

HOKKAIDO UNIVERSITY

Title	A rapid synthesis of Hf-Beta zeolite as highly active catalyst for Meerwein-Ponndorf-Verley reduction by controlling water content of precursor gel
Author(s)	Nakamura, Taichi; Kamiya, Yuichi; Otomo, Ryoichi
Citation	Microporous and Mesoporous Materials, 333, 111743 https://doi.org/10.1016/j.micromeso.2022.111743
Issue Date	2022-03
Doc URL	http://hdl.handle.net/2115/91231
Rights	© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	http://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	220119-DGC_Hf-Beta-Support-OR.pdf (Supplementary data)

Supporting Information

A Rapid Synthesis of Hf-Beta Zeolite as Highly Active Catalyst for Meerwein-Ponndorf-Verley Reduction by Controlling Water Content of Precursor Gel

Taichi Nakamura,¹ Yuichi Kamiya², and Ryoichi Otomo^{2, *}

¹Graduate School of Environmental Science, and ²Faculty of Environmental Earth Science,

Hokkaido University, Kita 10 Nishi 5, Kita-ku, Sapporo 060-0810, Japan.

*Corresponding author: Dr. Ryoichi Otomo

Tel: +81-11-706-2259, E-mail: otomo@ees.hokudai.ac.jp

Figure S1. FT-IR spectra of CD₃CN adsorbed on Hf-Beta (a) Hf-1.4-72, (b) Hf-4.5-72, (c) Hf-6.4-72, and (d) Hf-HF. Dosing pressure of $CD_3CN = 5 - 2000$ Pa.

Figure S2. Deconvoluted FT-IR spectra of CD₃CN adsorbed on (a) Hf-1.4-72, (b) Hf-4.5-72, and (c) Hf-6.4-72. Dosing pressure of CD₃CN was 200 Pa.

Figure S3. FT-IR spectra of CD₃CN adsorbed on HfO₂/Si-Beta. Dosing pressure of CD₃CN = 5 - 200 Pa.

Figure S4. XRD patterns of calcined samples synthesized from precursor gel containing seed crystal with $H_2O/SiO_2 = (a) 1.4$ and (b) 6.4 at different crystallization periods.

Figure S5. FT-IR spectra of CD₃CN adsorbed on Hf-6.4-72 and Hf-6.4-24-seed. Dosing pressure of CD₃CN was 200 Pa.

Figure S6. N₂ adsorption-desorption isotherms at -196 °C for (a) Hf-1.4-72, (b) Hf-2.2-72, (c) Hf-3.3-72, (d) Hf-4.5-72, (e) Hf-5.5-72 and (f) Hf-6.4-72.

Figure S7. N₂ adsorption-desorption isotherms at -196 °C for (a) Hf-HF, (b) Zr-HF and (c) Sn-HF.

Figure S8. SEM image of Hf-HF.