable to the nature and structure of the problem 
[89].  

 There is greater difficulty to initialize control parameters. 
 It sometimes suffers from Premature convergence and trapping into the local optima 

especially when solving high-dimensional problems. 
 

2.2.4 The Proposed PSO-GD Algorithm 

In this research, a hybrid method combining PSO and GD is proposed to get rid of the 
problems associated with each individual method and to enhance the excellent qualities of 
each. 

The method involves the use of the gradient vector of the particle towards the global best 
solution to not only redirect the velocity component, but also to regulate its magnitude. In 
this regard, (2.15) is modified to include the GD component as in (2.16). 


 = |∇|

 + 
 − 

+  − 
   (2.16) 
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Figure 2.4 depicts how the particles are affected by the GD in the transitions between 
iterations.  

As depicted in fig. 2.3, the velocity component is redirected to point in the anti-gradient 
component of the particle. The gradient of the particle movement is orthogonal to the 
tangent of the particle. Since the particle velocity is redirected and regulated by the gradient 
component, the particles respond to the structure of the problem. This is particularly 
advantageous in ensuring that particles exploit the local optimum search while retaining 
the global exploration capabilities as the acceleration towards the particle best position and 
the global best position are not altered.  

Figure 2.5 shows the in-depth outlook of the movement of a single particle from one 
position to another in one iteration. 

It can be noted that, in the proposed method. The magnitude and direction of the velocity 
component is regulated and influenced by the orthogonal movement of the gradient vector 

Figure 2.4:Movement of particles in PSO-GD optimization from one position to the next  

Figure 2.5:Update process of a single particle in PSO-GD optimization  
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of the langrage function extracted using equations (2.4) – (2.12). This helps the proposed 
method to aggressively exploit the optimum points within the search perimeter. 

Figure 2.6 shows the flow chart of the PSO-GD algorithm.  

The PSO-GD algorithm starts with generation of random particle positions and random 
particle velocities. At the same time the global best solution and the iteration count are 
initialized.  

Next, each particle’s fitness is evaluated and then the particle’s new velocity and position
is updated using (2.16) and (2.14) respectively. The update process in (2.16) ensures the 
use of the gradient component of the particle to redirect and regulate the magnitude of the 
velocity of the particle. 

Once all the particles in the population are evaluated, they are compared among themselves 
to select the best positioned particle according to the superiority of feasibility rules [90] 
and [91] as set forth in table 2.1. 

Figure 2.6: Flow chart of the PSO-GD algorithm 
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The second application of the gradient component of each particle is in the selection of the 
best particle position. Here, it is set as part of the conditions for the superiority of feasibility 
of the particle. 

Table 2.1: Superiority of feasibility procedure for selecting personal best solution. 

Algorithm 2: Selection of Personal Best Particle in population at iteration  
A particle is superior to another if: 
1. It is feasible while the one being compared with is not. 
2. Both particles are feasible, but the particle has better fitness evaluation than the one 

being compared to. 
3. Both particles have the same feasibility and fitness value, but the particle has a 

lower absolute objective function gradient than the one being compared with. 
4. Both particles have the same feasibility, fitness value and absolute objective 

function gradient, but the particle has less constraint violations than the other 
particle. 

 

After the selection of the best particle in the population, a secondary comparison of the best 
particle and the global best particle position is made. The rules guiding the selection of the 
global best solution are set out in table 2.2. 

Table 2.2:Superiority of feasibility procedure for selecting global best solution. 

Algorithm 3: Selection of Global Best Particle at iteration 
A personal best particle is superior to global best particle if:
1. It is feasible and the global best is not. 
2. Both particles are feasible, but the personal best particle has better fitness evaluation 

than the global best. 
3. Both particles have the same feasibility and fitness value, but the personal best 

particle has a lower absolute objective function gradient. 
4. Both particles have the same feasibility, fitness value and absolute objective function 

gradient, but the personal best particle has less constraint violations than the other. 
5. The personal best solution becomes the global best solution if it satisfies 1-4. 

Otherwise, the global best solution is retained.
 

Finally, the iteration count is incremented, and the procedure repeated until a predetermined 
number of iterations is exhausted. 

2.3 Chapter Summary 

This chapter presents the conceptual framework of the proposed hybrid particle swarm and 
gradient descent algorithm.  It gives the concepts of PSO and GD and the hybridization of 
the two algorithms to attain the hybrid PSO-GD algorithm. 

The proposed method has the advantage of making the solution approach amiable to the 
structure of the problem by employing the first derivative of the optimization problem to 
modify the velocity vector in the standard PSO. This redirects particles to point in the 
direction orthogonal to that of the gradient of the objective function. This helps improve 
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the solution search exploitation capabilities while retaining the exploration prowess of the 
algorithm. 

Methods for selection of personal best and global best solutions based on the superiority of 
feasibility of the evaluations of each particle have also been presented in this chapter.  
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3. PV Hosting Capacity of a Distribution Network 

3.1 PV Hosting Capacity Problem Definition 

The maximum amount of PV that a Distribution Network can accommodate safely without 
the network operating outside of its limits on node voltages, line power flows, harmonics 
etc., is defined as the network’s hosting capacity. This capacity depends on various factors 
[92]. The factors include, but are not limited to, the network layout and topology, types of 
loads in the network, irradiance levels, network operational limits, connection type vis-a-
vie single phase or three phase etc. The PV hosting capacity may also be defined as the 
minimum amount of PV which causes violation of at least one technical limit [93]. Figure 
3.1 depicts the PV hosting capacity defined under three different operational constraints. 

As can be seen from figure 3.1, the PVHC can be defined at different values depending on 

the level of restriction applied to the estimation process. Under constraint limit 1, the PVHC
is the lowest and under constraint limit 3, the PVHC is highest. If all the constraints are 
considered for the estimation, therefore, the PVHC is to be taken as PVHC1. However, if 
relaxations are allowed on limit 1 and 2, the PVHC could be as high as PVHC3.  

In most considerations, the operational constraint of great importance is the upper operating
voltage limit [94], [17]. Therefore, in most deliberations in this study, the voltage limits are 
taken as the limiting factor for PV proliferation of the distribution network. Other factors 
such as line power flows play a role as well.  

3.1.1 PVHC estimation formulation 

The PVHC problem is formulated in many different forms with different objectives. In [28] 
and [29] it was formulated as an optimization problem with multiple objectives. These 
objectives were power loss and voltage deviation minimization. [80] formulated the 

Figure 3.1:PVHC defined under different operational limits. 
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problem as a stochastic optimization problem with the objective of maintaining the voltage 
within a specified range for all PV penetrations. 

However, the underlying principle of PVHC estimation is a PV installation maximization 
with two important variables of interest: PV size and location, while maintaining the 
operational constraints within acceptable ranges [79], [62]. 

In this research, the PVHC is formulated as a PV installation size maximization and PV 
location optimization as illustrated by equation (3.1).  

 = ∑ 


     (3.1) 

Where, 
 is the installed PV size at the  −th location in the DN and  is the total number 

of possible PV locations in the DN.  ∈ ,,, … . . , 

Equation (3.1) is constrained by the power balance conditions laid out in (3.2) and (3.3). 

 = 
 − 

 + 

= ∑ 


  − +  −   (3.2) 

 = 
 − 

 + 
 = ∑ 


  −  −  −  (3.3) 

Where, 
 , 

  are conventional active and reactive power generation at bus  
respectively; 

 , 
  are conventional active and reactive load demand at bus  

respectively; 
 , 

  are PV output active and reactive power injection at bus  
respectively; , are respective voltages at nodes  and ; ,  are the respective 
conductance and susceptance of line  − ; and   are the voltage angles at nodes 
 and  respectively. 

Furthermore, the problem is constrained by generator limitations and caters for thermal 
limitations as outlined in equations (3.4) and (3.5). 


 ≤ 

 ≤ 
      (3.4) 


 ≤ 

 ≤ 
      (3.5) 

 ≤ 
 ≤ 

      (3.6) 


, ≤ 

, ≤ 
,    (3.7) 

Where, 
 , 

  are the minimum and maximum active power generations of 

conventional generators respectively; 
 , 

  are the minimum and maximum reactive 

power generations of conventional generators respectively; 
 , 

  are the minimum 

and maximum reactive power capacity of the PV inverters. 

Finally, the problem is bound by constraints on equipment and line conductor operational 
limits on voltages and line power flows as shown in equations (3.8) - (3.10). 
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     (3.8) 


 ≤  ≤ 

     (3.9) 
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 ≤  ≤ 

     (3.10) 

From equations (2.17) to (2.26), it can be appreciated that the problem is a mixed integer, 
non-linear, non-convex programming (MINLP) problem with principal objectives of 
evaluating optimal PV locations and installation sizes. 

The gradient of the objective function can be calculated using the derivation outlined in the 
following sequence of formulae. 

The PVHC problem as defined in equations 3.1 can be rewritten as:  

 = ma  = ∑ 


     (3.11) 

Assuming the inequality constraints are not violated, the Lagrangian of the optimization 
problem is given by equation (3.12) 

ℒ,,,  =  −  −    (3.12) 

The gradient of the Lagrangian function is given by equation (3.13) as follows [95] : 

 = , 



             (3.13) 

Where, 

, = 











− 











 − 











   (3.14) 


= 




 − 








 − 







  (3.15) 


=  =        (3.16) 


=  =                              (3.17) 

Considering the KKT necessary conditions equations 3.14 and 3.15 can be rewritten as: 

, = [








]− [
















] 



 =             (3.18) 

But [
















] =   is the transpose of the Jacobian of the power flow equations. 

Therefore, equation (3.18) can be written as equation (3.19) to calculate the auxiliary 
variables: 
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]     (3.19) 
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Substituting equation (3.19) into equation (3.15) and applying the KKT necessary 
conditions yields: 

∇ℒ
= 




 − [









]







 =    (3.20) 

The gradient of the objective function is thus obtained using equation (3.20) as: 

∇ = [









]







    (3.21) 

 

3.1.2 Solution Approach: Estimation of PVHC by PSO-GD  

In this research, the proposed approach is to solve the PVHC problem described by 
equations (3.1) – (3.10) using the proposed PSO-GD algorithm presented in section 2.2.3.  

The summary of the procedure for estimating the PVHC of the DN is described as follows: 

1. All parameters are initialized. The objective function is set to equation (3.1) and the 
global best solution for fitness is set to zero (the worst possible sum of PV sizes). 

2. Random PV sizes at all the nodes in the DN are generated as: 
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(3.22) 

 
Where  is the total number of PV particles for the PSO-GD population. 

3. A DLF analysis is run for each PV size to determine whether the variables used for 
ascertaining the equality and inequality constraints are in violation status. The 
objective value of each PV size is evaluated using equations (3.1) and (3.23). 
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Fitness of each PV distribution is then then evaluated by subtracting a penalty for 
constraint violation from the objective value. i.e.,  
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  (3.24) 

 
Where  is the total number of constraints under consideration; , is the penalty 
factor for violation of  −th constraint.  

4. The gradient of each PV penetration scenario is evaluated using equations in (3.12) 
to (3.21). 

5. Using the rules in tables 2.1 and 2.2, the population best solution and the global best 
solutions are obtained and recorded. 

6. The iteration count is incremented and the PV sizes at each node are updated using 
equations (2.14) and (2.16) 

7. Procedure 3-6 is repeated until a preset iteration count is exhausted. 
 

3.2 Case studies 

The efficacy, validity and robustness of the PSO-GD algorithm was tested on the IEEE 33-
bus test DN, IEEE 69-bus test DN and the existing 136 bus radial distribution network 
(RDN) to determine the optimal PV locations and sizes which can be installed into these 
networks, and to validate the stability of the algorithm.  

The proposed algorithm was implemented in the MATLAB environment and simulations 
were conducted on a PC with a 64-bit dual core™ i9-9900K CPU @ 3.6 GHz processor 
and 64.00 GB RAM. For comparison, IMOEHO, QOTLBO, PSO-GA, and CTLBO were 
also modeled on the same platform. The results are as presented in the graphs and tables in 
the proceeding sections. 

3.2.1 Case I: Estimation of PVHC of IEEE 33 test bus DN 

The technical specifications (including the topology and line parameters) of the IEEE 33-
bus RDN are given in [96]. This network has a 5000 kVA, 12.66 kV substation with a total 
active load of 3715 kW and a lagging reactive power demand of 1800 kVAr. It has 33 nodes 

Figure 3.2: IEEE 33 bus test network with optimal locations and PV sizes. 
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with 32 branches. Figure 3.2 shows the configuration of the IEEE 33 bus test distribution 
network. It also shows the optimal locations (nodes) and sizes of installed PV evaluated 
using PSO-GD algorithm.  

The network PVHC was simulated using the proposed PSO-GD method with all the point 
loads fixed at their average values (without consideration of uncertainty in PV output nor 
load variations). The largest size of PV is along the lateral line 1-18 at node (location) 15. 
The estimated size at this node is 776 kW. The second largest estimate is 727 kW at node 
31. Subsequent sizes and respective nodes are 645 kW at node 18, 566 kW at node 7, 370 
kW at node 25 and 189 kW at node 26. 

Figure 3.3 shows a bar graph of the optimal PV sizes estimated using the PSO-GD 
algorithm at respective optimal locations. The sizes range from as low as 189 kW at node 
26 to as high as 776 kW at node 15. Figure 3.4 shows that the voltage profiles obtained 
when PV installed has node voltages ranging between 0.96 [pu] at node 33 and 1.05 [pu] 
at nodes 18 and 23 while the profile obtained without PV installation has an upper value of 
1.00 [pu] and a lower value around 0.92 [pu]. This means that the voltages generally 
increase across the network when there is PV integration. It is observed that nodes with PV 
installed experience high voltage gains compared with those without PV installations.  

Figure 3.3: Optimal PV locations and sizes for IEEE 33 bus test DN 
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However, the voltages are maintained within the acceptable range ( .95 ≤  ≤

.5). Therefore, no voltage violations are observed in this case, but some node voltages 
lie on the boundary of operating limit. 

Figure 3.5 shows the line current flows, line active power flows and the line reactive power 
flows with and without installing PV at the determined locations respectively. The 
numerical results are also given in appendix I-A and appendix I-B respectively. 

Figure 3.4: Voltage profiles obtained with/without PV installations in IEEE 33 bus test DN. 
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It can be observed that without PV installation all current, active power and reactive power 
flows in a positive direction (in this case from the distribution substation to the network 
nodes).  This is strongly because there is only one source of power, and the network is 
configured in a radial topology. The highest power flow occurs from the substation to the 
adjacent node. In subsequent interconnecting branches downstream, the power flow 
magnitude reduces until end node 18 in the first radial line. This trend is also observed in 
radial lines starting 2-22, 3-25 and 6-33. No ‘reverse power’ flows are observed. 

  

 

In the case with PV installed, however, the power flow from the substation reduces 
substantially from 3. 879 MW to 0.335 MW. This reduction is echoed through the other 

Figure 3.5: Line current, actine power, reactive power w/without PV installation  
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branches with only a few exceptions. In both cases the active power is maintained within 
the required bounds (− ≤  ≤ ).  

In terms of reactive power, the line flows remain substantially unaffected by this change in 
all branches and are also maintained in the required bounds. This is testament to the fact 
that the PV inverters are only injecting pure active power. There is no burden of voltage 
control placed upon the inverter for this section. Therefore, the PV inverters do not attempt 
to inject or absorb reactive power into or from the PCC respectively.  Line current flows 
only change slightly at the substation (node 1) where the current drops from around 0.85 
pu in the case without PV installed to about 0.4 pu in the case with PV installed. This is 
mainly attributed to the local generation being able to supply the local loads at nodes where 
PV is installed.    

Furthermore, we observe reverse power flows in certain branches. These reverse power 
flows are occurring in regions located near PV installation sites. Because the power being 
generated is greater than the local demand in almost all cases, the excess power is being 
transferred to other areas from the PV hosting nodes resulting in reverse power flows. As 
alluded to earlier in chapter one, this may be problematic if the protection system were not 
properly set up.  

Overall, the estimated values of PV installed by PSO-GD do not result in constraint 
violations when applied to the IEEE 33 bus distribution network. Only reverse line power 
flows are observed. However, even the line reverse power flows are within acceptable 
limits thus no line congestion is experienced.  

3.2.2 Performance of PSO-GD against other methods 

The PSO-GD algorithm’s performance was compared with the performance of other
deterministic methods which have been employed to estimate the PVHC of radial 
distribution networks. These methods include variations of PSO with GA (PSO-GA), 
IMOEHO, CTLBO and QOTLBO.   

Table 3.1 shows the results obtained for estimated PVHC using the proposed PSO-GD 
compared with other meta-heuristic based methods. 

Table 3. 1:Optimal locations for PV installation and estimated PVHC for different methods 

Method PV locations Hosting Capacity [kW] 
CTLBO 13, 25, 30 2951.1 
PSO-GA 11, 16, 32 2991.0 
QOTLBO 12, 24, 29 3014.2 
IMOEHO 7,14, 25,31 3176.0 
PSO-GD 7,18, 22, 25, 26, 31 3461.9 

From table 3.1, PSO-GD finds more PV installation locations (six optimal PV installation 
sites) because of its superior optima exploitation and diversely intense global search 
exploration.  
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Subsequently, the PVHC of the IEEE 33 bus test DN estimated by PSO-GD is much higher 
at 3461.9 kW than that obtained using other approaches. Compared with IMOEHO whose 
estimate is 3176.0 kW in 4 locations, the PSO-GD approach provides an estimate that is 
8.26% greater. Similarly, the QOTLBO estimates PVHC at 3014.2 kW which stands at 
12.93% lower than PSO-GD. Worse still, PSO-GA and CTLBO provide even smaller 
PVHC estimates at 2991.0 kW and 2951.1 kW respectively representing around 13.60% 
and 14.75% adrift of the PSO-GD PVHC estimate. 

Clearly, PSO-GD algorithm has a superior calculation depth compared to the other meta-
heuristic approaches. The convergence plots for each of the approaches are shown in figure 
3.6. 

 

 

 

 

 

 

 

 

 

Figure 3.6: PVHC convergence plots obtained for IEEE 33 bus for different methods. 

Figure 3.7: voltage profiles obtained using different PVHC estimation methods. 



Chapter Three: PV Hosting Capacity of a Distribution Network

39

It can be observed that compared with PSO-GD, the other methods, except for IMOEHO, 
converge very quickly and, perhaps, prematurely. This is the reason why their objective 
evaluations at the final iteration are much lower than the PSO-GD evaluation. 
Consequently, their estimations of PVHC fall very short of the PSO-GD estimation as 
alluded to earlier. 

Figure 3.7 shows the network voltage profiles obtained by using respective approaches 
mentioned above. It is observed that the voltages for all methods lie within the acceptable 
lower and upper voltage boundaries. As the network is maximized for PV injection, the 
node voltages observed all reach the periphery of the upper voltage boundary but are way 
above the lower voltage limit. Thus, it should be appreciated that in all the approaches 
applied, a maximum amount of PV is injected above which voltage constraint violations 
would become apparent.  

3.2.3 Case II: Estimation of PVHC of IEEE 69 bus test DN 

A similar study to the one conducted on the IEEE 33 bus test DN was carried out on the 
IEEE 69 bus test DN. Technical details of the IEEE 69 bus network are found in [30], [97]. 

Figure 3.8 shows the topology of the network with the optimal locations and sizes of PV. 
There are six optimal locations (nodes) determined for this case. Node 50 has the largest 
PV installation size of 1756kW followed by node 21 with 1003 kW. The other nodes 
contribute significantly lower sizes with node 46 having 281 kW, 33 with 193kW and 61 
and 64 contributing a miserly 94kW and 87kW respectively. 

Figure 3.9 shows a comparison of the current, active, and reactive power flows with the PV 
installed and without PV installations.     

Figure 3.8: Configuration of the IEEE 69 bus test DN with optimal PV locations  
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In the IEEE 69 bus test DN, it is observed, as in the case of the IEEE 33 bus network, that 
with no PV installation all the power flows in the direction from the source to the load vis-
a-vie, no reverse power flows. Similarly, the voltages, line active and reactive power flows 
also line within acceptable margins as defined for the network. However, with PV 
installation, there are reverse power flows in some branches albeit within acceptable 
margins. 

The line current and active/reactive power flows between bus 20 and bus 45 is very minimal 
in the case without installed PV. Huge currents and power flows from the substation of the 
DN. In the case with PV installed, a significant reverse active power flow is observed. This 
power emanates from the excess PV generation in the installed PV plants at node 21.    

Figure 3.10 shows a comparison of the results obtained when PSO-GD is used against the 
results obtained when other methods are employed. As can be seen, PSO-GD produces a 
superior result compared to the other methods. 

(a) Line current, active power and reactive power for IEEE 69 bus without PV  

(b) Line current, active power and reactive power for IEEE 69 bus with installed PV  

Figure 3.9: Line current, actine power, reactive power w/without PV installation 
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It can be appreciated that PSO-GD outperforms most of the methods outlined in figure 3.10. 
IMOEHA has nearly the same performance in terms of the final solutions but needs a lot 
of parameters tuning which is very difficult to achieve. The other variant of PSO, the PSO-
GA, is way too inferior to the proposed algorithm as it generates a solution which is about 
11% lower than that estimated by the proposed PSO-GD algorithm.  

Figure 3.10: Comparison of PVHC estimates obtained for IEEE 69 bus test DN  

Figure 3.11: Configuration of existing 136 DN in Sao Paulo, Brazil. 
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3.2.4 Case III: Existing Brazilian 136 bus DN  

The technical details of the 136 bus DN are published in [98] and [99]. The network 
configuration together with its optimal locations of PV plants as determined using PSO-
GD are shown in figure 3.11. 

There are seven locations identified as the optimal locations of the PV plants. These include 
nodes 23, with PV size 923.5 kW, 26 with 145.5 KW, 90 with 3500 KW, 105 with 138kW, 
and 118 with 3409.5 kW. The total installed PV size is thus 8116 kW representing about 
48% of the total power demand of the network. 

The situation with the Brazilian 136 bus network is slightly different. Reverse line power 
flows are in both the case with PV and the case without PV installation. This is because the 
network is configured in a ‘ring’, rather than radial as is the case with the IEEE-33 and 
IEEE-69 bus test systems using section interconnectors. Thus, power can flow in either 
direction. 

It is worth noting that while the active power demand for the IEEE-33 and IEEE-69 from 
the substation drops significantly by about 91.37% and when PV is installed, it completely 
vanishes in the existing 136 bus DN. Figure 3.12 shows the voltage profiles, line current, 
branch active and reactive power flows for both networks.  

However, the important inference here is that, in all the examined cases the power 
contribution from the source significantly reduces. The reduction occurring during periods 
of high solar (irradiation) could help the distribution network operator to minimize the net 
demand from the main power grid, save costs or move the network towards self-sufficiency.  
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(a) Voltage profile of the 136-bus w/without PV installation 

 
(b) Line flows for the 136-bus without PV installation 

 
(c) Line flows for the 136-bus with PV installation  

Figure 3.12: 136-bus voltage profile and line flows with/without PV installations 
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3.2.5 Case IV Comparison of Proposed PSO-GD and Original PSO 

To compare the efficacy of the proposed method against the original PSO approach, the 
proposed PSO-GD algorithm results of the PVHC estimation for IEEE-33 bus test DN and 
the IEEE-69 bus test DN were compared.  

Figure 3.13 shows the variation of the objective values obtained in respective cases. For 
the IEEE- 33 bus test DN the iterations for the simulation were 100 while the iterations for 
IEEE-69 bus were 150. The difference was because in the IEEE-33 bus convergence was 
reached earlier than in the IEEE-69 bus network.  

Figure 3.13: Comparison of convergence plots of original PSO against proposed PSO-GD 

In both cases, the objective evaluations obtained using the proposed method are 
comparatively higher than those obtained using the original PSO approach. By running the 
two algorithms several times on the same test DNs, the results obtained are tabulated in 
table 3.2. 

Table 3. 2: Comparison of results obtained using original PSO and PSO-GD 

Method Test System IEEE - 33 IEEE - 69 
Original 
PSO 

Lowest PVHC [kW] 3014 2971 
Highest PVHC [kW] 3162 3004 

Proposed 
PSO-GD 

Low PVHC [kW] 3429 3317 
Highest PVHC [kW] 3461 3326 

In both the IEEE – 33 and IEEE – 69 test DNs, the proposed method gives greater PVHC 
values. For the lowest values, the proposed method gives a 13.77% better result compared 
with original PSO on the IEEE – 33 bus test DN. Similar results are obtained for others. 

The differences in estimates for the proposed PSO-GD between the lowest and highest 
values for the 2 test systems are 32 kW and 9 kW. These are comparatively much lower 
than for original PSO which are 148 kW and 33 kW respectively. Therefore, the proposed 
method manifests a better retainability of the estimated solution than the original PSO.

(a) IEEE-33 bus test DN                                     (b) IEEE-69 bus test DN 
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3.3 Stability Analysis of PSO-GD 

One of the most important aspects of an optimizer is its computation stability. Stability 
refers to the optimizer’s ability to generate the same solution for the same problem, starting
from different initial values [100]. There are several stability analyses and definitions for 
different meta-heuristics.  

Authors of [101] contend that to ensure convergence, it is not enough to simply apply the 
order-1 stability defined by equation (3.25) to obtain the stability operating region but, there 
is a need to also calculate the order-2 stability. 

lim
→∞

 =      (3.25) 

Where  is the expectation of a random variable  which results in order-1 stability. 
Order-2 stability condition aims to reduce the standard deviation or the variance. It is given 
in equation (3.26). 

 lim
→∞

 −  =     (3.26) 

To validate the stability of the proposed PSO-GD algorithm for both order-1 and order-2 
stability, it was tested for stability by applying PSO-GD on the IEEE 33 and 69 test RDN. 
Several simulations were run on the networks to ascertain the algorithm’s robustness in
retaining the same output starting from different initial values.  

A 100-iteration simulation was run and repeated 25 times, starting from random positions 
for each simulation, to ascertain the stability and robustness of the algorithm. Figure 3.14 
shows the values of PVHC obtained for respective networks. 

Figure 3.14: PVHC values of IEEE-33 bus, and IEEE-69 bus test DNs for stability analysis. 
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Similarly, 25 runs of 100-iteration PSO-GD for estimating the PVHC of the IEEE 33-bus 
test network was simulated. It was observed that the fitness plots converged to nearly the 
same point at the 100th iteration in both cases. Figure 3.13 shows the final values obtained 
at the end of each run for both the IEEE 33-bus and IEEE 69-bus test DNs. For the IEEE 
33-bus test DN, the mean value of PVHC estimated from the 25 runs was around 3.431 
MW with a standard deviation of 0.0084 MW. Similarly, the respective values from the 
simulations on IEEE 69-bus test DN were 3.3105 MW and 0.0075 MW. 

The mean  and standard deviation   of the observed final PVHC for each of the 
25 iterations performed on IEEE 33 and 69 DNs are summarized in table 3.3. 

Table 3. 3: Mean and Standard deviation in PV HC estimated by PSO-GD over 25 simulations. 

Test case  [MW]   [MW] 
IEEE-33 bus 3.4310 0.0084 
IEEE-69 bus 3.3105 0.0075 

With the standard deviations being 0.245% and 0.226% of the mean PVHC estimates for 
IEEE-33 and IEEE-69 bus test DN respectively, the estimated values for each simulation 
only vary insignificantly. This means that the calculated values lie in high-end precision 
level and, consequently, the PSO-GD algorithm is order-1 and order-2 stable. 

3.4 Chapter Summary 

In this chapter, the PV hosting capacity of the distribution network has been defined. The 
problem structure has been given and a formulation for a deterministic approach has been 
carefully and comprehensively described. The PVHC problem was presented as a mixed 
integer nonlinear programming (MINLP) problem whose objective is to maximize the 
amount of PV size which can be installed in the DN without violating the network set limits 
on the node voltages, line current and power flows, acceptable reverse power flow levels 
etc.  

The chapter showcased the use of the proposed PSO-GD in estimating the PVHC of 
distribution network networks through its applications on standard IEEE test systems such 
as the IEEE 33 bus test DN and the IEEE 69 test DN. The application of PSO-GD for 
PVHC estimation was also extended to the existing 136 bus network in Sao Paulo, Brazil.  

The stability of the proposed network was also presented in this chapter by considering the
order-1 and order-2 stability criteria for meta-heuristics.   

The performance of the proposed PSO-GD method in estimating the PVHC of electrical 
power distribution systems was compared to other methods found in literature. The results 
showed that the PSO-GD is superior to other methods found in literature because not only 
was the result for PVHC better, but the proposed method also produced more locations for 
PV installation sites compared to the counterpart methods. 
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Finally, the results also indicated that the proposed PSO-GD method is order-1 and order-
2 stable when calculating the PVHC of a distribution system.  
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4. PVHC Enhancement using PV Inverter Volt-Var Control 

The past few decades have seen a high proliferation of PVs in power distribution networks 
[102]. Part of this drive has mainly been because of the need to reduce the dependence on 
fossil fuels for electrical power generation and, in turn, reduce carbon emissions. However, 
as alluded to earlier, the amount of PV installed in the network is heavily constrained by 
the risk of over-voltages. 

To negate this voltage security challenge, transformer tap changers and reactive power 
compensation techniques are employed. Transformer tap changers, in a limited capacity, 
can help regulate the voltage within a certain feasible range. Reactive power compensation 
seeks to inject reactive into or absorb from the system nodes when the voltage is low or 
high respectively. This helps regulate the voltage through a wide range. 

In this chapter, inverter voltage control using reactive power compensation is highlighted 
as one of the means for achieving greater PVHC sizes in distribution networks. The chapter 
proposes a method of utilizing three distinct inverter characteristics for over-voltage 
control, under-voltage control, and dead-band action phases. 

4.1 Proposed Reactive Power Compensation technique. 

The most significant issue emanating from the injection of PV power for distribution 
networks is over and under voltage problems. This is because there is a high probability of 
over-voltages at light loads and high PV injection, and a likelihood of under-voltages at 
heavy loads and low PV injection at the point of common coupling (PCC). Therefore, 
implementation of the inverter voltage support function to the PV system has the potential
of hosting capacity improvement [103].   

Authors [38] contend that the volt/var function of the PV inverter is designed so that the 
voltage deviation can be compensated by means of reactive power compensation technique. 
Considering the negative sensitivity nature between voltage and reactive power, reactive 
power injection by inverter is typically defined as equation (4.1) and the guidelines of IEEE 
1547 Standard for interconnection and interoperability of Distributed Energy Resources 
with Associated Electric Power Systems Interfaces [104]. 

 =


 


 


,,  < 

− − ,  ≤  ≤ 
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   (4.1) 

Where,  ,  : the dead-band voltage range;  : slope of the  -th inverter volt/var 
characteristic; : voltage at -th node; ,, ,: maximum and minimum values of 
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reactive power for -th inverter; , : maximum and minimum allowable voltages at 
-th node. 

The slope of inverter volt/var control dictates the rate at which the reactive power is injected 
into or absorbed from the network node. It is determined by the set dead band as given in 
equation (4.2). 

 =


1
     (4.2) 

The inverter volt/var control horizon is given by figure 4.1. The upper part (red) being for 
reactive power injection to support the voltage. The lower part (green) for absorption of 
reactive power when there is a high injection of active power by PV resources resulting in 
a rise of voltage on the node.  

The upper half of the characteristic curve is used for controlling voltages when they fall 
below the minimum allowable values. That is, when the voltage is below a certain 
prescribed minimum, the inverter injects reactive power to increase the voltage until it goes 
above the minimum. The converse happens when the voltage goes above the maximum 
prescribed limit. In this case, the inverter absorbs reactive power from the node until the 
voltage drops to acceptable levels. In the dead band region, the voltages are deemed to be 
in the acceptable range and so, no volt/var action is required from the inverter. The dead 
band is adjusted to meet the requirements of each node. 

4.2 Implementation of VVC during PVHC estimation 

Estimation of PVHC in the wake of inverter volt/var control with uncertainty consideration 
is carried out as outlined in chapters 2 and 3 with the only difference being that the inverter 
is allowed at inject/absorb a certain amount of reactive power. This, in turn, makes the node 

Figure 4.1: Inverter VVC characteristics for node voltage. 
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voltages relatively lower than for the same amount of PV installed at the nodes. 
Subsequently, this opens the nodes for greater PV installation. 

Figure 4.2 shows the proposed computation flow chart for the optimization process 
incorporating inverter VVC. The PV injection locations together with the PV sizes are 
determined using PSO-GD optimization algorithm as described in chapter 2. Then the 
inverter volt/var settings are calculated to optimize the voltage profile of the distribution 
network using equations (4.1) and (4.2). This process continues until there is no capacity 
left for more PV injections in the network according to either the voltage limits, line power 
flow limits or the maximum system loading possible.   

The algorithm was tested on the IEEE 33 bus test DN used in chapter 2 and a comparison 
with a case where VVC was not employed was done. Table 2 shows a comparison of the 
results of PVHC estimation obtained when inverter VVC is not activated and when its 
activated. 

The PVHC was evaluated using the method proposed in chapters 2 and 3 with reactive 
power compensation using the PV inverter with VVC capability. The line and bus 
parameters of the test network are indicated earlier in chapter 3. Three distinct scenarios 
were considered: A no installed PV scenario, a scenario with PV but no VVC for the PV 
inverter and a scenario with PV installed and the PV inverter VVC actualized. Table 4.1 
shows the results. 

Figure 4.2: Flowchart of PVHC estimation with inverter VVC. 
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Table4. 1: Estimates of PV sizes at optimal nodes of IEEE 33 bus DN with/without inverter VVC. 

Location 
(Node number) 

Installed PV size [kW] 
Without VVC With VVC 

7 566.31 606.56 
15 776.16 832.62 
18 645.23 672.14 
25 370.11 374.52 
26 189.38 209.72 
31 726.78 764.63 

TOTAL 3273.97 3460.19 

The PVHC without inverter volt-var control is estimated at about 3273.97 kW, while that 
with inverter volt-var control is about 3460.19 kW. This represents a significant 186.22 kW 
(or 5.688%) increase in PVHC. The increase is because, with volt-var control, the inverter 
actively engages in ensuring that the node voltages are kept within the acceptable limits by 
injecting or absorbing reactive power when the voltages fall below or rise above the set 
limits, respectively. This, in turn, creates extra space for more PV installations without 
abrogating the voltage limit requirements. 

Figure 4.3 shows the voltage profiles obtained for three principal scenarios: case (a) is the 
base case scenario of the IEEE 33-bus test DN with no PV installation; case (b) represents 
a scenario with PV installations but no VVC; and case (c) gives a scenario with PV and 
VVC engaged. As can be observed, in the base-case scenario, some node voltages are below 
the set voltage minimum boundary. In the two cases with PV installation, there is an 

Figure 4.3: Voltage profiles of the IEEE bus network for three different scenarios 
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improvement in the voltage profile such that in both cases, all the node voltages lie within 
the set boundaries, but some nodes operate at the periphery of the upper voltage boundary.  

Despite the network voltage profiles for the scenario with PV without VVC and the 
scenario with PV and with VVC being substantially, the installed PV size in the former 
scenario is much greater than in the later scenario. The bar charts of figures 5.4 and 5.5 
show the estimated sizes of installed PV and the required reactive power to support the 
voltages respectively.  

Figure 4.4: (a) Active power generated at the nodes in the IEEE 33 bus for each scenario. 

Figure 4.4: (b) Reactive power generated at the nodes in the IEEE 33 bus for each scenario. 
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It is evident that the use of the PV inverter with volt-var control functionality offers an 
improvement in the PVHC of the network. 

Figure 4.4 shows the trend of the power generation from the reference situation vis-a-vie 
case (a) with no PV installation and inverter VVC functionality to case (b) with PV 
installation but no VVC functionality and case (c) with PV installation and inverter VVC 
functionality. The active power supply in case (a) is unilaterally from the distribution 
substation to a tune of 3879.50 kW. In case (b) where there are PV installations on some 
nodes, the power is supplied from all nodes with PV installations and a significantly lower 
amount of about 500 kW comes from the distribution substation. The total power supplied 
from all generating units in this case is 3795.97 [kW]. In the final case where there is PV 
installation and inverter VVC, an even smaller amount of power is obtained from the 
distribution substation (about 280 kW) with the total power from all sources amounting to 
3786.53 kW. 

Considering the DN total of 3715.00 kW, case (a) results in the highest power loss of 164.5 
kW compared to 80.97 kW in case (b) and 70.53 kW in case (c). Therefore, it can be 
inferred that the optimal location and sizing of PV installation reduces the power losses 
significantly. Further to this, it can be appreciated that the use of VVC not only increases 
the size of the PV installation but also reduces the power losses.  

From figure 4.4, case (b) vis a vie the base case with no PV nor inverter VVC, all the nodes 
absorb reactive power supplied by the substation. In this case, the substation supplies nearly 
2000 kVAr. In case (b), a similar trend as in case (a) is observed with all the nodes 
absorbing the same amount of reactive power except for the substation (virtual slack node) 
which supplies the reactive power.  

In case (c) however, there are differences in reactive power trends on 4 nodes with installed 
PV. On nodes 18 and 25, reactive power is injected into the nodes to support the voltages 
at these nodes. On nodes 26 and 31 reactive power is absorbed to prevent over-voltages as 
these nodes experience large PV power injections.   

The absorption/injection of reactive power on the 4 nodes mentioned in the paragraph 
above enables the control of the node voltages. The control of the node voltages invariably 
leads to higher PV size installations being permitted.  

Therefore, there is an inevitable increase in PVHC in the distribution network when the PV
inverter employs the volt/var control functionality. In the case under consideration, the 
PVHC increased from 3273.97 kW to 3460.19 kW, a rise of about 5.69 %. This is a 
considerable increase particularly in large systems demanding hundreds or thousands of 
megawatts. 
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4.3 Chapter Summary 

The chapter presented a proposed use of the PV inverters with voltage control capability 
using reactive power compensation to improve the PVHC of distribution networks. The 
characteristics provided were driven by the conclusions of the IEEE 1547 standard on 
renewable energy resources interconnection and interoperability with their associated 
devices. 

The numerical results showed that the use of the PV inverter with volt-var control capability 
greatly enhances the PVHC of the distribution network. The results also showed that even 
the voltage profiles could be operating around the maximum boundary, the control 
mechanism ensures that the highest possible PV sizes could be installed. 

Furthermore, the active power contributions from the distribution network substation are 
significantly reduced from 3879.5 kW, in the scenario without PV, to 500 kW, in the case 
with PV but without VVC and a merger 279 kW in the case with PV and VVC present. 
This means the substation has freed up capacity to supply a greater load demand for future 
expansions. 
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5. Estimation of PVHC with Uncertainty Consideration 

5.1 Chapter Overview 

In chapter 2, a deterministic approach to PVHC estimation in DNs using PSO-GD was 
proposed. This approach combines the use of steepest gradient descent in the update 
process of the PSO velocity component to influence the rate of particle movement. The 
method proved to be efficient and stable when it was applied to estimate the PVHC of the 
IEEE 33-bus test DN, 69-bus test DN and the 136-bus existing RDN. 

However, the intermittent characteristics of PV generation [49] and the variability in the 
load demand cannot be included in deterministic methods [105]. Thus, the foregoing 
approach did not produce realistic PVHC models [106]. 

To include uncertainty brought by PV intermittency and load demand variability, 
stochastic/ probabilistic methods are employed. The traditional probabilistic methods 
employing the Monte Carlo simulations (MCS) or conventional convolution, solve several 
thousands of scenarios of PV outputs and load demands to produce a probabilistic result 
[107], [108]. The generated models are very realistic because they incorporate the 
uncertainties in network variables and parameters. However, these methods impose a huge 
computation burden when the uncertain variables and parameters are many. There is also a 
loss of generality as the number of uncertain variables increases. More modern probabilistic 
methods such as the point estimate method (PEM) and Latin Hypercube Sampling with 
Cholesky Decomposition provide faster solutions. However, these too are affected by the 
complexity of the problem and require some linearization. Consequently, their result is an 
approximate solution.  

In this research, a combination of the deterministic and stochastic approach to the PVHC 
problem is proposed. The deterministic approach (PSO-GD) is used for estimating the 
optimal sizes and locations of PV while the stochastic approach (PEM) is used to assimilate 
the uncertainties in the input variables. The PEM-based probabilistic analysis is an 
approximate method but if carefully modeled, gives a very accurate result. 

The numerical results obtained using hybrid PSO-GD/PEM are benchmarked against the 
hybrid PSO-GD/MCS method in [20]. While it is established that there is very little 
variation in the PVHC results obtained using both hybrid methods, the PSO-GD/PEM 
method is extremely faster compared with PSO-GD/MCS approach. This is especially 
advantageous when dealing with a very big network in which there are many uncertain 
variables and parameters.    
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5.2 Stochastic PVHC estimation using PSO-GD  

Several point estimate method (PEM) schemes have been developed and applied in many 
fields over the years. Table 3.1 shows the most popular schemes, their efficiency and what 
type of variables they are associated with [109]. 

Table 5. 1 Description of PEM schemes 

Scheme Number of 
simulations 

Efficiency Ability to handle: 
Correlated 
variables 

Asymmetric 
variables 

Rosenblueth   Very low Yes Yes 
Li   low Yes Yes 
Harr   high Yes No 
Hong   /  +  high No Yes 

 

The choice of scheme to use for a particular application depends on the nature of the input 
variables. For example, Harr’s scheme [110] and Li’s scheme [111] are applicable to 
asymmetric and correlated input variables which are asymmetric. 

Rosenblueth’s scheme performs well with random input variables which are both correlated
and asymmetric [112]. Unlike Harr’s and Hong’s schemes, whose evaluations increase 
linearly with increase in the number of input variables, Rosenblueth’s scheme can impose
a very huge calculation burden for large systems (even more than MCS) because the 
evaluations increase exponentially as the number of variables increase. 

For the PVHC problem, the random input variables are narrowed down to PV output power 
and load demand (active and reactive power). These variables have been shown to be 
uncorrelated and asymmetric and therefore, we will limit our discussion to Hong’s  +  
PEM because the scheme renders itself suitable for the variables of interest [113], [114]. 

5.2.1 Hong’s PEM Schemes 

In Hong’s  +   PEM scheme, the statistical information obtained from the central 
moments of input random variables on 2 points are condensed to produce concentrations 

,,, where , and ,are the location and relative weight (importance) of the  th 

input random variable at the  th concentration respectively,  = ,, …… , ,  = ,. 

A function  linking the input random variables to the output is then evaluated at these 
concentrations for each input random variable , by replacing the  th variable at the  th 

concentration while holding the other input random variables to their mean values, 

1, 2, …… , ,
, ……1

, 
. An extra evaluation of  at the expected values of all 

the input random variables is carried out to complete the evaluation. 

On every evaluation of , the raw moments of the output variables are updated until the 
final input random variable is used. One advantage of this method is that the function  
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linking the inputs to the outputs can be a linear or non-linear function. Thus, for 
probabilistic load flow (PLF) analysis, each evaluation can accommodate a full AC 
deterministic power flow evaluation and output variables such as node voltages, line power 
flows, network power losses can be obtained from these evaluations. 

The locations of the input random variables are calculated using (5.1): 

, = 
+ ,

     (5.1) 

Where , is the standard location for the input random variable and is determined using 

(5.2), and 
, 

 are the mean and standard deviation of the random variable   

respectively. 

, =
,3


+ −√, −




,

     (5.2) 

Where, ,  and , are the skewness and kurtosis of the input random variable 

respectively. The associated weights for the locations are computed using (5.3) and (5.4), 
with (5.4) being associated with the evaluation of  at the mean values of the input random 
variables. 
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3
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Once  is evaluated at each concentration, the raw moments of the output variables are 
updated according to equations (5.5) and (5.6).  

, = 1, 2, …… , ,
, …… 1

, 
   (5.5) 

 ≅ + ,, 

    (5.6) 

Where , is the evaluation of  for a particular concentration,  is the expectation 

or the -th raw moment of the output variable. 

The first 2 central moments (mean and variance) of the output variable can then be 
computed using (5.7) and (5.8) respectively. 

 =  =       (5.7) 

 = 
 =  − 

     (5.8) 

  and 
 are the mean and variance of the output random variable of interest respectively, 

 and  are the first and second raw moments of the output random variable.  



Chapter Five: Estimation of PVHC with Uncertainty Consideration

60

Assuming the output variables are normally distributed, the probability density function 
(PDF) of the output variables can then be re-constructed by using equation (5.9). 

 

|, =



2

 −
x2


2
}   (5.9) 

Figure 5.1 shows the process flow chart for Hong’s  +  PEM scheme.  

It begins by initializing the input random variable count to 1 and the raw moments of the 
output random variables to 0. Input random variables are then selected for which central 

moments, standard locations, and weights (their relative importance) are calculated. 

Next, the input random variable locations are determined and then the function linking 
inputs to outputs is evaluated at these locations. Subsequently, the raw moments are 
updated at these evaluations. This process is repeated until all input random variables are 
exhausted. 

After all evaluations are finalized and the raw moments are updated completely, the central 
statistical information is extracted from the generated raw moments. This information is 

Figure 5.1: Flow chart for Hong’s 2m+1 PEM scheme 
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then used for generating the probability density functions (PDF) and the cumulative density 
functions (CDF) of the output variables of interest. 

5.2.2 Implementation of Stochastic PSO-GD for PVHC estimation  

The PVHC estimation process using the probabilistic approach begins with the uncertainty 
characterization of the input variables. In this case, the input variables are identified as the 
PV output and the load demand. The randomized input variables are then used to obtain 
random output variables through the PEM-based probabilistic load flow analysis.  

The flow chart for the implementation of the PVHC estimation process is shown in figure 
5.2. The process begins with determination of optimal PV sites and sizes using PSO-GD 
method proposed earlier. The sizes obtained in this phase are based on one scenario of PV 
outputs and load demand. Next, random PV output and load demand scenarios are 
generated based on their uncertainty characteristics. Thereafter, a PEM-based PLF analysis 
is used to obtain the output random variables including node voltages. The PDF of the node 
voltages are then plotted. If the voltage limit is not violated, the PV sizes on each node are 
proportionally incremented in preset step values. This process is repeated until an over-
voltage is observed. The occurrence of an overvoltage at any node during the estimation 
process signals the end of the process. The final sum of the PV sizes in each location at the 
end of this process gives the PVHC of the DN in consideration. 

5.2.3 Probabilistic Modelling of PV Output 

The PV output variable is modeled as a random uncertain variable using random generated 
PV output scenarios considering the probabilistic representation of solar irradiation [48] 
and [20].  The driving formulation for the random generation of PV output scenarios is a 
beta distribution as given in (5.10). 

, =



,


 − ,


  (5.10)

Where , is the PV output of PV in  −th location; ∙ is a gamma scaling parameter; 

 and  are respective curve shaping parameters with ,  ≥  

The crude values of  and  are evaluated using the mean and standard deviation of 

the historical data on the PV outputs using equations (5.11) and (5.12). 

 = 
 − /

 −     (5.11) 

 =  − /      (5.12) 
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5.2.4 Probabilistic Modelling of Load Demand 

The uncertainty characterization of load demand is modeled as a random variable with 
truncated Gaussian (normal) distribution [115]. The use of the truncated PDF is necessary 
to prevent generation of infinite number of loading scenarios which could result in 
difficulties in solving the problem. The random load demand scenarios are created using 
(5.13). 

Figure 5.2: Flowchart for the PVHC estimation process in DN using stochastic PSO-GD  
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Where , is the load demand at the  −th node;  is the mean of the load demand; 
 

is the variance of the load demand; 
 and 

 are the minimum and maximum values 
of the load demand at the truncation points. 

5.3 Case Studies 

5.3.1 Case IA: Conservative Stochastic PVHC  

This case explores the estimation of the PVHC under uncertainty with the network voltage 
set as a hard constraint. This gives a conservative estimate of the PVHC while considering 
the stochasticity of the network variables. 

The procedure outlined in section 5.2.2 was applied to the problem discussed in chapter 2. 
The objective function given in equation (3.1) is modified to include the probabilistic 
formulation on which this chapter is hinged. Equation (5.14) indicates the modification to 
(3.1). The constraints given in equations (3.2) to (3.10) are maintained. 

 = ∑ ,|
 ≥     (5.14) 

Where 
 ≥  is the probability that the observed maximum node voltage does 

not exceed a preset maximum node voltage limit. 

With this adjustment, the stochastic PVHC of the IEEE 33-bus test distribution network 
whose technical parameters are given in [116] was estimated.  

Figure 4.3 shows the probability density functions of the maximum node voltages as a 
function of installed PV size in increments of 0.1 MW. The maximum voltage for the IEEE 
33-bus test network is set at 1.05pu. This constraint must be strictly met. 

As per algorithm set out in Fig. 5.2, the process of estimating the PVHC terminates when 
the termination criterion is met at the end of the last iteration in which the maximum voltage 
observed reaches 1.05 pu.  

It can be appreciated that the variance of the probability distributions (PDF) is quite small 
at low values of installed PV sizes compared to the spread observed for high values of 
installed PV sizes. This is because at low values of installed PV sizes, the differences 
between the maximum values and minimum values due to uncertainty is quite small. 
Subsequently, the load flow analysis done within these realizations of input PV generation 
results in voltages which are in a very close range. Consequently, the resulting PDFs have 
a low variance. 
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On the contrary, because the difference between the maximum values and minimum values 
tenable are within the uncertainty framework at high installed PV sizes, the impact of the 
system voltage is quiet substantial at high values (at and near the maximum values), while 
being moderate at low values (at and near the minimum values). The situation is 
exacerbated because the network load remains substantially within the same range 
regardless of whether the installed PV size is the low end or on the high end. Figure 5.3 
shows the PDFs of the maximum node voltages observed when the PVHC was estimated 
as outline in figure 5.2. 

Figure 5.3: PDFs of maximum node voltages at each installed PV size. 

Moreover, it has been observed that the stochastic PVHC value estimated in this case is 
3700 kW. This is slightly higher than the value obtained in the previous chapter of 3461.9 
kW. This is alluded to the fact that there was no consideration of uncertainty in the loading 
vis a vie, the load was kept at the average values. This results in a pessimistic result. With 
the stochastic load considered, it is possible for some loading levels and PV generation 
levels to have relatively low effects on the resulting maximum voltages. This then offers 
an optimistic result.  

5.3.2 Case IB: Flexible Stochastic PVHC 

The approach suggested in section 5.3.1 considers the voltage to be a hard constraint and 
all scenarios of input random variables which result in voltages outside this boundary are 
considered to violate the system performance. This approach, however, does not address 
the fact that some feeders may be more tolerant to slight over-voltages than others. Thus, 
we introduce case IB which seeks to apply a softened voltage constraint. 

Figure 5.4 shows the principal differences between these two PVHC estimation cases. In 
(a), the voltage is set as a hard constraint such that when the installed PV vs node voltage 
curve crosses voltage limit line, the intercept defines the PVHC estimate. The region below 
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the voltage limit line defines the acceptable operating region in which there are no voltage
violations while the region above the voltage limit line is the unacceptable region. In (b), 
however, the voltage limit boundary is relaxed to accommodate a small voltage violation, 
as may be acceptable to the network operators, to extend the PVHC. In this case, 3 operating 
regions are defined. As in (a), the region below the voltage limit line defines the acceptable 
operating region, the additional region where a small voltage violation is tolerable being 
the critical region and, the unacceptable region comes above the critical region. Operation 
in the critical region is very risky but may be permitted. 

In case IB we consider estimating the PVHC under uncertainty while relaxing the network 
voltage constraint. We explore the idea that a very small over-voltage could not have a very 
severe impact on the network operation or its devices [82]. Instead, a slight over-voltage 
tolerance could find solutions with a high payout but less severe effects. This calls for a 
modification to the objective function to include this new reality. Equation 4.13 introduces 
the new objective function [20]. 

 
 = ∑ ,|

 ≥  +     (5.13) 
 

Where  is the allowable tolerance in above the predefined voltage limit. Operation in 
this incrementally small voltage deviation from the preset value must generally be 
considered harmless to the network devices and equipment operation. Thus, care must be 
taken in setting the value of  to ensure the payout for allowing such a slight abnormality 
in the network voltages is greater than the risk it poses. The typical value proposed for this 
variable is in the order of 0.5% of the nominal system voltage. 

The flexibility offered by the relaxation on the voltage constraint enables heightened 
amounts of PV to be installed without requiring network reinforcement which might 
otherwise be a much more expensive proposition. 

Figure 5.4: PVHC (a) with hard voltage constraint (b) with flexible voltage constraint 
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The formulation of Eq. 5.13 offers flexibility in the consideration of PVHC of the network. 
As with case IA, all the constraints defined by equation (3.2) to (3.10) are retained.  

Figure 5.5 shows the probability density functions obtained by considering random PV 
output scenarios and load demand uncertainty on account of voltage limit constraint 
relaxation.  

In this instance, the extent of the maximum voltage magnitude and the number of scenarios 
out of the total number of runs which result in voltage violations occur is very important as 
it gives an idea of the level of voltages expected and, most crucially, the likelihood the 
extended voltage limit will be violated.  

The probability of voltage violation is calculated by taking the area occupied by the curve 
to the right of the desired voltage limit using equation 5.14. 

. = 
 ≥  = ∫ 

 
 

 


   (5.14) 

Where ∙ is the probability of the voltage violation for each installed PV size.   

Fig 5.6 shows the probability density function (PDF) of the highest node voltages obtained 
when this argument is applied to IEEE 33 bus test DN.  

It is obvious from figure 5.6 that, as the installed PV size is increased, the extent of the 
maximum node voltage that can be observed also increases. As alluded to earlier, no 
voltages are observed to be above the set threshold of 1.05 [pu] for PV installation sizes 
less than 3.7 [MW]. This situation changes as installed PV sizes increase above 3.7 [MW]. 
This increase in level of voltage seems to be in proportion to increases in installed PV sizes.  

When a flexibility or relaxation on the allowable voltage limit is applied, the point at which 
the limit line is crossed increases thereby allowing higher PV sizes to be installed without 
abrogating the set voltage limit. Figure 5.7 shows the levels of voltage violations and points 
of PV installation sizes at which they occur for different over-voltage allowances. 

Figure 5.5: Probability density functions of maximum node voltages for different PV sizes. 
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Figure 5.6: PDF of maximum node voltages for Installed PV capacities 3.2 - 5 MW 

It has been seen that by increasing the voltage limit from 1.05 pu to 1.059 pu through 
various step sizes, the installed PV size was increased from 3.7 [MW] to about 4.0 MW. 
This intimates that increasing voltage limit flexibility by only 0.856% can potentially 
increase the PV hosting capacity of the DN by a substantial 8.108%. This is highly 
significant for DNs with less voltage sensitivity as it could enable the network operators to 
increase their PV installation sizes, reduce the carbon footprint, and subsequently 
contribute to reduce carbon emissions without many investments in system upgrades on 
equipment. 

Figure 5.7: Probability of voltage violations as a function of Installed PV capacity 

For a range of uncertainties on the load demand of from 3%, 5%, 7% to 10%, the variations 
of the PVHC estimates are shown in fig. 5.8. 
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Figure 5.8: PVHC as a function of flexible voltage limit constraints. 

The results of figure 5.8 show a near linear increase in estimated PVHC when the voltage 
tolerance is increased gradually between 1.05 per unit and 1.06 per unit for a load demand 
standard deviation of 3%. This is attributed to the very small uncertainty in the load demand 
variations having minimal impacts on the overall PVHC estimation process.  

When the standard deviation in load demand increases to 5%, the results in all simulations 
are not nearly as linear as at 3% because the increased uncertainty in load demand results 
in higher variability between minimum and maximum values of load. The results become 
even more haphazard when the uncertainty is raised to 7% and 10 % standard deviations. 

In all simulation cases, however, the trend is for the estimated PVHC to increase from a 
certain level at the lowest voltage limit to a higher value in subsequent voltage limit 
constraint relaxations. Thus, overall, for the voltage limit shift of about 0.962% (from 1.05 
pu to 1.06 pu), the PVHC rises 8.108% for the 3% uncertainty, 8.11% for the 5% 
uncertainty, 8.054% for the 7% uncertainty and 7.733% for the 10% uncertainty in the load 
demand respectively.  

There, it can be inferred that relaxations on the voltage limit constraints in certain areas of 
the DN have a potential to increase the PVHC of the DN by an appreciable amount. 
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5.4 Efficacy and Speed of Proposed Method 

The calculation prowess and speed of the proposed method was benchmarked against the 
Monte-Carlo Simulation (MCS) based PVHC estimation on the IEEE 33 bus test DN and 
the existing 136 bus DN in Sao Paulo.  

A 100000 MCS run was conducted per PV size. This included generation of 100000 
scenarios of input variables of installed PV and load demand using their uncertainty 
characteristics. As in the previous case study, the installed PV sizes were increased from a 
certain low value (3.5 MW) to certain high value (5.2 MW) in preset steps (0.1 MW). The 
PV scenarios were generated at each PV size and a MCS was conducted at this PV size. 

5.4.1 Computation Accuracy 

The accuracy of the proposed method is tested by computing the errors in estimating the 
PVHC at different voltage violation levels relative to the results obtained at the same points 
using MCS. The errors of interest which were considered are the relative error (RE) and 
the room mean square error (RMSE). 

Relative error is an important measure as it provides a valuation of the accuracy of the 
calculated values when benchmarked against standard values. In this case, the standard 
values are provided by the MCS calculations.  

The relative error in calculating the PV hosting capacity for various values of probability 
of voltage violations are obtained using equation 5.15 [48]. 

 =


 



 × %    (5.15) 

Where  is the relative error, 
  is the  −th data point on the MCS result, 

  is the 
 −  data point on the proposed method result. 

A more significant error quantity is the RMSE. It measures the difference between values 
calculated by a model compared with the standard accurate values from the benchmark 
model. It measures how well the proposed model is able to predict the target value. It is 
evaluated using equation (5.16). 

 = √



∑ 

 − 
 

 }    (5.16) 

Where  is the RMSE and  is the total number of data points on the graph under 
consideration. 

The lower the values of both the RE and RMSE, the more accurate the proposed method is 
in calculating the PVHC of the DN.  
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Figure 5.8 shows estimated probability of voltage violations as a function of installed PV 
capacity for the IEEE 33 bus test DN and the existing136-bus DN. The dotted red lines are 
values obtained using the benchmark MCS method while the solid blue lines are values 
obtained using the proposed method.  

 

 

The values obtained using the benchmark MCS method and the proposed method seem to be 
highly close when applied to the IEEE 33 bus DN estimations. However, the graphs in figure 
5.8 (b) show slight differences between the MCS-evaluated results and those of the proposed 
method when applied to the existing 136-bus DN. This can be attributed to the differences 
between the IEEE bus DN and the existing 136-bus DN in terms of sheer physical size and 
load demand. The IEEE 33 bus network is 4 times smaller than the 136-bus DN and has a net 
active power demand of around 3.715 MW compared with 18.333 MW for 136-bus DN. These 
differences in physical size and demand render the 136-bus DN more susceptible to erroneous 
calculations.  

Figure 5.9: Probability of over-voltages as a function of installed PV size 
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Figure 5.9 shows the variations of estimated PVHC against probability of violations for the 
two systems being compared, with the accompanying errors in the estimations.  

In both cases, the relative error starts from the positive values up to the mid-point of PV sizes 
and then goes to the negative side. This could be because, with the increase in PV sizes at the 
installation points, the variance of the PV outputs also increases. This acts to increase the spread 
of data for the PV output in the analysis. This essentially means, while the average values of 
PV output and, consequently, the calculated concentrations for the PEM estimation increase 
linearly, the MCS estimation is not affected by this spread thus generating a much different 
result. 

The relative error for the IEEE 33 bus DN is in the range -0.20 % to 0.9 % for all probable 
values of voltage violation. For the 136-bus DN, it lies between -2.5% and +2%. The errors 
observed in the much larger 136-bus DN are nearly 3 times as high as those obtained for the 
IEEE 33 bus network, which is 4 times smaller. Clearly the error in calculation becomes bigger 
as the network becomes larger in size (number of buses). This is owed to the fact that the 

Figure 5.10: PVHC and error as a function of voltage violation probability 
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number of variables increases as the network increases which in turn increases the possibility 
of inaccuracies when approximate methods such as the proposed method are applied.  

However, the size of relative error obtained in both cases is quite low (2.5% maximum) and 
similar trends in relative error are observed for both the IEEE 33-bus DN and the 136-bus DN.  

Furthermore, the RMSE calculated using equation 5.16 shows that the proposed method is 
relatively accurate and within plausible limits. 

The RMSEs are 0.01031 MW and 0.10633 MW for the IEEE 33 bus and the 136 bus networks 
respectively. This, respectively, represents 2.413% and 1.33% when the individual PVHC 
estimates are used as base values for each network. Again, this means that the proposed method 
is of acceptable accuracy as the errors are substantially low. 

5.4.2 Computation Speed 

In as much as the accuracy of computing takes center-stage in the calculation of stochastic 
PVHC as it is used as a long-term planning metric, the speed of calculation is also important 
[30]. This is because existing distribution networks may have several hundreds to thousands of 
buses (nodes) and several distributed generators within the network. This means the number of 
input random variables may be too many and thus a slower method of calculation (like the 
MCS) may not give a result in a reasonable timeframe. A quicker method, however, might 
offer a solution in an acceptable timeframe. 

Table 5.2 shows the computation speed for PEM-based and MCS-based stochastic PVHC 
estimation. The MCS is run with 100000 simulations per PV size consideration. 

Table 5. 2: Calculation time (seconds) for PEM and MCS based PVHC estimation. 

Method/Network IEEE 33-bus 136-bus 
MCS-based 103.839 4477.842 
Proposed 2.712 254.642 

 

From table V, the proposed method is about 40 times faster when estimating the stochastic 
PVHC for the IEEE 33-bus distribution network and about 18 times faster when calculating for 
the 136-bus distribution network. As can be observed in both methods, as the number of buses 
(nodes) for the network increases, the calculation time also increases. In this case, the number 
of buses has increased from 33 to 136, indicating an increase in nodes of about 4 times, while 
the calculation times for the proposed method and the MCS increase 94 times and 43 times 
respectively.  

The higher calculation speed (lower computation time) is therefore preferrable for large 
networks with a lot of nodes to obtain a solution in an acceptable timeframe. 

5.5 Chapter Summary 

This chapter introduced a method for estimating the PVHC of a DN taking into consideration 
the uncertainties in PV output power and load demand. The method involves two stages. The 
first stage employs the deterministic PSO-GD approach proposed in chapter 2 while the second 



Chapter Five: Estimation of PVHC with Uncertainty Consideration

73

stage uses the PEM-based probabilistic approach to incorporate the various uncertainties in the 
network variables.  

The proposed approach was applied to the IEEE 33 bus test network and the existing 136 bus 
network in Sao Paulo. The results obtained were benchmarked against the MCS-based 
probabilistic approach to ascertain the proposed method’s efficacy and speed of calculation. 

It was established that the proposed method is relatively accurate with a 2.5% error margin and 
is extremely quick (up to 93 times quicker than the MCS-based calculation). Thus, in practical 
networks having a few hundred to thousands of nodes, the proposed method is to be preferred 
to the MCS method for its high speed in calculation for relatively small price in accuracy. 
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6. Impacts of BESS and EV on PVHC in DN  

The transport sector is another sector which heavily depends on fossil fuels for its day-to-day 
operations. This results in enormous amounts of carbon being emitted into the atmosphere. To 
reduce these carbon emissions, the recent trend has seen a huge shift in the mobility sector 
towards the use of Electric Vehicles (EVs) [117] and hybrid Internal Combustion Engine 
Vehicles (ICEV) with Plug-in EV (PEV) capabilities. With this rise in EVs and hybrid 
ICEV/PEVs, the electrical power demand has also gone up due to charging demands imposed 
by these EVs and PEVs.  

Additionally, the increased penetration of renewable energy sources has prompted the 
integration of battery energy storage systems (BESS) in active distribution networks to improve 
the system resilience. The energy storage systems not only participate in the backup power 
supply but also have the potential to provide various distributed ancillary services [118]. The 
deployment of BESS also increases the distribution network potential for self-consumption PV 
by their charging requirements [119].  

As a balancing act, EVs and ICEV/PEVs could be charged from excess PV produced by private 
owners. Because EVs may not necessarily park during times of excess PV production, battery 
energy storage systems (BESS) may be used to store the energy from PV to enable EV charging 
at desired times. With a higher proliferation of EV/BESS in the DN, the self-consumption of 
PV is increased and thus could potentially improve the PVHC of the DN [120]. 

As a result of increasing EV penetrations in the transport sector, the electrical power 
distribution system must accommodate an increased load demand for charging EVs. In this 
vein, the importance of robust planning in DNs cannot be overemphasized. During the planning 
or network reinforcement stage of the DN, it’s important to have some estimations and analyses
done on a wide range of EV and BESS charging loads that will be placed in the network [121]. 
This would ensure that during operation, the DN equipment is not overloaded or overstressed 
by high power flows (thermal overloads) or high operating voltages respectively. 

This chapter investigates the impact of BESS and EV on the PVHC of the distribution network. 
It endeavors to develop models for EV and BESS charging which could be used to quantify the 
impact of EVs and BESSs on the PVHC of a DN. A stochastic charging schedule based on the 
‘Need-and-Availability’ approach, is used to derive the random charging demand of the EV. A 
similar model is used for BESS charging demand execution. These charging demand models 
are then augmented to the normal demand and, ultimately, used in PVHC estimation with 
uncertainty consideration. 

 

6.1 BESS Charging load demand Model 

The reduced Feed-in-Tariffs (FiT) in the electricity market have made essential to increase the 
self-consumption of PV generated power at domestic level in the distribution network [122]. It 
is therefore necessary to develop a model for BESS charging load that could be useful in 
scheduling and/or sizing the PV system. 
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The BESS charging load demand is determined by the SoC of the BESS as well as the time of 
charge allocated to the BESS.  

The state of charge of the -th BESS at time,  depends on the previous state of charge at a 
time  −  and the allocated time of charge, 

.Thus, 
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Where 
, is the state-of-charge of the BESS of -th type (defined by capacity and/or 

make); 
,  is previous state charge before BESS charging begins; 

  is a binary 
variable ( 

 ∈ , ) which represents the status of the BESS operating mode 
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From equation (6.1), the charging demand of the -th BESS is given by equation (6.2). 
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Where 
, and 

, are the minimum and maximum values of the SoC of the -th 
BESS. 

It should be noted that when the power flows from the grid into the BESS, charging occurs 
while discharging happens when the power flows in the opposite direction vis-a-vie, from the 
BESS to the grid.  

The aggregate load imposed by a total of  BESS is given by equation (6.3). 

,
 = ∑ ,

,
      (6.3) 

 

6.2 EV charging load demand model 

The EV charging is characterized by its arrival time (plug-in time), mounted-battery capacity, 
plug-in period, and EV departure time (plug-out time). The aggregate charging load presented 
by the EV also depends on the type of EV. According to, there are five distinct EV types as 
shown in Table 6.1 [121].  
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Table 6. 1:Charging, storage, and endurance characteristics of different EV types 

EV type Battery Capacity (kWh) Charging Power (kW) Endurance 
mileage (km) 

  Slow Fast  

Private 24/40 6.6 11 150/250 
Utility 40 6.6 11 250 
Public 40 - 11 250 
Bus 202 - 50 200 
Truck 240 - 80 250 

 

The amount of energy stored on the EV at time of departure depends on the amount of energy 
it had at the time of it being plugged in vis-a-vie state-of-charge (SoC). Thus, the state of charge 
of the EV at the departure is given as: 

,
, = ,

, +


,ℎ
 ℎ,,

, ℎ
,

,
, −  − 

,(
,,

, 
,


 ,

, )  (6.4) 

Where ,
, is the SoC of -th EV type in the -th fleet at time t, 

  and 
  are the EV 

charging and discharging efficiencies respectively for the -th fleet, 
,  and 

,  are the 
charging and discharging time periods of  -th EV type in the  -th fleet respectively,  

represents the EV type,  is the EV assigned number in the fleet, 
, is a binary variable 

indicative of whether the EV is charging or discharging (moving) i.e. 
, ∈ ,, ,

,  is 

the maximum energy storage capacity of -th EV type in the -th fleet.  

The SoC of the EV is predefined within a prescribed finite range. The mounted battery cannot 
charge above a certain maximum level. It should also not be allowed to discharge below a 
certain minimum level. Therefore, 

,
, ≤ ,

, ≤ ,
,     (6.5) 

Where, ,
, , ,

,  are the minimum and maximum allowable values of state-of-

charge of EV energy storage. 

Given that the vehicle is either plugged-in (arrival) for charging or plugged out (departure), the 
charging power depends on the initial SoC at the plug-in time and the desired SoC at the plug-
out time and the available charging time. Therefore, the charging power as derived from 
equation 6.5 is obtained as: 
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The EV’s charging demand is thus estimated for the time between the plug-in and plug-out. 
This is approximated to the available charging option of either slow or fast charging. Thus, 
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Where, , is the variable charging power demand by an EV of type ,  and  are the 
plug-in and plug-out times of the EV respectively.  

From the foregoing therefore, the aggregate charging demand imposed by the EVs on the 
network at any time  is estimated using equation (6.8). 

,
 = ∑ ∑ ,,

,





      (6.8) 

6.3 Quantification of the Effects of BESS and EV deployment in DNs on 

PVHC 

In this section, a case study on the impact of the EV and BESS on the PVHC is presented. 
Figure 6.1 shows the flow chart of the PVHC estimation process in the wake of EV and BESS 
deployment with their uncertainty characterizations. The solution proceeds as explained in 
[20]. First the optimal locations for PV installation are determined using Particle Swarm 
Optimization and Gradient Descent (PSO-GD) algorithm [123]. For the obtained locations, 
several PV output scenarios are generated using the uncertainty characteristics in equation 
(5.12). The loads at all nodes also generate stochastic scenarios based on the characteristics in 
equation (5.13). 

Once the PV output and load demand stochastic scenarios are generated, they are analyzed to 
determine the node voltages, line power flows and other network variables using probabilistic 
load flow (PLF) analysis based on the point estimate method (PEM).  

Figure 6.1: Flow chart of multi-stage estimation of PVHC of DNs with EV and BESS. 
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The next phase involves adding BESS and EV deployment in the network as charging loads 
given by equations (6.3) and (6.8). At the locations with PV installation, the BESS and EV 
sizes are increased by adding several EVs and BESSs in predetermined sizes until the network 
voltage falls just below the lower voltage bound.  

Afterwards, the BESS and EV charging load (with their stochastic characteristics) at the final 
iteration are augmented with the normal load at the locations with PV installation. New load 
stochastic behavior is modeled, and new PV output scenarios are generated. With the new 
stochastic PV output and load demand scenarios, the procedure for estimating the PVHC, 
described earlier, is undertaken. The resulting PVHC is the hosting capacity of the network in 
the wake of BESS and EV deployment in the system.  

6.4 Case Studies 

6.4.1 Case A: EV Charging Station and BESS Located at PV Installation Sites 

In case A, an investigation was carried out to establish the impact of deploying BESS and EV 
charging stations at the same nodes where there is installed PV. The procedure outlined in 
section 6.3 was used to generate the results.  

The PSO-GD/PEM-based Stochastic tool developed in chapters 2 and 5 respectively, was 
employed in estimating the PVHC of the network with the increases in BESS and EV charging 
load demand. In this case, the PV sizes were increased in steps of 10 kW at each of the 
participating nodes until an over-voltage was observed. 

 

The simulations were conducted on the IEEE 33 Test DN. Figure 6.2 shows the PDFs of the 
highest node voltages obtained by increasing the number of EVs and BESSs at the PV 

installation sites from 0 to 50 in steps of 10. It is observed that, as the EVs and BESSs increase, 
the PVHC also increases until the stopping criteria is met.  

Figure 6.2: PDFs of the maximum node voltages in each EV and BESS penetration scenarios. 
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In figure 6.2, scenario 1 represents the lowest number of BESS and EVs. At this point, it is 0, 
in scenario 2, the number of BESS and EV is increased by 10 at each of the participating nodes 
(nodes with PV installation). We observe that the highest node voltage PDF of scenario 2 has 
a bigger spread compared to the one in scenario 1. This is because of the relative increase in 
load owing to the BESS and EV charging demand. This increases the PV self-consumption 
resulting in reduced rises in voltages due to increases in PV size increases. Figure 6.3 shows 
the changes in standard deviation of the highest node voltages against the mean values of the 
node voltages for each scenario. 

Table 6.2 gives the estimated changes in mean voltages observed, the standard deviation of the 
voltages and the PVHC as the BESS and EV charging load is increased through the scenarios. 

Table 6. 2: Variations of PVHC and observed node voltages against BESS and EV load changes. 

Scenario EV load 
[kW] 
 

BESS load 
[kW] 

Min node 
Vmax [pu] 

Max node 
Vmax [pu] 

Mean 
Vmax [pu] 

Std Vmax 
[pu] 

PVHC 
[kW] 

1 0 0 1.026 1.050 1.0390 0.0038 3764 
2 70 40 1.022 1.050 1.0361 0.0045 4200 
3 140 80 1.013 1.050 1.0321 0.0054 4594 
4 210 120 1.009 1.050 1.0301 0.0063 5063 
5 280 160 1.001 1.050 1.0264 0.0073 5485 
6 350 200 1.000 1.050 1.0230 0.0084 5890 

 

For the subsequent scenarios, the trend continues until scenario 6 when all PV installed nodes 
have 50 BESS and EV. At this penetration level, the highest node voltage observed falls below 

Figure 6.3: Variations of mean and standard deviation of maximum node voltages  
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the threshold set by the stopping criteria of 1 pu. The PVHC for this final scenario is calculated 
at 5890 kW. Figure 6.4 shows the variations of PVHC and BESS/EV load demand changes. 

It is observed that there is a strong correlation between the BESS and EV load demand and the 
estimated PVHC as increases in BESS and EV load demand result in subsequent increases in 
estimated PVHC values. 

For the scenarios under discussion, the net demands are shown in figure 6.5. The net demand 
at 0 EV results in excess PV generation compared to the network demand. This results in a net 
export of power to the grid. This export progressively reduces as the number of BESS and EV 
increases until there is a net import of power for the final scenario. 

 

Figure 6.4: Variations of PVHC estimates with BESS/EV load for each scenario. 

Figure 6.5: Net demand on the DN nodes for each scenario 
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6.4.2 Case B: EV Charging Station Randomly Located within DN 

In this case, the location of BESS is fixed at the PV installation sites while the locations of EV
charging stations are randomly selected from the available network nodes. The approach 
described in the earlier section was also applied to this case. Table 6.3 gives the simulation 
results for 10 different runs of the algorithm. For each run, the EV charging sites are randomly 
generated, the PVHC for each EV size is estimated and its correlation coefficient is obtained.  

Table 6. 3: PVHC, correlation coefficients for randomly generated PV sites 

Simulation EV Charging Sites PVHC [kW] Correlation 

    0EV 10EV  20EV  30EV 40EV  50EV    

1 6,7,23,24,27,29 3830 3990 4370 4940 5690 6000 0.98314641 

2 9,15,17,19,28 3850 4340 5270 6000 6000 6000 0.929926683 

3 3,10,14,23,25,27 3800 4100 4650 5500 6000 6000 0.975684072 

4 3,5,13,15,20,33 3800 4150 4800 5700 6000 6000 0.966299397 

5 7,9,11,13,19,27 3800 4150 4900 5900 6000 6000 0.948700624 

6 3,15,22,24,27,31 3800 4000 4500 5200 6000 6000 0.939141881 

7 12,13,20,27,29 3800 4200 4950 6000 6000 6000 0.977045987 

8 10,18,21,29,30,32 3840 4220 4980 6000 6000 6000 0.938687407 

9 11,12,18,19,19,32 3840 4270 5100 6000 6000 5930 0.928136107 

10 4,6,21,22,26,31 3820 3960 4270 4680 5210 5910 0.974052764 

 

It has been established that in these cases, the highest amount of PVHC attained is limited to 
6000 kW. This is slightly higher than that obtained in case 1 were the locations of BESS and 
EV charging sites where the same as the locations for PV installation nodes.  

In the same vein, the correlation coefficient between estimated PVHC and the number of EVs 
is found to lie between 0.928 and 0.983. This indicates that there is a significantly strong 
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Figure 6.6: Variations of PVHC estimates in simulation runs against number of EVs. 
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relationship between changes in EV sizes and estimated PVHC. Figure 6.6 shows the variations 
of PVHC estimates in each simulation run. 

In all simulation runs, the PVHC increases when the number of EV increases. However, when 
the EVs reach a total of between 40 and 50 per node (representing a total prospective EV 
charging load of 1680-2100 kW), the PVHC seems to reach its peak value of 6000 kW. Figure 
6.7 shows these simulation results. 

It has been seen that the EV charging load increases result in increases in the estimated PVHC 
of the DN up to a certain level. Above this level, the increased line power flows from the PV 
generators result in violations and thus the power from PVs is restricted. 

6.5 Chapter Summary 

In this chapter, an investigation into the potential effects of EV and BESS charging was carried 
out. The chapter has presented a load demand model for BESS and EV charging load to use in 
quantifying the impacts of BESS and EV charging on the PVHC of the DN. For both the EV 
load model and the BESS charging load model, the state of charge of the storage system as 
well the available period of charging is pivotal to the estimation of the demand imposed by 
these loads. 

Even though there are several kinds of EVs available, this study was restricted to privately 
owned vehicles with storage capacities ranging from 24 to 40 kWh and charging requirements 
of 6.6 kW, for slow chargers, and 11 kW for fast chargers. The BESS was also restricted to 
home-owned BESS with capacities of 20-30 kWh and charging demands between 4 and 5kW.  

A multi-stage PVHC estimation algorithm encompassing the normal load as well as BESS and 
EV charging load has also been developed and described in detail. It uses a forward-backward 
method. First it estimates the PVHC of the DN without having the EV and BESS deployed in 
the network. Then it deploys EV and BESS in predetermined step sizes to estimate how much 
EV and BESS load would reduce the observed node voltages just below a certain minimum 
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threshold. Finally, PV sizes in exact ratios of the values estimated for a case without EV and 
BESS are incremented until the upper node voltage limit is observed. The amount which leads
to this conclusion stands as the PVHC at a particular penetration of EV and BESS. This 
algorithm has been applied to 2 distinct cases.  

In the first case, the locations of BESS and EV charging stations were the sites (nodes) with 
PV installed. In the second case, the EV charging sites were randomly selected.  When applied 
to the IEEE 33 bus network, the first case had a lower value of PVHC of about 5850 kW 
compared with simulation results of the second case which yielded 6000 kW in most simulation 
scenarios.  

Moreover, it was observed that there was a limit to the amount of PVHC which could be 
obtained at the higher values of EV numbers because of the line flow limitations. 
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7. Conclusions 

This thesis proposes an optimization method based on hybrid particle swarm intelligence and 
the steepest gradient descent philosophy. In its execution, the method is aimed at addressing 
the challenges and limitations of both the particle swarm optimization and the gradient descent 
algorithm while harnessing the optimization power which lies in each of the methods. 

The first chapter introduces the background to the research, gives the current state of the 
research in the estimation of PV hosting capacity and highlights the need for further research. 
It also highlights the mainstream approaches to estimating the hosting capacity of photovoltaics 
in the distribution networks available at the present.  

The second chapter focuses on describing the proposed optimization method using hybrid 
particle swarm and gradient descent algorithms (PSO-GD). It highlights the way the method is 
made amiable to the PVHC problem by modifying the velocity component of the standard PSO 
using the first derivative of the objective function provided by the problem structure and its 
gradient component.  

In the third chapter, the problem of PVHC is defined. A formulation of the problem is provided, 
and a model algorithm for solving the problem using PSO-GD is given. This model algorithm 
is applied to three distinct cases. These cases are the 2 IEEE test cases vis-a-vie IEEE 33 test 
bus network and the IEEE 69 bus test network and the existing 136 bus network of Brazil’s
Sao Paulo. The generated results showed that the proposed algorithm is superior to many other 
methods also presented in the chapter. The results also show that the proposed method is highly 
robust through its show of order-1 and order-2 stability. 

Chapter 4 introduces the concept of PVHC enhancement using the PV inverters with volt-var 
function. The proposed method developed in chapters 2 and 3 is extended to this chapter to 
validate the efficacy of the proposal. It is shown that the use of PV inverters with the volt-var 
control capability can massively increase the PVHC of the distribution network. 

In chapter 5, the proposed algorithm is applied in estimating the PVHC of the network with 
uncertain random variables. The proposed method is combined with PEM-based probabilistic 
power flow analysis to estimate the hosting capacity of IEEE 33 bus test system and the existing 
136 bus network. The results obtained indicate that the proposed method is much faster 
compared to mainstream probabilistic methods such as the Monte Carlo Simulations. 

In the final chapter, an investigation into the impacts BESS and EV have on the PVHC of the 
distribution networks is launched. The chapter begins by presenting a load demand model for 
BESS and EV charging load to use for quantifying the impacts of BESS and EV charging on 
the PVHC of the DN. The chapter proceeds to propose a method of incorporating the charging 
load demand into the system normal loading structure and an algorithm to solve this issue is 
also presented. Two case studies are analyzed in this chapter. One case study considered the 
BESS and EV to be located at the PV sites. The other case study considered random EV sites. 
The results of the studies show a certain limit of PVHC for a given number of EV due to 
operating limitations of the DNs. 

Overall, a new method of estimating the distribution network’s maximum potential to host
photovoltaic generated power using PSO-GD presented in this study is superior to other 
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methods and is validated to be faster and order-1 and order-2 stable. The study has shown that 
the proposed method yields remarkable results when combined with stochastic analysis to 
incorporate uncertainties in network variables.   
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Appendix I-A: Line power flows of IEEE 33 without PV  

Load Flow Results After PV Installation – IEEE 33 Bus Test DN

From Bus To Bus Current [pu] Power [MW] Reactive Power [MVAr]

1 2 0.864755661 3.879361274 1.909349345

2 3 0.762196836 3.407469652 1.682788648

3 4 0.529830261 2.333205336 1.162808649

4 5 0.50056145 2.19717926 1.074646735

5 6 0.486739038 2.122284746 1.037060733

6 7 0.254643098 1.095039958 0.527687699

7 8 0.207639501 0.893146558 0.421428962

8 9 0.160401678 0.68836239 0.319847913

9 10 0.147039858 0.624228798 0.296878148

10 11 0.133612025 0.560707983 0.274382551

11 12 0.12213715 0.515160529 0.244201552

12 13 0.107293725 0.454289357 0.208913488

13 14 0.092375583 0.391653346 0.171839514

14 15 0.061873244 0.270932461 0.090890625

15 16 0.048891273 0.21057955 0.080576527

16 17 0.035174599 0.150301291 0.060373324

17 18 0.021449043 0.090052529 0.040041191

2 19 0.079307747 0.361137118 0.161078468

19 20 0.059544437 0.270976221 0.120924929

20 21 0.039709929 0.180144341 0.080175341

21 22 0.019861342 0.090043619 0.040057672

3 23 0.212373166 0.939590424 0.457226217

23 24 0.191406721 0.846416175 0.405057287

24 25 0.095866841 0.421284451 0.201005054

6 26 0.218964888 0.936979217 0.463246345

26 27 0.205356066 0.875461057 0.437473056

27 28 0.191722287 0.813591616 0.411521233

28 29 0.178457561 0.747519868 0.386167889

29 30 0.148859475 0.623524962 0.312687621

30 31 0.101005107 0.421770833 0.211794139

31 32 0.06544411 0.270220244 0.140261691

32 33 0.015520395 0.060012812 0.040019921
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Appendix I-B: Line Flows for IEEE 33 with PV  

Load Flow Results after PV Installation - IEEE 33 Bus Test DN

From Bus To Bus Current [pu] Power [MW] Reactive Power [MVAr]

1 2 0.37855415 0.335053272 1.862879621

2 3 0.32939351 -0.12814005 1.640755049

3 4 0.27832358 -0.78582511 1.143613907

4 5 0.28032679 -0.91024747 1.061361647

5 6 0.28393562 -0.9749188 1.028982467

6 7 0.22728384 -0.99487328 0.546768789

7 8 0.14767981 -0.58982167 0.4417827

8 9 0.17250385 -0.79224175 0.340982926

9 10 0.18215128 -0.85702262 0.317548122

10 11 0.19214428 -0.92242565 0.293718387

11 12 0.19902384 -0.96855782 0.263344069

12 13 0.20890627 -1.03087105 0.227579171

13 14 0.21920667 -1.10086418 0.184716727

14 15 0.24066134 -1.22492355 0.099373437

15 16 0.09077257 -0.45764271 0.084621497

16 17 0.10173598 -0.51860188 0.063921045

17 18 0.11296758 -0.58068289 0.041142595

2 19 0.07914358 0.361132406 0.161073999

19 20 0.05942092 0.270972174 0.120921095

20 21 0.0396275 0.180143742 0.080174614

21 22 0.01982009 0.090043438 0.040057433

3 23 0.14435981 0.559341538 0.452891529

23 24 0.12402092 0.467874862 0.401889365

24 25 0.04147411 0.0457204 0.200188108

6 26 0.09131821 -0.05034455 0.453323063

26 27 0.08801474 0.0991114 0.428188568

27 28 0.0811245 0.038767995 0.403013723

28 29 0.07688352 -0.02231911 0.382055241

29 30 0.06895432 -0.1430606 0.311409276

30 31 0.08112977 -0.34343698 0.211217561

31 32 0.06120318 0.270192624 0.140228873

32 33 0.01451421 0.060011205 0.040017422
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Appendix II: PSO-GD Program Code 

Appendix II-A Main Program Code 

clc;
clear;
close all;
tic;
%% Problem Definition
problem.CostFunction = @(x) Hosting_Capacity(x); % Objective Function of problem
nbus = 33; % Number of buses in the IEEE 33-bus DN
PV_max = params.PV_max; % Declare maximum size of PV plants
problem.nVar = (nbus-1); % Search space of solution, all buses in network
problem.VarMin = zeros(1, problem.nVar); % Lower bound of solution
problem.VarMax = PV_max*ones(1, problem.nVar); % Upper bound of solution

%% Common Parameters of Meta-Heuristics
params.MaxIt = params.MaxIt; % maximum number of iterations
params.nPop = params.nPop; % population size

%% Parameters of PSO
params.c1 = 2; % coefficient of acceleration of individual particle
params.c2 = 2; % coefficient of acceleration of social behavior
params.w = 1; % Inertia weight of acceleration
params.d = 0.99; % Damping coefficient

%% Run PSO-GD algorithm to Generate Results

out1a = RunPSO_GD(problem, params); % Generates solution for PVHC using PSO-GD

%% Results

PVHC = out1a.BestValues(end); % Calculation for PV Hosting Capacity
plot(out1a.voltage);grid on; xlabel('node number'); ylabel('voltage [pu]');

toc;

 

Appendix II-B: PSO-GD Sub-routine 

%%Particle_Swam_Optimization with Gradient Descent for PV siting and sizing
function out1a = RunPSO_GD(problem, params)
%% Problem Definition
ObjFunction = problem.CostFunction; % Objective function
nVar = problem.nVar; % number of variables
VarSize = [1, nVar]; % size of the control
variable
VarMin = problem.VarMin; % Minimum values of
variables
VarMax = problem.VarMax; % Maximum values of
variables
% MaxVelocity =0.35*(VarMax-VarMin); % Maximum velocity of
particles
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MaxVelocity =1.00*(VarMax-VarMin); % Maximum velocity of
particles
MinVelocity = -MaxVelocity; % Minimum velocity of
particles
%% Parameters of PSO
MaxIt = params.MaxIt; % Maximum number of
Iterations
nPop = params.nPop; % Initial swam
population
c1 = params.c1; % Personal acceleration
coefficient
c2 = params.c2; % Global acceleration
coefficient
w = params.w; % Inertia coefficient
d = params.d; % Damping ratio of
inertia (weight) coefficient
z = 10^(-5); % Damping coefficient
of gradient
%% Initialization
empty_particle.PVsizes = []; % Initialize particles
sizes
empty_particle.Velocity = []; % Initialize particle
velocity
empty_particle.value = []; % Initialize particle
value
empty_particle.feasibility = []; % Initialize particle
feasilbility
empty_particle.violation = []; % Initialize particle
constraint violation
empty_particle.gradient = []; % Initialize particle
gradient
empty_particle.V = []; % Initialize particle
node voltages
empty_particle.Pg = []; % Initialize particle
PV generations
empty_particle.Qg = []; % Initialize particle
PV inverter Q output
empty_particle.PowerLoss = []; % Initialize particle
power loss
empty_particle.alpha = []; % Initialize particle
VVC droop characteristic
empty_particle.Best.PVsizes = []; % Initialize particle
node PV sizes
empty_particle.Best.value = []; % Initialize particle
PVHC value
empty_particle.Best.feasibility = []; % Initialize particle
feasilbility flag
empty_particle.Best.violation = []; % Initialize particle
constraint violation flag
empty_particle.Best.gradient = []; % Initialize particle
gradient
particle = repmat(empty_particle, nPop,1); % Initialize particle
population
GlobalBest.PVsizes = VarMin;
[GlobalBest.value, GlobalBest.feasibility, GlobalBest.violation,
GlobalBest.gradient,~,~,~,~,~] = ObjFunction(GlobalBest.PVsizes);
for i = 1:nPop

%Generate a random position for each particle



Appendices

104

particle(i).PVsizes = unifrnd(VarMin, VarMax, VarSize);
% input.PV_injection = particle(i).location;

%Initialize velocity
particle(i).Velocity = zeros(VarSize);
%Evaluate the particle
[particle(i).value, particle(i).feasibility, particle(i).violation,

particle(i).gradient,~,~,~,~,~] = ObjFunction(particle(i).PVsizes);
% particle(i).location = input.PV_injection ;

%Update personal best of particle
particle(i).Best.PVsizes = particle(i).PVsizes;
particle(i).Best.value = particle(i).value;
particle(i).Best.feasibility = particle(i).feasibility;
particle(i).Best.violation = particle(i).violation;
particle(i).Best.gradient = particle(i).gradient;
% Update Global Best
if (particle(i).Best.feasibility == 1 && GlobalBest.feasibility ==0)

GlobalBest = particle(i).Best;
elseif (particle(i).Best.feasibility == 1 && GlobalBest.feasibility == 1)

if particle(i).Best.value > GlobalBest.value
GlobalBest = particle(i).Best;

elseif particle(i).Best.value == GlobalBest.value
if particle(i).Best.violation < GlobalBest.violation

GlobalBest = particle(i).Best;
end

end
elseif (particle(i).Best.feasibility == 0 && GlobalBest.feasibility == 0)

if (particle(i).Best.violation < GlobalBest.violation)
if particle(i).Best.gradient < GlobalBest.gradient
GlobalBest = particle(i).Best;

elseif particle(i).Best.gradient == GlobalBest.gradient
if particle(i).Best.value > GlobalBest.value

GlobalBest = particle(i).Best;
end

end
end

end
end
% alpha = NaN(MaxIt,33);
Vmax = zeros (MaxIt, 1);
Gradient = NaN(MaxIt, 1);
BestValues = NaN(MaxIt, 1);
Solution_feasibility = NaN(MaxIt, 1);
Constraint_violation = NaN(MaxIt, 1);
%% Main Loop of PSO
for it = 1:MaxIt

% Calculating the particle velocity and particle position
for i = 1:nPop

particle(i).Velocity = (particle(i).gradient).*particle(i).Velocity...
+c1.*rand(VarSize).*( particle(i).Best.PVsizes -

particle(i).PVsizes)...
+c2.*rand(VarSize).*( GlobalBest.PVsizes - particle(i).PVsizes);

particle(i).Velocity = max(particle(i).Velocity, MinVelocity);
particle(i).Velocity = min(particle(i).Velocity, MaxVelocity);
particle(i).PVsizes =(particle(i).PVsizes + particle(i).Velocity);
particle(i).PVsizes = max(particle(i).PVsizes, VarMin);
particle(i).PVsizes = min(particle(i).PVsizes, VarMax);
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[particle(i).value, particle(i).feasibility, particle(i).violation,
particle(i).gradient,particle(i).V, particle(i).Pg, particle(i).Qg,
particle(i).PowerLoss,particle(i).alpha] = ObjFunction(particle(i).PVsizes);

% Update the particle best
if (particle(i).Best.feasibility == 0 && particle(i).feasibility ==1)

particle(i).Best = particle(i);
elseif(particle(i).Best.feasibility == 1 && particle(i).feasibility == 1)

if (particle(i).Best.value < particle(i).value)
particle(i).Best = particle(i);

elseif (particle(i).Best.value == particle(i).value)
if particle(i).Best.violation > particle(i).violation

particle(i).Best = particle(i);
end

end
elseif particle(i).Best.feasibility == 0 && particle(i).feasibility == 0

if (particle(i).Best.gradient > particle(i).gradient)
particle(i).Best = particle(i);

elseif particle(i).Best.gradient == particle(i).gradient
if particle(i).Best.value < particle(i).value

particle(i).Best = particle(i);
end

end
end
% Update the global best solution

if (particle(i).Best.feasibility == 1 && GlobalBest.feasibility ==0)
GlobalBest = particle(i).Best;

elseif (particle(i).Best.feasibility == 1 && GlobalBest.feasibility == 1)
if particle(i).Best.value > GlobalBest.value

GlobalBest = particle(i).Best;
elseif particle(i).Best.value == GlobalBest.value

if particle(i).Best.violation < GlobalBest.violation
GlobalBest = particle(i).Best;

end
end

elseif (particle(i).Best.feasibility == 0 && GlobalBest.feasibility == 0)
if particle(i).Best.violation < GlobalBest.violation

if particle(i).Best.gradient < GlobalBest.gradient
GlobalBest = particle(i).Best;

elseif particle(i).Best.gradient == GlobalBest.gradient
if particle(i).Best.value > GlobalBest.value

GlobalBest = particle(i).Best;
end

end
end

end
end

Solution_feasibility(it) = GlobalBest.feasibility;
% Vmax(it) = max(GlobalBest.V);

BestValues(it) = GlobalBest.value;
Constraint_violation(it) = GlobalBest.violation;
Gradient(it) = GlobalBest.gradient;

% alpha(i)= particle(i).alpha;
w = w*d;
disp(['Iteration#:' num2str(it) ' Best PSO_Value: ' num2str(BestValues(it)) '

Feasibility: ' num2str(Solution_feasibility(it)) ' ' 'Gradient:'
num2str(Gradient(it))])
% input.penaltyfactor = input.penaltyfactor*penaltycorrection;
end
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%% Results
out1a.particle = particle;
out1a.BestValues = BestValues;
out1a.BestSol = GlobalBest.PVsizes;
out1a.Feasibility = GlobalBest.feasibility;
out1a.Constraint_Violation = Constraint_violation;
out1a.Gradient = Gradient;
out1a.voltage = particle.V;
out1a.realPV = particle.Pg;
out1a.reactivePV = particle.Qg;
out1a.PowerLoss = particle.PowerLoss;
out1a.alpha = particle.alpha;
out1a.Vmax = Vmax;
end

Appendix II-C: PVHC Cost-function Sub-routine 

function [FitnessValue, Feasibility, constraint_violation,
Gradient,V,Pg,Qg,PowerLoss,alpha] = Hosting_Capacity(x)
penaltyfactor = 10;
[V, Pg, Qg, J, ~, busd, del, npv, npq, G, B, ~, pq, ~, nbus,alpha] =
LoadFlow(x); % Calling the load flow progam
[~, ~, ~, ~, ~, PowerLoss] = linepowerflows(V, G, B, nbus, del);
Vlb = 0.95; % Lower bound of the voltage
Vub = 1.05; % Upper bound of the voltage
Qlb = -1; % Lower bound of the reactive power
(IEEE 33-1.0 , IEEE-69-1.50, IEEE 119-1.50)
Qub = 1; % Upper bound of the reactive power
(IEEE 33+1.0 , IEEE-69+1.50, IEEE 119+1.50)
Pub = 1; % Lower bound of the reactive power
(IEEE 33-1.0 , IEEE-69-1.50, IEEE 119-1.50)
Plb = -1; % Upper bound of the reactive power
(IEEE 33+1.0 , IEEE-69+1.50, IEEE 119+1.50)
wp = 0; % Initializing the real power violation
wq = zeros(nbus,1); % Initializing the reactive power
violation
wv = zeros(nbus,1); % Initializing the bus voltage violation
Gradient = min(abs(LagrangeGrad(V, del, J, G, B, npv, npq, busd, pq, nbus, Pg)));

%% Penalties for violation of constraints
for i = 1:nbus

% voltage constraints
if V(i) > Vub

wv(i) = (V(i)-Vub)^2;
else

if V(i) < Vlb
wv(i) = (V(i)-Vlb)^2;

end
end
% reactive power constraints
if Qg(i) > Qub

wq(i) = (Qg(i)-Qub)^2;
else

if Qg(i) < Qlb
wq (i)= (Qg(i)-Qlb)^2;

end
end
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end
% real power constraints at the slack bus

if Pg(1) < Plb
wp =(Pg(1)-Plb)^2;

else
if Pg(1) > Pub

wp =(Pg(1)-Pub)^2;
end

end
%% Feasibilty check
constraint_violation = sum(wp)+sum(wq)+sum(wv);
if constraint_violation == 0

Feasibility = 1;
else

Feasibility = 0;
end
%% Fitness value calculation
FitnessValue = 1.0*sum(x) - 1.0*penaltyfactor*sum(wv)-0.5*penaltyfactor*sum(wq)-
1*penaltyfactor*wp-0.2*PowerLoss;
end

Appendix II-D: Lagrange Gradient Sub-routine 

function Gradient = LagrangeGrad(V, del, J, G, B, npv, npq, busd, pq, nbus,
PV_Sizes)
%% Initilization of elements
dFdDelta = zeros([nbus, 1]); % derivatives of Lagrange wrt voltage
angles
dFdVolt = zeros([npq, 1]); % derivatives of Lagrange wrt voltage
magnitudes
dFdPpv = zeros([2*npq + npv - 1, 1]); % derivatives of Lagrange wrt PV power
dGdPpv = zeros([2*npq + npv - 1, 1]); % derivatives of Lagrange wrt PV power
nbus = length(busd(:,1)); % total number of buses
for i = 1 : nbus

if (busd(i,2) == 1 || busd(i,2) == 2)
for j = 1:nbus

dFdDelta(i) = dFdDelta(i) + PV_Sizes(i)*(V(i)*V(j)*(-G(i,j)*sin(del(i)-
del(j))+B(i,j)*cos(del(i)-del(j))));
% dFdDelta(i) = dFdDelta(i) + (V(i)*V(j)*(-G(i,j)*sin(del(i)-
del(j))+B(i,j)*cos(del(i)-del(j))));

end
dFdPpv(i) = dFdPpv(i) + PV_Sizes(i);
dGdPpv(i) = dGdPpv(i) - PV_Sizes(i);

end

end
dFdDelta = dFdDelta(2:nbus);
for i = 1: npq

m = pq(i);
for j = 1:nbus

dFdVolt(i) = dFdVolt(i) + (V(j)*(G(m,j)*cos(del(m)-
del(j))+B(m,j)*sin(del(m)-del(j))));

end

end
dFdx = [dFdDelta;dFdVolt];
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Lambda = J^(-1)*(dFdx);
Gradient = dFdPpv - dGdPpv'*Lambda;

end

Appendix II-E: LoadFlowAnalysis Sub-routine 

function [V, Pg, Qg, J, Y, busd, del, npv, npq, G, B, pv, pq, Pl, nbus, alpha1] =
LoadFlow(x)
num = 33; % IEEE-33 Bus RDN
%num = 69; % IEEE 69-bus RDN
%num = 136; % Sao Paulo 136 Bus DN
Y = ybusppg(num); % Calling ybusppg.m to get Bus Admittance
Matrix..
busd = busdatas(num);
% busd = busdatas; % Calling busdata33.m to get busdatas..
BMva = 5; % Base MVA ....for IEEE 33, 69
bus = busd(:,1); % Bus Number.
type = busd(:,2); % Type of Bus 1-Slack, 2-PV, 3-PQ..
V = busd(:,3); % Specified Voltage..
del = zeros(length(V),1); % Voltage Angle..
t = 2:num; %IEEE 33 Bus PV locations
% t = [7 10 12 20 23 26 35 43 56 62 64 73 76 77 83 86 90 98 100 105 112 118 122
129 136];
% x = input;
for j = 1:length(t)

busd(t(j),5) = x(j);
end
Pg = busd(:,5)/BMva; % PGi
Qg = busd(:,6)/BMva; % QGi..
Pl = 1.00*busd(:,7)/BMva; % PLi..
Ql = 1.00*busd(:,8)/BMva; % QLi..
Qmin = busd(:,9)/BMva; % Minimum Reactive Power Limit..
Qmax = busd(:,10)/BMva; % Maximum Reactive Power Limit..
nbus = max(bus); % To get no. of buses..
Psp = Pg - Pl; % Pi = PGi - PLi..Net bus real power
Qsp = Qg - Ql; % Qi = QGi - QLi..Net bus reactive power
%Psp = P; % P Specified
%Qsp = Q; % Q Specified
G = real(Y); % Conductance..of bus matrix elements
B = imag(Y); % Susceptance..of bus matrix elements
pv = find(type == 2 | type == 1); % Index of PV Buses..
pq = find(type == 3); % Index of PQ Buses..
npv = length(pv); % Number of PV buses..
npq = length(pq); % Number of PQ buses..
alpha1=zeros(nbus,1);
Tol = 1; % Tolerance (for error) setting
Iter = 1; % iteration starting
while (Tol > 1e-5 )

%(Tol > 1e-5 && Iter <= 50) % Iteration starting..
P = zeros(nbus,1);
Q = zeros(nbus,1);
% Calculate P and Q
for i = 1:nbus

for k = 1:nbus
P(i) = P(i) + V(i)* V(k)*(G(i,k)*cos(del(i)-del(k)) +

B(i,k)*sin(del(i)-del(k)));
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Q(i) = Q(i) + V(i)* V(k)*(G(i,k)*sin(del(i)-del(k)) -
B(i,k)*cos(del(i)-del(k)));

end
end

% Checking Q-limit violations..
if Iter <= 7 && Iter > 2 % Only checked up to 7th iterations..

for n = 2:nbus
if type(n) == 2

QG = Q(n)+Ql(n);
if QG < Qmin(n)

V(n) = V(n) + 0.01;
elseif QG > Qmax(n)

V(n) = V(n) - 0.01;
end

end
end

end
% % [alpha, Qg] = VVC(V, Pg, nbus);
% % Qsp = Qg - Ql;

% Calculate change from specified value
dPa = Psp-P; % Real Power mismatch between specified and calculated

values
dQa = Qsp-Q; % Reactive Power mismatch between specified and

calculated values
k = 1;
dQ = zeros(npq,1); % Initializing the power mistmatch matrix
for i = 1:nbus

if (type(i) == 3)||(type(i) == 4)
% type(i) == 3 (alterations(1))

dQ(k,1) = dQa(i);
k = k+1;

end
end
dP = dPa(2:nbus);
M = [dP; dQ]; % Mismatch Vector

% Jacobian
% J1 - Derivative of Real Power Injections with Angles..
J1 = zeros(nbus-1,nbus-1); %Initializing dP/dDel elements
for i = 1:(nbus-1)

m = i+1;
for k = 1:(nbus-1)

n = k+1;
if n == m

for n = 1:nbus
J1(i,k) = J1(i,k) + V(m)* V(n)*(-G(m,n)*sin(del(m)-del(n)) +

B(m,n)*cos(del(m)-del(n)));
end
J1(i,k) = J1(i,k) - V(m)^2*B(m,m);

else
J1(i,k) = V(m)* V(n)*(G(m,n)*sin(del(m)-del(n)) -

B(m,n)*cos(del(m)-del(n)));
end

end
end
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% J2 - Derivative of Real Power Injections with V..
J2 = zeros(nbus-1,npq); %Initializing dP/dV elements
for i = 1:(nbus-1)

m = i+1;
for k = 1:npq

n = pq(k);
if n == m

for n = 1:nbus
J2(i,k) = J2(i,k) + V(n)*(G(m,n)*cos(del(m)-del(n)) +

B(m,n)*sin(del(m)-del(n)));
end
J2(i,k) = J2(i,k) + V(m)*G(m,m);

else
J2(i,k) = V(m)*(G(m,n)*cos(del(m)-del(n)) + B(m,n)*sin(del(m)-

del(n)));
end

end
end

% J3 - Derivative of Reactive Power Injections with Angles..
J3 = zeros(npq,nbus-1); %Initializing dQ/dDel elements
for i = 1:npq

m = pq(i);
for k = 1:(nbus-1)

n = k+1;
if n == m

for n = 1:nbus
J3(i,k) = J3(i,k) + V(m)* V(n)*(G(m,n)*cos(del(m)-del(n)) +

B(m,n)*sin(del(m)-del(n)));
end
J3(i,k) = J3(i,k) - V(m)^2*G(m,m);

else
J3(i,k) = V(m)* V(n)*(-G(m,n)*cos(del(m)-del(n)) -

B(m,n)*sin(del(m)-del(n)));
end

end
end

% J4 - Derivative of Reactive Power Injections with V..
J4 = zeros(npq,npq); %Initializing dQ/dV elements
for i = 1:npq

m = pq(i);
for k = 1:npq

n = pq(k);
if n == m

for n = 1:nbus
J4(i,k) = J4(i,k) + V(n)*(G(m,n)*sin(del(m)-del(n)) -

B(m,n)*cos(del(m)-del(n)));
end
J4(i,k) = J4(i,k) - V(m)*B(m,m);

else
J4(i,k) = V(m)*(G(m,n)*sin(del(m)-del(n)) - B(m,n)*cos(del(m)-

del(n)));
end

end
end

J = [J1 J2; J3 J4]; % Jacobian Matrix
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X = J\M; % INV(J) x M, Correction Vector..
dTh = X(1:nbus-1); % Change in Voltage Angle..
dV = X(nbus:end); % Change in Voltage Magnitude..

% Update State Vectors (Voltage Angle & Magnitude)
del(2:nbus) = dTh + del(2:nbus);
k = 1;
for i = 2:nbus

if type(i) == 3
V(i) = dV(k) + V(i);
k = k+1;

end
end
Iter = Iter + 1;
Tol = max(abs(M));

end

for k = 1:nbus
if (type(k)== 1 || type(k)==2)
Pg(k)= P(k)+Pl(k);
Qg(k)= Q(k)+Ql(k);

end
end

end

Appendix II-F: Volt-Var Control Sub-routine

function [alpha, Qg] = VVC(V, Pg, nbus)
% function for calculating the inverter volt/var set points%%
%% Parameter declaration
Vmax = 1.050; % maximum allowable node voltage
Vmin = 0.950; % minimum allowable node voltage
Vdmin = 0.98; % minimum dead-band voltage
Vdmax = 1.02; % maximum dead-band voltage
Vref = 1.00;
%% Calculation of Decision Variables
Qgmax = sqrt((Pg/0.9).^2-Pg.^2); % maximum reactive power output (injection)
Qgmin = -Qgmax; % minimum reactive power output (absorption)
alpha = Qgmax/(Vref-Vmin); % inverter reactive power operating
characteristic
Qg = zeros(nbus,1);
%% volt-var control loop
for i = 1:nbus

if Pg(i) > 1e-3 % To avoid conflicting with Power
mismatch tolerance

if V(i) < Vmin
Qg(i) = Qgmax(i);

elseif ((V(i) > Vmin) && (V(i) < Vref))
Qg(i) = -alpha(i)*(V(i)-Vref);

elseif ((V(i) > Vref) && (V(i) < Vmax))
Qg(i) = -alpha(i)*(V(i)-Vref);

else
Qg(i) = Qgmin(i);
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end

end
end
end

Appendix II-G: PEM Moments Generator 

% Input data capture
clear;
close all;
clc;
tic;
% Declaration of Parameters of Distribution Network
nbus = 136;
params.nbus = 136; % Number of bus in
the network
params.Y = ybusppg(nbus); %PLF generation
params.BMVA = 5; % MVA base for the
nework
params.busd = busdatas(nbus); % Network bus
information
params.Pg = params.busd(:,5)/params.BMVA; % PGi..active power
generated
params.Qg = params.busd(:,6)/params.BMVA; % QGi..reactive
power generated
params.Pl = params.busd(:,7)/params.BMVA; % Active power
demand
params.Ql = params.busd(:,8)/params.BMVA; % Reactive power
demand
params.type = params.busd(:,2); % Type of node
(slack=1, P-V=2, P-Q=3)
params.PV_sizes = [0.7 0.9 0.7 0.5 0.2 0.8]; % PV plant sizes at
different nodes
params.t = [7 15 18 25 26 31]; % PV plant locations
params.Number_of_Runs = 100000; % Number of points
on the random variable distribution
% n = 3.6:0.1:5.2
% for b = 1:length(n)
% params.PV_sizes = n(b)*params.PV_sizes1/length(params.PV_sizes1);
% call the random variable generator
Random_Var = Stochastic_Random_Variables(params); % Random generation
of input variables
PVgen = Random_Var.PVgen'; % PV output
distribution
Plgen = Random_Var.Plgen'; % Load demand active
power demand
Qlgen = Random_Var.Qlgen'; % Load demand
reactive power demand
% calculate mean of the random input variables
mu_LoadP = mean(Plgen); % Mean of the node
active power demands
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mu_LoadQ = mean(Qlgen); % Mean of the node
reactive power demands
mu_PV = mean(PVgen); % Mean of the node PV
injections
% standard deviation of random input variables
sigma_LoadP = std(Plgen); % Standard deviation
of the node active power demands
sigma_LoadQ = std(Qlgen); % Standard deviation
of the node reactive power demands
sigma_PV = std(PVgen); % Standard deviation
of the node PV injections
% calculate skewness of random input variables
Skew_LoadP = skewness(Plgen,1); % Skewness of the
node active power demands
Skew_LoadQ = skewness(Qlgen,1); % Skewness of the
node reactive power demands
Skew_PV = skewness(PVgen,1); % Skewness of the
node PV injections
% calculate kurtosis of random input variables
Kurtos_LoadP = kurtosis(Plgen,1); % Kurtosis of the
node active power demands
Kurtos_LoadQ = kurtosis(Qlgen,1); % Kurtosis of the
node reactive power demands
Kurtos_PV = kurtosis(PVgen,1); % Kurtosis of the
node PV injections
% Extracting the mean values of the random variables
Mean_Pl = mu_LoadP(2:params.nbus);
Mean_Ql = mu_LoadQ(2:params.nbus);
Mean_PV = mu_PV(params.t);
% Extracting the standard deviation values of the random variables
std_Pl = sigma_LoadP(2:params.nbus);
std_Ql = sigma_LoadQ(2:params.nbus);
std_PV = sigma_PV(params.t);
% Extracting the skewness values of the random variables
skew_Pl = Skew_LoadP(2:params.nbus);
skew_Ql = Skew_LoadQ(2:params.nbus);
skew_PV = Skew_PV(params.t);
% Extracting the kurtosis values of the random variables
kurtos_Pl = Kurtos_LoadP(2:params.nbus);
kurtos_Ql = Kurtos_LoadQ(2:params.nbus);
kurtos_PV = Kurtos_PV(params.t);
% Mean, stndard deviation, skewness and kurtosis of all input random variab
mean_Var = [Mean_PV,Mean_Pl,Mean_Ql]; % Mean values of
all random input variables
sigma_Var = [std_PV,std_Pl,std_Ql]; % Standard
deviation of all random input variables
skew_Var = [skew_PV,skew_Pl,skew_Ql]; % Skewness of all
random input variables
kurtos_Var = [kurtos_PV,kurtos_Pl,kurtos_Ql]; % Kurtosis of all
random input variables
% Computing the PEM concentrations (locations and weights)
K = 2; % For 2m+1 Point
Estimate Method (PEM) scheme
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Std_locations = zeros(K,length(mean_Var)); % Standard
locations of the variables
rnd_Var_weight = zeros(K,length(mean_Var)); % Weights of the
random variables in each standard location
rnd_Var_locations = zeros(K,length(mean_Var)); % locations of
random variables
for k = 1:K

Std_locations(k,:) = (skew_Var./2) +((-1)^(3-k))*sqrt(kurtos_Var-
0.75.*skew_Var.^2);
end
for k = 1:K

% Computing actual weights
rnd_Var_weight(k,:) = ((-1)^(3-

k))./(Std_locations(k,:).*(Std_locations(1,:)-Std_locations(2,:)));
% Computing actual locations
rnd_Var_locations(k,:) = mean_Var + sigma_Var.*Std_locations(k,:);

end
% Random Variable input data
%============================================================================
=======================%
% Mean(column 1) locations(columns 2,3) weights(columns 4,5)
% Rnd_Var_Dat = [mean_Var', rnd_Var_locations', rnd_Var_weight']
Var_input = mean_Var';
Var_Locations = rnd_Var_locations';
Var_Weights = rnd_Var_weight';
a = length(params.t); b = a+1; c = b+params.nbus-2;
Max_NodeVoltage = zeros(length(Var_input),K);
meanNODE_Vmax = 0;
stdNODE_Vmax = 0;
% Initial weight for 2m+1 PEM
w0 = 1-sum(1./(kurtos_Var-(skew_Var).^2));
for l = 1:length(Var_input)

for k = 1:K
Pg = zeros(params.nbus,1);
Pl = zeros(params.nbus,1);
Ql = zeros(params.nbus,1);
x = Var_Locations(l,k);
y = Var_input;
y(l)=(x);
PV1 = y(1:a);
Pl1 = y(b:c);
Ql1 = y((c+1):end);
Pl(2:params.nbus)=Pl1;Ql(2:params.nbus)=Ql1;Pg(params.t)=PV1;
[Vmax, PV_inj, Pg1] = PLFTest2(Pl, Ql, Pg,params);
Max_NodeVoltage(l,k)=Vmax;
meanNODE_Vmax = meanNODE_Vmax +
Max_NodeVoltage(l,k)*Var_Weights(l,k);

end
end
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Appendix II-H: Main program for comparison of PSO-GD/PEM and MCS 

tic;
clear;
close all;
clc;
tic;
% Declaration of Parameters of Distribution Network
nbus = 33;
% nbus = 136;
params.Steps = 0.05; % Increment steps
for PVHC [100kW]
params.PVHC_min = sum(out1a.PV_sizes); %
Starting value of PVHC [MW] IEEE 33 bus
params.nbus = 33; % Number of bus in
the network(IEEE33)
params.Y = ybusppg(params.nbus); %PLF
generation
params.BMVA = 5; % MVA base for the
nework
params.busd = busdatas(params.nbus); % Network bus
information
params.Pg = params.busd(:,5)/params.BMVA; % PGi..active power
generated
params.Qg = params.busd(:,6)/params.BMVA; % QGi..reactive
power generated
params.Pl = params.busd(:,7)/params.BMVA; % Active power
demand
params.Ql = params.busd(:,8)/params.BMVA; % Reactive power
demand
params.type = params.busd(:,2); % Type of node
(slack=1, P-V=2, P-Q=3)
params.PV_sizes1 = out1a.PV_sizes; % PV plant sizes at different
nodes(IEEE33)
params.t = out1a.PV_locations; % PV plant
locations(IEEE33)
params.Vlim = 1.05;
params.Number_of_Runs = 20000;
PV_sizes2 = params.PVHC_min :params.Steps:params.PVHC_max;
runs = length(PV_sizes2);
ProbVVMCS = 0;
Node_VmaxMCS = zeros(params.Number_of_Runs,runs);
PVRandGen = zeros(params.Number_of_Runs,runs);
RandLoad = zeros(params.Number_of_Runs,runs);
Installed_PV = zeros(runs,1);
Observed_Vmax=zeros(runs,1);
ProbVVPEM = zeros(runs,1);
ProbVVMCS = zeros(runs,1);
meanVmaxNodePEM = zeros(runs,1);
stdVmaxNodePEM = zeros(runs,1);
Node_V = zeros(params.nbus,runs);
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for z = 1:runs
params.PV_sizes =
PV_sizes2(z)/(sum(params.PV_sizes1))*params.PV_sizes1;
params.Random_Var = Stochastic_Random_Variables(params);
%% MCS-based results
figure(1)
[ProbVVMCS(z,1),Node_VmaxMCS(:,z), Node_V(:,z), PVRandGen(:,z),
RandLoad(:,z)]=MCS_MaxNodeVoltage_Curves(params);
Installed_PV(z,1) = sum(params.PV_sizes);
pd = fitdist(Node_VmaxMCS(:,z), 'Normal');
x =
linspace(min(Node_VmaxMCS(:,z)),max(Node_VmaxMCS(:,z)),params.Number_o
f_Runs);
y1 = pdf(pd,x);
y = y1/params.Number_of_Runs;
hold on;
plot(x,y1,'LineWidth',5);
xlabel('Maximum Node Voltage');
ylabel('Probability Density Distribution');
% % PEM based results
[ProbVVPEM(z,1),meanVmaxNodePEM(z,1),stdVmaxNodePEM(z,1)] =
PEM_MaxNodeVoltage_Curves(params);
NodeVmax = 1.02:0.001:1.1;
pdfNodeVmax = (1/(sqrt(2*pi*stdVmaxNodePEM(z,1)^2)))*(exp(-((NodeVmax-
meanVmaxNodePEM(z,1)).^2)/(2*stdVmaxNodePEM(z,1)^2)));
hold on;
plot(NodeVmax,pdfNodeVmax,'LineWidth',2.5); grid on;
hold on;

end % end the ProbVV simulation
end
toc;

Appendix II-I: PEM-based PVHC Estimation sub-routine 

function [ProbVVPEM,meanVmaxNode,stdVmaxNode] =
PEM_MaxNodeVoltage_Curves(params)
ProbVV = 0;
meanVmaxNode = 0;
stdVmaxNode = 0;
params.PV_sizes = params.PV_sizes;

% call the random variable generator
% Random_Var = Stochastic_Random_Variables(params); % Random generation
of input variables
Vlim = params.Vlim; % The maximum
allowed voltage
PVgen = params.Random_Var.PVgen'; % PV output
distribution
Plgen = params.Random_Var.Plgen'; % Load demand active
power demand
Qlgen = params.Random_Var.Qlgen'; % Load demand
reactive power demand
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PV1 = PVgen(:,params.t); % PV injections at
PV nodes t
Pl1 = Plgen(:,2:params.nbus); % Active power load
demand at P-Q nodes
Ql1 = Qlgen(:,2:params.nbus); % ReActive power
load demand at P-Q nodes
mu_PV = (mean(PV1))'; % Mean values of
random PV injections
mu_Pl = (mean(Pl1))'; % Mean values of
random load demands
mu_Ql = (mean(Ql1))'; % Mean values of
random load demands
sigma_PV = (std(PV1))'; % standard deviation
values of random PV injections
sigma_Pl = (std(Pl1))'; % standard deviation
values of random load demands
sigma_Ql = (std(Ql1))'; % standard deviation
values of random load demands
skew_PV = (skewness(PV1,0))'; % skewness values of
random PV injections
skew_Pl = (skewness(Pl1,0))'; % skewness values of
random load demands
skew_Ql = (skewness(Ql1,0))'; % skewness values of
random load demands
kurtos_PV = (kurtosis(PV1,0))'; % kurtosis values of
random PV injections
kurtos_Pl = (kurtosis(Pl1,0))'; % kurtosis values of
random load demands
kurtos_Ql = (kurtosis(Ql1,0))'; % kurtosis values of
random load demands
meanVar = [mu_PV;mu_Pl;mu_Ql]; % Mean values of
random variables
sigmaVar = [sigma_PV;sigma_Pl;sigma_Ql]; % standard
deviations of random variables
skewVar = [skew_PV;skew_Pl;skew_Ql]; % skewness of random
variables
kurtosVar = [kurtos_PV; kurtos_Pl; kurtos_Ql]; % kurtosis of random
variables
% 2m scheme of Point Estimate Method (PEM)
K = 2; % PEM scheme related
value
m = length(meanVar); % Total number of
variables
Var_weight = zeros(m,K);
std_location = zeros(m,K);
Var_locations = zeros(m,K);
NVmax = zeros(m,K);
mu_NodeVmax = 0;
moment2 = 0;
a = length(params.t); b = a+1; c = a+params.nbus-1; d = c+1; e =
length(meanVar);
% generating standard locations
for k = 1:K
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std_location(:,k) = (skewVar/2)+((-1)^(3-k))*sqrt(m+(skewVar/2).^2);
end
for k = 1:K

Var_weight(:,k) = (((-1)^k)/m)*(std_location(:,(3-k))./(std_location(:,1)-
std_location(:,2)));

% calculating concetrations
Var_locations(:,k) = meanVar + std_location(:,k).*sigmaVar;

end
for l = 1:m

for k = 1:K
y = meanVar;
Pg = zeros(params.nbus,1);
Pl = zeros(params.nbus,1);
Ql = zeros(params.nbus,1);
x = Var_locations(l,k);
y(l) = x;
PV2 = y(1:a); Pl2 = y(b:c); Ql2 = y(d:e);
Pg(params.t) = PV2; Pl(2:params.nbus) = Pl2; Ql(2:params.nbus) = Ql2;
[Vmax, ~, ~] = PLFTest2(Pl, Ql, Pg,params);
NVmax(l,k) = Vmax;
mu_NodeVmax = mu_NodeVmax + Vmax*Var_weight(l,k);
moment2 = moment2 + ((Vmax)^2)*Var_weight(l,k);

end
end
meanVmax = mu_NodeVmax;
sigmaVmax = sqrt(moment2-meanVmax.^2);
% NodeVmax = 1.02:0.001:1.095; r = min(NodeVmax); s = max(NodeVmax);
% pdfNodeVmax = (1/(sqrt(2*pi*sigmaVmax^2)))*(exp(-((NodeVmax-
meanVmax).^2)/(2*sigmaVmax^2)));
% plot(NodeVmax,pdfNodeVmax,'LineWidth',2); grid on; xlabel('Maximum Node
Voltage'); ylabel('Probability Density');
% hold on;
syms x;
f = (1/(sqrt(2*pi*sigmaVmax^2)))*(exp(-((x-meanVmax).^2)/(2*sigmaVmax^2)));
F = vpaintegral(f,x,[Vlim,1.1]);
ProbVV = double(F);
meanVmaxNode = meanVmax;
stdVmaxNode = sigmaVmax;
ProbVVPEM = 100*ProbVV;
end

Appendix II-J: MCS-based PVHC Estimation sub-routine

function [ProbVVMCS,Node_Vmax,V, PVRandGen, RandLoad] =
MCS_MaxNodeVoltage_Curves(params)
% Monte Carlo Parameter Declaration
Number_of_Runs = params.Number_of_Runs;
Vllimit = 1.05;
Node_Vmax = zeros(Number_of_Runs,1);
Volt_vio = 0;
params.PV_sizes = params.PV_sizes;
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PVRandGen = zeros(Number_of_Runs,1);
RandLoad = zeros(Number_of_Runs,1);
% call the random variable generator
% Random_Var = Stochastic_Random_Variables(params);
PVgen = params.Random_Var.PVgen;
Plgen = params.Random_Var.Plgen;
Qlgen = params.Random_Var.Qlgen;
for i = 1:Number_of_Runs

Pg = PVgen(:,i);
Pl = Plgen(:,i);
Ql= Qlgen(:,i);
[Vmax, ~, V] = PLFTest2(Pl, Ql, Pg,params);
Node_Vmax(i,1) = Vmax; % Maximum node voltage in

iteration
if Node_Vmax(i,1)>Vllimit

Volt_vio = Volt_vio+1;
end
PVRandGen(i,1) = sum(Pg); % Aggregate Random PV

generation
RandLoad (i,1) = sum(Pl); % Aggregate Load demand

end
volt_violation = Volt_vio/Number_of_Runs;

% PVHC = sum(params.PV_sizes);
ProbVVMCS = volt_violation*100; % Percent probability of

overvoltage.
% Installed_PV = PVHC;
% Net_Load = PVRandGen - RandLoad; % Net demand imposed on
the network.
end

 


