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Abstract. A Schrödinger-type equation for a heavy quarkonium in terms
of the dynamical quark mass is obtained in a quasi-particle (QP) approach
by Llanes-Estrada and Cotanch. To observe the relationship between the ob-
tained equation and the constituent quark (potential) model equation, we
treat the dynamical quark mass by a constant parameter M and expand
the equation in 1/M up to order (1/M). The equation reduces to that of
the traditional nonrelativistic constituent quark(CQ) model when a nonlocal
interaction is neglected. We investigate the nonrelativistic model where the
dynamical quark massM in the Schrödinger-type equation is treated as a free
parameter and call it the quasi-quark (QQ) model. To elucidate the role of
the nonlocal interaction and to observe the reliability of the QQ model, we
studied the charmonium S-wave states.

1 Introduction

Since the quark model was proposed in 1964, the nonrelativistic constituent
quark model has played a pioneering role in the history of hadron research by
treating quarks as real dynamical entities rather than as mathematical tools.
After the quantum chromodynamics (QCD) was established, the quark model
was reinforced by its successful outcome. However, while we have known that
the constituent quark turned out to be different from the real elementary entity,
quark, it is still an open problem to justify many of the necessary assumptions
of the model‡.

∗E-mail: m sakai@shirt.ocn.ne.jp
∗∗E-mail: hadron-6q.hirano@hb.tp1.jp

∗∗∗E-mail: kato@nucl.sci.hokudai.ac.jp
†E-mail: y-mazda@wish.ocn.ne.jp
‡For example, cf. Text book by F. J. Ynduráin1
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The Cotanch collaboration group proposed field-theoretic many-body ap-
proaches2–6 to hadrons around 2000. These are based on an effective Hamiltonian
of the Coulomb-gauge of the QCD, and are three-dimensional but relativistic. A
typical example of their effective Hamiltonian5,6 is of the following form;

Heffective =

∫
dxΨ †(x)[−iα·∇+ βmq]Ψ(x)− 1

2

∫
dxdyρa(x)V (|x− y|)ρa(y)

+ 1
2

∫
dx[Πa(x)·Πa(x) +Ba(x)·Ba(x)] + g

∫
dxJa(x)·Aa(x), (1.1)

where Ψ(x) is the quark field, and mq is the bare quark mass, ρa(r) is the color
charge density;

ρa(r) =
∑

flavors

Ψ †(r)12λaΨ(r) + fabcAb(r)·Πc(r) (1.2)

and V (x) is the quark-quark potential, Aa(x) is the gluon field, Πa(x) is the
conjugate “momentum” to Aa(x), and the color magnetic field, Ba, is given by

Ba = ∇×Aa + 1
2gf

abcAb ×Ac. (1.3)

Here, g is the coupling constant for quark-gluon and gluon-gluon, and Ja(x) is
the quark current;

Ja(x) = Ψ †(x)α1
2λaΨ(x). (1.4)

Their approaches could qualitatively reproduce the charmonium mass spectrum,
the π- and ρ-meson masses in the random phase approximation (RPA). However,
their results are not yet final because the parameters used in the analyses are
unsettled and the agreement with the experimental data is qualitative.

Llanes-Estrada-Cotanch2,3 and the preceding pioneers9–13 have tried to iden-
tify the quasiparticle mass at the small momentum with the constituent quark
(CQ) mass in their quasiparticle analyses. It would be very interesting if we could
discuss the constituent quark model in relation to the quasiparticle approach. In
this article, we discuss the relationship between the CQ model and what we call
the quasi-quark (QQ) model descended from the quasi-particle (QP) approach
instead of the quasi-particle approach itself. To be specific, based on the gap
equation and the Tamm-Dancoff Approximation (TDA) equation discussed in
refs. [2] and [3], we derive the Schrödinger-type model equation in terms of the
dynamical quark mass (M(k)) for a heavy quarkonium. Then treating the dy-
namical mass as a constant (M) and expanding the equation in 1/M , we obtain
an integro-differential equation in the configuration space that we call the quasi-
quark (QQ) model equation. It is found that it is reduced to the traditional CQ
model equation if a nonlocal interaction is neglected. By analyzing the charmo-
nium S-wave states in both the models, their relationship is discussed.

We derive, in Sec. 2, the Schrödinger-type equation expressed in terms of
the dynamical quark mass M(k) in a QP approach studied by Llanes-Estrada
and Cotanch. From the above-mentioned prescription, we obtain the QQ model
equation in Sec. 3. In Sec. 4, we present our numerical results of the S-wave
charmonium mass spectra using the QQ and CQ models. In Sec. 5, we give the
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discussions including the e+e− decay widths of the charmonium states and the
significance of the nonlocal interaction in particular. The last section (Sec. 6) is
devoted to the concluding remarks.

2 Quasi-Particle approach by Llanes-Estrada and Cotanch

Based on the effective Hamiltonian of QCD shown in Eq. (1.1), many kinds of
hadrons including constituent gluons, have been studied so far. In this work, we
discuss the relationship of the QP model with the CQ model. For this purpose,
we start from the following effective Hamiltonian for canonical mesons studied
by Llanes-Estrada and Cotanch;2,3

H =

∫
dxΨ †(x)[−iα·∇+ βmq]Ψ(x)− 1

2

∫
dxdyρa(x)v(|x− y|)ρa(y), (2.1)

where ρa is the color density;

ρa(r) =
∑

flavorsΨ
†(r)12λaΨ(r). (2.2)

Here, we notice that quark coupling to gluon sectors, including the hyperfine
interaction is neglected for simplicity, and the Faddeev-Popov determinant is
approximated by the lowest order unity. The potential v(r) in this analysis is
taken as the linear potential,

v(|x− y|) = σ|x− y|. (2.3)

The linear plus Coulombic potential3 will be more favorable for fitting the data.
The linear potential Eq. (2.3) will be suitable for qualitative investigation of how
the quasi-particle model differs from the quark model.

The quark field operator Ψ(x) is expanded in terms of the operators Bc
µ(k)

and Dc
µ(−k) for quasi-particles which are related to the bare quark operators

bcλ(k) and d
c
λ(k) by the Bogoliubov-Valatin transformation.7,8 The relationships

between the two is expressed in terms of the BCS angle θk (or the gap angle
ϕ(k)); {

Bc
µ(k) = cos(θk/2)b

c
µ(k)− µ sin(θk/2)d

c
µ
†(−k)

Dc
µ(−k) = cos(θk/2)d

c
µ(−k) + µ sin(θk/2)b

c
µ
†(k).

(2.4)

The spinors transform as follows, corresponding to Eq. (2.4);

(
Uλ(k), Vλ(−k)

)
=

(
uλ(k), vλ(−k)

)( cos(θk/2), λ sin(θk/2)
−λ sin(θk/2), cos(θk/2)

)
, (2.5)

or using ϕ instead of θk

Uλ(k) =
1√
2

[ √
1 + sinϕ(k)χλ√
1− sinϕ(k)σ·k̂χλ

]
, Vλ(k) =

1√
2

[ −
√

1− sinϕ(k)σ·k̂χλ√
1 + sinϕ(k)χλ

]
.

(2.6)
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By the quasi-particle spinor, the effective quasi-particle mass (dynamically gen-
erated mass) depending on the momentum transfer k is defined;

M(k) = k tanϕ(k) = E sinϕ(k) = mq ·
1 + k

mq
tan θk

1− mq

k tan θk
. (2.7)

And the physical vacuum
∣∣Ω〉

satisfies the following equations;

Bλ(k)
∣∣Ω〉

= Dλ(k)
∣∣Ω〉

= 0. (2.8)

It must be mentioned that although only for the quark-antiquark system, almost
the same discussions as those by Llanes-Estrada and Cotanch have been done
before by Orsay group,9–11 S. L. Adler-A.C. Davis12 and M. Hirata.13

There are two types of the QP equation of motion for the meson states,
that is, TDA and RPA equations.2,3 In this article, we only consider the TDA
equation of motion for simplicity;∣∣ΨnJP

TDA

〉
= Q†

nJPC (TDA)
∣∣Ω〉

; (2.9)

Q†
nJPC (TDA) =

∑
cµµ̄

∫
dk

(2π)3
ΨnJP

µµ̄ (k)Bc
µ
†(k)Dc

µ̄
†(−k),

ΨnJP

λµ (k) =
∑

LSmLmS

⟨LmLSmS |JmJ⟩(−1)
1
2
+µ⟨12λ

1
2 − µ|SmS⟩Y mL

L (k̂)ψnJP

LS (k).

The meson wave function ψnJP

LS (k) in Eq. (2.9) is given by the TDA equation of
motion; 〈

ΨnJπ

λµ

∣∣∣ [H, B†
αD

†
β

] ∣∣∣Ω〉
= (EnJπ − E0)Ψ

nJπ

αβ . (2.10)

In the approximation neglecting mixing between different orbital angular mo-
menta L’s, the wave function ψnJπ

Ls (k) is given2,3 by

(EnJπ − E0 − 2ϵk)ψ
nJπ

Ls (k) =

∫ ∞

0
dp

p2

12π2
KJπ

Ls (k, p)ψ
nJπ

Ls (p), (2.11)

where ϵk is the expectation value of the Hamiltonian density H of the physical
vacuum;

ϵk = ⟨Ω|H|Ω⟩ = kck +mqsk − 2
3

∫
dp

(2π)3
v̂
(∣∣k − p

∣∣) [ckcpk̂·p̂+ spsk], (2.12)

(ck ≡ cosϕ(k), sk ≡ sinϕ(k)) ,

and is also called the gap energy. The kernel KJπ

Ls (k, p) for the vector mesons
(Jπ=1−), which we are concerned with, is written as

K1−
Ls (k, p) = 2ckcpv̂1 + (1 + sk)(1 + sp)v̂0 + (1− sk)(1− sp)

(
4
3 v̂2 −

1
3 v̂0

)
,

(2.13)

v̂i ≡
∫
d(k̂·p̂) (k̂·p̂)i v̂(|k − p|), v̂(|k|) = 1

2 lim
µ→0

∂2

∂µ2
8πσ

k2 + µ2
. (2.14)



Y. Matsuda et al. 5

The gap angle ϕ(k) in Eqs. (2.10)–(2.12) is given by the so-called gap equa-
tion, which determines the physical vacuum and the stationary value of the
vacuum expectation value of the Hamiltonian;

ksk −mqck = 2
3

∫
dp

(2π)3
v̂ (|k − p|) [skcpk̂·p̂− spck]. (2.15)

Therefore, to solve the QP equation (2.11) of motion, it is necessary to get the
gap angle ϕ(k) by solving the gap equation (2.15) first, then to obtain the energy
eigenvalue MnJπ and the corresponding wave function ψnJπ

Ls (k) by substituting
ϕ(k) in Eq. (2.11) and solving the equation.

3 Nonrelativistic Schrödinger-type quasi-particle equation in configu-
ration space

The TDA equation of motion, Eq. (2.11), can be further rewritten to the
Schrödinger-type QP equation in terms of the dynamical mass M . Noting that
Eq. (2.15) is written as follows;

(k − U1)sk = (mq − U2)ck, (3.1)

U1 =
2

3

∫
dp

(2π)3
v̂(|k − p|)cpk̂·p̂, U2 =

2

3

∫
dp

(2π)3
v̂(|k − p|)sp,

the gap energy (2.12) is written as

ϵk = (k − U1)ck + (mq − U2)sk.

Using Eq. (3.1), ϵk is also expressed as

ϵk =
k − U1

ck
. (3.2)

From Eq. (2.7), we have

ϵk =
√
M(k)2 + k2 − 2

3

∫
dp

(2π)3
v̂(|k − p|)cpk̂·p̂/ck. (3.3)

Thus, Eq. (2.11) is rewritten to be of the Schrödinger-type;

(En−E0)Ψ
nJπ

Ls (k) =
(
2
√
k2 +M(k)2+I(k)

)
ΨnJπ

Ls (k)+

∫ ∞

0

dp p2

12π2
KJπ

Ls (k, p)Ψ
nJπ

Ls (p),

(3.4)

I(k) ≡ − 4

3ck

∫
dp

(2π)3
v̂ (|k − p|) cpk̂·p̂. (3.5)

To observe the relationship of Eq. (3.4) with the nonrelativistic CQ model, we
assume M(k) ≫ k and approximate the dynamical mass by a constant;

M(k) →M, (3.6)
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and we take the nonrelativistic approximation of Eq. (3.4) to order ∼ 1/M . Using
the nonrelativistic expressions of sk and ck, we have

I(k) ∼ 4σ

3k
and K1−

Ls (k, p) ∼ 4v̂0(k, p) (3.7)

for the nonlocal interaction part and the kernel, respectively. From now on, we
confine ourselves to the S-wave charmonium states, L=0, and use a simpler
notation–deleting s;

ΨnJπ

Ls (k) → ΨnS(k),

where the suffix S stands for the S-wave. The vacuum energy E0 is assumed to
shift to E′

0 by the approximation (3.6). Then, Eq. (3.4) turns out to be

(En − E0)ΨnS(k) =

(
2M − U +

k2

M
+

4σ

3k

)
ΨnS(k)

+
1

3π2

∫ ∞

0
dp p2 v̂0(k, p)ΨnS(p), (3.8)

where U ≡ E0 − E′
0.

Treating M and U as free parameters, we call a model based on this equa-
tion for the heavy quarkonium as the Quasi-Quark(QQ) model. Performing the
Fourier transformation

ΨnS(r) =
1

(2π)3

∫
d3k eik·rΨnS(k), (3.9)

the final form of the QQ model equation is obtained;∗

MnSΨnS(r) =
(
2M− U− 1

M
∇2 +

4

3
σr

)
ΨnS(r)−

4σ

3πr

∫ ∞

0
x dx ln

|r − x|
r + x

ΨnS(x).

(3.10)
We solve this equation numerically† and show the results in the next section. The
last term on f the right hand-side of this equation is a nonlocal interaction, that
is, characteristic of the model. It comes from I(k), which is the part containing
the potential v̂ of the gap energy (Eq. (2.12)) that is the expectation value of
the Hamiltonian of the physical vacuum. If we neglect the nonlocal interaction in
Eq. (3.10), the equation reduces to that of the CQ model or the potential model;

MnSΨnS(r) =
(
2M− U− 1

M
∇2 +

4

3
σr

)
ΨnS(r). (3.11)

4 Numerical analyses of the charmonium S-wave states

We report the results of our analysis of Eqs. (3.10) and (3.11) for the S-wave
charmonium states. To solve the eigenvalue problem, we use the Gaussian basis

∗To control the infrared divergence of v̂(|k|), the limit µ → 0 was taken after the integration
was performed.

†The integral term in Eq. (3.10) has a well-defined value in the singular integral sense, despite
the logarithmic divergence on the straight line x = r.
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expansion method,14 in which the wave function is assumed to be a sum of the
Gaussian functions as follows;

ΨS(r) =

Nbase∑
i=1

ciϕi(r), ϕi(r) = Nie
−νir

2
. (4.1)

The range parameter νi is given by a geometric series as

νi = 1/bi
2, bi = b1γ

i−1. (4.2)

The parameters b1, γ and Nbase should be chosen to give the converged solution;
in the present calculations, we set

b1 = 0.85, γ = 1.15 and Nbase = 20. (4.3)

By the expansion (4.1), Eqs. (3.10) and (3.11) can be easily solved as an eigen-
value problem of a matrix in a linear vector space consisting vectors whose com-
ponents are the expansion coefficients (c1, · · · , cNbase

) of the Gaussian functions
ϕi’s.

In the QQ model, there are three parameters; the dynamical quark mass M ,
the string tension σ, and the constant energy parameter U . As our purpose of the
present work is to see whether the QQ model could be an effective model of the
QP approach and to understand the relationship between the QQ model and the
CQ model, we intended to perform our numerical analyses rather qualitatively.

To see the relationship between the QQ model and the QP approach, we
chose the same σ=0.18 GeV2 used in the QP approach analysis of refs. [2] and
[3] which our framework is based on. The parameter U was determined so as
to bring the 1S mass given in ref. [3] when the dynamical c-quark mass M was
fixed. The M parameter was not in the QP approach, but we noted that the
bare c-quark mass mc=1.2 GeV was there. Taking M larger than mc but as a
free parameter, we found that M=1.4 GeV could give a fit of the charmonium
mass spectrum similar to the one obtained by the QP approach.

For our latter purpose to observe the relationship between the QQ model
and the CQ model, and to compare their predictions with the experimental
data, we adopted σ=0.14 GeV2 which corresponds to the quark potential fit at
large distance by lattice gauge calculations15,16 and was used in refs. [4] and
[5]. As for the dynamical mass M , we used M=1.4 GeV, which was obtained in
the above argument for the former of our purposes. The same values of σ and
M were used both for the QQ and CQ models. The U parameter was chosen
depending on each model to fit the experimental 1S mass data.

The numerical results of the charmonium mass analyses are shown together
with the experimental data17 in Table 1 and in Fig. 1. The result obtained by
the QQ Model (a) agrees well with the observed data and the CQ model result,
and performs better than the QQ Model (b). While, the QQ Model (b) using
parameters corresponding to the QP approach of refs. [2] and [3] gives a result
quite similar to the QP approach result. So, we may conclude that the QQ model
can be an effective model reflecting the characteristics of the QP approach.
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Table 1. The charmonium mass spectra (MnS in GeV)

nS Data17
QQ model(a) CQ model QQ model(b) QP approach ‡

σ=0.14:M=1.4
U=0.765

σ=0.14:M=1.4
U=0.383

σ=0.18:M=1.4
U=1.01

σ=0.18: mc=1.2

4S 4.421±4 4.40 4.40 4.58
3S 4.039±1 4.03 4.03 4.15 ∼ 4.10
2S 3.686±0.06 3.62 3.61 3.67 ∼ 3.63
1S 3.097±0.006 3.10(input) 3.10(input) 3.05(input) ∼ 3.05

The string tension σ is in GeV2; M , mc and U are in GeV.
‡The mass predictions by Cotanch et al.3 are given only in figures but not in numbers, and so,
we have assumed the numbers by the eye from the figure.
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Figure 1. Comparison of mass spectra for the charmonium S-wave states

5 Discussions

As shown in Table 1, the two sets; (a) and (b) for the QQ model parameters
were used. From now on, we refer to the QQ model applying the set (a) simply
as the QQ model and discuss the consequences since it reproduces the observed
mass much better than the QQ model using set (b).

To examine and discuss the role of the nonlocal interaction in the QQ model,
we consider the following equation in which a switching parameter f is introduced
at the front of the nonlocal interaction term in Eq. (3.10);

MnSΨnS(r) =
(
2M−U− 1

Mr

d2

dr2
r+

4

3
σr

)
ΨnS(r)−f

4σ

3πr

∫ ∞

0
xdx ln

|r − x|
r + x

ΨnS(x).

(5.1)
For every value of f between 1 and 0, we have solved Eq. (5.1), and evaluated

the expectation values of the kinetic energy T ≡ − 1

Mr

d2

dr2
r, the linear potential

V (r) = (4/3)σr, and the nonlocal interaction term, which are represented by ⟨T ⟩,
⟨V ⟩ and ⟨NLI⟩, respectively. In Fig. 2, the f -dependences of ⟨T ⟩, ⟨V ⟩, ⟨NLI⟩ and
the charmonium massMnS are shown, and in Table 2, their respective numerical
values and the ratio ⟨V ⟩/⟨T ⟩ are presented for the f=1 case corresponding to
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the QQ model.
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Figure 2. The f -dependences of the mass spectrum MnS and the expectation values of energy

terms for the S-wave JPC = 1−− charmonium states ( σ = 0.14 GeV2 and M=1.4 GeV)

Table 2. Expectation values (in GeV) of terms in

Eq. (3.10) by the QQ model fit and the ratio ⟨V ⟩/⟨T ⟩

⟨T ⟩ ⟨V ⟩ ⟨NLI⟩ En ⟨V ⟩/⟨T ⟩

5S 0.898 1.473 0.322 4.728 1.64
4S 0.787 1.248 0.326 4.397 1.59
3S 0.666 1.002 0.330 4.033 1.50
2S 0.530 0.723 0.336 3.624 1.36
1S 0.355 0.382 0.328 3.100 1.08

As seen in Fig. 2, the kinetic energy term increases as f increases, while the
linear potential term decreases. Roughly speaking, the increase in the kinetic
energy term and the decrease in the linear potential term compensate for each
other, so the total energy increases by about the same amount as the increment
of the nonlocal interaction term. Figures 3 and 4 demonstrate the behavior of the
wave functions of the nS states for n=1–5 in case of f=1 (the QQ model) and
f=0 (the CQ model). The wave functions behave similarly in both cases, but
we find two noticeable differences; the amplitudes at the origin and numbers of
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the oscillation. As seen from Fig. 3, the amplitudes at the origin are the same in
the case of f=0 while they are different, especially showing the large amplitude
for the n=1 state, in the case of f=1. From Fig. 4, we also see that the number
of nodes in every nS state wave function increases by one due to the nonlocal
interaction. These features show that the nonlocal interaction works attractively
in a small distance region.
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Figure 3. The radial wave function ψ(r) in the cases of QQ model and CQ model
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Figure 4. The redueced radial amplitude rψ(r) in the cases of QQ model and CQ model

To see more details about the effects of the nonlocal interaction, let’s direct
our attention to the two quantities‡, the ratio ⟨V ⟩/⟨T ⟩ and the values of the wave
functions at the origin. In the case of f=0 (the CQ model), there is the so-called
virial theorem19,20 relating the expectation value of the potential to that of the
kinetic energy;

2⟨T ⟩
∣∣
f=0

= ⟨r·gradV ⟩
∣∣
f=0

, (5.2)

‡As another possible example of a physical quantity related to the wave function of the heavy
quarkonium, a picture for the open flavor decays has been proposed.18
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and for the linear confining potential we obtain;

⟨V ⟩/⟨T ⟩
∣∣
f=0

= 2. (5.3)

In the case f ̸=0, the theorem does not hold. The ratio ⟨V ⟩/⟨T ⟩, however, is
expected to be not far from 2 when the effect of the nonlocal interaction is not
large. Table 2 shows that the largest deviation of the ratio from 2 is for the 1S
state among the five low-lying S-wave states.

As another possibility of checking these nonlocal interaction effects, we study
the width of the decay of the nS state to e+e−. The formula for the lepton pair
decay width taking the one gluon exchange correction is,21,22

Γ (ψnS → e+e−) =
16πα2

M2
nS

Q2
c

(
1− 16

3π
αs

)
|ΨnS(0)|2 , (5.4)

where α is the fine-structure constant and the αs is the corresponding quark-
gluon constant. Since the nonlocal interaction has a copious effect on the am-
plitudes of the wave functions at the origin as shown in Fig. 3, the e+e− decay
could be a good means to check the models. Although we do not assume the
one-gluon-exchange interaction, we examine the decay widths of nS states in the
ratio to the 2S state using Eq. (5.4);

Rn =

(
M2S

MnS

)2 ∣∣∣∣ΨnS(0)Ψ2S(0)

∣∣∣∣2 . (5.5)

Table 3. The model estimates Rn (in GeV3/2) using Eq. (5.5)

Model/Data 1S 2S 3S 4S

ΨCQ(0) 0.511 0.511 0.511 0.511
ΨQQ(0) 0.643 0.525 0.548 0.520

Rn(CQ model) 1.36 1 0.81 0.68
Rn(QQ model) 2.05 1 0.88 0.67
Rn(Exp.

17) 2.41±0.11 1 0.38±0.04 0.25±0.04

(Observed Γ ) (5.53±0.10) (2.29±0.06) (0.86±0.07) (0.58±0.07)

Rn’s are compared with the data corresponding to ψ(1S)–ψ(4S) in the cases
of CQ model and QQ model. Numbers shown in parentheses are the observed
e+e− decay width in KeV.

The QQ and CQ model predictions are compared with the data in Table 3. In
the case of the CQ model with the linear potential, Rn is given only by the mass
ratio M2S/MnS because the amplitudes of the nS wavefunctions at the origin
are the same as shown in the table.

The greatest difference in the amplitudes of wave functions at the origin and
the values of Rn are seen for the 1S state. It is noticed that the model prediction
for Rn of the 1S state is greatly improved by the inclusion of the nonlocal inter-
action. Thus, in either of the quantities ⟨V ⟩/⟨T ⟩ and Rn, the nonlocal interaction
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gives the biggest effect on the Ψ(1S) and could contribute to the improvement
of these predictions.

6 Concluding Remarks

We sum up the main points of this work. Based on the relativistic effective QCD
Hamiltonian of the QP approach by Llanes-Estrada and Cotanch, a Schrödinger-
type equation in the approximation of a constant dynamical quark mass was
derived for a heavy quarkonium. The equation turned out to bring a nonlocal
interaction beside the familiar local potential of the CQ model. Neglecting the
nonlocal interaction, it becomes the usual CQ model type equation. This will
give a field-theoretic basis for the CQ model.

To know the consequences of the newly obtained nonlocal interaction, we
employed what we call, the QQ model using the Schrödinger-type equation in
which all parameters including the dynamical quark mass are treated as free
parameters. Applying the QQ and CQ models to the charmonium S wave states,
we have obtained the following conclusions;

1) The QQ model is concluded to be an adequate and effective model of the
QP approach by comparing their predictions on the charmonium mass
spectrum.

2) The nonlocal interaction in the QQ model is partially absorbed in the
constant energy parameter U in the CQ model, and the difference in the
models doesn’t appear in their charmonium mass predictions. However, the
effects of the nonlocal interaction are seen in the model difference of the
wave functions, and as a result, the QQ model performs better than the
CQ model in the charmonium e+e− decay width predictions as a whole.

3) It may be noted that the predictions of the e+e− decay widths for the
3S- and 4S-states of the charmonium do not match the respective data in
either model. Both the states being above the open channel threshold, the
decaying effects may be important in such cases. Such hadronic interaction
effects considering couplings with open channels out of scope in the present
work and discussions are intended only for the bare charmonium states. As
discussed in ref. [23], a further step must be taken to study the physical
charmonium states for comparison of the theory with the experimental
data at last.
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