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Abstract 24 

The effect of vitamin K on bovine endometrial epithelial cells has not been thoroughly investigated. 25 

The objective of this study was to examine the effect of the biologically active form of vitamin K, 26 

menaquinone-4, on gene expression in bovine endometrial epithelial cells. First, we examined the 27 

mRNA and protein expression levels of UBIAD1, a menaquinone-4 biosynthetic enzyme. Second, we 28 

screened for potential target genes of menaquinone-4 in bovine endometrial epithelial cells using RNA-29 

sequencing. We found 50 differentially expressed genes; 42 were upregulated, and 8 were 30 

downregulated. Among them, a dose-dependent response to menaquinone-4 was observed for the top 31 

three upregulated (TRIB3, IL6, and TNFAIP3) and downregulated (CDC6, ORC1, and RRM2) genes. It 32 

has been suggested that these genes play important roles in reproductive events. In addition, GDF15 33 

and VEGFA, which are important for cellular functions as they are commonly involved in pathways, 34 

such as positive regulation of cell communication, cell differentiation, and positive regulation of MAPK 35 

cascade, were upregulated in endometrial epithelial cells by menaquinone-4 treatment. To the best of 36 

our knowledge, this is the first study showing the expression of UBIAD1 in the bovine uterus. Moreover, 37 

the study determined menaquinone-4 target genes in bovine endometrial epithelial cells, which may 38 

positively affect pregnancy with alteration of gene expression in cattle uterus. 39 

 40 

Keywords: cow, endometrial epithelial cell, gene expression, menaquinone-4, vitamin K 41 

 42 

 43 

1. Introduction 44 

 Vitamin K (VK) plays essential roles in the blood coagulation system [1]. The VK family 45 

consists of VK1 (phylloquinone), VK2 (menaquinones, MKs), and VK3 (menadione). Vitamin K1 is 46 

found in plants, VK2 refers to a group of MKs characterized by different side-chain lengths, and VK3 47 

is either chemically synthesized or an intermediate of MK-4 synthesis. The various forms of MKs are 48 

named MK-n, where “n” refers to the number of isoprenoid residues in the side chain [2]. Dietary VK1 49 

is endogenously converted to MK-4 [3, 4], which is the most common form of short-chain MK and the 50 
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functional VK2 in animal tissues [5, 6]. Long-chain MKs (MK-5 to MK-13) are synthesized by bacteria 51 

[2]. The presence of MK-4 in various body tissues suggests that it plays physiological roles. In addition 52 

to blood coagulation, VKs are involved in several processes, including bone metabolism, cell 53 

proliferation, and anti-inflammation [7–11]. 54 

 To date, extensive studies have been conducted on vitamins A, D, and E because of their 55 

frequent deficiency in dairy cows [12, 13]. However, few studies have evaluated VK and its functions. 56 

In cows, VK2 is synthesized by rumen microbes to meet nutritional requirements. We recently showed 57 

that MK-4 positively influences the activation of peripheral blood mononuclear cells and potentially 58 

activates immune functions in dairy cows [14]. Therefore, examination of VK functions in specific 59 

tissues may be significant for understanding the physiological roles of VKs in ruminants. 60 

 In MK-4 biosynthesis, the phytyl and prenyl groups of VK1 and VK2 dissociate from the 61 

naphthoquinone ring to form VK3, with no side-chain structures. Then, geranylgeranyl diphosphate 62 

(derived from the mevalonate pathway) is covalently bound to VK3 by the prenyltransferase enzyme, 63 

UbiA prenyltransferase domain-containing 1 (UBIAD1), to produce MK-4 [4, 15]. UBIAD1 expression 64 

is detected in multiple organs, including the mouse uterus [4]. In mice, VK1 and VK3 play a role in 65 

uterine myometrial contraction [16, 17]. Zhang et al. [16] found that VK3 reduced the effectiveness of 66 

prostaglandin F2ɑ-induced uterine contraction; thus, VK3 may be a promising therapeutic strategy for 67 

myometrial contractile complications, such as implantation failure, dysmenorrhea, and preterm birth. 68 

Similarly, VK1 attenuated oxytocin-induced uterine contractions and may contribute to the 69 

management and treatment of reproductive disorders [17]. On the other hand, to the best of our 70 

knowledge, UBIAD1 expression and the effects of MKs have not yet been studied in mammalian 71 

endometrial epithelial cells, including ruminants.  72 

 The endometrium epithelial cells play a wide range of important roles such as the prevention 73 

of microbes, production of growth factors/cytokines, and reception of embryos. In this study, we 74 

hypothesized that if UBIAD1 is expressed in the bovine endometrium, the produced MK-4 may play a 75 

role in this tissue. VKs play roles in a wide range of biological processes beyond blood coagulation; 76 

therefore, identifying their target genes is critical for a better understanding of their organization. Thus, 77 
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we aimed to reveal the UBIAD1 expression in bovine endometrial epithelial cells and examine the 78 

effects of the biologically active form of VK, MK-4, on gene expression. Our findings may reveal 79 

changes in gene expression caused by MK-4 and provide insights into the regulation of the intrauterine 80 

environment. 81 

 82 

2. Materials and Methods 83 

2.1. Collection of bovine endometrial tissues 84 

 Uterine tissues of non-pregnant healthy Holstein cows (approximately 30 to 100 month old) 85 

were obtained from a local slaughterhouse (Hokkaido Hayakita Meat Inspection Center, Hokkaido, 86 

Japan; and Nichiro Chikusan Co., Ltd., Hokkaido, Japan). The collection of bovine endometrial tissues 87 

has been described previously [18]. Briefly, endometrial tissues of the intercaruncular area were 88 

dissected from the uterine horn, ipsilateral to the corpus luteum, and cut into small pieces (3 × 3 mm). 89 

The collected endometrial tissues were classified into early, mid, and late estrous stages, according to 90 

the luteal stages (n = 8/stage), to examine UBIAD1 expression. For cell culture, tissue samples were 91 

used for cell culture experiments at random without distinguishing the stages. The tissue used were; 92 

early luteal phase, n = 4; middle luteal phase, n = 2; late luteal phase, n = 4. 93 

 94 

 95 

2.2. Culturing of bovine endometrial epithelial cells 96 

 The culturing method of bovine endometrial epithelial cells from uterine tissues has been 97 

described previously [19]. Briefly, the epithelial cells were cultured in Dulbecco’s modified Eagle’s 98 

medium (DMEM; Wako, Osaka, Japan) supplemented with 5% (v/v) fetal bovine serum (FBS; BioWest, 99 

Funakoshi Co., Ltd., Tokyo, Japan) and antibiotic-antimycotic solution (Thermo Fisher Scientific, 100 

Waltham, MA, USA) at 38.5 °C with 5% CO2. The cells were used within ten passages. Human 101 

endometrial epithelial cell line HHUA [20] and OMC9 [21] were obtained from Riken Cell Bank 102 

(Tsukuba, Japan) and cultured in DMEM with 10% FBS. 103 

 104 
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2.3. Preparation and treatment of MK-4 105 

Cells were cultured on 60-mm collagen-coated dishes (IWAKI AGC TECHNO GLASS Co. 106 

Ltd., Shizuoka, Japan) for RNA extraction. Menaquinone-4 (Wako) was dissolved in 99.5% (v/v) 107 

ethanol (10 mM) as a stock solution and diluted with the culture medium. The cells were cultured in 108 

DMEM containing 5% FBS and an antibiotic-antimycotic solution with MK-4 (1, 10, 50, or 100 μM) 109 

or without (cultured medium only, as the control, or 1% ethanol, as the vehicle control; equivalent 110 

amount of ethanol to the 100 μM MK-4 treatment). The cells were cultured for 12, 24, and 48 h under 111 

a humidified atmosphere of 5% CO2 at 38.5 °C. Two dishes of samples from each group (control or 112 

MK-4 treatment) were used for analysis. Ten independent experiments (replicates) were conducted. 113 

Cell proliferation assays were conducted using the Cell Counting Kit-8 (Dojindo, Kumamoto, 114 

Japan) according to the manufacturer’s instructions. Due to the lack of knowledge of MK-4 115 

concentration in bovine uterine tissue, multiple concentrations were examined based on the findings 116 

from previous in vitro cell culture systems [22, 23]. To confirm the absence of toxicity caused by the 117 

MK-4 treatment, cell proliferation at multiple concentrations (1, 10, 50, or 100 μM) was examined at 118 

the 48 h time point. The cells were seeded onto a 96-well plate (1.0 × 104 cells/well/200 µL) for 119 

proliferation assays. The stimulated index (SI) was calculated as the ratio of the average absorbance 120 

value from three wells containing MK-4-treated cells relative to that from three wells containing non-121 

treated cells. Ten independent experiments were conducted. 122 

 123 

2.4. RNA extraction and analysis 124 

 Total RNA was extracted from endometrial epithelial tissue pieces (3 × 3 mm) (from the 125 

UBIAD1 detection experiment in 2.1) or endometrial epithelial cells (from the MK-4 treatment 126 

experiment in 2.3) using NucleoSpin RNA Plus (Takara Bio Ltd., Shiga, Japan) according to the 127 

manufacturer’s protocol. For quantitative real-time PCR (qPCR) analysis, the total RNA isolated (500 128 

ng) was reverse transcribed to cDNA using the ReverTra Ace qPCR RT Master Mix with gDNA 129 

Remover (Toyobo, Osaka, Japan). The cDNA reaction mixture was diluted with molecular biology-130 

grade water five times, and 1 μL was taken for each amplification reaction. Target gene expression 131 
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levels were determined by qPCR using a LightCycler 96 (Roche Diagnostics, Basel, Switzerland) and 132 

THUNDERBIRDTM SYBR qPCR Mix (Toyobo) with 0.5 μM (final concentration) of the primers listed 133 

in Table 1. The thermal cycling conditions were as follows: 1 cycle at 95 °C for 30 s, followed by 50 134 

cycles at 95 °C for 10 s, 60 °C for 15 s, and 72 °C for 30 s. Relative mRNA abundance was calculated 135 

based on the expression levels of bovine H2AFZ, which was used as a reference gene as it shows stable 136 

expression in the bovine endometrium [24, 25], and it was relatively stable under MK-4 treatment in 137 

our preliminary observations. Each run was completed with a melting curve analysis to confirm specific 138 

amplification and no primer dimer formation. All experiments were performed following the guidelines 139 

of Minimum Information for Publication of Quantitative Real-Time PCR Experiments [26]. 140 

 141 

2.5. RNA-sequencing and data analysis 142 

 In the preliminary examination, 1 to 100 μM of MK-4 did not show significant toxicity 143 

(Supplementary Figure 1); thus, the MK-4 treatment for RNA-sequencing was performed at a maximum 144 

concentration of 100 μM. Total RNA was extracted from bovine endometrial epithelial cells with or 145 

without MK-4 treatment (100 μM for 48 h; n = 4 per group) using NucleoSpin RNA Plus (Takara Bio 146 

UK Ltd., Shiga, Japan). Genome-Lead Corporation (Kagawa, Japan) performed library construction 147 

and RNA-sequencing., to whom we sent 100 μL of RNA solution adjusted to 30 ng/μL for analysis. 148 

Libraries were constructed using KAPA mRNA Capture Kit (Roche) and MGIEasy RNA Directional 149 

Library Prep Set (MGI). Sequencing was performed in 150-bp paired-end format on a DNBSEQ-150 

G400RS system. Sequencing reads were mapped to the bovine genome (ARS-UCD1.2) using HISAT2 151 

[2527]. The data analyses were based on clean data using iDEP [28]. All RNA-sequencing data were 152 

deposited in the DDBJ data bank (https://www.ddbj.nig.ac.jp) (accession number: DRA014943). 153 

 154 

 2.6. Western blotting 155 

 To detect the UBIAD1 protein, endometrial lysates were prepared in 156 

Radioimmunoprecipitation assay (RIPA) buffer (Wako). The lysates were separated by 10% SDS-157 

PAGE and transferred onto a polyvinylidene difluoride (PVDF) membrane using an iBlot Gel Transfer 158 
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Device system (Invitrogen). After blocking with PVDF blocking buffer (CanGetSignal, Toyobo), the 159 

membranes were treated with a rabbit polyclonal anti-UBIAD1 antibody (ab191691, Abcam, 1 μg/mL) 160 

or mouse monoclonal anti-beta actin (ACTB) antibody (internal control, 66009-1-Ig, Proteintech, IL, 161 

USA, 1:5000), for 1 h at room temperature. Blotting was performed independently for each antibody 162 

using the same sample (n = 3 for each antibody). Proteins were detected using the following two 163 

secondary antibodies: (1) Amersham ECL Anti-rabbit IgG, Horseradish peroxidase-Linked Species-164 

Specific Whole Antibody (from donkey), or (2) Amersham ECL Anti-Mouse IgG, Horseradish 165 

peroxidase-Linked Species-Specific Whole Antibody (from sheep), and EzWestLumi Plus (ATTO). 166 

Protein bands were visualized using a chemiluminescence analyzer (LumiCube, Liponics Inc., Tokyo, 167 

Japan), and the band intensities were quantified using ImageJ software (ImageJ 1.53k, NIH, Bethesda, 168 

MD, USA). 169 

 170 

2.7. Immunocytochemistry 171 

 Immunohistochemical analyses were performed on 10-μm frozen sections of bovine uterine 172 

tissues using a polyclonal rabbit anti-UBIAD1 antibody (ab191691, Abcam, 5 μg/mL) and ImmPRESS 173 

Universal (Horse Anti-Mouse/Anti-Rabbit IgG) PLUS Polymer Kit (Vector Laboratories, Inc. 174 

Burlingame, CA, USA). The sections were examined using LAS X with DMi8 (Leica, Tokyo, Japan). 175 

 176 

2.8. Statistical analysis 177 

 Results are expressed as the mean ± standard error of the mean (SEM). Data were analyzed 178 

using the R software package (version 3.6.2) (https://www.r-project.org/). Data were analyzed using 179 

one-way analysis of variance (ANOVA) followed by the Tukey–Kramer test for multiple comparisons 180 

with each group. Differences with P-values < 0.05 were considered statistically significant. 181 

 182 

3. Results 183 

3.1. Expression of UBIAD1 in bovine endometria 184 

 The expression of UBIAD1 mRNA was detected in bovine endometria in the early, mid, and 185 

https://www.r-project.org/
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late estrous stages. No significant differences were detected among the stages (P > 0.05), indicating a 186 

stable expression. Likewise, western blotting and immunostaining revealed that the UBIAD1 protein 187 

was detectable throughout the estrous stages, and no significant differences were detected among the 188 

stages (P > 0.05) (Figure 1). 189 

 190 

3.2. Effects of MK-4 on gene expression of bovine endometrial epithelial cells 191 

 To identify target candidate genes of MK-4 in bovine uterine endometrial epithelial cells, we 192 

first conducted RNA-sequencing. Based on the RNA-sequencing analysis using iDEP, 50 differentially 193 

expressed genes (DEGs), including 42 upregulated and eight downregulated genes, were found as 194 

potential targets of MK-4 (Figure 2). All the DEGs are listed in Table 2. Subsequently, qPCR ensured 195 

the expression of the top three upregulated (TRIB3, IL6, and TNFAIP3) and downregulated (CDC6, 196 

ORC1, and RRM2) genes in bovine endometrial epithelial cells. Furthermore, a dose- and time-197 

dependent increase or decrease in the expression of these genes by MK-4 was confirmed (Figure 3). 198 

UBIAD1 expression was not affected by the MK-4 treatment (100 μM, 48 h) (Supplementary Figure 2). 199 

 200 

3.3. Enriched Gene Ontology terms in genes upregulated by MK-4 treatment 201 

 Process terms enriched in the DEGs were analyzed by iDEP (Table 3). Fifteen pathways were 202 

found to be enriched: response to organic substance, cellular response to organic substance, apoptotic 203 

process, programmed cell death, cell death, developmental process, response to chemical, cellular 204 

response to chemical stimulus, response to peptide, response to oxygen-containing compound, cellular 205 

response to oxygen-containing compound, positive regulation of cell communication, positive 206 

regulation of signaling, cell differentiation, and positive regulation of MAPK cascade. Although gene 207 

expression in the apoptotic-related pathways (apoptotic process, programmed cell death, and cell death) 208 

was also increased, the expression of effector caspases (CASP3 and CASP7) was not affected 209 

(Supplementary Figure 3). Cell viability was also not significantly adversely affected by MK-4 210 

treatment (Supplementary Figure 1), as mentioned above. 211 

 212 
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3.4. Key factors in the upregulated pathways 213 

 The top three genes upregulated by MK-4 (TRIB3, IL6, and TNFAIP3) were found in almost 214 

all enhanced pathways. In addition, we focused on growth factor genes, GDF15 and VEGFA. These 215 

genes were commonly involved in pathways, such as the positive regulation of cell communication, cell 216 

differentiation, and positive regulation of MAPK cascade pathways, which are important for cellular 217 

functions. A dose- and time-dependent increase in the expression of GDF15 and VEGFA by MK-4 in 218 

bovine endometrial epithelial cells was confirmed by qPCR (Figure 4). Furthermore, MK-4 treatment 219 

also increased the expression of these genes in human endometrium-derived HHUA and OMC9 cells. 220 

 221 

4. Discussion 222 

 UBIAD1 expression is detected in multiple mouse organs, including the uterus [4]. In mice, 223 

VK1 and VK3 play roles in uterine myometrial contraction [16, 17]. To the best of our knowledge, this 224 

is the first report showing UBIAD1 expression in bovine endometrial tissue. The presence of UBIAD1 225 

suggests that uterine tissue is one of MK-4’s conversion sites. In this study, we confirmed the stable 226 

expression of UBIAD1 in bovine endometrial epithelial tissues, which was not affected by the estrous 227 

cycle or MK-4 treatment. Although the factors affecting UBIAD1 expression and regulation of MK-4 228 

conversion activity require further investigation, UBIAD1 may commonly be expressed in mammalian 229 

endometrial tissues. 230 

 Possible targets of MK-4 in bovine endometrial epithelial cells were explored using RNA-231 

sequencing analysis. We found 42 upregulated and 8 downregulated DEGs. The top three upregulated 232 

genes were TRIB3, IL6, and TNFAIP3, and the top three downregulated genes were CDC6, ORC1, and 233 

RRM2. Genes upregulated by MK-4 treatment included GDF15 and TRIB3, which were previously 234 

reported as targets of MK-4, although in different animals and tissues [29]. Furthermore, 15 pathways 235 

were elevated in bovine endometrial epithelial cells by MK-4 treatment. The top three upregulated genes 236 

were found in almost all these pathways. Thus, these factors are suggested to play an important role in 237 

reproductive events, and the intrauterine environment may be regulated through their modulation. 238 

 TRIB proteins are involved in various cellular events such as inflammation, differentiation, 239 
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and proliferation [30–32]. The TRIB family members regulate the innate immune system by interacting 240 

with the toll-like receptor (TLR)-mediated nuclear factor kappaB (NF-κB) signaling pathways [33–241 

35], suggesting modulation of the immune environment during implantation and pregnancy [30]. In 242 

addition, it was reported that the CHOP/TRIB3/AKT/mTOR axis is involved in the regulation of the 243 

invasive potential of normal human endometrial cells [36], while TRIB3 inhibited proliferation and 244 

migration and promoted apoptosis of endometrial cancer cells [37]. These findings suggest that TRIB3 245 

is important for normal endometrial cell growth. 246 

  The multifunctional cytokine IL-6 has an important role in reproduction, particularly 247 

during early embryonic development and implantation [38–41]. In ruminants, IL-6 stimulates protease 248 

production, and it is thought to be involved in placentation [42]. IL-6 is also produced by the conceptus 249 

in many species, including bovine preimplantation embryos [43, 44]. Although differences in the 250 

function of IL-6 from embryonic and endometrial sources are not clear, the importance of adequate IL-251 

6 production during gestation is suggested. 252 

 TNFAIP3 encodes the A20 protein, an important regulator of NF-κB-mediated inflammatory 253 

signaling, and defects in this protein in immune cells cause systemic inflammation and autoimmunity 254 

[45, 46]. Although findings in the uterus are very limited, A20 is expressed in the rat uterus and human 255 

endometrial cells [47, 48], suggesting its role in regulating the immune environment along with other 256 

cytokines. 257 

 ORC1 and CDC6 play a role in cell-cycle DNA replication [49]. In humans, CDC6 expression 258 

is a potential marker for high-grade squamous and glandular dysplasia of the cervix [50, 51]. In mice, 259 

RRM2 is a possible marker for cervical cancer [52, 53]. In contrast, however, RRM2 was important for 260 

inducing cell proliferation and decidualization in the mouse uterus [54]. The role of these factors in the 261 

bovine endometrium is unknown and remains to be validated.  262 

Vitamin K2 shows an inhibitory effect on the growth of tumor cells, including hepatoma cells 263 

[55]. Furthermore, VK2 induces an apoptotic effect on leukemia cell lines [56] and fibroblast-like 264 

synoviocytes [57]. However, in the present study on primary endometrial epithelial cells, the expression 265 

of effector caspases (CASP3 and CASP7) was not affected, and cell viability was not significantly 266 
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adversely affected by MK-4 treatment. Thus, MK-4 does not appear to be toxic in endometrial epithelial 267 

cells at the doses tested; however, it will be necessary to carefully assess the extent to which in vitro 268 

trials on cells reflect the situation in vivo. Furthermore, the causes and detailed mechanisms underlying 269 

the different effects of MK-4 treatment on cell proliferation in different cell types need to be further 270 

investigated. 271 

 The growth factors GDF15 and VEGFA were found among the pathways enhanced by MK-4 272 

treatment. GDF15, also known as macrophage inhibitory cytokine-1, is found in placental trophoblast 273 

cells, decidua, and fetal membranes in humans [58, 59], suggesting that GDF15 is involved in the 274 

establishment and maintenance of pregnancy at the maternal-fetal interface. VEGFA is expressed in 275 

bovine placental trophoblasts and acts to modulate steroidogenesis during gestation [60], suggesting 276 

that VEGF is an important regulator of placental development and function. In this study, the expression 277 

of both GDF15 and VEGFA was upregulated by MK-4 in bovine as well as human endometrium-278 

derived cells. This suggests that these genes are the common targets of MK-4 in the mammalian uterus, 279 

not only in the bovine uterus. 280 

 281 

We recently reported that MK-4 levels in body fluid could be increased by supplemental 282 

feeding with VK3 [61]. Therefore, clarifying the physiological function of MK-4 and regulation of MK-283 

4 concentrations via feeding would be useful for better management of health conditions, including 284 

those affecting the uterus in mammals. The current study was performed using an in vitro culture system, 285 

but further validation is needed to determine the actual MK-4 concentration and variation in uterine 286 

tissue. In addition, we did not compare pregnant and non-pregnant conditions; thus, further studies are 287 

required to gain a better understanding of the function of MK-4 and these downstream candidate target 288 

genes in implantation and pregnancy.  289 

   290 

 In conclusion, this study confirmed the expression of UBIAD1 in the bovine uterus and found 291 

candidate target genes for MK-4 for the first time. In particular, GDF15 and VEGFA were found to be 292 

included in most of the pathways enhanced by MK-4 treatment, suggesting their importance. Further 293 
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studies are needed to expand the understanding of these MK-4 target genes and enhanced biological 294 

pathways and their influence on mammalian pregnancy. 295 
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 504 

 505 

Figure legends 506 

Figure 1. Expression of UBIAD1 in the bovine endometrium 507 

(A) Data represent the UBIAD1 mRNA expression levels relative to those of the internal control gene, 508 

H2AFZ. Data are presented as means ± standard error of the mean (SEM). No significant differences 509 

were observed among the stages of expression based on the Tukey–Kramer test (n = 8 per group). E: 510 

Early stage, M: Middle stage, L: Late stage. 511 

(B) Left: UBIAD1 protein levels in Early (E), Middle (M), and Late (L) stages (n = 3 each day) in 512 

bovine endometrial epithelial tissues were examined by western blotting. A Rabbit polyclonal anti-513 

UBIAD1 antibody was used to detect the protein and ACTB was used as an internal control. 514 

Representative PVDF membrane data from one of the three independent experiments are shown. 515 

Right: Densitometric quantitation was performed using the ImageJ software. The relative densities of 516 

the blots were determined by normalization against ACTB levels. 517 

(C) Immunohistochemical detection of UBIAD1 protein in bovine endometrial epithelial tissues was 518 

carried out. Instead of the rabbit polyclonal anti-UBIAD1 antibody, pre-immune serum was used as a 519 

negative control. Representative micrographs (Middle stage) from three experiments are shown. Bar = 520 

150 µm. 521 

 522 

Figure 2. Identification of MK-4 target genes via RNA-sequencing. 523 

(A) Heatmap, (B) Volcano plot, and (C) MA plot of differentially expressed genes. (D) Left: Top 3 524 

upregulated genes by iDEP analysis. Right: Data represent TRIB3, IL6, and TNBFAIP3 mRNA 525 

expression levels relative to those of H2AFZ. Data are presented as means ± SEM. Different letters 526 

indicate significant differences between groups (P < 0.05). (E) Left: Top 3 downregulated genes by 527 

iDEP analysis. Right: Data represent CDC6, ORC1, and RRM2 mRNA expression levels relative to 528 

those of H2AFZ. Data are presented as means ± SEM. Different letters indicate significant differences 529 

between groups (P < 0.05). 530 
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 531 

Figure 3. Dose- and time- dependent response to MK-4 treatment. 532 

(A) Expression patterns of upregulated (TRIB3, IL6, and TNBFAIP3) and downregulated (CDC6, ORC1, 533 

and RRM2) genes with different dosages of MK-4 (1, 10, 50, or 100 μM) for 48 h. Data are presented 534 

as means ± SEM. Different letters indicate significant differences between groups (P < 0.05). (B) 535 

Expression of upregulated (TRIB3, IL6, and TNBFAIP3) and downregulated (CDC6, ORC1, and RRM2) 536 

genes with different treatment times of MK-4. Data are presented as means ± SEM. Different letters 537 

indicate significant differences between groups (P < 0.05). 538 

 539 

Figure 4. Expression of GDF15 and VEGFA after MK-4 treatment in endometrial epithelial cells. 540 

(A) Expression levels of GDF15 and VEGFA genes induced by MK-4 as identified by iDEP. (B) 541 

Expression patterns of GDF15 and VEGFA genes with different dosages of MK-4. Data are presented 542 

as means ± SEM. Different letters indicate significant differences between groups (P < 0.05). (C) 543 

Expression of GDF15 and VEGFA genes with different treatment times of MK-4. Data are presented 544 

as means ± SEM. Different letters indicate significant differences between groups (P < 0.05). Data 545 

represent GDF15 and VEGFA mRNA expression levels after MK-4 treatment in human endometrium-546 

derived HHUA (D) and OMC9 (E) cells. Data are presented as means ± SEM. Different letters indicate 547 

significant differences between groups (P < 0.05). 548 

 549 

Supplemental Figure 1. The proliferation of bovine endometrial epithelial cells with MK-4 treatment. 550 

The cells were treated with different dosages (1, 10, 50, or 100 μM) of MK-4 for 48 h. SI: stimulation 551 

index (absorbance from stimulated wells/absorbance from non-stimulated wells). Data are presented as 552 

means ± SEM.   553 

 554 

Supplemental Figure 2. Expression of UBIAD1 after MK-4 treatment in endometrial epithelial cells. 555 

(A) Expression levels of the UBIAD1 gene after MK-4 treatment found by iDEP. (B) Relative 556 

expression of the UBIAD1 mRNA level after MK-4 treatment. Data are presented as means ± SEM.  557 
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 558 

Supplemental Figure 3. Enriched GO terms in genes up- and downregulated by MK-4 treatment. 559 

Visualization of the relationship among enriched GO terms using (A) hierarchical clustering tree and 560 

(B) network analysis by iDEP. (C) Expression levels of CASP3 and CASP7 genes after MK-4 treatment 561 

found by iDEP. (B) Relative expression of CASP3 and CASP7 mRNA levels after MK-4 treatment. 562 

Data are presented as means ± SEM. 563 

 564 



1 
 

Table 1. Primers for real time PCR 
Name   Sequence (5’-3’)     Product  
(GenBank accession No.)       length (bp) 
 
UBIAD1   F: GCTTGCCTCTACTGTCTGTC   114   
(XM_002694056.5) R: AGCCAGGTACTTGAGTCCAAT 
 
Upregulated genes 
TRIB3   F: CTGAGTGTTCCCGCTGGGTC   184   
(NM_001076103)  R: GGTGGTGGGTTCAGGGTTAG 
IL6   F: TAAGCGCATGGTCGACAAAA   150   
(EU276071)  R: TTGAACCCAGATTGGAAGCAT 
TNFAIP3   F: CACGCTGTGTTTCATCGAGT   148   
(XM_005210987.4) R: GTATCCTTCGAACACGGTGC 
 
Downregulated genes 
CDC6   F: CCACAGCTGTTGAACTTCCC   144   
(NM_001192407.1) R: TCCCGAAACAGCAGAGACTT 
ORC1   F: CCGTTCTGGAACAGAGCTTCC  144   
(NM_001014918.1) R: TCTCCGACATGGTGGGGTA 
RRM2   F: TGGCTCAAGAAACGAGGACT   125   
(NM_001244181.1) R: TCCGAAGGTTTGTGCAACAG 
 
Growth factor genes 
bovine GDF15  F: CAGACCTGGGAAGACTCGAA   134   
(NM_001206298.2) R: GGGAGCCCCTCAGTTAAGTT 
human GDF15  F: CAGAGCTGGGAAGATTCGAA   115   
(NM_001206298.2) R: GGGAGCCCCTCGGGAAGGGC      
bovine VEGFA  F: CCATGAACTTTCTGCTCTCTTGG  133   
(NM_174216.2)  R: TCCATGAACTCCACCACTTCG   [62] 
human VEGFA  F: CCATGAACTTTCTGCTCTCTTGG  136    
(M_001025366.3)  R: TCCATGAACTCCACCACTTCG   
 
Apotosis related genes 
CASP3   F: AGCGTCGTAGCTGAACGTAA   122   
(NM_001077840)  R: CCAGAGTCCATTGATTTGCTTC 
CASP7   F: TAACGACTGCTCTTGTGCCA   141  
(XM_604643)  R: GCTGTCTTGCCATCTGTTCC 



2 
 

 
Internal control 
H2AFZ   F: AGAGCCGGTTTGCAGTTCCCG  116  
(NM_174809)  R: TACTCCAGGATGGCTGCGCTGT  
 F: Forward, R: Reverse 
  



3 
 

Table2. Up- and Down-regulated genes by MK-4 treatment. 

a) Up-regulated genes 

Ensembl ID   log2 Fold Change  Adj.Pval  Symbol    

ENSBTAG00000017007  2.461114166  1.79E-04  TRIB3 (tribbles pseudokinase 3)   

ENSBTAG00000014921  2.449137992  2.29E-03  IL6 (Interleukin-6)  

ENSBTAG00000000436  2.184366524  4.10E-02  TNFAIP3 (TNF alpha induced protein 3)  

ENSBTAG00000018984  2.159385069  1.23E-03  PIK3CD (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta) 

  

ENSBTAG00000005947  2.112214916  2.29E-03  PLAU (plasminogen activator, urokinase)  

ENSBTAG00000014972  2.095797253  7.11E-03  PTGER4 (prostaglandin E receptor 4)  

ENSBTAG00000031544  2.065043909  3.12E-04  DDIT3 (DNA damage inducible transcript 3)  

ENSBTAG00000000396  1.894514299  9.69E-03  PIM1 (Pim-1 proto-onco, serine/threonine kinase)  

ENSBTAG00000001164  1.771105294  2.66E-02  ACAD10 (acyl-CoA dehydrogenase family, member 10)  

ENSBTAG00000010371  1.723474969  4.42E-05  CHAC1 (ChaC glutathione specific gamma-glutamylcyclotransferase 1)  

ENSBTAG00000015618  1.709271336  2.66E-02  GDF15 (Growth differentiation factor 15)   

ENSBTAG00000001294  1.696425758  2.80E-04  PPP1R15A (protein phosphatase 1 regulatory subunit 15A)   

ENSBTAG00000018517  1.628181331  2.51E-02  VLDLR (very low density lipoprotein receptor) 

ENSBTAG00000003721  1.585932683  4.63E-02  CHST1 (carbohydrate sulfotransferase 1)  

ENSBTAG00000006016  1.580148876  3.35E-07  GTPBP2 (GTP binding protein 2)  

ENSBTAG00000049724  1.5272723  4.10E-02     

ENSBTAG00000052132  1.514267909  3.62E-02  FOXQ1 (forkhead box Q1)  

ENSBTAG00000016589  1.476011022  3.10E-02  PRPF40B (pre-mRNA processing factor 40 homolog B)  

ENSBTAG00000007718  1.415412002  2.66E-02  TGIF1 (TGFB induced factor homeobox 1)  

ENSBTAG00000015591  1.414794722  1.60E-05  SQSTM1 (sequestosome 1)   

ENSBTAG00000008197  1.385601005  4.86E-04  EPOR (erythropoietin receptor)  

ENSBTAG00000003495  1.318811724  4.73E-02  KDM7A (lysine demethylase 7A)  
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ENSBTAG00000021435  1.309982877  1.23E-03  MAFF (MAF bZIP transcription factor F)   

ENSBTAG00000020283  1.293512886  4.10E-02  DUSP5 (dual specificity phosphatase 5)  

ENSBTAG00000013240  1.251476504  4.08E-02  SLC3A2  (solute carrier family 3 member 2)  

ENSBTAG00000005339  1.245961794  2.51E-02  VEGFA (vascular endothelial growth factor A)  

ENSBTAG00000002395  1.177123204  1.17E-02  HPS3 (HPS3 biosis of lysosomal organelles complex 2 subunit 1)  

ENSBTAG00000016010  1.155584116  2.66E-02  KLHL7 (kelch like family member 7)   

ENSBTAG00000013860  1.152909703  3.97E-02  GADD45A (Growth arrest and DNA damage inducible alpha)  

ENSBTAG00000003245  1.147468004  3.06E-02  BCAR3 (BCAR3 adaptor protein, NSP family member)   

ENSBTAG00000006367  1.110662169  3.87E-02  CCN2 (cellular communication network factor 2)  

ENSBTAG00000006082  1.109992873  2.66E-02  DNASE2 (deoxyribonuclease 2, lysosomal)   

ENSBTAG00000017877  1.102189224  1.06E-02  NECTIN4 (nectin cell adhesion molecule 4)   

ENSBTAG00000009863  1.053959663  3.28E-02  BHLHE40 (basic helix-loop-helix family member e40)  

ENSBTAG00000025434  1.051051791  1.91E-04  ZFP36L1 (ZFP36 ring finger protein like 1)   

ENSBTAG00000023963  1.04080726  3.16E-02  RHBDD1 (rhomboid domain containing 1)  

ENSBTAG00000011934  1.035375901  2.51E-02  PCK2 (phosphoenolpyruvate carboxykinase 2, mitochondrial)   

ENSBTAG00000015013  1.034400723  2.66E-02  C2CD2L (C2CD2 like)  

ENSBTAG00000024539  1.032965721  1.10E-02  SPSB1 (splA/ryanodine receptor domain and SOCS box containing 1)  

ENSBTAG00000002922  1.028178649  1.55E-02  GAB2 (GRB2 associated binding protein 2)  

ENSBTAG00000013235  1.013137709  2.66E-02  TINAGL1 (tubulointerstitial nephritis antigen like 1)   

ENSBTAG00000002069  1.004799324  2.66E-02  BOLA (MHC class I heavy chain) 

Adj.Pval; adjusted p-value, calculated by iDEP.  

 

b) Down-regulated genes 

Ensembl ID   log2 Fold Change  Adj.Pval  Symbol   

ENSBTAG00000010384  -1.51589   2.01E-02  CDC6 (cell division cycle 6)  

ENSBTAG00000002719  -1.44119   4.10E-02  ORC1 (origin recognition complex subunit 1)  
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ENSBTAG00000008216  -1.33388   1.19E-03  RRM2 (ribonucleotide reductase regulatory subunit M2)  

ENSBTAG00000014435  -1.25222   2.51E-02  TCF19 (transcription factor 19)  

ENSBTAG00000000064  -1.17745   3.06E-02  FEN1 (flap structure-specific endonuclease 1)  

ENSBTAG00000003323  -1.132   3.87E-02  NOL6 (nucleolar protein 6)  

ENSBTAG00000000532  -1.12283   2.66E-02  EXO5 (exonuclease 5)  

ENSBTAG00000039462  -1.07962   4.10E-02  PCLAF (PCNA clamp associated factor)  

Adj.Pval; adjusted p-value, calculated by iDEP. 
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Table3. Enriched GO terms in up-regulated genes 

Adj.Pval   nGenens  Pathways  

0.000442327  17  Response to organic substance  

0.000749619  15  Cellular response to organic substance  

0.00098764  13  Apoptotic process  

0.001073462  13  Programmed cell death  

0.001912089  13  Cell death  

0.002102655  22  Developmental process  

0.002102655  17  Response to chemical  

0.002102655  15  Cellular response to chemical stimulus  

0.002102655  6  Response to peptide  

0.002102655  10  Response to oxygen-containing compound  

0.002102655  9  Cellular response to oxygen-containing compound  

0.002125202  11  Positive regulation of cell communication  

0.002125202  11  Positive regulation of signaling  

0.002125202  17  Cell differentiation  

0.002125202  6  Positive regulation of MAPK cascade 

dj.Pval; adjusted p-value, calculated by iDEP.  

nGenes: Number of genes in the pathway. 
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