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Abstract

Algae, accounting for less than one percent of Earth’s total photosynthetic biomass,
are remarkable carbon drawdown contributors, fixing nearly half of the world’s or-
ganic carbon, especially during algal blooms. However, escalating concerns sur-
round algal blooms, their persistence, and distribution, serving as indicators of
both global climate shifts and local anthropogenic pressures. These phenomena
intertwine with coastal marine ecosystems worldwide, where tide disruptions and
human-induced disturbances increasingly degrade water quality, fostering frequent
algal blooms. The growing duration of these blooms poses a significant threat,
impacting vital ecological processes and services, such as carbon cycling and se-
questration. Yet, unraveling the complex interplay between ecological factors and
environmental stressors, along with deciphering algal bloom patterns, remains a
formidable challenge due to limited data and a lack of universally applicable ana-
lytical approaches.

An innovative predictive model merges transfer entropy network inference with
a forecasting graph neural network to anticipate both blooming and non-blooming
epidemic scenarios, along with their underlying environmental factors that eluci-
date bloom sources, causes and systemic risk. This model exhibits strong predic-
tive capabilities, extracting crucial ecosystem features even in the absence of spa-
tial dependencies. A novel 2D entropic ecosystem mandala is introduced, wherein
the ecological impact, manifested through the distribution’s Cyanobacteria-driven
chlorophyll-a (CHL-a) randomness, correlates proportionally with systemic envi-
ronmental stress, governed by erratic oceanic, climatic, and coastal nutrient fac-
tors. Originally, a spatial risk was defined based on CHL-a magnitude, persis-
tence and shifts. Through a case study in Florida Bay (FL Bay), we unveil how
algal bloom shifts endure in shallow regions with elevated dinoflagellate-to-diatom
ratios, underscoring Cyanobacteria’s pivotal role in phytoplankton dynamics and
the influence of terrestrial discharge on marine microbiome equilibrium. This un-
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folding scenario presents formidable challenges, notably the heightened potential
for green-blue algal blooms (associated with river dominance) to trigger harmful
red tides, with cascading socio-ecological impacts spanning carbon cycling disrup-
tions and entrenched eutrophication in coastal ecosystems. A universal threshold
on the top 20% Pareto extremes of CHL-a, distinctly defines bloom and non-bloom
phases, independent of endemic or epidemic categorization, driven by distinct eco-
environmental interactions, where the paramount biogeochemical stress follows a
scale-free structure with CHL-a acting as the central hub.

Predicting algal blooms in the short and long term is crucial for assessing the
well-being of ecosystems, encompassing coastal-marine environments, species, and
human populations. Furthermore, it offers insights into the effects on environmental
processes like carbon sequestration. However, the escalating disruption in biogeo-
chemical balance compromises our capacity to forecast algal blooms, barring during
outbreaks when intervention becomes belated. This deficiency hampers the inves-
tigation and management of the underlying eco-environmental factors triggering
undesirable algal bloom occurrences and propagation. And our ideas improved this
difficulty to some extent, both in terms of causal inference and model prediction.
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Chapter 1

Introduction

1.1 A sensescape purview for ecosystem decision
making under risk and possibilities.

Healthy ecosystems look, sound, and smell better than compromised ones. This is
rather clear when we hear the symphony of a healthy vibrant forest vs. a cacophonic
one. Environmental disorganization alters the balance of senses in species. Yet, we
can use sensorial perceptions from ecosystem data – particularly audio-image ones
to gather ecological disorganization – to quantify and judge the health of ecosystems
in relation to systemic environmental pressure or noise. However, many questions
arise from this evidence, such as: How senses of biodiversity are related to habitats
(the environmental chambers) and other factors such as disturbances that alter the
symphony (organization and function) of ecosystems? For how long these sense-
base traits are manifested and when do they lead to irreversible collapse including
cascading environmental extremes? What is the degree of irregularity, magnitude
and persistence of environmental pressure leading to irreversible collapse? Can
we use species somatic traits and species proportions to characterize habitat fitness
more precisely than using macro-environmental features only? What are the most
sensitive univariate and bivariate pattern indicators of ecosystem shifts? What is
the degree of variability of ecosystem health for equivalent habitats worldwide or
nearby habitats and their socio-ecological teleconnections?

Senses (images, sounds, tastes, smells, textures, and collective behavior such
as velocity and trajectory of species) spreads as waves in the environment and
cause symptoms of dysbiosis such as bleaching in coral reefs or plant stress in a
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water-limited environment; stress that limits evolutionary processes leading to op-
timal function and organized ecological aggregation. Accurate sensors (including
their location and sampling frequency) are yet needed to capture scents of senses
and synthesize ecosystems’ organization informing about current state, closeness
to shifts, environmental determinants (diffused or localized, acute or chronic), and
countering solutions.

An extra element is however needed beyond senses. Perception is when sen-
sory information is selected, organized, and interpreted where models (as percep-
tions) are used to extract salient features that (i) capture dynamics of patterns in-
formative of processes (yet evidencing basic mechanisms) and (ii) define early and
long-term decisions, at higher levels of decision making, to counter ecological risk
and adaptive response, or enhance its function based on the collective organiza-
tion of species and habitats (i.e. biodiversity). Perceptions (i.e. artificial neurons
in pattern-oriented machine-learning or any neuromorphic models) reflect species
computation (with different level of cognition) that is the basis of collective behav-
ior. Then, the question is how we can leverage this “ecological computing” through
sensed information for improving ecosystems through precise interventions, plans
and policy based on eco-history and feasible scenarios? What is the spatial and
functional configuration of species decision trees (due to habitat/non-trophic and
food-webs/tyrophic) and their perceived risks conditional to environmental stress?
Are there external and beneficial environmental stimuli that we can manage (e.g.
light and sound) to positively alter collective intelligence? How can we re-engineer
collective sensing of species that has been compromised, including our co-mutual
sensing with all species?

Species perceive patterns without thinking of processes and ecosystem patholo-
gists/engineers should do that equivalently by minimizing undesired ecological dys-
biosis (that in a computing sense can be about erroneous risk assessment). The fo-
cus should be on patterns because patterns reveal ecosystem health related to salient
processed senses at multiple scale and the underpinning causal networks. Percep-
tions that must be optimally communicated – through visualization and other media
– to strengthen collective behavior enhancing ecosystems. In this sense data are
not just the dry input of models but the fundamental senses and vehicle of artistic
visualization to deliver optimal information. This is an ambition rather than mere
objectives, because it come with a cohesive and broader long-term vision of im-
proving earth ecosystems through science and applications at local scale and high
resolution.
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1.2 Signals of ecosystem change

The Earth’s ecosystems consist of intricate networks of interdependent species and
processes, providing crucial services and supporting life as we know it. The most
hardest challenge is to preserve the stability of these ecosystems, which does not
imply a state of unchanging equilibrium, but rather a state of change that can be
sustained with a certain degree of order [3]. These changes can be quantified into
certain specific ‘signals’ that provide valuable indications about the state of the
ecosystem. Signals of ecosystem change comprise a diverse array of indicators,
such as changes in species abundance, alterations in trophic interactions, modifica-
tions in habitat structure, and shifts in ecosystem functions. However, some signals
are early ‘warning signs’ given by ecosystems (i.e., ‘non-equilibrium indicators’ [4]
that manifest as statistical properties of ecological data preceding a regime shift),
which are valuable for studying ecosystem stability. The quantization of these sig-
nals include increased temporal autocorrelation [5], variance [6], skewness [7] [8],
and rising spatial heterogeneity [9] [10]. Monitoring and interpreting these signals
can provide ‘advanced warning’ of an approaching regime shift, enabling proactive
management interventions. There are also signals that represent catastrophic shifts
in the ecosystem, also known as regime shifts or ecological tipping points, represent
sudden and profound changes in the structure, function, and dynamics of ecological
systems. While there is a complex interplay between gradual environmental change
and abrupt tipping points that can push ecosystems beyond their critical thresh-
olds [11]. This catastrophic shift has the potential to trigger irreversible ecological
damage. It can compromise biodiversity, cascading effects of trophic interactions
and ecosystem functioning, and the potential for regime shifts to trigger further dis-
turbances or create alternative steady states. Therefore, interpreting and monitoring
these ecological signals allows us to gain a deeper understanding of the status of the
ecosystem and take proactive measures to maintain its stability.

1.2.1 Senses of marine ecosystem change

Oceans are the basis of life in an ecological and evolutionary perspective [12] [3].
Marine ecosystems are vast, dynamic, and diverse systems that cover more than
70% of our planet’s surface [13]. They encompass a complex web of interactions
between living organisms and their surrounding environment, playing a vital role in
sustaining life on Earth. The importance of marine ecosystems extends far beyond
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the boundaries of the oceans. It is essential for maintaining biodiversity, produc-
ing oxygen, regulating the climate, and sequestering carbon dioxide [14]. How-
ever, ‘signals’ of marine ecosystem change are extremely important in the face of
the delicate balance of them. For example, changes in water temperature, ocean
currents, and availability of food can cause ‘shifts in the distribution of marine
species’ [15] [16]. Some species may move to higher latitudes or deeper waters
as the ocean temperature increases [17]. Shifts in ocean currents can affect nutri-
ent availability, water temperature, and the distribution of marine organisms. El
Niño and La Niña events, for instance, can alter oceanic conditions in the Pacific
Ocean, impacting marine ecosystems across vast areas [18] [19]. Declines in fish
populations may indicate overfishing or changes in ocean conditions, which is one
indication of changes in abundance [20]. In addition, coral bleaching occurs when
corals expel the symbiotic algae living in their tissues due to stress, such as in-
creased water temperature or pollution [21]. This phenomenon is also a warning
signal of environmental changes and can lead to coral reef degradation and loss of
biodiversity. Increased levels of carbon dioxide in the atmosphere can lead to ocean
acidification. This process involves the absorption of CO2 by seawater, resulting in
lower pH levels [22]. Acidification can have adverse effects on shell-forming organ-
isms like corals, mollusks, and some plankton species. Alterations in predator-prey
relationships or changes in the trophic structure of the ecosystem can indicate shifts
in the marine environment [23] [24]. For example, a decline in top predators like
sharks can disrupt the balance of the food chain and have cascading effects on the
entire ecosystem. Reductions in species diversity and the loss of key species within
an ecosystem are strong indicators of ecosystem change. A decrease in biodiversity
can result from habitat destruction, pollution, overfishing, and other human-induced
factors. It is crucial to recognize these signals and the interconnectedness of them,
as multiple factors often contribute to changes in marine ecosystems. Monitoring
and understanding these indicators can help scientists and policymakers take appro-
priate conservation measures to protect and restore marine environments.

1.2.2 Algal blooms: epitome of marine ecosystem change

Algae are primary producers that undergo photosynthesis, utilizing carbon diox-
ide (CO2) from the atmosphere to synthesize organic carbon compounds. During
algal blooms, certain species proliferate rapidly, leading to increased carbon fixa-
tion [25]. This process temporarily removes CO2 from the atmosphere and con-
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tributes to the organic carbon pool. However, rapid and excessive growth of certain
types of microscopic algae in aquatic ecosystems is an important manifestation of
algal blooms [26]. This is a ‘signal’ that the marine ecosystem is under stress.
Algal blooms always happen in both freshwater and marine environments, such
as lakes, rivers, estuaries, and oceans. They are often caused by a combination
of environmental factors, including warm water temperatures, high nutrient levels
(such as nitrogen and phosphorus), calm water conditions, and increased sunlight.
These conditions create an ideal environment for the rapid proliferation of certain
algal species. Algal blooms can also have significant ecological impacts. When
algal blooms occur, the excessive growth of algae often leads to their decay and
death. As the algae decompose, the organic carbon they contain is released back
into the environment [27]. This process can result in the production of carbon diox-
ide and other greenhouse gases, contributing to the atmospheric CO2 levels and
potentially impacting global climate change. Some algal blooms, particularly those
composed of certain species of dinoflagellates, can deplete oxygen levels in water
bodies through a process called eutrophication [28]. Excessive algal growth con-
sumes oxygen during decomposition, leading to hypoxic or anoxic conditions [29],
which depletion of oxygen can create ‘dead zones [30]’ where marine life cannot
survive. In such environments, the breakdown of organic matter is often incomplete,
resulting in the production of methane, a potent greenhouse gas [31]. Methane can
further contribute to climate change. Algal blooms can disrupt the normal carbon
fluxes between different components of the ecosystem [32]. Additionally, the tox-
ins produced by algae can harm or kill fish, shellfish, marine mammals, and other
aquatic organisms [33], disrupting the balance of ecosystems and causing economic
losses in fisheries and tourism industries.

1.3 Ecosystem dynamic change perception

The need for ecosystems can be quantified by assessing the value and importance
of ecosystems for the planet’s functioning. All ecological indicators are measurable
variables that provide insights into the condition and functioning of an ecosystem.
Examples include water quality parameters (e.g., pH, dissolved oxygen), nutrient
levels, pollutant concentrations, and temperature. Monitoring these indicators can
help detect changes in ecosystem dynamics. These are also the most sensitive vari-
ables for ecosystem transformation. In addition, biodiversity conservation are also
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essential aspects of quantifying the need for ecosystems. Biodiversity is a fun-
damental aspect of ecosystems. Surveys can be conducted to quantify changes in
species richness, abundance, and composition over time. These surveys may involve
field observations, specimen collection, camera trapping, acoustic monitoring, DNA
analysis and so on. Whereas the recognition of biodiversity has a crucial important
relationship with habitat. Habitats with a higher number of species are generally
perceived as more biodiverse. This perception is influenced by the visual presence
and diversity of organisms within a habitat. Habitats such as rainforests or coral
reefs, known for their high species richness, are often seen as highly biodiverse.
Biodiversity perception is also influenced by the complexity and structural diversity
of a habitat. Habitats with a variety of vegetation types, microhabitats, and niches
are often perceived as more biodiverse. For example, a forest with multiple layers of
vegetation, including the canopy, understory, and forest floor, may be seen as more
biodiverse than a simple grassland. The presence of diverse ecological interactions
within a habitat can influence biodiversity perception. Habitats that support intri-
cate food webs, symbiotic relationships, and other ecological interactions are often
seen as more biodiverse. For example, a coral reef with its complex network of
species interactions and dependencies is recognized for its biodiversity. However,
it’s important to note that biodiversity perception may not always align with sci-
entific assessments of biodiversity. Different factors, such as cultural backgrounds,
personal experiences, and knowledge levels, can influence how individuals perceive
and value biodiversity within a habitat.

There are many ways to quantify changes in ecosystem dynamics, however the
combination of computer technology has revolutionized the way we study and un-
derstand ecosystems. Ecological modeling can be used to simulate ecosystem dy-
namics and predict how they may change under different scenarios. Models can
incorporate various ecological processes, such as nutrient cycling, species interac-
tions, and climate dynamics, to project future changes and assess the impacts of
different factors on ecosystem dynamics. While ecological models can accurately
capture the qualitative behavior of real ecosystems, they may not always accurately
capture quantitative details [34]. The complexity of ecosystems makes it difficult to
accurately model their behavior, and computational limitations may further affect
our ability to understand and manage these systems. Apart from that, there are also
remote sensing techniques to monitor changes in ecosystem characteristics. It can
provide data on land cover, vegetation density, changes in landscape patterns, and
track deforestation, urbanization, and habitat fragmentation, among other ecosys-
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tem changes. Typical practices are the use of remote sensing data and machine
learning technique for the detection and classification of algal blooms [35] [36]
and the quantification of phytoplankton biomass [37]. The combination of remote
sensing and computer technology allows a large amount of ecological data to be
effectively analyzed and visualized.

1.3.1 Ecosystem information and status assessment

A complex network is a mathematical representation of a system with intercon-
nected elements or nodes, capturing the patterns of interactions and dependencies
between them. Complex networks provide a framework to study the structure, dy-
namics, and properties of complex systems in various domains. They reveal non-
trivial network structures, connectivity patterns, and emergent properties, allowing
for the analysis of information flow, resilience, synchronization, and other pro-
cesses.Complex networks serve as a powerful tool for modeling, prediction, and
understanding complex systems across disciplines, including social networks, bio-
logical systems, technological networks, and ecological networks. Therefore, com-
plex networks have an significant contribution in describing ecosystem structure,
dynamics, and function.

Mutualistic interactions (such as pollination or seed dispersal networks) and
competitive interactions can be represented as networks. Complex networks pro-
vide a framework to study species interactions beyond predator-prey relationships.
Analyzing these networks helps understand the dynamics of species interactions,
the emergence of cooperation or competition, and the consequences of species loss
or introduction. Meanwhile, complex networks can be used to model metapopula-
tions, which are populations of species occupying interconnected habitat patches.
Network analysis helps evaluate the connectivity and spatial structure of metapop-
ulations, predict the spread of species or diseases, and assess the effectiveness of
conservation strategies in maintaining population viability. So, networks can rep-
resent ecological connectivity patterns, such as landscape connectivity for species
movement or dispersal. Network-based metrics and algorithms help identify corri-
dors, stepping stones, or other critical connectivity features that support gene flow,
colonization, and the maintenance of biodiversity across fragmented landscapes.
Classical complex networks such as food webs, which depict the trophic interac-
tions between species in an ecosystem, can be analyzed as complex networks. Net-
work analysis helps identify key species (such as top predators or keystone species)
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and understand the flow of energy and nutrients through the food web. It allows the
quantification of various network metrics (e.g., connectivity, centrality, robustness)
to assess the stability and resilience of ecological communities (such as the paper by
J. Li et al. [38]). Complex network analysis provides tools to assess the resilience
and robustness of ecosystems in the face of perturbations or species loss or extreme
environmental stress. By modeling the network structure and simulating cascading
effects, researchers can understand how the removal or disturbance of key species
or links impacts the stability and functioning of ecosystems.

1.3.2 Multi-factor ecosystem risk prediction

GNNs combine the power of deep learning techniques with the ability to model and
process structured data represented as graphs. They in ecology demonstrate their
potential to unravel complex ecological systems, uncover hidden patterns and rela-
tionships, and make accurate predictions. GNNs can be utilized to model and pre-
dict the distribution of species across landscapes. By incorporating spatial informa-
tion, environmental variables, and species interactions as a graph structure, GNNs
can learn complex relationships and patterns to evaluate the effects of species loss
or introduction, assess the stability and resilience of ecological communities, and
generate more accurate predictions of species occurrence and abundance. GNNs
have been applied to analyze the spread and dynamics of infectious diseases within
ecological systems. By integrating contact networks, environmental factors, and
disease attributes, GNNs can simulate and predict disease transmission, evaluate in-
tervention strategies, and identify key nodes or areas for targeted control measures.

GNNs offer a powerful approach for multifactor ecosystem risk prediction by
leveraging the strengths of graph representation, feature learning, and dynamic
modeling. GNNs can integrate diverse data sources, including remote sensing data,
ecological surveys, socio-economic data, and climate models, to provide a com-
prehensive understanding of ecosystem risks [39]. By assimilating and analyzing
these multiple data types within the GNNs framework, a more accurate and holistic
prediction of multifactor ecosystem risks can be achieved. Specifically, GNNs rep-
resent the ecosystem as a graph, where nodes represent different components (e.g.,
species, habitats, environmental variables) and edges represent the interactions or
relationships between them. This graph representation enables the incorporation of
multiple factors and their interactions into the risk prediction process. Features can
be learned and extracted from the graph structure, including environmental vari-
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ables, ecological attributes, and human-related factors. By propagating information
through the graph and aggregating features from neighboring nodes, GNNs can
capture the spatial, temporal, and relational aspects of the ecosystem, enhancing
the prediction accuracy. GNNs also can model and predict ecosystem risks by con-
sidering multiple factors ‘simultaneously’. By combining the learned features and
incorporating various risk indicators. It can provide a comprehensive assessment
of the multifactorial risks to ecosystem health and resilience. Furthermore, GNNs
can capture the temporal dynamics of ecosystems by incorporating time-dependent
factors and historical data. This enables the prediction of how risks may evolve
and change over time, allowing for early detection and proactive management of
ecosystem risks. The predictions generated by GNN-based risk models can support
decision-making and inform conservation strategies. By identifying the key factors
contributing to ecosystem risks and quantifying their relative importance, GNNs
can guide the prioritization of interventions, adaptive management approaches, and
the allocation of resources for risk mitigation.
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Chapter 2

Algal Bloom Risk: Spatio-Temporal
Inference and Prediction

2.1 Introduction

Blue carbon ecosystems play a vital role in the sequestration and storage of car-
bon [40] [41]. However, human activities have profoundly impacted coastal ecosys-
tems, including mangroves, seagrass beds, and salt marshes, resulting in substan-
tial depletion of blue carbon stocks throughout the 20th and early 21st centuries.
Among the most severe challenges faced by these ecosystems are harmful algal
blooms (HABs), which induce oxygen depletion, fish fatalities, and vegetation loss.
Moreover, HABs discharge significant quantities of carbon dioxide and other green-
house gases, contributing to the augmentation of climate change. Effectively man-
aging and mitigating the repercussions of HABs on blue carbon ecosystems holds
critical importance for both their preservation and climate change mitigation. An
illustrative instance of a locale frequently experiencing intense HABs outbreaks is
central Florida Bay. The predominantly enclosed nature of this region, character-
ized by constrained water exchange, results in high concentrations of cyanobacteria
that can pose risks to aquatic life and human well-being [42]. Altered levels of inor-
ganic nutrients, including those stemming from hurricanes and the vast reservoir of
warm water in the Gulf of Mexico, collectively contribute to the onset of bloom out-
breaks [43]. Analysis of ecosystem dynamics often extracts stress indicators from
the observed network topology of ecological phenomena over time [44]. Effec-
tively managing and predicting HABs necessitates the establishment of a compre-
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hensive factor model grounded in topological networks, capable of accounting for
robust causal relationships among diverse factors while accommodating interactions
among multiple variables concurrently to facilitate accurate bloom predictions. This
study introduces a novel approach that simultaneously addresses dynamic ecolog-
ical processes and the interplay of multiple causal factors, thereby enhancing the
precision of ecological dynamic observations and forecasting.

2.2 Methods and Materials

2.2.1 Data sets and data processing

The Southeast Environmental Research Center (SERC) at Florida International Uni-
versity established an extensive water quality monitoring network comprising 28
strategically positioned stations within Florida Bay. Each of these stations, akin
to nodes within a network framework, gathers monthly data encompassing param-
eters such as Chlorophyll-a (CHL-a), total organic carbon, inorganic and organic
nitrogen and phosphorus (TN&TP), turbidity (TURB), pH, salinity (SAL), water
temperature (TEMP), and dissolved oxygen [45, 46]. Leveraging six sets of com-
prehensive water quality monitoring data from August 1992 to September 2008,
collected across the 28 monitoring stations within the bay (depicted in Fig. 2.1
A), we conducted our analysis [45]. These data sets encompass monthly readings
of total nitrogen (TN), total phosphorus (TP), salinity (SAL), chlorophyll a (CHL-
a), water temperature (TEMP), and turbidity (TURB). CHL-a, a widely employed
metric for algal biomass [47], serves as an indicator of ecosystem health. Elevated
CHL-a values often signify heightened nutrient levels, fostering the proliferation of
cyanobacteria and elevating the risk of Harmful Algal Blooms (HABs) [48]. Em-
ploying the Pareto Principle, we characterized an algal bloom state when CHL-a
values resided in the top 20% range, whereas non-bloom states corresponded to the
remaining 80% of CHL-a values.

2.2.2 Measuring variable influence

We measured the information content of a time series variable X = x1, x2, . . . , xt

of length t using Shannon entropy,

H(X) = −Σp(x)log2p(x), (2.1)
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Figure 2.1: Data monitoring stations map and HABs space inference network.
The numbers in (B) correspond to the station numbers in (A). (B) is based on bloom
(CHL-a) data from August 1992 to September 2008. In part (B), the node size de-
pends on the Shannon entropy of the CHL-a for the station, the node colour is pro-
portional to the outgoing transfer entropy (OTE), and the edge size is proportional
to the value of the corresponding transfer entropy.
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where p(x) is the probability of a value of X being observed. The greater the
information content, the higher the H , and the more unstable the variable. For
multivariate, we considered the amount of information of Xi (i ∈ n, n is the number
of variables) under the condition that the variable Xj (j ∈ n) is known,

H(Xi|Xj) = −Σp(xi,t, xj,t)log2p(xi,t|xj,t), (2.2)

The transfer entropy (TE) from one time series variable Xj to another Xi,

TEXj→Xi
=

∑
Xj ,Xi

p(xi,t+1, xi,t, xj,t)log

(
p(xi,t+1|xi,t, xjt)

p(xi,t+1|xi,t)

)
, (2.3)

where xi and xj are the value of Xi and Xj at times t or t + 1. TE quantifies
the extent to which one variable influences another: higher values indicate greater
influence.

In the case of ecosystem dynamics, there is a two-way effect between any two
variables [49]. So, TE can be calculated for both directions, i.e., Xi → Xj and
Xi ← Xj . But the following way facilitates the identification of stronger impact
variables; we call it strong causality.

TEdiff(Xi,Xj) = max
20%

(TEXi→Xj
− TEXi←Xj

). (2.4)

When TEdiff(Xi,Xj) > 0, Xi is said to cause Xj; when TEdiff(Xi,Xj) < 0, it will
be set to 0; and when TEdiff(Xi,Xj) = 0, there is no connection between the two
variables. To retain only the most efficient relationship in a network, the Pareto
Principle was utilized to preserve the top 20% values of TEXi→Xj

− TEXi←Xj

solely.
We quantified the influence of a variable Xi as its total outgoing transfer entropy

(OTE) by using

OTEXi
=

∑
Xj

TEdiff(Xi,Xj). (2.5)

A large value of OTEXi
indicates that Xi has a large average impact on its network,

proportional to its activity level.

2.2.3 Spatial and ecological information network

To monitor the spatial pattern (trends in spread and influence) of algal blooms (in-
dicated by large values of CHL-a), we constructed an information network among
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the stations [41]. In this network (the structure follows the Fig. 2.2 B), nodes
represent the stations, and links among them are the TEdiff (Xi, Xj) (Eq. 2.4),
where Xiand Xj are the time series of CHL-a at the different stations. Using
TEdiff (Xi, Xj) means this network was directional, displaying the strong causal-
ity between the two interacting stations; no link between nodes indicates negligible
interaction strengths.

The spatial model of blooms is an inferred model based on information from
CHL-a data only. However, understanding the interactions between water qual-
ity factors is also vital to bloom management. In order to explore the interaction
between CHL-a and other ecologically relevant variables, a separate information
network was constructed for water quality factors in each station (the structure fol-
lows Fig. 2.2 B). In this network, nodes are the set of environmental variables (i.e.,
CHL-a, TN, TP, SAL, TEMP, TURB). Similar to the spatial network idea, the links
among them are TEdiff (Xi, Xj) (Eq. 2.4). Herein, Xi & Xj are the time series of
measurements for the different water quality variables.

2.2.4 Network-based inferred bloom prediction

Eq. 2.4 serves as a connection among several variables, enabling the prediction
of a specific variable while taking into account multiple adjacency variables. The
structural framework follows Fig. 2.2 A.

Node feature matrix

In general, the extraction of time series features is done by convolutional operations.
A convolution kernel is a feature extractor. Inspired by Transfer Entropy Graph
Neural Network (TEGNN) [50], we used Convolution Neural Networks (CNN) fil-
ters with kernel sizes of k = 3, 5, 7 to extract temporal scale features since kernels
of different sizes can extract time series features with different significance for a
variable. For each node 3-time series features (fXi

= [f (1)
Xi
, f (2)

Xi
, f (3)

Xi
], i ∈ n)

can be obtained. So, the feature matrix is F ∈ R(n×d) for all nodes, where n repre-
sents the number of nodes, and d is the number of features (d = 3).

Node embedding

The determination of node adjacency in the graph structure is based on the transfer
entropy difference matrix (Eq. 2.4). This matrix can be utilized in combination
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Figure 2.2: Information inference network and prediction modeling frame-
work. (A) is a causality-based graph neural network framework with transfer en-
tropy as a priori information. (B) indicates the size of the nodes in the causal in-
ference network, the network composition (including the size and direction of the
edges), and the node colours, respectively.
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with the node feature matrix (F ∈ R(n×d)) to obtain node embedding and create
a multivariate time series prediction model. The hidden state of a node Xi is rep-
resented by a v-dimensional vector hXi

that contains information about the node’s
neighborhood.

hXi
= µ(fXi

, tediff [Xi], fne[Xi], hne[Xi]), (2.6)

where fXi
indicates the features of node Xi. tediff [Xi] denotes the features of edges

connected to Xi (Eq. 2.4) in the hidden layer. Features of the nodes adjacent to node
Xi is denoted as fne[Xi]. The hidden state representation of the nodes connected to
this node Xi. The update of the hidden status follows

h
(m+1)
Xi

= µ(h
(m)
Xi

W (m)
α +

∑
Xj∈N(Xi)

h
(m)
Xj

W
(m)
b ). (2.7)

Function µ is a transition function that maps inputs to v-dimensional space. h
(m)
Xi

denotes the state of the node Xi in the hidden layer m, W (m)
a and W

(m)
b are pa-

rameter matrices and N(Xi) represents the neighbors of the node Xi. Xj can be
arbitrary nodes connected to Xi. The node features fXi

(in the Eq. 2.6) are iterated
many times in different hidden layers of the neural network. Therefore, the forward
propagation update of a certain node Xi can be performed as Eq. 2.7. However, the
output of the network is obtained by passing the state h

(m+1)
Xi

and the feature fXi
to

the output function (Eq. 2.8). Meanwhile, the output dimension of the last graph
neural network layer is 1, which is used as the prediction result.

Oi = g(fXi
, h

(m+1)
Xi

). (2.8)

Loss function

To optimize the parameters of the above model, we used the L1 loss function,

L1(Ôt, Ot) = min
ϕ

∑
t∈T

q∑
i=1

||Ôi,t −Oi,t||, (2.9)

where Ôt is the prediction result of the model, Ot is the actual result; q denotes the
number of variables; T is the set of time stamps used for training and ϕ represents all
training parameters, including W

(m)
α and W

(m)
β (Eq. 2.7). The training parameters

are updated to minimize the loss function.
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2.3 Results and Discussion

2.3.1 Analysis of spatial dynamics of algal blooms

Using time series of CHL-a from 28 spatially distributed water monitoring stations
(see Fig. 2.1 A), we constructed a strong causal information network (see Fig. 2.1
B) to explore spatial dynamics of algal blooms between 1992 and 2008. First, the
bloom information content of a station (the time series of CHL-a) was quantified
by Shannon entropy (see Eq. 2.1. This is represented as the node size in Fig. 2.1
B). Stations with unstable bloom information content have high Shannon entropy.
The bloom surrounding stations located in the center of the bay (12, 13, 14, and
15) were the most unstable, with those at the extreme ends – in the East and West
– were relatively stable (see node sizes in Fig. 2.1 B). This is due in large part
to the geographical location of the central region, which limits the exchange of
water between the bay and the open ocean, resulting in the accumulation of various
nutrients in the water column. This is a reason why the central part of the bay is the
hardest hit by bloom, and it does not dissipate for a long time.

We considered the spatial transfer of the bloom as the spatial interaction be-
tween any two stations, which was quantified as the difference in transfer entropy
(TEdiff , see Eq. 2.4) between their respective CHL-a time series. We considered
strong unidirectional causality, capturing the extent to which the bloom surrounding
one station causes uncertainty blooms elsewhere. The inferred network confirmed
that the blooms in central Florida bay were most likely the source of bloom activ-
ity elsewhere in the bay. As seen in Fig.2.1 B, the directions of interaction were
largest from these information hotspots to other stations in the region. This further
illustrates how a complex information network can simulate the spatial state and
dynamics during an algal bloom. This further demonstrates the ability of complex
information networks to effectively model the spatial state and dynamics of algal
blooms.

We further exploited this information network by analyzing the total effective
outgoing impact of a station, calculated as its total outgoing transfer entropy (OTE,
see Eq. 2.5). In this scenario, a high OTE reflects a high rate of activity (information
dissemination) from that station to others in the network. We grouped the OTE into
eight levels according to its magnitude. As can be seen in Fig.2.1 B., Stations 12,
21, 13, and 19 are the most active stations during the bloom in Florida bay. They
were more likely to be the source of any bloom activity but were less likely to be
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affected by the activity around other stations. In contrast, Stations 2, 5, 6, 11, and
24 were the least active stations, having little impact on the rest of the network. This
suggests that any observed bloom activity is likely to originate in the central bay and
radiate outwards. And to a large extent, the eastern bay is significantly impacted
by the spread of blooms from other regions, and these blooms are generally not
indigenous to this area.

2.3.2 Inferred network warning for algal blooms

We utilized the strong causality network as a basis to study the interaction between
blooms and water quality and the abruptness of bloom occurrence by observing
blooms at the most active station (each station is independent). The region with the
highest bloom activity was found to be Station 12 in central Florida bay (Fig. 2.1
B), where blooms exploded continuously for 18 months from February 1993 to July
1994 (Fig. 2.3). In addition to observing the bloom indicator CHL-a among sta-
tions, we also analyzed the interaction between blooms and five other water quality
factors (TN, TP, SAL, TEMP, and TURB). At Station 12, where the bloom persisted
for an extended period, TN was identified as another significant driver of its con-
tinued occurrence, along with CHL-a (see color nodes in Fig. 2.3 B). In addition,
all the observed factors except TP have higher unstable water quality information
(see the size of nodes in Fig. 2.3 B). A prolonged bloom was observed to cause
significant changes in water salinity in the vicinity of Station 12, while the other
water quality factors acted as both controllers and regulators. The direct effects of
a prolonged bloom on water quality are extensive, and almost all observed water
quality factors are altered after a long bloom period (like the CHL-a impact on oth-
ers in Fig. 2.3 B). Such effects play significant roles in the occurrence of future
blooms. Although blooms frequently occurred at Station 12 over the next decade,
they were less severe and short-lived (see Fig. 2.3 A). However, a sudden outbreak
of intense blooms in September 2006 prompted us to examine the network of water
quality relationships for the preceding four months in order to identify the factors
contributing to the sudden bloom (Fig. 2.3 C). Our analysis revealed that TN, CHL-
a, SAL, and TURB were all in active states prior to the peak bloom, while the
water temperature was passively affected (see the color of nodes in Fig. 2.3 C). Al-
though the information content on unstable water quality factors is lower than that
on persistent blooms (node sizes in Fig. 2.3 B & C), it can be shown that the sud-
den outbreak of blooms is the result of water quality imbalance caused by multiple
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Figure 2.3: Prolonged and sudden blooms at a typical station (Station 12). (A)
indicates the moment of onset and persistence of bloom at station 12. (B) demon-
strates the causal effects of water quality factors on prolonged blooms. (C) displays
the interactions of water quality factors before the sudden bloom peak.
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factors interacting in depth.

2.3.3 Bloom prediction and analysis

We used four active stations as examples to analyze the bloom prediction ability
of our network-based inference method from an ecological perspective. In the line
charts (Fig. 2.4 a, d, g & j), all parts above zero imply the occurrence of blooms.
So, on the temporal scale, we can conclude that the predicted and actual values
are almost synchronized, and there is no severe delay. Our method achieved good
results in predicting the temporal scale of the blooms outbreak. On a spatial scale,
we used the peak moments of bloom at each active station as a reference to compare
the actual and predicted values of blooms across the whole Florida bay (see Fig.
2.4 maps). As can be seen from the maps, the real areas of bloom occurrence are
extremely similar to our predicted bloom conditions. At the peak bloom at Station
12, the most severe bloom should be concentrated around Station 14 and northeast
regions (Fig. 2.4 b). The predictive map shows a similar situation (Fig. 2.4 c).
In August 2007, the bloom at Station 21 reached the maximum value; however,
the area of severe bloom at this time remains in the north-central and northeastern
regions for the whole Florida bay (Fig. 2.4 e). The predictions at this time are
biased, with the severe bloom stations occurring in the northwest and northeast
areas (Fig. 2.4 f). But the predicted location deviations are not significant. This
is because there are fewer bloom data at Station 21, leading to spatial prediction
bias. The peak bloom at Station 13 was in October 1999. But the most serious
areas of bloom across Florida bay at this time were around Stations 14 and 15 in the
northcentral region (Fig. 2.4 h), and the predictions are identical to this (Fig. 2.4 i).
December 2005 was the peak of blooms at Station 19. But the bloom was rampant
around Stations 14, 15, and 16 in addition to 19, while significant bloom was also
observed around Stations 4 and 5 in the northeast (Fig. 2.4 k). The forecast map
also shows water blooms in the northwest, north-central, and northeast and near
Station 19, which are consistent with the real situation (Fig. 2.4 l). Based on our
analysis, we can confidently state that our method exhibits strong performance in
terms of temporal accuracy and spatial reliability. This indicates the efficacy of our
approach in capturing patterns and making predictions at various scales.
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Figure 2.4: Temporal and spatial scales analysis and prediction of active sta-
tions (Stations 12, 21, 13 and 19). b, e, h and k are the actual distributions of
blooms at the corresponding peak moments. while c, f, i, and l are the correspond-
ing predicted distributions of blooms.
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2.4 Conclusions

Harmful algal blooms (HABs) are a phenomenon where certain species of algae
grow rapidly and produce toxins that can be harmful to humans and marine life, ma-
rine ecosystems, and even the economy. Some of the potential hazards of HABs also
include fish and shellfish poisoning [49], respiratory problems, skin irritation [51],
and even death. It is crucial to observe the temporal as well as spatial scales of
HABs as they can have a significant impact on the frequency and duration of HABs.
HABs can occur sporadically or frequently, depending on various environmental
factors such as nutrient levels, water temperature, and weather patterns. Therefore,
monitoring HABs over a long period can help identify trends and changes in their
occurrence and severity. In addition, HABs can occur in specific areas or spread
over large regions, making it important to understand their spatial distribution. This
information can help identify areas at risk of HABs and support the development
of management strategies to mitigate their impact. Prolonged blooms can have sig-
nificant ecological impacts, such as depleting oxygen levels in the water, which
can lead to the death of fish and other aquatic life. The decay of large amounts of
algae can also lead to the production of methane and other greenhouse gases that
contribute to global climate change [52]. In order to avoid sudden outbreaks of
blooms, it is important to monitor nutrient levels and water quality, reduce nutrient
pollution from sources such as agricultural runoff and wastewater treatment plants,
and implement management strategies such as controlling water flow and introduc-
ing natural enemies of harmful algae. And to prevent sudden outbreaks of blooms,
it is important to monitor nutrient levels and water quality, reduce nutrient pollu-
tion from sources such as agricultural runoff and wastewater treatment plants, and
implement management strategies such as controlling water flow and introducing
natural enemies of harmful algae.

Our current work has been analyzed and evaluated from an ecological perspec-
tive. The results show that our method is very effective in terms of multi-variable
and simultaneous consideration of multi-factor interactions. This differs from us-
ing traditional model analysis techniques but rather assesses the effectiveness of the
method from a more intuitive perspective. This approach is valuable for studying
and solving real-world problems such as ecology and environment, the internet,
social networks, and so on. In addition, methods like ours are currently in high
demand in the pharmaceutical industry. They are used to simulate protein produc-
tion and assist researchers in discovering potential new drugs. However, our future
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work still requires model refinement to assess the accuracy of the model from the
computer technology perspective.
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Chapter 3

Spreading Network Inference and
Extreme Eco-Environmental
Feedback

3.1 Introduction

3.1.1 Health and complexity of marine ecosystems

Algal blooms manifest as abnormal changes in phytoplankton communities within
aquatic ecosystems, including estuaries and lakes [53] [54]. Despite discussions
about the global increase in algal blooms attributed to intensified monitoring and
emerging impacts [55], satellite images by Dai et al. [55] highlight a worldwide in-
crease in these blooms, raising concerns for local ecology and global climate. These
blooms, as observed through satellite imagery [55], pose various ecological and
climate-related concerns. They are highly destructive and persistent [56] [57], lead-
ing to ecological catastrophes such as reduced vegetated communities, widespread
sponge mortality, and loss of marine habitat geomorphological structure [58] due to
habitat calcification.

Despite the extensive damage to aquatic ecosystems, the mutual influence be-
tween blooms and the environment has received limited attention from scientists
and policymakers. Algal blooms result from changes in nitrogen (N) and phospho-
rus (P) but can also alter the N/P balance [59] and temperature [60], affecting carbon
sequestration in blue carbon ecosystems like seagrass [61]). These effects can be
exacerbated by local and global climate change [62].
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While literature on the effects of blooms on the environment is limited, some
studies have explored the relationship between phytoplankton and water quality
during bloom conditions [63], climatic and regional variations in phytoplankton as
bloom features [64] [46], and habitat-specific effects related to local planktonic bio-
geochemical stress [44]. Fewer studies have examined the spatial spread of blooms
as complex networks and predicted blooms based on spatially explicit biogeochem-
ical factors.

A comprehensive biocomplexity study, similar to the one we propose, would be
essential to define micro-macro feedback loops crucial for risk assessment, man-
agement, and policies aimed at minimizing eco-environmental imbalances resulting
from blooms. Blooms epitomize marine ecosystem health, as their emergence is
closely linked to altered ecohydrological factors on a basin-scale, stemming from
both land and ocean sources. This leads to rapid and persistent phytoplankton in-
creases with short-term [65] and long-lasting systemic effects on ecological func-
tion and the environment. This extends beyond a single species or humans, con-
tributing to the gradual degeneration of ecosystem function from its optimal or
baseline state in relation to initial or desired conditions.

Marine microbial food webs consist of heterotrophic protists, phytoplankton,
prokaryotes and viruses (i.e., the ocean microbiome). Together, they are responsi-
ble for a large part of the production, respiration and nutrient transfer in oceans;
they affect, for instance, the carbon cycle both in blue carbon habitats and in the
ocean via the carbon pump. As marine ecosystems are increasingly affected by an-
thropogenic disturbances both from land and ocean, predicting ecosystem responses
above critical environmental pressure relies on a better understanding community
dynamics, including their composition, spatial/temporal distribution and interac-
tions. Long-term observations are especially useful for this, and both Galbraith
and Convertino [44] and Galbraith et.al. [66] provided clear ecological patterns to
use as indicators of ecosystem health in relation to ocean microbiome variability
intended as a complex network. Chlorophyll-a (CHLa) seems to be the best indi-
cator of community health; however, currently there is the need to quantify how
much CHLa variability implies changes in ecological effects (e.g., blooms) and
long-term effects, such as on the environment and ecosystem function (e.g., carbon
cycle). Coastal and marine ecosystems that experienced marine heatwaves, which
were particularly significant in 2014-2015 worldwide, provide a unique opportunity
to study how warming affects community dynamics (namely, microbiome interac-
tions) and how imbalance of the latter affects the environment back in the long term.
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The presented tool for ecosystemic risk assessment and the results from FL Bay are
the main innovations of this paper. The topological network structure is an effective
and intuitive way to describe the dynamical dependencies among diverse of anal-
ogous units of an ecosystem, or ecological communities composed of hundreds or
thousands of populations of species [67] [68]. This is particularly important for ma-
rine ecosystems where both structural networks (such as coastal and marine habitat
connections and flows) and functional networks (such as prokaryotic and eukary-
otic interactions) are not directly visible or known. Yet, causal network discovery
and inference models (e.g., see Li and Convertino [69] for an articulated discussion
about ecosystems) are particularly important for mapping the ecological baseline on
which current ecosystem assessment and future predictions of ecosystem patterns
(tangibly liked to ecosystem services) can be made. Complex networks have great
potential to help in solving contemporary real-world problems in a wide range of
fields [70] [71] [72] [73] [38] [74]. Complex networks have been used to analyze the
dynamics of pseudo-periodic time series [75] and the functional dynamics of com-
plex systems [76] [77] [78] [79]. Furthermore, networks have become an excellent
method for the study of functional and structural dependencies among very complex
units with different temporal dynamics [80] [81] [82] [83]. However, most of the
considered networks in the literature and particularly those inferred in ecosystems,
typically represent relationships based on known or assumed affiliations [84] [85]
or fixed connections [86]. This makes it difficult to represent the independent local
properties of each node and, more importantly, the unique dependencies between
different nodes. This issue is particularly relevant for algal blooms where the bio-
geochemical networks are hypothesized to vary dramatically over time and space.
This has been verified by recent studies on prokaryotic networks whose topological
variability was strongly related to systemic ecological stress [44] [66]. Nonetheless,
no analyses have been made so far on bloom spreading networks, and this research
presents a novel template for characterizing and predicting algal blooms based on
chlorophyll-a and associated water quality factors.

3.1.2 Ecological patterns of spreading networks of algal blooms
indicator

Species, encompassing microscale eukaryotes, function within dynamic ecosys-
tems, placing immense importance on their capacity to react to shifts in environ-
mental dynamics. The capability for an effective collective response, influencing
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the restoration of optimal ecosystem conditions, hinges on the exchange of per-
tinent information among species. Consequently, ecosystems rely profoundly on
networks of eco-environmental interactions. This fundamental aspect underlies the
progression of ecosystems toward states of low entropy, which is exemplified by
the scale-free distribution of CHLa, as explored in this study [87]. Furthermore,
this process is instrumental in enabling adaptation to novel environmental stress
states [88], some of which may be undesirable, including persistent and substantial
blooms. In the present study, we emphasize the pivotal role of information transfer
as a prominent characteristic driving collective eco-environmental dynamics that
lead to the occurrence of algal blooms. Connectomics is broadly defined as the
study of structural and functional networks (the connectome), which are maps of a
system (such as the nervous system), mainly in the brain; however, this concept has
been extended to ecosystems (see Convertino and Valverde Jr. [89]) to character-
ize both functional species interaction networks, their stimuli with the environment
or the envirome itself as set of interdependent environmental processes [44] and
habitat networks [69]. The connectome enables understanding of how spreading
information is processed (coded, stored, transmitted and decoded in an information
sense, which can be any ecological information) at and among different scales of
the system (e.g., one node and the whole system, while also considering cross-scale
dependencies). As the connectome serves as the fundamental information frame-
work of ecosystems, possessing knowledge of it empowers the enhancement of pre-
dictive capabilities, both in the short and long term, for representing ecosystem
dynamics. Addressing the aforementioned requirements, specifically the identifica-
tion of spreading bloom trajectories and their potential environmental ramifications,
we showcase the efficacy of an information-theoretic approach in deducing bloom
networks and biogeochemical feedback. The optimal information flow model was
initially devised for deducing species interaction networks within any ecosystem
based on abundance data [69], subsequently extended to predict fish biodiversity
patterns [90] and eco-environmental interactions within the ocean microbiome [44].
The ecological time series underpinning ecological dynamics are particularly im-
portant for assessing ecological states and early warning signals of shifts [91] before
the inference of ecological networks. The proposed model applies transfer entropy
(TE) differences (to target the salient directed interactions) to infer a spatial net-
work strategy that can identify the sources and sinks of bloom outbreak as well as
foretell changes probabilistically in water quality factors (in average and fluctua-
tions) when blooms happen. Through the model, we specifically infer and analyze
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the spatial ecological corridors determining bloom spread and direct interactions
between CHLa and environmental factors to quantify the environmental effects of
ecological dysbiosis; previous efforts (see Wang and Convertino [41]) focused on
the whole set of biogeochemical interactions useful for forecasting outbreaks, ex-
cept for bloom spreading networks. Historically, CHLa has commonly served as an
indicator of blooms, owing to its sensitivity to environmental shifts, straightforward
monitoring, and proficiency in reflecting phytoplankton biomass [47]. However, its
status as a comprehensive indicator of ecosystem health in relation to ecosystem
function remains unverified. We present a discussion on the outcomes of applying
this model to instances of algal blooms observed in Florida Bay, located within the
Florida Everglades National Park, during the period spanning 2005 to 2006, marked
by a recurrence of substantial blooms. Given its distinctive lagoon configuration and
climatic conditions, Florida Bay (Fig. 3.1) experiences recurrent algal blooms [42],
aligning with the frequency observed in numerous other aquatic ecosystems situated
in subtropical and tropical climates. As a result, a robust and dynamic predictive
model is imperative for algal blooms, with the aim of facilitating decision-making
processes and the prevention of blooms.

3.2 Methods and Materials

To represent the Fig. 2.2(B) in detail, the proposed TE network inference model
that can be used for variable interaction discovery at multiple scales is explained.
Its structure is graphically shown in Fig. 3.2.

3.2.1 Data preprocessing

We used a threshold-based quantile regression method (analogous to Nelson et
al. [46] ) to establish an average threshold of ≥ 2µgL−1 on CHLa, universally ap-
plied to all stations, to distinguish bloom from non-bloom states across all stations.
Initially, the dataset for this study spanned 2004 to 2006, corresponding to before,
during and after a severe bloom outbreak in Florida Bay in 2005 [92] in terms of a
CHLa extreme. In 1999, several blooms were observed in the same area but with
lower CHLa extremes [46]. Then, the dataset (comprising all 2004, 2005 and 2006
CHLa monthly data) was filtered to include only those months and stations with
CHLa values exceeding the critical blooming threshold, i.e., those months and sta-
tions indicating sustained bloom conditions. As a result, the final dataset contained
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Figure 3.1: Florida Bay and area classification based on CHLa dynamics. The
red–blue classification in plot (A) is related to the probabilistic structure of CHLa
as highlighted in plot (B). Plot (A) also highlights the main habitats and species
present in FL Bay.
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Figure 3.2: Ecological corridor inference model. The structure of the TE infer-
ence model. Here variables are annotated as X and Y generically. X can be thought
as CHLa and Y all other environmental variables. The first step of the proposed
model is to infer variable pairwise interaction as TE, and node collective influence
(OTE), determined via Eqs. 2.5 and 2.4, respectively. The second step is to prune
the network considering only salient Pareto interaction via thresholding TE differ-
ences with a threshold d of causal significance that is set to consider the top 20%
TEs (Eq. 2.4) necessary and sufficient predict bloom spreading.
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18, 63 and 136 rows of measurements (i.e., months) for the 2004, 2005 and 2006
bloom periods (pre-, peri- and post-bloom), respectively. More generically, 2005
can be considered as epitomic of bloom outbreaks, while 2004 and 2006 are repre-
sentative of early and post-bloom periods.

3.2.2 Ecosystem organization and connectome

The entropy of the ecosystem, manifesting ecological disorganization in relation to
CHLa variability, is dependent on the probability distribution functions (pdfs) that
affect TE calculated on the pdf divergence and asynchronicity. The TE variability
of an area, or the whole system, can be decomposed into eco-environmental interac-
tions (considering CHLa and environmental factors acting as determinants or effect
of ecological imbalance) and the ecological areal interactions underpinning bloom
spread. This variability affects the organization propagation of CHLa (i.e., how ran-
domly distributed CHLa is), and in an information-balance equation, can be written
as the spatio-temporal convolution of the aforementioned components composing
the ecosystem connectome,

eco-function︷ ︸︸ ︷
H(CHLa) =

∑
m,n

∫ t

0

eco-connectome︷ ︸︸ ︷
(1− TE(Xm,CHLam))︸ ︷︷ ︸

eco-env feedback

∗ (1− TE(CHLam,n))︸ ︷︷ ︸
eco-corridors

dτ , (3.1)

where, X stands for all other environmental variables except for CHLa, and m,n

stands for the location of each area being monitored over the period t. The specific
TE chose in Eq. 3.1 is related to TE analytics and posed objectives, later to be spec-
ified. It should be noted that the time delay τ between eco-env factors in Eq. 3.1
has been set to one due to the sub-monthly variability of CHLa and the resolution
of the data. Equation 3.1 is focused CHLa patterns where networks are the back-
bone determinants of the ecological “weave” (CHLa interconnected patterns) that
can be potentially controlled. Space and time are the dimensions along which CHLa
is considered, plus other dimensions along gradients of environmental features on
which stress-response patterns and related features (e.g. early-warning signals and
risk thresholds) can be derived. Networks that define sources, sinks, pathways and
determinants to guide monitoring and environmental control for bloom prevention.
In this paper, we specifically analyze the spatial ecological corridors determining
bloom spreading and direct interactions between CHLa and environmental factors
(second and first term in Eq. 3.1, where for the latter only CHLam → Xm inter-
actions are considered) to quantify environmental effects of ecological dysbiosis;
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Wang and Convertino [41] focused instead on the whole set of biogeochemical in-
teractions useful for forecasting except for bloom spreading networks.

3.2.3 Eco-environmental network inference

Transfer entropy (TE), constructed from information entropy [93], measures the
causal relationship between two asynchronous and divergent variables (expressed
as time series) X and Y (in the bivariate form, yet not accounting for second-order
indirect interactions) by quantifying the predictive information flow between vari-
able pairs [94]. Previously the TE-based model, called “Optimal Information Flow”
(in relation to the maximization of the systemic entropy to gather the largest infor-
mation), was used to discover causal relationships in human and aquatic ecosys-
tems, e.g., for bacteria [38, 44, 66] and fish interactions [69] and assess ecosystem
health. The information flow, and thus the predictive relationship between variables,
is bi-directional. In this paper we took the form of bivariate TE (yet skipping inter-
actions higher than the third-order that is our first modeling assumption considering
the weakly third-order interactions between environmental factors [3]) and calcu-
lated the difference between the pairwise information flows to identify the strongest
causal factor. It is expressed as Eq. 2.4.

In this study we considered only positive TEdiff(Xi,Xj) where Xi = CHLa and
Xj are all other environmental factors for eco-environmental feedback in Eq. 2.4,
and all TEdiff(Xi,Xj) where Xi and Xj are both CHLa in two different stations.
Additionally, in the TE calculation we did not investigate the optimal time-delay
between Xi and Xj , nor the optimal set of factors that are predictive of CHLa, due
to the fact that: (i) bloom eco-env feedback occur at scale lower than one month (at
which data are available), and (ii) our interest into the whole systemic dynamics.
This first part of all TE inference is considering all pairs of variables (Fig. 3.2A).
The unbounded causality matrix, or more precisely the predictive causality matrix
TE unconstrained to any prediction of biodiversity patterns, based on calculated
TEs without predictive environmental factors of ecological patterns in an Optimal
Information Flow perspective, can be constructed as follows:

TE =

 TEdiff(1,1) · · · TEdiff(1,Xj)

... . . . ...
TEdiff(Xi,1) · · · TEdiff(Xi,Xj)

 . (3.2)

where TE in indeed a difference of transfer entropies as in the Transfer Entropy
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Graph Neural Network model (TEGNN) (originally developed by Duan et al. [95]
and applied to algal blooms by Convertino, M. et al. [3]) in contrast to the Optimal
Information Flow model (OIF) originally developed by Li and Convertino [69]. For
each year, two networks were constructed, each defined by an underlying matrix
of transfer entropy differences TE. One inferred matrix was a spatial network in
which the 28 stations were nodes and the causal influence among them were the
edges. The time series used to calculate the transfer entropy differences (Eq. 2.4)
in this network were the time series of CHLa measurements at each station. The
second inferred network was a water quality network, in which the nodes were the
water quality factors (CHLa, TN, TP, SAL, TEMP, and TURB) and the edges were
the causal influence among them.

In this study, however, the causality matrix underlying the water quality network
was further filtered to focus only on the effect of CHLa on other water quality factors
in relation to the objective to quantify these eco-environmental feedback; the reverse
effect of water quality factors on CHLa and the interactions among water quality
factors were not considered in this task but in Convertino and Wang [3] and Wang
and Convertino [41]. Additionally, the values in the matrices for each of the three
years were normalized to enable better comparison of the inferred interactions. This
second part of salient TE selection is about the network pruning (Fig. 3.2B).

3.3 Results and Discussion

3.3.1 Spatio-temporal spreading and fluctuations

To infer and characterize the spreading networks of blooms, underpinning ecologi-
cal risk, we considered Florida Bay blooms in between 2004 and 2006. We novelly
inferred a spatial influence network, underpinning bloom spread, among a set of
spatially distributed water monitoring stations. This was achieved by deriving a TE
matrix from spatio-temporal patterns of CHLa derived from monitored stations (see
Section 3.2.2). The TE matrix for 2004 suggested that the study site was free of se-
vere blooms, except for a few stations in the northwest: specifically, stations 16, 14,
25, and 26 (Fig. 3.1) at least in 2004 where the resurgence of blooms was observed
after the big bloom in 1999 [3, 46].

Ecological spreading corridors are defined by the most divergent and asyn-
chronous CHLa among nodes, yet defining the most likely interdependent area,
at least in a predictive causality sense (causality considering all other feasible con-
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nections, that are all other nodes in this case). Divergence and asynchronicity, as
highlighted by Li and Convertino [69], are related to the difference in pdfs of CHLa
(in two nodes) at different or equivalent time periods, respectively. Spreading can
certainly related to marine currents, however, in this study the purpose is not to de-
fine the precise mechanisms underpinning ecological patterns but rather to define
patterns’ backbone networks that are the salient spreading networks. This does also
identify the potential coastal areas of influence of biogeochemical loads in Florida
Bay, yet, the maximum extent of blooms; something that is really poorly quanti-
fied but necessary for bloom prevention. In analogy, runoff in terrestrial basins is
predicted equivalently to CHLa, where the amount (and distribution) of water in
different locations changes in an asynchronous way and dependent on river net-
work spreading defining timing and divergent volume. True causality, leaving aside
the feasibility of its assessment, must be done considering all areas where CHLa
can spread, that in a bay is virtually everywhere; however, this is challenged by
the data-limitation that is constrained only to the used stations in this case. The
properties of network edges, representing eco-environmental interactions, depend
on TEdiff(Xi,Xj) (Eq.2.4). The edge directions of the spreading network (Fig. 3.3)
suggested that an algal bloom would have initiated around station 16 and then move
west with a preferential direction toward northwest.The edge colors (proportional
to TEdiff(Xi,Xj)) suggested that the bloom was moderately strong but localized in
2004 (Fig. 3.3A) with a high probability to continue growing in the Bay (due to
TEdiff(Xi,Xj) directions). The spatial spreading TEdiff(Xi,Xj) matrix for 2005 re-
vealed large and widespread bloom outbreaks, concentrated in the western and cen-
tral areas of the Bay (Fig. 3.3B). In that year, the spatial influence was the strongest
near stations 25, 16, 14, and 12 in the northwest and station 28 in the south region.
The edge colors indicate that the bloom at all stations was moderately strong and
also very likely to continue in the NE direction. Station 28 seems largely affected
by many other stations in the bloom spreading, and yet likely a sink node with po-
tentially strong ecological effects also considering its proximity to the FL coral reef.
The matrix for 2006 (Fig. 3.3C), showed the most extreme area interactions as well
as a reversal in the spreading of blooms, i.e. moving from NE to central areas. The
edge colors implied that bloom activity was extremely high, covering a wide area
of Florida Bay. Nonetheless, the resulting graph suggested that after the largest out-
break the bloom moved from the easternmost into the north-central area, while the
bloom in the west region had dissipated.

We showed how by analyzing information flow among spatially distributed nodes,
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Figure 3.3: Inferred spatial CHLa for the 2004, 2005 and 2006 pre-, peri- and
post-bloom periods in Florida Bay. Link and node color (from blue to red) is pro-
portional to mTE based on CHLa interdependence between node pairs, and OTE
considering only TECHLa−>Env where Env stands for all other environmental fac-
tors. East to West node and link dynamic increase is observed from 2004 to 2006 as
well as a spreading network transition from regular/Small-World to Scale-Free and
Regular (or uniform) with long-range connections for 2004, ’05 and ’06. Each year
corresponds to different bloom precursor area and environmental factors (Central
and North-West more affected by nutrients), widespread and extremely localized
outbreak (North-East more affected by temperature and turbidity and sequential ef-
fects of spreading.
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it is possible to model the spatial spread of a phenomenon, like algal blooms. In ad-
dition, this approach is able to detect sources, sinks, directions and salient pathways
of bloom spreading. Due to various unaccounted factors such as wind intensity and
direction, current direction, and bathymetry to name a few, there is a certain dy-
namic spatial change of blooms that is not attributed to the aforementioned factors.
However, the model can take into account any environmental factor if available
and yet it can attribute the degree of variability of CHLa. In a complex network
sense, the bloom spatial network in 2004 is small in scale and regular in topology
but has an obvious active station (station 16) that is an actively connected hub for
bloom spreading. Therefore it is much easier to take measures against blooms at
this time (whether possible) or to prevent triggers by controlling environmental de-
terminants. This area is well-know to be heavily influenced by nutrient efflux from
the Everglades [46]. Particularly with the outbreaks of blooms in 2005, and later in
2006 the network has many more area that are very active and affected, yet blooms
management becomes more difficult. Over time a spreading network transition is
observed from a regular/Small-World in 2004, to Scale-Free in 2005, and Regular
(or uniform) topology in 2006 with long-range connections.

3.3.2 Impacts of blooms on water quality

The investigation of the impact of CHLa extremes (magnitude, duration and fre-
quency) on ecosystem health is a poorly covered topic in science. To explore how
algal blooms impacted water quality in Florida Bay, we analyzed how CHLa impact
other water quality variables using TE (see Section 3.2.2). We focused our analysis
on how CHLa implicated potential changes in water quality – in terms of predictive
causality – for stations where extreme blooms were most likely. At the most active
station in 2004 (i.e., station 16 characterized by coastal marshes that is likely the
source of blooms; see Fig. 3.3A blooms did not affect TN, TP, SAL, and TURB, ex-
cept for a slight effect on water temperature (see Fig. 3.4A). Rather, TN, TP, SAL,
and TURB, likely driven by riverine efflux in the Bay, triggered CHLa changes
leading to blooms as highlighted in Wang and Convertino [41] and Convertino and
Wang [3]. In 2005, the impact of blooms on other water quality factors was mostly
evident at station 25 that is a deep-water mangrove habitat, where the blooms were
the most intense (see Fig. 3.3B). CHLa induced not only water temperature changes
but also variations into total nitrogen and salinity (TN and SAL) with higher impact
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for the latter (Fig. 3.4B). In 2006 (see Fig.3.3C) where blooms are the most extreme
but localized (NW area), the effect of blooms on water quality peaked at station 3,
followed by stations 5 and 2, and then station 6 in terms of magnitude (Fig. 3.4C).
Stations 2, 3, experienced blooms throughout the year, while station 6 had a rel-
atively short blooms (7 months as reported in data). At stations 3 and 6 (charac-
terized more by tidal flats) blooms induced changes in water temperature, salinity,
total phosphorus, and turbidity, while at stations 2 and 5 (characterized more by
submerged marshes) blooms led to substantial fluctuations in total nitrogen, total
phosphorus, salinity, and turbidity. Information flow patterns (TE patterns) suggest
that blooms are first strongly causing water temperature alterations, then enhanc-
ing salinity and nitrogen, and later impacting other nutrients (phosphorous) and
turbidity. This is aligned to the understanding of underlying microbiological pro-
cesses [3]. In the vicinity of station 2, blooms can cause a large change in salinity,
while the effects on TN,TP, and TURB are less significant. As blooms are a man-
ifestation of eutrophication in water bodies, large amounts of phytoplankton cause
dramatic changes in the total phosphorus and turbidity such as near station 3, with
minor influence on temperature and salinity. Around station 5, the bloom had a
strong influence on turbidity and salinity, with minor impact on TN and TP due to
the deeper water in this area. Despite bloom near station 6 is relatively short, it still
caused elevated changes on both salinity and turbidity and in a minor way on water
temperature and total phosphorus. In general, the occurrence of blooms had a seri-
ous effect on total phosphorus, salinity, and turbidity in the eastern zone of Florida
Bay; a worrisome condition because of the highly valuable biodiversity in that area
comprising a wide set of sponge, fish and coral species. Our results reveal that algal
bloom severity also cause environmental degradation a posteriori beyond the direct
causal effect of environmental change (particularly from temperature in the ocean,
and nutrients form estuarine efflux) in triggering blooms a priori. Certainly, the pri-
mary causal pathway is about temperature leading to CHLa changes; however, the
inferred networks is also manifesting the feedback of CHLa change on temperature,
and while this can be minor with respect to the first mechanism, it is also possible
in relation to algal overgrowth and local temperature increase. This substantiates
environmental changes due to ecological imbalance [60], such as the “oceanic posi-
tive feedback mechanis” that can lead to further increases in phytoplankton growth,
chlorophyll a concentration, and temperature looms are ecological processes that
consume energy and yet increase local temperature; precisely algal blooms absorb
light from the sun and carbon from the atmosphere which increases the temperature
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of surface water. Whether this can be captured by our data or other data is an open
question, but what is certainly true is that the bidirectional CHLa-temperature feed-
back is inferred, as well as CHLa-salinity. Rising temperature, also related to local
eutrophication, implies more evaporation from waterbodies and yet higher salinity
in case the hydrology is not changed. Of course, if algae are too much (in term of
biomass) too much oxygen is depleted when they die and this creates hypoxia and
cascading risks such as the death of species and the emergence of toxins. This can
also lead to an exceeded capacity of zooplankton to sink carbon to the bottom of
the ocean; thus, increase in size and frequency in blooms is not good, also for the
generated temperature that is a co-occurring risk factor.

3.3.3 Bloom intensity and regional dependence

We explored the interaction dynamics of blooms by analyzing the annual probability
distribution, or pdf, of Outgoing Transfer Entropy (OTE, see Fig.3.5) pre-, while-
and post-bloom. OTE quantified the extent to which blooms around one area can
predict CHLa dynamics (in terms of value and distribution) in other areas: higher
OTE values indicate higher area interactions, yet higher spreading and predictabil-
ity. In 2004, the OTE ranged between 0 and 1.7; most of values with a non-zero
probability were between 0 and 0.6. It can be seen that most of the stations have no
bloom, resulting in a low probability of large values of OTE, but a high probability
of low OTE. The pdf is bimodal with a leptokurtic character. In an ecological sense,
the dynamics is characterized by highly localized blooms, and few traces of bloom
emergence in other areas. Thus, the bloom spatial network system was relatively
contained in 2004 and corresponding to a regular/small-world topology (Fig.3.3).
This also corresponded to a simple low-TE dynamics of eco-environmental interac-
tions (Fig. 3.4). In 2005, the OTE range increased to a maximum of 4.0, with most
of OTE having higher probability than in 2004. In 2006, the range of OTE increased
even further to a maximum of 13, with all OTE values having higher probability.
This also corresponded to a shift in the pdf to a more platykurtic; yet, highlighting
more widespread and common bloom dynamics. From the perspective of complex
networks, the number of nodes with large OTE values increased over time. This
indicates that an explosive spread of blooms across FL Bay. Therefore the initial
energy dissipation is higher over time. In 2005 the system is in an active and com-
plex state, that makes the management of blooms extremely challenging. The 2006
pdf has higher entropy because more Poisson than all previous years.
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Figure 3.4: Inferred biogeochemical networks for 2004, 2005 and 2006 pre-,
peri- and post-bloom periods in Florida Bay. The purpose was to quantify local
eco-environmental impacts for bloom sources. Yet, only four nodes in 2006, and
one node for 2004 and 2005 were considered because those are the most active in
terms of CHLa’s OTE. However, blooms are spreading phenomena and even other
nodes are involved. Stations 16 and 25 are characterized by mangrove habitats in the
West region, while stations 2, 3, 5 and 6 (displayed proportionally to a gradient of
potential impact of CHLa on the environment) are characterized by coastal marshes
and marine flat habitats in the East region of Florida Bay. The color of directed
edges is proportional to ranges of mTE for TECHLa−>Env only. The node color for
CHLa is proportional to OTE while for other water quality factors depend on the
frequency of local blooms during that year (yet, manifesting the potential impact of
CHLa on the environment): specifically, blue, green, orange and pink are for 6, 7,
10, and 12 months of bloom occurrence.
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The pdf of OTE proves that OTE reflects the probabilistic state of ecosystems
with particular reference to algal blooms in this case. The higher the entropy the
larger the effect of blooms and the higher the ecological effects; interestingly for FL
Bay we notice the the highest the entropy the more scale-free the bloom spreading
network although a time-delay may exists between ecological effects (CHLa that
is more random like in 2006) and the largest spreading network (that is in 2005)
signifying potential long-term effects. By flipping the pdf it is possible to get infor-
mation on the ecosystem potential landscape informing about energy dissipation,
likelihood of shifts and relative stability of bloom conditions (Fig.3.5). The energy
dissipation of the system, that is the potential amount of energy consumed by eco-
logical processes, is visualized and ∝ max[p(OTE)] − p(OTE), and scales with
∼ 1/p(OTE), therefore the higher the leptokurtic character of the pdf the lower
the energy dissipation (such as in 2004). The energy potential also gives the num-
ber of ecological states (metastable states are identified by the point where the pre-
and post-curvature of the energy landscape diverges in sign; those are represented
by the balls in Fig. 3.5), the probability of a configuration to be stable (the lower
the energy potential with respect to all other states the higher the stability) and the
likely shifts among states (proportional to the slope of the energy potential), all of
which define the “resilience” of the ecosystem that is rapidity to bounce back to
initial states. Higher entropy corresponds to higher energy dissipation in relation to
larger and more random OTEs. This implies lower probability of CHLa stable states
which are much closer to each other and increasing in number, yet implying higher
likelihood of shifts, with larger ecological impacts. For Florida Bay, the energy dis-
sipation is also increasing in average value for pre-, while-, and post-bloom periods
indicating a diminishing resilience and loss of complexity of the system; this also
highlights the persistent effects of blooms despite their relative short duration.

3.4 Conclusions

The study uniquely proposed a model based on optimal Transfer Entropy (TE), as
TE differences, to infer bloom spatial dependencies used to pinpoint risk areas and
pathways to target monitoring and controls. Blooms show non-trivial spreading pat-
terns manifested by network transitions with different stability that determine their
persistence and potential ecological effects. For Florida Bay, we predominantly
highlighted the spatial trends and the neglected impacts n water quality of algal
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Figure 3.5: Probability distribution of CHLa’s collective influence and ecosys-
tem potential. A, B, and C are for 2004, 2005 and 2006 pre-, peri- and post-bloom
periods in Florida Bay. CHLa’s collective influence is assessed based on OTE range
and distribution, where the latter defines energy potential (in dashed red, black and
blue for the 2004, 2005 and 2006 aligned to the distinct epidemic, transitory and
endemic dynamics as in Fig. 3.1B), stability of ecosystem states and transition
probabilities from one to another.
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blooms. The following specific results are worth mentioning.

• We showed how CHLa patterns carry information of underpinning ecohydro-
logical networks (and associated spreading determinants such as nutrients)
that support ecosystem function and services. Salient Pareto interactions are
defined via thresholding TE differences with a threshold of causal signifi-
cance that is set to consider the top 20% TEs (related to the tail of scale-free
CHLa probability distribution function), i.e. necessary and sufficient inter-
action to predict the risk of bloom spreading. More generally, the discovery
and inference of the “ecosystem connectome” (as biogeochemical determi-
nant and spreading networks) allows for the assessment of ecosystem health
(quantified by the proximity to an optimal condition such as non-bloom state),
investigation of causal determinants and their sources, proximity to ecosys-
tem shifts, and targeted ecohydrological controls.

• Through spatial analysis of the bloom spreading networks, we showed how
regions not previously involved in blooms (i.e. the highly biodiverse NE
tidal-flat habitats with corals and sponge) were caused by large imbalances
of CHLa in the western and central blooms that were causally involved. The
latter regions are characterized by CHLa that is more randomly distributed
and higher probability of CHLa extremes. This probabilistic structure, re-
flecting the spatial distribution of CHLa, is likely tipping eastern regions to
similar bloom endemics. From the perspective of complex networks, this
bloom event (2004-2006) evolved from a spatial network with a localized
trigger area and a small-world topology to a random topology with long-
range spatial diffusion. In 2005, where most stations were blooming, the
spatial spreading network was scale-free (theoretically optimal in a purely
topological and predictive sense [4, 96]) with a more random biogeochem-
ical network including CHLa (topologically suboptimal), that underpins the
dichotomy between structural and functional networks for ecological risks;

• In terms of temporal dynamics, subsequently the first bloom outbreak, per-
sistent and recurring blooms were observed for several NE areas with long-
lasting environmental impacts on turbidity and salinity aggravated by temper-
ature increase. Bloom sources were related to central coastal marshes and to
a lower extent to mangrove habitats. We further showed that blooms are a re-
curring and persistent phenomenon over a long period of time with continuous
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outbreaks in interdependent regions. This leads to higher energy dissipation
and larger instability dictated by the more random distribution of CHLa that is
associated to a more uniform network with long-range connectivity regardless
of habitats, likely leading to loss of ecological heterogeneity;

• The analysis of biogeochemical factors affecting water quality showed that
the occurrence of blooms could only affect small fluctuations of temperature
at the beginning of the blooms; however, repeated bloom outbreaks largely
affect other biogeochemical factors (such as salinity, turbidity, and CHLa trig-
gering hysteresis or memory effects) that are hardly controllable systemically
due to the loss of vegetation and other keynote species. The concentration of
CHLa can be influenced by temperature and salinity, and changes in CHLa
concentration can, in turn, have indirect effects on water temperature through
various ecological processes. In some regions, facilitated by shallow-water
habitats, the water temperature increase can stimulate phytoplankton growth
and increase the concentration of CHLa. The increased CHLa can, in turn, ab-
sorb more sunlight, that can lead to local warming of the water in some cases.
In long-term the persistence of blooms, i.e., high CHLa, may also alter nutri-
ent cycling as highlighted also by other studies with the term “oceanic posi-
tive feedback mechanism” [62], and our model is able to infer this secondary
causal pathway together with the primary one, where temperature change
leads to CHLa change and blooms. This underscores that blooms manage-
ment should start from the source, otherwise blooms environmental impacts
will gradually expand and become uncontrollable, affecting also ecosystems
stability and resilience, yet settling them into undesired ecological states.

Even though the extent, duration, and spatial arrangement of blooms are influenced
by a multitude of factors, CHLa variability (regardless of any triggering factor) still
exhibits a considerable level of predictability and control from an ecosystem per-
spective, encompassing both predictive and ecological engineering models. We
have introduced a data-driven inferential model designed for ecological insight,
aimed at discerning risk patterns (including sources and pathways), trajectories,
and causative factors. Our proposed model, focused on spatial and biogeochemi-
cal network inference, furnishes valuable insights for the prediction and manage-
ment of blooms. For instance, it aids in identifying areas for monitoring and im-
plementing nature-based solutions, such as targeting coastal blue-carbon habitats,
to curb the progression of eco-environmental imbalances and their consequences.
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Future endeavors will delve into precisely quantifying critical thresholds—whether
habitat-specific, climate-specific, or universal—as early warning indicators of envi-
ronmental factors (including controls) that lead to persistent blooms. This will also
encompass accounting for systemic stress, representing the condition of habitats
stemming from their ecological history.
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Chapter 4

2D Entropic Ecosystem Mandala:
Shifts in Chlorophyll-a Dynamics
Under Systemic Biogeochemical
Stress

4.1 Introduction

4.1.1 Land-ocean function and phytoplankton as health ecoindi-
cator

Encompassing more than two-thirds of Earth’s surface, the ocean functions as a
vital carbon sink by absorbing roughly 31% of the atmospheric CO2 emissions.
Phytoplankton thriving in the ocean’s surface contributes to half of Earth’s oxy-
gen through photosynthesis. The ocean has absorbed 90% of the heat generated
by global warming. The influence of the ocean resonates across every corner of the
planet, with a particularly profound impact on coastal regions harboring the greatest
biodiversity and marine primary productivity. In the context of the ocean, productiv-
ity primarily pertains to the organic matter generated by phytoplankton—microscopic
plants suspended in the ocean. These organisms, most of which are single-celled,
play a pivotal role in carbon and oxygen processes. Chlorophyll-a (CHL-a) stands
as the quintessential systemic indicator of ecosystem function. This is due to its
capacity to infer net primary productivity (NPP), which quantifies the annual car-

45



4.1. Introduction
Chapter 4. Shifts in Chlorophyll-a Dynamics

Under Systemic Biogeochemical Stress

bon fixation through photosynthesis per unit area of the Earth’s surface. Satellite-
derived chlorophyll-a concentration, expressed in milligrams of carbon per square
meter per day (mgC/m2/day), underpins the determination of NPP. However, imbal-
ances within CHL-a concentrations can yield inefficiencies in carbon sequestration
by the global ocean, carrying long-term climate risks. Conversely, natural and con-
trolled blooms, if viable, play a role in regulating the carbon cycle and ecosystems
on a comprehensive scale. Furthermore, the relationship between changes in NPP
derived from CHL-a and fishery yield has been extensively demonstrated. Tempo-
ral variability in NPP exhibits a significant and positive correlation with increased
yields, particularly for fish of higher trophic levels [97].

CHLa also holds significant relevance within coastal habitats, which are eco-
tones undergoing transitions yet exhibiting high fragility. These habitats play a piv-
otal role in furnishing numerous ecosystem services. They contribute to functions
such as nutrient filtration from land to the deep ocean, carbon cycling, support for
fisheries, recreational opportunities, and a diverse array of ecosystem services that
collectively contribute to our“ecological security,” aligning with various sustain-
able development goals. In the realm of coastal ecosystems, estuaries assume ex-
ceptional importance as transitional habitats situated between land and ocean. The
imbalances within these ecosystems yield far-reaching societal consequences, par-
ticularly considering that approximately 40% of the global population resides along
coastlines. Estuarine ecosystems are characterized by their high dynamism and
complexity, attributed to the coexistence of a multitude of diverse habitats within a
confined spatial expanse. These habitats are subject to the influence of a plethora of
factors, including localized riverine dynamics and diffused oceanic influences. Geo-
graphic heterogeneities—such as climate variations and land development—further
contribute to the intricate landscape of estuarine ecosystems [46]. The intricate in-
terplay between ecological dynamics and environmental factors is compounded by
the effects of climate change, notably alterations in precipitation and temperature,
decreases in pH, and rising sea levels. Anthropogenic pressures, including coastal
land reclamation and intensive aquaculture, further exacerbate these complex inter-
dependencies.

For these habitats, phytoplankton biomass is an effective indicator to character-
ized estuarine ecosystem’s health, and its variations can reflect the dynamic pro-
cesses of this ecosystem type [46, 92]. Fluctuations in phytoplankton dynamics
are influenced by several factors and influence a variety of important ecological
communities such as seagrass, coral, and fish communities [64, 98] that contribute
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to ecosystem function, including carbon cycling. Anthropogenic causes of phyto-
plankton variability is mainly related to ecohydrological adn biogeochemical factors
affecting phytoplankton biomass directly and causing blooms [46, 92, 99, 100]. It
should be paid attention that erroneous nutrient management may lead unexpected
phytoplankton changes. For instance, unbalanced nutrient reduction led the shift
of dominant species of red tides (in oligotrophic seas) from diatoms to dinoflag-
ellates, despite coastal nutrient controls for de-eutrophication, related to combined
offshore habitat alteration changing the hydrodynamics. Thus, efforts controlling
blue-green tides can generated red tides. This was the case of Mirs bay in South-
ern China [101]. Therefore, while systemic ecosystem management is necessary,
it should be kept in mind that it is really hard to revert certain abrupt ecosystem
shifts once they happen; however, some ecological shifts may happen gradually so
monitoring and countering actions are necessary to avoid persistent blooms before
whole ecological communities are compromised.

Furthermore, in conjunction with the occurrence of gradual and persistent blooms,
instances of rapid and sudden blooms are increasingly prevalent on a global scale.
These rapid-onset blooms pose challenges to the efficacy of bloom monitoring and
forecasting capabilities. Yet, there exists no consensus regarding whether these
abrupt blooms are emerging as the new norm, given that the prevalence of gradual
blooms may have also risen. The emergence of these sudden blooms could poten-
tially be linked to significant hydrological alterations that reduce freshwater inflow
within coastal ecosystems. This highlights the pressing need to adapt to the acceler-
ated onset of blooms, especially within the context of a warmer future. The impacts
of blooms extend beyond local ecosystems. They play a pivotal role in shaping
substantial shifts within the global climate, as alterations in the ocean contribute to
large-scale hydrological changes, including the escalation of droughts [102]..

4.1.2 Florida bay epitomises complex algal anomalies and ecosys-
tem risks

Florida Bay holds the distinction of being the largest estuarine ecosystem within
the state of Florida, encompassing a vast expanse measuring 2,200 km2 [103]. Sit-
uated in a subtropical region, it is characterized as a multi-habitat inner shelf la-
goon, positioned at the convergence point of the Gulf of Mexico and the Atlantic
Ocean [46]. A significant portion of the bay’s territory falls under the jurisdic-
tion of the Everglades National Park, and it bears direct influence from the Ever-
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glades ecosystem. Partial influence extends to encompass the city of Miami and
the Florida Keys. Florida Bay’s configuration can be envisioned as a succession
of basins demarcated by shallow mud banks. These basins are adorned with sea-
grass and sponges, interspersed with vegetated islands—including islands abundant
with mangroves—painting a diverse ecological tapestry [104]. Figure 4.1 shows
a satellite image of the bay. The primary point-sources of terrestrial freshwater to
the bay, beyond diffuse precipitation, are Taylor Slough and C-111 canals [103],
and saline flux sources are the Gulf of Mexico and Atlantic Ocean [105]. Consid-
ering the unique configuration of bay’s habitats and anthropogenic alterations of
the Everglades in the last 50 years (structurally and functionally as flows), as well
as increased evapotranspiration due to warming climate, the ecosystem has expe-
rienced high freshwater scarcity with amplification of ocean pressure into phyto-
plankton. There have been a number of historical analyses of environmental factors
in Florida Bay. Some of the best known are, for example, studies on regional clus-
tering of the bay based on water quality characteristics [99], seagrass distribution
features [106], and phytoplankton community features [107]. Water management
practices within the northern Everglades wetlands during the twentieth century, re-
duced freshwater flows in Florida Bay by 59% [108]. This exacerbated the eco-
logical impact of salinity due to the severe scarcity of freshwater in the Bay. As a
result, from 1987, phytoplankton increased with the death of large seagrass com-
munity in Florida Bay [109]. In the 1990s, seagrass communities in central and
western Florida Bay declined substantially, due to the widespread and persistent
occurrence of microalgal blooms [107]. In such poor water conditions, turbidity
in in West and Central Bay also became a critical factor. Diatoms grow faster
than cyanobacteria under conditions of greater turbidity [110], although these may
not necessarily trigger bloom. However, West Bay, that was dominated by faster-
growing diatoms at that time [107], it experienced more severe blooms than Central
Bay. Nitrogen and phosphorus are criitical nutrients determining phytoplankton
growth [111, 112]. The organic and inorganic fractions of nitrogen and phosphorus
have a strong influence on the occurrence of blooms. Nitrogen enhancement in West
Bay and phosphorus enhancement in East Bay lead to changes in phytoplankton
community composition [113], [46, 100]. Normally, water temperature in Florida
Bay ranges from 26-27◦C, but over time it continued to rise coupled with more fre-
quent onsets of blooms. Studies have clearly shown a positive causal relationship
between water temperature and phytoplankton biomass growth under bloom con-
ditions [46]. Complex interactions and proportions among all these environmental
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Figure 4.1: Florida Bay and Chlorophyl-a Distribution. (A) Satellite imagery of
Florida Bay (from NASA Landsat 7, October 2000) and FIU Water Quality monitor-
ing stations (http://serc.fiu.edu/wqmnetwork/SFWMD-CD/index.
htm). Green and red stations are characterized as endemic and epidemic bloom
dynamics with Poisson/uniform and power-law distribution of CHL-a, as extreme
pdfs; blue stations are characterized by exponential or Poisson or gamma distribu-
tions and are classified as transitory dynamics. Erratic behavior of CHL-a may re-
sult into carbon emission and biodiversity loss, thus particularly for endemic areas.
For epidemic dynamics any generalized extreme value distribution can be possible.
Epitomic stations are 6 and 7 for East, 14 and 20-21 for Central, and 25-26 for West.
(B) Probability distribution function (pdf) of normalized CHL-a separating top 20%
values (identifying blooms) from the rest (corresponding to the 80-20 Pareto prin-
ciple that considers the top 20% CHL-a events in magnitude; note that makes-up
less than 20% of blooms). Pdf(CHL-a) is inversely proportional to CHL-a extreme
return period (Tr) that corresponds to extreme events with low exceedance prob-
ability; however, the magnitude of CHL-a is very different for different stations.
Images of diatoms, cyanobacteria and dinoflagellates are used under license from
Shutterstock.com.
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determinants exist to trigger blooms. However, previous studies between blooms
and water quality have mainly involved simple principal component [99, 100] and
empirical orthogonal function analyses [63]. In recent years, quantile regression
methods [46, 114] have been widely used to analyze spatial and temporal trends in
phytoplankton biomass, but not for detecting differences in the relative importance
of water quality factors for bloom and non-bloom states. These issues apply to all
estuaries worldwide, so they represent a grand-challenge for intensifying blooms
and more broadly for ecological security affecting local ecosystems and global cli-
mate via teleconnections on eco-hydro-carbon cycles.

4.1.3 Impacts of multiscale blooms and risk forecasting model

Around 20% of the net primary production of phytoplankton, amounting to 5–10 Gt
C, is channeled into the deep ocean via the biological pump. The nature and scale of
carbon transported to the deep ocean are influenced by the size structure of phyto-
plankton communities, a factor potentially impacted by changing blooms. A study
by Irion et al. [115] unveiled intriguing scaling relationships between daily carbon
uptake rates of individual cells and their volumes, particularly in small diatoms and
nonsilicified cells. These findings can be extrapolated to the scale of algal blooms,
offering insights into the volume of carbon export within the ocean. This scal-
ing holds substantial value for elevating micro-level phytoplankton information to
macro-level functions. This study adopts a similar approach, albeit leveraging non-
linear biogeochemical networks, to extend local CHL-a dynamics to the ecosystem
scale. This methodology anticipates the spatial diffusion of blooms without the in-
clusion of spreading corridors, diverging from the approach employed by Wang et
al. [41]. The collective efforts outlined are instrumental in quantifying the systemic
impact of ”flesh blooms” (sudden onset or intensification of blooms) across micro
to macro scales. This comprehensive approach is crucial for assessing ecosystem
health—a convergence toward optimal function—and establishing a baseline for
ongoing tracking.

The primary innovation of this study lies in the investigation of causal relation-
ships between water quality variables—namely TN, TP, SAL, TEMP, TURB—and
chlorophyll a (CHL-a), which functions as a pivotal ecological indicator of phy-
toplankton alterations. These relationships collectively form biogeochemical net-
works and are harnessed for the dual purposes of forecasting and formulating sys-
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temic risks. The overarching objective was to establish robust and salient ecological
indicators of shifts within ecosystems and to comprehend how these indicators can
offer insights into forthcoming trajectories and eco-environmental determinants,
some of which can be managed. Extensive literature attests to CHL-a’s efficacy
as an indicator of cyanobacteria-driven blue-green algal blooms, and to some ex-
tent, dinoflagellate blooms responsible for red or brown blooms. Cyanobacteria
are primarily associated with freshwater inflows, while dinoflagellates thrive in ma-
rine environments. Despite being less prevalent in diatoms, CHL-a was found to
serve as a reliable predictor of diatom concentration in water, which can precede
the occurrence of blooms [116]. Preliminary evidence hints at a connection be-
tween changes in cyanobacteria and alterations in the diatom/dinoflagellate ratio.
This ratio, in turn, can be adopted as a holistic indicator of ecosystem health and
the potential correlation of blooms with either freshwater or marine-specific stres-
sors. Specifically, exceptionally low values in the diatom/dinoflagellate ratio signal
a concerning ecosystem state, indicating heightened ocean acidity. This is alarm-
ing since dinoflagellates have the capacity to produce neurotoxins that can detri-
mentally impact both species and human health. Moreover, diatom species exhibit
lower carbon-to-CHL-a ratios and higher photosynthetic rates per unit of carbon
compared to dinoflagellates [115, 117]. While diatoms significantly contribute to
marine food webs, global oxygen production, and carbon sequestration, it’s crucial
to maintain a balanced composition of species, unlike an excessive abundance of
dinoflagellates.

In light of the above issues, the specific objective of this study was to design and
quantify an ecosystemic risk function considering the dynamics of CHL-a informa-
tion in terms of magnitude, persistence and extreme shifts. Specific tasks were to:
(1) objectively identify a systemic threshold that separates bloom from non-bloom
conditions; (2) construct a causal biogeochemical network from an inference and
forecasting model that reveal the relative importance of water quality factors for
local bloom emergence and their duration as forecasts based on the non-linear bio-
geochemical relationships; and (3), assess CHL-a shifts and persistence of blooms,
and cluster habitat- and region-specific bloom risk. Eco-environmental feedback
and their relative dynamic force was predicted for blooms and non-blooms condi-
tions with a novel causal network-inference model coupled to a machine-learning
model (TEGNN); TEGNN was applied in diverse ecological regions of Florida Bay
to test habitat-specificity of forecasting ability. This pattern-oriented model differs
from traditional complex networks, that is representative of simple probabilistic
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graphical links which usually requires the assumption of the specific form of re-
lationships between variables; whereas our approach is based on entropy and the
difference in transfer entropy [41], which more intuitively predicts the dynamics of
the complex system without the need to assume variable relationships, added to a
forecasting model and a risk model. Despite the application to blooms, TEGNN is
broadly promoted for its use in ecosystem science and engineering for inference,
forecasting and strategic management of spreading phenomena.

4.2 Methods and Materials

4.2.1 Eco-environmental data

The dataset is still provided by the Florida International University Southeast En-
vironmental Research Center (FIU SERC), i.e. six sets of water quality monthly
data monitoring by 28 water quality stations from August 1992 to September 2008
[45, 46]. CHL-a has often been used as an indicator of blooms given its sensitivity
to environmental changes, ease of monitoring, and ability to reflect phytoplankton
biomass effectively [47], but has not yet been verified as a systemic indicator of
ecosystem health related to ecosystem function. We used 80/20 principle to estab-
lish an average threshold of ≥ 1.841µgL−1 on CHL-a, universally applied to all
stations, to distinguish bloom from non-bloom states across all stations. A timeline
of CHL-a bloom and non-bloom periods was used to define the corresponding states
for the remaining water quality factors (i.e. TN, TP, SAL, TEMP, and TURB).

As for reference, Fig. 4.2 shows the composite seven-day mean of CHLa con-
centration (in mg/m3) in the surface ocean layer of Florida Bay, extracted from
NASA MODIS data. Fig. S1 shows the same for the larger South-West Florida
region and the Gulf of Mexico to emphasize how algal blooms are much larger phe-
nomena and FL Bay blooms may have some influence from Norther Everglades
regions in the Gulf, such as areas nearby Tampa Bay. Northern. blooms may
spread south to mangrove habitats of Florida bay and alter western phytoplankton.
In this study, in conjunction with these analyses of spatial environmental factors,
the bay was dissected into three macro-habitat regions, namely the east, central and
west bay (Fig.4.1) reflecting mangrove, salt-marsh and seagrass flat habitats. This
was for a better habitat-specific characterization of the ecosystem risk in terms of
forecasting and attribution to environmental determinants. The main phytoplank-
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A

B

C

Figure 4.2: Composite seven-day mean of CHL-a concentration (in mg/m3)
in the surface ocean layer of Florida Bay. CHL-a, for 7-day mean of
October-November-December 2005 (A, B, C), is estimated by the Optical
Oceanography Laboratory at USF (https://optics.marine.usf.
edu/cgi-bin/optics_data?roi=FLKEYS&Date=10/15/2005#

C20052822005288.QKM.FLKEYS.7DAY.L3D.SST.png). Estimates, in
µg/L = mg/m3 are done with the most updated calibration and algorithms in
the SeaDAS processing software (SeaDAS is a comprehensive software package
for the processing, display, analysis, and quality control of ocean color data,
https://seadas.gsfc.nasa.gov/) based on multiple reflectance indi-
cators for deep [1] and shallow waters [2]. Over clear, shallow waters (<30
m) or over very turbid coastal waters or river plumes, it is often overestimated
as other components (colored dissolved organic matter, suspended sediments,
ocean bottom) interfere with the algorithm. See Fig. S1 for CHL-a of the whole
South-West FL region.
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ton community in the western bay is composed by diatoms, the central area of the
bay is dominated by a unicellular picoplanktonic cyanobacterium (Synechococcus
spp.), and in the eastern region by a mixed community of dinoflagellates, cyanobac-
teria and diatoms. Synechococcus spp, has a significant impact in the North Cen-
tral Bay, including causing changes in salinity [118–120], nitrogen and phospho-
rus [111, 112], and other water quality factors [121]. For this reason and character-
ize even more ecological effects, the central region of the bay was further divided
into South-central and North-central regions. Due to the complexity of community
composition throughout the whole eastern region, also considering the C-111 canal
in that area, the eastern and north-eastern regions (with low and high environmental
stress, respectively) were also divided.

4.2.2 Thresholds for phytoplankton blooms

The transition from ”non-bloom” to bloom dynamics can be assessed from the prob-
ability distribution function or its exceedance distribution function of the CHL-a.
Matteo C. et al. [3] showed how at the transition point there is the largest diver-
gence between probabilities defining the critical CHL-a threshold at which blooms
start to spread. [41] focused on how spatial spreading networks are associated with
different bloom states, while in this paper we focused on of the whole set of bio-
geochemical interactions useful for forecasting bloom emergence and how systemic
environmental triggers are changing across habitat types. The first task, however, is
to classify what blooms are from CHL-a data; in other words, what CHL-a values
constitute a bloom. Previous methods [47], considered as threshold for the bloom
emergence the CHL-a value corresponding to the 75th CHL-a percentile of a refer-
ence system designated as the level at which CHL-a values departed from baseline
condition; this was applied to the whole Florida Bay as one threshold. Natalie G
Nelson et al. [46] instead considered the empirical cumulative distribution function
(ECDF) to quantify the 95% confidence interval of the critical CHL-a threshold;
this value was set as station-specific. Natalie G Nelson et al. [46] assumed that the
threshold was consistent with the initiation of blooming, whereby the majority of
threshold values fell below 2µgL−1. However, the method of Natalie G Nelson et
al. [46] is not suitable for evaluating data collected in stations with significantly
different skewed distributions, and the thresholds they obtained are still biased esti-
mates in a probabilistic sense. Therefore, taking into account the above considera-
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tions, for the design of a systemic ecological criteria of water blooms we considered
the normalized probability distribution function for CHL-a and its maximum diver-
gence as probabilistic tipping point (Figs. 4.1 and Fig. 4.3) manifesting collective
(distribution) changes in CHL-a, where CHL-a is the salient eco-indicator. This
criteria largely corresponds to the generic Pareto principle characterizing bursting
phenomena where outbreaks (corresponding to the largest 20% CHL-a values) de-
scribe 80% of the CHL-a variability. Thus, with this criteria the largest 20% of
CHL-a values characterize bloom dynamics for the whole Florida Bay (regardless
of the station considered). This Pareto criteria also identifies salient Pareto links in
terms of eco-environmental feedback and spatial interactions [41].

4.2.3 Informational risk profiling

Risk of algal blooms (unconditional to any impact) can be defined as the product of
bloom magnitude M (as CHL-a range, i.e. maximum minus average CHL-a), per-
sistence P (i.e., H(CHL-a), or the frequency of occurrence in a deterministic sense),
and shifts S (defined by the Kullback–Leibler divergence KL(CHL− at, CHL−
at+∆t) between the pdfs of CHL-a in two subsequent periods, i.e. the time up to a
point and the new distribution with new events. Thus, the impact-independent risk
is analytically defined as:

R(CHL− a) = M × P × S =

(CHL− amax − ⟨CHL− a⟩)×H(CHL− a)× TE(CHL− at, CHL− at+∆t)

(4.1)

The shift S is an increasing variable between a non-random and random dis-
tribution, manifesting an increasing risk due to loss of predictability (or increased
loss of information or permutation entropy [122, 123], complexity of a time series
intended as chaotic or functional networks) that increases RMSE and H(CHL-a).
Alternatively, to quantify S, TE between two CHL-a of two time-periods can be
used when accounting for time delays. The risk can also be constructed considering
spatial connections C to risky areas; however, spatial connection were not consid-
ered in this paper but in [41]. The ranking of community risk can identify risk
sources and sinks, clusters of community at risks (here divided into three classes),
and feature/value thresholds for M, P, and S accounting for all facets of ecological
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Figure 4.3: Biogeochemical Time Series. Biogeochemical variables are shown
as normalized values over time for representative habitats with different CHL-a
dynamics. The log-value was chose to appreciate the mutual variability together
with CHL-a.
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imbalance (i.e., intensity of change, uncertainty and uncertainty structure, leaving
aside connections to other areas). Eq. 4.1 is then used to classify three classes of
risk (low, medium and high) based on the predictability, ecological organization and
magnitude of CHL-a. CHL-a was forecasted by TEGNN as described below.

4.2.4 Ecosystem causality inference model

Causality networks help to synthesize the structure of complex ecosystems, includ-
ing the nexus between ecosystem structure, function, and services where the latter
are based on desirable threshold over functions. This section provides a detailed
analysis of a complex network model that takes infer causal relationships between
variables. A schematic of the causality network model is illustrated in Fig. 4.4.
The entropy of ecosystems, manifesting the ecological disorganization in relation
to CHL-a variability, is dependent on the probability distribution functions (pdfs)
that affect TE calculated on variable pdfs’ divergence and asynchronicity. TE vari-
ability of an area, or the whole system, can be decomposed into eco-environmental
interactions (considering CHL-a and environmental factors acting as determinants
or effect of ecological imbalance) and ecological areal interactions underpinning
bloom spread; the latter was studied by [41] for FL Bay. This variability affects
the organization propagation of CHL-a (i.e., how randomly distributed CHL-a is)
and in a information-balance equation can be written as the spatio-temporal con-
volution of the aforementioned components composing the ecosystem connectome,
i.e.: Eq. 3.1. Equation 3.1 is focused CHL-a patterns where networks are the
backbone determinants of the ecological “weave” (CHL-a interconnected patterns)
that can be potentially controlled. Space and time are the dimensions along which
CHL-a is considered, plus other dimensions along gradients of environmental fea-
tures on which stress-response patterns (environment-bloom change) and related
features (e.g. early-warning signals and risk thresholds) can be derived. Networks
help to define sources, sinks, pathways and environmental determinants to guide
monitoring and control for bloom prevention. In this section, we specifically ana-
lyze the functional ecological connections determining bloom initiation and fore-
casting used as ecological reservoir computing (first term in Eq. 3.1, where for
the second term was addressed in Wang H. et al. [41]). It should be noted that
in Eq. 3.1 we refer to all TEs, yet H(CHL − a) is dependent on the distribu-
tion of all interactions and not just the average value. According to the Schef-
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Figure 4.4: Network TE Inference and CNN Forecasting Model. A and B, at
the TE network inference and CNN forecasting of TEGNN given time-series in-
formation of biogeochemical variable. TE allows for network discovery since rela-
tionships between micro phytoplankton and macro environmental features are not
widely known. The dotted arrows in both networks indicate that they are directed
networks, where the specific direction depends on TEs as in Eq. 2.4. Despite these
TE relationships are bidirectional we focus, via TE differences, on predominant
direct interactions for ecological predictability that is important to evaluate ecosys-
tems (such as bloom risk profiling) as well as for optimizing monitoring.
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fer et al. [124] and Hirota et al. [125] the energy potential defining ecosystems
states and energy dissipation can be derived from the probability of CHL-a, i.e.
U = −σ2/2 pdf(CHL−a) log pdf(CHL−a) = σ2/2 H(CHL−a); this estab-
lishes a clear connection between increasing entropy, energy dissipation of a system
with potential instability, and lower predictability (proportional to the average value
of TE).

To predict CHL-a values over time in Florida Bay, based on the TE-inferred bio-
geochemical network we used TEGNN [50]. We used time series features extracted
by Convolutional Neural Networks (CNN) instead of all variables as a whole, as
node expressions to achieve the forecasting accuracy maximization objective of
CHL-a that identifies bloom regimes in Florida Bay (Fig.4.4). The first component
of TEGNN is related to the inference of the optimal TE network (with characteriza-
tion of node uncertainty and uncertainty propagation based on TE, where the latter
is a form of statistical complexity related to uncertainty structure; Fig. 4.4A), and
the second component is about the feature-based extraction of variables’ feature for
the CNN forecasting using the TE backbone network structure. The algorithms for
node feature extraction, node embedding and model training are the same as Section
2.2.4.

4.2.5 Assessment of the predictive capacity of the model

The Root Mean Squared Error (RMSE) was used to quantify the accuracy of the
forecast for the whole period considered, like:

RMSE =

√√√√ 1

m

m∑
i=1

(Oi − Ôi)2 , (4.2)

where Ôi denotes forecasts and Oi is the observations, and m is the number of
observations. The model was calibrated and validated in a way to minimize the
systemic RMSE across the whole forecasted period.
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4.3 Results and Discussion

4.3.1 Chlorophyll-a as an ecosystem indicator

CHL-a was confirmed as the key ecosystem health indicator, because: (i) it is an
indicator of systemic phytoplankton community biomass, and its concentration re-
flects the comprehensive impact of systemic biogeochemical stress determining wa-
ter quality, thus underpinning the fine balance between ecology and the environment
with cascading risks for species at multiple scales; (ii) it is highly sensitive of eco-
logical spatial habitat features and ecological history defining phytoplankton spread
and persistence (yet, compounding risks); (3) it is easy to monitor both consider-
ing discrete water sampling and inference from remote sensing (i.e., risk sensing).
Therefore, CHL-a is the leading and most suitable ecological indicator for of aquatic
ecosystems like Florida Bay, and in general it works really well for characterizing
phytoplankton imbalance, potentially leading to ecological catastrophes, in coastal
and marine ecosystems. Fig. 4.1 shows its probabilistic characterization and how
this defines distinct blooming dynamics with diverse spreading behavior and envi-
ronmental determinants’ organization.

4.3.2 Bloom and non-bloom regime threshold

In Fig. 4.4 we identified the normalized probability distribution of all CHL-a through-
out the whole Florida Bay as a power-law distribution (i.e., “sharp peak and long
tail”). Thus, according to the Pareto rule (80% of CHL-a values depends on the
largest 20% CHL-a), we selected the largest 20% CHL-a value as the blooming
condition for the whole Florida Bay. The application of the 80/20 rule identifies
only the extreme peaks that for sure are blooming; therefore, disregarding peaks
that are only relevant locally without any bloom spreading. With this Pareto criteria
we obtained the threshold 1.84µgL−1 for dividing bloom and non-bloom conditions
throughout Florida Bay. This criteria is much more systemic than the one of Nelson
et al. [46] that provides a site-dependent threshold ranging from 0.86 to 7.70 µgL−1

without considering how much one area is the byproduct of other spreading blooms
assessable via normalized pdfs’ divergence. Blue-green-red colors for nodes in Fig.
4.1 are proportional to the Shannon Entropy of each station reflecting the disorga-
nization of CHL-a. Small-World and Scale-Free organization of Non-Bloom and
Bloom CHL-a networks underpin habitat networks: both environmental and eco-
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geomorphological gradients (water flow and quality as well as vegetation-habitat
configuration) determine distribution and intensity of CHL-a over space and time.
Non-Blooms and Bloom networks are determined via time-delayed CHL-a proba-
bilistic changes (values, probability and their divergence) as Transfer Entropy via
the Optimal Information Flow model [69].

4.3.3 Biogeochemical fluctuations in algal blooms

Fig. 4.3 shows the fluctuations of biogeochemical factors over time for epitomic
habitats. For East seagrass habitats (A) CHL-a is increasing with amplified fluctu-
ations as a sign of shifts, mostly related to increase in TP, temperature and salin-
ity. For West mangrove habitats (B) CHL-a is mildly decreasing, however with
large fluctuations associated to TN and turbidity increase in magnitude and fluctua-
tions. Central marsh habitats (C) are showing a decreasing CHL-a associated with
a decreased TP, TN and turbidity; however, their distribution is pseudo-uniform
with high level of blood endemism in contrast to Eastern habitats that are endemic.
Across all habitats, it is noticeable the large seasonality of temperature and salin-
ity (defining CHL-a seasonal component) and the peak-dynamics (defining sharp
CHL-a peaks/blooms) of Turbidity, TN and TP (in order of fluctuation magnitude)
where TN peaks are the smallest and largest for Eastern and Central habitats. Yet,
Central marsh habitats are characterized by the most randomly organized biogeo-
chemical load affecting CHL-a in multiple and less predictable ways. Considering
epidemic and endemic bloom classification it is possible to define how environ-
mental features changed irrespectively of the habitat. Epidemic areas were shown
to experience a large increase in TP, temperature and salinity; endemic areas ex-
perienced a decrease in nutrients and turbidity but net increase in temperature and
salinity; instead, transitory deep-water areas were found fairly constant in their en-
vironmental features. All habitats are on average experiencing increasing variance
in all eco-environmental indicators, that may suggest a global instability of the bay
ecosystem. For small blooms (mostly epidemic) the most salient factors were salin-
ity, phosphorous and turbidity, while for large blooms (mostly endemic) the top
factors were turbidity, nitrogen and temperature; yet large-blooms vs. flash blooms
are much more affected by land efflux. This result emphasizes how systemic fac-
tor variability, played out by hydrodynamical, biogeochemical and global ocean
change factors (reflected by turbidity, nitrogen and temperature, respectively) de-

61



4.3. Results and Discussion
Chapter 4. Shifts in Chlorophyll-a Dynamics

Under Systemic Biogeochemical Stress

termine large blooms as previously shown by published literature independently of
the geographical area considered.

4.3.4 Multi-factor predicting for bloom dynamics

The left plots of Fig. 4.5 show data and TEGNN forecasts of CHL-a that is the best
bioindicator of algal bloom emergence and spread. Bloom dynamics is shown for
three different magnitude classes (from small to large) based on average and max-
imum CHL-a (defining the magnitude M) as well as changing considering CHL-a
pdf (i.e., ∼ power-law, gamma/Poisson or exponential, and uniform for small, tran-
sitory and large blooms). Right plots show the ranking of environmental predic-
tors (based on Outgoing Transfer Entropy) for the CHL-a collective dynamics of
the envirome represented by the functional networks (Fig. 4.6). Functional net-
works can be thought as the ecosystem sensing networks related to the spread of
CHL-a and its sensitivity on environmental factors. Fig. S2, and S4 shows tem-
poral forecasts and underpinning biogeochemical networks for key West, Central
and East stations with different degree of endemicity and risk. Leaving aside
the memory/self-predictability of historical CHL-a (i.e., one month earlier in this
study) for small blooms the most salient factors are nitrogen, salinity, phosphorous
and turbidity (station 9 in shallow reef habitats); while for large blooms are turbid-
ity, nitrogen and temperature (station 14 that is a coastal habitat nearby extended
drainage efflux) in order of importance, despite turbidity and TN are decrease in
value but increasing in fluctuations (yet manifesting ”critical slowing down” phe-
nomena with potential ecological shifts). Intermediate bloom dynamics (transitory
in deep-water habitats epitomized by station 25) is characterized by a combination
of land and ocean factors but less about temperature fluctuations. These results em-
phasize how systemic factor variability, that are hydrodynamical, biogeochemical
and global ocean change factors (reflected by turbidity, nitrogen and temperature
as well as salinity, respectively) determine large blooms. In particular small-bloom
eastern dynamics is regulated by ocean factors (salinity-dominated, phosphorous
time-point loads, and lower ecological memory that means higher dependency on
previous CHL-a) while large blooms are regulated by estuarine efflux factors (slow
turbidity- and nitrogen-dominated with higher ecological memory) as observed for
blooms worldwide. It should be noted, however, how size and fluctuations of CHL-
a peaks are increasing for small-bloom dynamics habitats possibly associated to TP
increase and shifts of adjacent central habitat blooms (Fig. 4.5A). Ocean temper-
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Figure 4.5: Bloom Forecasting and Causal Attribution to Eco-environmental
Factors. CHL-a predictability decreases with envirome randomness that is the op-
posite of organized complexity (from small to large bloom dynamics where CHL-a
is more affected by multiple factors directly) where the former is evaluated on each
single CHL-a peak via RMSE (left plots). The top eco-environmental predictors
are identified by the Outgoing Transfer Entropy (OTE) Jie2019 that is quantifying
how much one environmental predictor affect all others (through the envirome as a
network defined by TE and CNN, yet considering dynamical features).
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Figure 4.6: Envirome Entropy, Chlorophyll Randomness, and Bloom Instabil-
ity. Entropic mandala to define potential healthy and diseased bloom conditions
considering structural complexity of the envirome and bloom randomness. A. The
ecosystemic bloom risk is proportional to the envirome (black network) or the bio-
geochemical network (black and red link network) randomness convoluted to eco-
logical effects (i.e. CHL-a in this case), where CHL-a is affected by many envi-
ronmental factors directly with a certain time delay (the latter are decreasing while
approaching the peak of blooms). Colored points in A are for each station in each
area. B. High energy (dissipation) potential, based on TE distribution, is associated
to more random envirome (or pseudo scale-free biogeochemical networks where
CHL-a is the affected hub) and high CHL-a entropy (loss of power-law distribu-
tion of CHL-a with larger and more persistent extremes determining blooms). The
position of balls in the energy dissipation landscape shows the magnitude of the
dissipation, proportional to H(CHL-a), and the darker the color, the higher the in-
stability of the ecological bloom state; the color of arrows in the energy landscape
is proportional to the likelihood of shifts defining risks (the shift risk is higher for
the steepest gradients, yet more vulnerable areas are East areas).
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ature seems to affect blooms in terms of large scale temporal trends considering
temperature regular seasonality. The predicted value of these environmental factors
(based on the network in which all factors are predicted simultaneously) is shown
in Fig. 4.7 over Florida Bay (Fig. S3 for the second largest bloom in 2005); these
collective dependencies affecting predictions define the potential energy dissipation
of the system (Fig. 4.6) in term of phytoplankton biomass with cascading ecological
consequence. The randomness of ecological processes (CHL-a) has deep impact on
ecological computation intended both as computational forecasting, likely species
cross-sensing and species-environment sensing. From top to bottom in Fig. 4.5, the
decrease in statistical complexity (from a time series that is clearly associated to a
scale-invariant distribution, very far from a uniform distribution where the modes of
variability are many more despite being ”simpler” statistically speaking) lead to a
decrease in both predictability and emergence of scale-free blooms. Blooms disrupt
the positive eco-environmental feedback created by the interplay of habitat features
and microorganisms; a finding that is evident from the iferred network changes.
Analogous studies showed how information-dissipation occurs much faster while
epidemic outbreaks are approached (and yet the information-dissipation length in-
creases [126] with an associated decrease in the characteristic time delay between
events and a decrease in forecasting accuracy, that is a sign of ”critical slowing
down”; this coincides with increased interactions between ecosystems elements (en-
vironmental factors or areas) that precede critical transitions. This rapid information
decay implies that previous ecosystem states are less and less informative the more
algal bloom outbreaks are approached and become persistent. In general, we show
how the consideration of functional eco-environmental networks increases bloom
forecasting and this network-based ecological reservoir [127] is more tangible dur-
ing non-bloom periods and habitats where networks are more organized.

As evident in Fig. 4.7 (and Fig. S3 for the second largest bloom in 2005),
non-bloom CHL-a is much more homogeneous across areas. Bloom CHL-a is more
heterogeneous and spreading from station 14 predominantly (mudbank habitat) to
elsewhere (e.g., to station 9 that is a hard-bottom seagrass habitat) with preferential
pathways as reported by Wang H. et al. [41]. The spatio-temporal dynamics relates
to to the predictive importance, i.e. likely causality, of each factor for explaining
CHL-a dynamics even without the inclusion of time delays. It is visible how 1999
is the largest bloom for the North Central Bay, and 2005 for the North-East Bay
(Fig. S3). Synchrony among environmental factors and CHL-a is more important
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Figure 4.7: Spatial Biogeochemical Patterns for the Largest FL-Bay Bloom.
Patterns for the 1999 bloom that is the largest and most widespread bloom up to
date. Turbidity and phosphorous are much more spiky and coinciding with high
CHL-a areas, whereas nitrogen have more contained fluctuations except for station
25 (deep-water sandy-bottom habitat proximal to mangrove coast). Salinity and
temperature are much more seasonal and distributed homogeneously across habitat
types, and divergent from CHL-a spatial peaks. This characterization holds both
for spatial and temporal variability of environmental factors. Synchrony and asyn-
chrony of eco-env factors over space-time (space overlap is approximatively the
same of the overlap in time series) is a major component defining interactions of
stations and factors leading to emergent blooms.
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than divergence in predicting CHL-a extremes, as much as when considering station
spatial networks [41]. This is because synchrony is more important for effective in-
teraction (TE) much more than divergence of pdfs (Eq. 3.2).

4.3.5 Entropy-complexity mandala: bloom magnitude-persistence
synthesis

Fig. 4.6 shows the mandala of potential risk, or vulnerability, accounting for sys-
temic environmental pressure disorganization as entropy of biogeochemical TEs,
and the ecological imbalance as entropy of CHL-a. It is rather clear the corre-
spondence between H(TE) and H(CHL-a) which underpins a strong causality (con-
sidering distributions and their co-evolution, beyond values) between biogeochem-
ical stress and CHL-a response. H(TE) is for TE among environmental deter-
minants, and H(CHL-a) represent the entropy of the biogeochemical interactions
and CHL-a which are proportional to the average bloom emergence (or magnitude
∝ CHL − amax − ∠CHL − a⟩) and persistence P of algal blooms (see Fig. 4.8
for the characterization of risk). The higher H(CHL-a) the higher the persistence
with larger average CHL-a value but not necessarily larger extremes, and lower
predictability of fluctuations (related to the distribution of TEs, associated to low
emergence of scale-invariant patterns, and yet low environmental and statistical
complexity due to proximity to uniform distributions, or departure from non-linear
distributions). H(TE) is then a measure of statistical complexity (where complex-
ity is lower for more uniform distribution of TE) defining the structure of networks
leading to the emergence of blooms in an area. The scale-free geometry (solely
based on connections) is associated to the increase in direct feedback between envi-
ronmental factors and CHL-a, leading to high and more uniformly distributed TEs
that cause higher and more homogeneously distributed CHL-a. Energy dissipation
is the highest for the eco-environmental network that is structurally more scale-free
(CHL-a becomes the hub), but functionally (in terms of TE) more random, par-
ticularly the envirome defined as the set of interdependent water quality variables.
CHL-a in the East Bay is more power-law distributed with the smallest average and
large extremes; in the Central Bay, CHL-a is more uniform with the highest aver-
age and variance (extremes with much higher probability); while in the West Bay,
CHL-a (exponentially distributed) has intermediate average and variance between
East and West. Fig. 4.6 however, does not account for shifts in CHL-a to define the
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Figure 4.8: Riskgram: risk profile of bay communities based on algal bloom
Persistence, Extreme Magnitude and Shift. Risk of algal blooms (uncondi-
tional to any impact) is defined as the product of bloom magnitude M (consider-
ing extreme value and not only average CHL-a), persistence P, and shifts S (see
Eq. 4.1). Triangles indicate that a bloom is occurring at the considered sta-
tion for the month on the x-axis. The triangle color is proportional to CHL-a,
the warmer the color (from black to red), the more severe the bloom in terms of
CHL-a magnitude. Bloom classes are defined for each station by an increasing
∆(CHL − a) = (CHL − amax − CHL − amin)/7 µg/L, that gives a detailed
information on shifts risk profiling. Red lines between two triangles indicate that
blooms happen continuously between adjacent months (this defines bloom dura-
tion). Three classes of risk (low, medium and high, identified by green, blue and
red colored text) are based on grouping values of Risk as in Eq. 4.1, and nodes are
shown in plot B based on these risk classes.
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systemic risk by also considering temporal changes in distributions as in Eq. 4.1
that can shift risk classes of ecological communities (Fig. 4.8). Blooms are highly
dissipative, disorganized and unstable phenomena, with potential cascading effects
across the whole bay. Functional networks in Fig. 4.6B show arrows whose width
is proportional to TE and topology is more complex for more scale-free envirome
or biogeochemical networks (e.g., for East Bay) conferring ecological stability and
higher predictability; links in red are for direct interactions of environmental fac-
tors with CHL-a that in non-bloom conditions are less directed toward CHL-a; yet
CHL-a is less subjected to strong variability in temperature and TP. Solely structural
analyses of ecological networks, without considering the TE distribution, may lead
to a mislead classification of networks such as a scale-free network for Central Bay
due to the centrality of CHL-a. Environmental triggers may lead to ecological states
that are more persistent and with higher bloom intensity (smaller recurrence time
and higher CHL-a), which are also much less predictable due to the more equiva-
lent probability of very different CHL-a ranges. We argue that increase in entropy of
CHL-a may contributes to shifts from diatom- to dinoflagellate-dominated ecosys-
tems with increased dia-dino niche divergence (related to unbalanced competition-
cooperation between these phytoplankton species), implying ingrained harmful al-
gal blooms. This hypothesis is made considering the information about diatoms and
dinoflagellate in FL Bay (Fig 4.1) and the space-time evolution of algal blooms.
Vice versa, overlap of niches underpin ecological stability, in principle. The en-
ergy potential in Fig. 4.6B can be considered as the ecological fitness landscape of
possibilities. The position of balls in the energy dissipation landscape of Fig. 4.6B
shows the magnitude of the dissipation, proportional to H(CHL-a), and the darker
the color, the higher the instability of the ecological bloom state. The average and
max value of CHL-a is related to randomness of the envirome and this apparent
simplicity/homogeneity is not good for the environment and the ecology. This also
affects predictability where computational complexity, defined as the number of
layers of the GNN, is larger. that impacts the forecasting accuracy. Therefore, we
observe a duality between ecological and computational complexity, where ben-
eficial increase in the former (scale-free) correspond to a detrimental decrease in
the latter (more features that are more disconnected and changing over time, with
lower cross-autocorrelation and less predictability of cause-effects). Complexity is
inversely proportional to randomness; the higher the randomness the lower the com-
plexity and also the network function efficiency, including the computational one;
therefore, more blooms also mean lower predictability.
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4.3.6 Non-linear bloom risk

Bloom is a systemic manifestation of water eutrophication related to both oceanic
and land stress. The frequent occurrence of bloom has negatively affected the ma-
rine ecosystem of Florida Bay. According to the bloom threshold (CHL-a 1.841µgL−1)
in Florida Bay, the persistence of bloom and their timing an be calculated, to charac-
terize their patterns with the goal to prevent the occurrence of blooms relay in fol-
lowing seasons. Through observations throughout the monitoring period, blooms
have seasonality, where in FL Bay the autumn is the peak with long-lasting pe-
riods of bloom after outbreaks. Based on the analysis of the two largest blooms
in 1999 and 2005, we observed a tendency for the September-December blooms
(post tropical cyclone season) to shift from the west and central bay to the east
over time (Figs 4.2,4.8 and Fig. S1). Fig. 4.7 shows the linear interpolation (lin-
ear geokriging) of values of CHL-a and environmental factors across monitored
stations that are stations where the eco-environmental feedback are inferred. In
Fig. 4.8A, we visualized the blooming dynamics (“ecogram”) at each monitoring
station and corresponding risk classification (“riskgram”) based on magnitude, per-
sistence and shifts (Eq. 4.1). So that, we can observe the duration of bloom and
the time points of each outbreak, as well as monitoring stations where the bloom
occurs frequently. Stations in Fig. 4.8B are re-ranked according to the risk class.
Yet, Fig. 4.8 is also a riskgram, that is a risk profile of bay communities based on
magnitude, persistence and shifts of CHL-a above the blooming threshold. Shift
increases for an increasing divergence between non-random and random distribu-
tions manifesting higher risk due to loss of predictability (equivalently, increased
loss of information, or decreased complexity of a time series intended as depar-
ture from scale-free distributions (Fig 4.5C for station 14) or functional networks
of environmental determinants (Fig. 4.6B for the Central lagoon), that increases
RMSE). Triangles in Fig. 4.8 indicate that a bloom is occurring at the considered
station for the month on the x-axis. The triangle color is proportional to CHL-a,
the warmer the color (from black to red), the more severe the bloom in terms of
CHL-a magnitude. Bloom classes are defined for each station by an increasing
∆(CHL − a) = (CHL − amax − CHL − amin)/7 µg/L, that gives a detailed
information on shifts (proportional to permutation entropy) risk profiling compared
to classifying blooms only on one threshold as in Nelson et al. [46]. For instance,
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∆(CHL− a) = 30− 8 = 22 for station 14 (higher max and average) for station 1,
that are more uniformly and scale-free distributed but belong to the same risk class
because of (P,M) and S for the former and the latter. The top 20% blooms belong to
the 7th class. In Fig. 4.8 red lines between two triangles indicate that blooms hap-
pen continuously between adjacent months (this defines bloom duration), yet the
longer and more frequent the lines the more persistent the blooms. It is noticeable
that from 2005 onward, blooms expand to the North-East of FL Bay and have an
average increase of 20% in CHL-a (that corresponds to a reclassification of blooms
to class 6 and 7 particularly in the Central and North-East areas). Three classes of
risk (low, medium and high, identified by green, blue and red colored text) are based
on grouping values of Risk as in Eq. 4.1, and nodes are shown in plot B based on
these risk classes. It is noticeable the impact of M and S in shifting node risk classes
based on P solely.

4.3.7 Missed causality, relative anomaly, inevitability and con-
trollability

Here we try to address aspects that are larger in scope than details of the paper. For
instance, answering questions about “missed” causal factors, whether bloom are
truly anomalous, and what is controllable or inevitable due to natural variability.

Are blooms truly locally-driven by nutrient efflux or more related to global cli-
mate? Are blooms truly “man-caused” or natural? CHL-a outbreaks and subsequent
blooms, e.g. the massive booms in 1999 and 2005, are largely coinciding with the
strongest tropical cyclone seasons in South Florida. For instance, hurricanes like
Katrina, Rita, and Wilma in 2005 (Fig. S7), likely caused high salinity, sea-surface
temperature, nutrients and phytoplankton redistribution toward the center of the
bay and all along coastal habitats. In 1999 category 2 Hurricane Irene cut across
FL Bay, category 4 Hurricane Floyd passed closer to East Bay habitats, and Trop-
ical Storm Harvey passed closer to the northern coastal areas of FL Bay. In 2005
category 4 Hurricane Dennis passed very close to West FL Bay, category 5 Hurri-
cane Katrina cut across FL Bay, category 5 Hurricane Rita passed south of FL Bay,
category 5 Hurricane Wilma passed in the northern coastal areas of FL Bay (Fig.
S7). The 1999 Atlantic hurricane season had five Category 4 hurricanes (Fig. S7)
– the highest number recorded in a single season in the Atlantic basin, previously
tied in 1961, and later tied in 2005. With 28 storms (27 named storms and one
unnamed), the 2005 Atlantic hurricane season set a new single-year record for most
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storms (that also implied severe economic losses [128]), surpassing the total of 20
from 1933. By considering blooms, their number was higher in 2005 (considering
Eastern areas that bloomed much more, particularly stations 3, 4 and 5, potentially
because of Floyd) with higher magnitude around West FL Bay, but 1999 outbreaks
(CHLa maximum, mostly as single peaks around central and western areas; station
14 and 27 predominantly because of Irene likely) was larger despite fewer and less
intense hydroclimatic extremes. Station 13, 14 and 15 are always fluctuating in a
persistent endemic regime regardless of extreme tropical cyclones. While our find-
ings do not expand the predictions of previous studies that emphasized the role of
storm-induced nutrient fluxes and freshwater supply as primary drivers of produc-
tivity gradients in bays, we pinpoint how biogeochemical organization is driving
blooms. Further investigations are needed to determine how much of that is truly an
anomaly in contrast to natural ecological cycles where mortality of species is needed
for instance to absorb carbon. Hurricanes and other tropical cyclones may be the
primary triggers that alter the biogeochemical distribution, where the latter can be
more harmful if nutrients loads (from land) are higher than established threshold.
However, not considering these extreme phenomena (cyclones and loads) is fine for
forecasting purposes (and not attribution to environmental causes, i.e., “etiogno-
sis”) because their effect as biogeochemical imbalance – with CHL-a is the salient
ecosystem indicator – is already incorporated.

Relatively surprisingly, in the non-bloom regime for most stations, CHL-a is the
most active factor and it has the largest influence on other factors. This confirms
the regulatory function of phytoplankton for all aquatic habitats and how this func-
tion is altered when other biogeochemical factors become predominant; yet, this
highlights the transition from a functionally scale-free to a disorganized network in
non-bloom and bloom regimes where CHL-a is the leading and effect hub, respec-
tively. Therefore, the balance of ecosystem productivity, dictated by interactions,
is important rather than single-threshold factors. Additionally, these results provide
evidence on the power of invariant predictive causality (as TE or affine information-
theoretic measures that quantify disorder, its structure and shifts) in representing
salient ecological processes where gradients of uncertainty reduction correspond
to the relative importance of underlying factors that by virtue of their divergence
influence each other. Based on our analyses, it is clear that blooms and water qual-
ity factors are interdependent bidirectionally, where the occurrence of blooms can
lead to long-term water-quality changes and fluctuations of those baseline the new
bloom emergence and the persistence of old ones. This underpins bidirectional eco-
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environmental feedback at multiple scales – from phytoplankton community struc-
ture to teleconnected climate – that are often neglected. While independent changes
in biogeochemical factors are important, we showed how their non-linear interac-
tions is much more concerning because those can constitute systemic alterations
into ecosystem functions. How much are these interactions controllable and are
bloom truly increasing [55] or it is just a byproduct of increased monitoring [129]?
It should always be kept in mind that any analysis has spatio-temporal reference
scales defining initial and boundary conditions over which an anomaly is classified.
Therefore, care should be placed when making conclusions. In FL Bay, blooms are
shifting in some locations that never experienced peaks for our monitoring period
and area considered, yet no certainty can be placed on whether that is absolutely
anomalous.

The above arguments raise questions about the controllability of blooms: how
much are truly controllable and should we control them? We can control efflux
but we cannot control cyclones; however, we may be able to influence global cli-
mate change via local climate adaptation, where climate change adaptation is the
process of adjusting to current or expected effects of climate change via climate
eco-engineering (acting on ecological and environmental flows). In the context of
bays this may be possible via preservation and restoration of habitats and reduction
of their anthropogenic pressure. In FL Bay, the central part of the bay is attracting
most of the of biogeochemical changes in other areas, with higher oceanic influ-
ence from the Western part and terrestrial efflux influence from the Easter part. Yet
there is a certain inevitability of the central bay to be a sink for blooms as well
as a source after its ecological imbalance when that happens. Inevitability also
in relation of the fact that ecological imbalance causes environmental decline and
emergence of subsequent blooms with potential hysteresis, and ecological mem-
ory due to long-lasting effects of extreme hazards and eutrophication. To avoid
this, a proactive consequentialist ecology (ecosystem engineering) is needed vs.
purely descriptive analyses. Beyond restoration and protection, rewiring ecological
corridors (by re-shaping the lost geomorphological heterogeneity and necessary
fresh- and salt-water flows in an applied ecohydrology sense) is necessary as well
as integrated monitoring that considers models as sensors that integrate informa-
tion for optimal and adaptive decision making. Therefore, models for investigating
causes, ranking malfunction, and delineating solutions. Models, can be improved
for instance by coupling extreme climate forecasts with ecological forecasts, incor-
porating geomorphological information of habitats like bathymetry, and including

73



4.4. Conclusions
Chapter 4. Shifts in Chlorophyll-a Dynamics

Under Systemic Biogeochemical Stress

multiscale ecoinformation such as phenotypical features of species, to (i) provide
high-resolution of malfunction and disservices, and (ii) pinpoint where we should
improve response capacity. In this perspective monitoring is essential where models
as Digital Information Models are like processing sensors that assimilate data non-
linearly to produce information maps (risk, pathways and perception divergence
e.g., about known and objective ecological risk) for stakeholder action.

Lastly, an opportunistic ecosystem purview, more than consequentialist on im-
pacts, is arguably needed where blooms are seen as an opportunity rather than a
curse, and action can be done via ecohydrological foundations and eco-inspired
technology such as “Daphnia biofiltrators” [130]. This is also in light of bloom
natural role as guardians of the carbon cycle [3]. The same can be said about trop-
ical cyclones as regulators of climate. Opportunities can come from asking how to
enhance ecosystem services we can get from blooms, for example by (i) enhanc-
ing the response capacity to extreme hazards such as tropical cyclones; and (ii)
enlarging the carbon sequestration capacity that can help phytoplankton balance.
At large, cyclones and blooms may also be opportunities as energy sources. In
this view, the ecology is seen as a engineerable asset where mitigation, adaptation,
and development exist together and ecological change is the basis of any economic
change [131]. This opportunist view seems necessary due do the already passed
“ecological tipping point” where declines are leading to tangible compounding hy-
droclimatic extremes [132].

4.4 Conclusions

Oceanic Chlorophyll-a concentration (CHL-a) is considered as the universal proxy
for phytoplankton biomass, and yet its alteration are arguably related to ocean dys-
biosis (i.e., imbalance not necessarily related to impacted populations). Because of
the key role of phytoplankton in the global cycle of earth’s elements (production
and export of nutrients), mapping and understanding the spatio-temporal distribu-
tion and variability in CHL-a is of primary importance. This is also particularly
important for formulating risk and decision priorities in imbalanced coastal and
marine ecosystems, especially those at the verge of ecological shifts. Global and
local pressure such as related to human activities and climate warming have al-
tered the ecohydrology of many inland and coastal wetlands worldwide, such as for
the Everglades in South Florida (USA) that is an epitome considering its size and
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complexity. Water management plans in the Everglades have severely impacted the
coastal and marine ecosystems of Florida Bay, which contributed to the increase in
frequency and magnitude of algal blooms. Beyond local ecological impacts, this
has likely implications for climate regulation as well since carbon fixation (CO2-
fixation) by marine phytoplankton accounts for about half the Earth’s primary pro-
duction. The central objective of this study was to explore the causal relationships
between biogeochemical factors and CHL-a, altogether considered as a biogeo-
chemical network whose topology alteration leads to algal bloom emergence and
persistency. The following points are worthwhile mentioning.

• Ecological network organization and forecasting. Predictive causality of
flash blooms (sensu [69] as Transfer Entropy organization of ecological net-
works), emerging from species collective sensing modulated by the environ-
ment, was shown to enhance forecasting accuracy. It is noticeable how the
envirome is more structurally organized (and not functionally for ecologi-
cal flows) as a small-world network for small blooms (higher indirect con-
nections for CHL-a with lower magnitude), while more scale-free (higher
direct connections with higher magnitude) for large blooms; this results oc-
cur when small and large bloom interdependencies over time are not consid-
ered. In light of the apparent scale-freeness of bloom-dynamics, predictabil-
ity increases with complexity (from large to small blooms if considered sep-
arately), likely because less and more organized factors (and their less sus-
tained interactions including time-delays) are important for the variability of
CHL-a, including higher habitat heterogeneity that has a beneficial effect.
This may also relate to a lower degree in spatial connections between regions
that are balanced and largely independent from each other in terms of CHL-
a; connectivity that is enhanced during blooms and increases predictability if
considered [41]. Increasing blooms may disrupt the positive ecological con-
nections facilitated by both habitats and microorganisms; an hypothesis to
verify in further studies but that is certainly evident from inferred networks
resulting more disorganized over time. We highlighted how for epidemic dy-
namics, baselined by the highest environmental complexity, the highest fore-
casting skills are achieved considering the coincidence of magnitude, timing
and duration of observed and predicted CHLa; this also speculates on how
the optimal Pareto dynamics of CHL-a has implications for optimal sensing,
predictability and eco-engineering.
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• Critical Chlorophyll-a threshold for bloom emergence. A systemic eco-
logical criteria of water blooms was validated through the normalized proba-
bility distribution function of CHL-a and its maximum divergence as proba-
bilistic tipping point manifesting collective (distribution) changes in blooms.
It should be noted that these collective change may have different persistence
levels depending on a sequence of CHL-a values over time defining the CHL-
a pdf. This criteria largely corresponds to the generic Pareto principle where
blooms (corresponding to the largest 20% CHL-a values) describe 80% of the
CHL-a variability. Risk warning may be loose for station-dependent threshold
whose blooming may initiate earlier (due to distributional vs. value changes)
in relation to spatial spreading. Yet, it is important to quantify the change
in probability distribution vs. a single value approach on statistical quantiles
that may not reflect the change in dynamics: for instance the quartile may be
very similar for very diverse probability distribution function manifesting the
persistency of a process. Endemic conditions are persistent for blooms only
if CHL-a is large, and yet CHL-a value-threshold criteria are meaningful only
for non scale-free distributions. The selection of a station-dependent critical
threshold like in Nelson et al. [46] is also suboptimal because that does not
consider blooms in their systemic non-linear interdependencies (probabilities
informs about the node collective response to changing environmental con-
ditions) where small values, such as for power-law distributed CHL-a, may
be very meaningful vs. small values for normally distributed CHL-a. The
former case underpins an incipient change toward a bloom outbreak (bloom
onset). Further studies would be needed to verify the specificity of CHL-
a distributions in different habitats worldwide and their blooming threshold
stability.

• Non-linear risk characterization. Risk was originally defined in in terms of
probability distribution (pdf) and their change vs. risk classes defined only
on set threshold on CHL-a, because CHL-a values are meaningful in different
ways depending on the distribution they belong to. Each distribution defines
persistence or antipersistence with respect to all other variables realized over
space and time, as well as their expectation, being more or less random. That
is the reason for which CHL-a dynamics must be characterized as endemic
or epidemic (based on its pdf), while the CHL-a blooming threshold identi-
fies only single outbreaks with no assessment of their persistence (the higher

76



Chapter 4. Shifts in Chlorophyll-a Dynamics
Under Systemic Biogeochemical Stress 4.4. Conclusions

the more uniform the pdf is). Therefore, a decision analytical framework
(where analytics come from a proper analytical characterization of the pdfs
and its shifts) must place higher risk on randomly distributed areas (endemic
blooms) for the same extreme values of CHL-a, shifts of these distribution
and fluctuations, and persistence of extreme values. For FL Bay, fluctuations
and persistence of large CHL-a are increasing for endemic areas, and mag-
nitude and distribution are increasing for epidemic areas, which constitute a
great risk on ecosystems. Increasing bloom persistence is reported in areas
that have lower entropy, and areas with higher disorganization with higher
free-energy (energy dissipation is lower for lower TEs); persistence in new
areas that that is across months and not only in summer/post-summer peri-
ods. Our approach, compared to Nelson et al. [46] and similar papers, is
(1) informational (in terms of pdf characterization/dynamics, that is about
pdf shape and predictability of bloom patterns, beyond absolute probability
value; blooms driven by local ecology and ecological corridors, where pre-
dictability is always inversely proportional to the bloom risk); (2) systemic
(considering phytoplankton CHL-a population normalization across ecolog-
ical communities over space, because CHL-a is always dependent on other
communities); and, (3) and temporal (considering how pdfs change over time
to characterize ecological history). Thus, bloom risk (or vulnerability more
precisely, since risk is always associated to an impact) should be assessed
on the three above elements and not just on average magnitude or extreme
outbreaks to incorporate persistent and shifting degrees of bloom.

• Biogeochemical disorganization and critical slowing-down. Eutrophic ecosys-
tems are demonstrated to experience more persistent and/or erratic blooms
manifested by disorganized biogeochemical network topologies. Small and
repeated stress should not be overlooked because they can have large effects
in the long run via critical slowing down [90, 133]. This is for instance the
case of NE habitats in FL Bay that are experiencing erratic and more persis-
tent blooms with slow but critical ecological collapse driven by excess nu-
trient loads and ocean temperature fluctuations. Dinoflagellate, for example
were increasing due to temperature anomalies and nutrient efflux. We em-
phasized the critical slowing down (CSD a’ la Scheffer [124]) of blooms
that became smaller but more erratic and widely distributed in space. This
temporal trend is evident from 2005, after a hiatus in in between 2000 and
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2005 approximately, that is a classical signature of critical transition from
one long-term dynamics to another: variance and average of indicators (in
this case top 20% CHL-a as indicator of blooms) diminish before a change
in ecosystem regime followed up by an increase in variance. It is also inter-
esting to observe that after 2005, algal blooms started to expand to NE areas
of Florida Bay (stations 1-10 previously not impacted by blooms) closer to
South Florida agricultural and urban areas; yet, manifesting a likely increas-
ing pressure from these areas. Unfortunately that sector of Florida Bay hosts
many unique species, such as marine sponges, and due to the shallow-water
habitats, ecological communities are very sensitive to environmental change
which poses a very high risk for many rare and native species. This regime
shift also likely favors the emergence of invasive species and pathogens, as
well as the potential release of toxins affecting human health via direct ex-
posure and sea-food contamination [134–137]. These elements cumulate and
increase the systemic eco-environmental impact of the whole ecosystem.
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Conclusions

The aim of this dissertation is to offer insights into how causal network reasoning
and graph neural networks can be utilized to generate innovative ideas for unravel-
ing a complex ecological problem, namely algal blooms. A causal inference model
is established based on transfer entropy difference to quantify the one-directional
information flow between all pairs of variables, thus simulating the dynamics of
algal blooms. Furthermore, one-directional transfer entropy differences are com-
bined with graph neural networks to achieve time-series predictions of algal blooms.
By analyzing the information dynamics, structure, and functional features of the
causal inference network, it enables the identification of the dynamic evolution of
the response of algal blooms to environmental changes, or even the ability to track
it without spatial dependencies. With the assistance of macroecological analyses,
these results can be utilized to comprehend how algal blooms respond to fluctua-
tions in environmental factors and changes in geography. Additionally, causal rela-
tionships (i.e., transfer entropy differences) are employed as a priori information to
construct graph neural networks. This design serves to emphasize the connections
between variables, effectively avoiding the redundancy of information stemming
from high dimensions. Through the incorporation of prior causal information ac-
quired through Transfer Entropy difference, the model eliminates the necessity to
independently identify pivotal variables for accurate forecasting. Thus, this study
provides insights into complex ecosystem problems, contributes to the proposition
of targeted preventive approaches and measures, and achieves an effective predic-
tion of complex ecosystems with multiple environmental factors.

Chapter 2 outlines the development of both causal inference models and causal
neural network models, primarily leveraging them for the dynamic analysis and
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prediction of the algal blooms indicator, CHLa. Our application of the causal infer-
ence model to the complete algal blooms observation period, spanning August 1992
to September 2008, yielded a causal network involving 28 observation stations for
CHLA. This network effectively pinpointed the most influential and active stations
pertaining to algal blooms, providing a framework for subsequent analyses regard-
ing the interrelationships of water quality factors within these stations. However, it
is imperative to address the heightened concern surrounding prolonged and abrupt
blooms, particularly in the stations identified as most influential. Abrupt blooms
may result from sudden fluctuations in water quality factors or prolonged accumu-
lation over time. Conversely, prolonged blooms are consistently accompanied by
significant passive shifts in specific water quality factors. By scrutinizing the causal
relationships amidst environmental factors prior to abrupt blooms and establish-
ing the causality between water quality factors during prolonged bloom conditions,
we meticulously dissected the specific triggers and clear risk indicators for these
two distinctive bloom phases at individual stations. In addition, we demonstrate
more intuitively the prediction results of the causality-based graph neural network
for CHLa from an ecological perspective. Comparison of the actual and predicted
conditions of peak CHLa periods at specified station using maps clearly shows the
geographical deviation between the actual and predicted situations. Thus, our causal
graph neural network model achieves accurate geographic prediction of CHLa (i.e.,
algal blooms) without based on spatial dependence.

Chapter 3 places its emphasis on the practical application of causal inference
modeling to the algal blooms event of 2005. The most effective manner to validate
an inferential model resides in its comparison against the actual occurrence of an
event. Given the prominent status of the 2005 Florida Bay bloom event, compre-
hensive records detailing its circumstances are accessible. By contrasting our causal
inference findings prior to and following the 2005 bloom outbreak, a congruence
emerges with the authentic spatial trend of the bloom – namely, the emergence of
blooms in the western and central sectors of Florida Bay, which subsequently spread
toward the eastern regions over time. This particular bloom event also incited con-
siderable fluctuations in water quality on a large scale. Consequently, we undertook
the quantification of the bloom’s repercussions on water quality factors at diverse
stations, proposing targeted strategies for control in response. Furthermore, we un-
dertook an evaluation of the ecosystem’s stability prior to and subsequent to the
event, grounded in the probability distribution of CHLa’s collective influence and
ecosystem potential. This assessment showcased the transformation in the ecosys-

80



Chapter 5. Conclusions

tem’s state before and after the bloom event, concurrently highlighting the robust
capacity of the ecosystem for self-regulation.

Chapter 4 presents a comprehensive analysis and evaluation of our proposed
causal inference method and causality-based graph neural networks. In addition to
the main bloom indicator CHL-a, reasoning and predictive analyses of other rel-
evant environmental factors, as well as ecosystem risk evaluation, were incorpo-
rated. Consequently, based on the causal environmental factors behind CHL-a’s dy-
namic variability, constructing a predictive biogeochemical network that underlies
algal bloom emergence, persistence, shifts, and ecosystemic risks. Noteworthy find-
ings include the enhancement of predictive accuracy through predictive causality of
flash blooms organized by Transfer Entropy, and the identification of critical CHL-a
thresholds for bloom outbreaks. Risk characterization involves systemic ecological
criteria of water blooms, and the evaluation of risk is non-linear due to probability
distribution dynamics. Furthermore, the study highlights the influence of biogeo-
chemical disorganization and critical slowing-down in eutrophic ecosystems, where
persistent and erratic blooms signal impending ecological collapse. Temporal shifts
in bloom patterns underscore the ecosystem’s vulnerability, impacting marine life
and human health. This investigation contributes to understanding the multifaceted
interplay between CHL-a dynamics, ecological shifts, and the systemic risks asso-
ciated with changing environmental conditions.

The results from all these studies evidence the efficiency of the developed causal
inference model and causality-based graph neural network. Notably, when applied
to real-world ecological challenges, these tools exhibit robust performance and dis-
tinct advantages, unraveling intricate system dynamics, information flow, and sys-
tem stability. Moreover, their prowess in multivariate time series prediction within
complex systems becomes evident. Beyond the scope of the present study, these
concepts stand adept at extrapolating and anticipating system behaviors and infor-
mation dynamics across a spectrum of intricate scenarios, extending to domains like
medicine, social networks, and brain sciences, where conventional methodologies
may falter.
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A

B

C

Figure S1: Composite seven-day mean of CHL-a concentration (in mg/m3)
in 168 the surface ocean layer of South-West Florida. CHL-a, for 7-day
mean of October-November-December 2005 (A, B, C), is estimated by the
Optical Oceanography Laboratory at USF (https://optics.marine.
usf.edu/cgi-bin/optics_data?roi=FLKEYS&Date=10/15/2005#

C20052822005288.QKM.FLKEYS.7DAY.L3D.SST.png). Estimates, in
mug/L = mg/m3 are done with the most updated calibration and algorithms
in the SeaDAS processing software (SeaDAS is a comprehensive software
package for the processing, display, analysis, and quality control of ocean color
data, https://seadas.gsfc.nasa.gov/) based on multiple reflectance
indicators for deep [1] and shallow waters [2] Over clear, shallow waters (<30m)
or over very turbid coastal waters or river plumes, it is often overestimated as
other components (colored dissolved organic matter, suspended sediments, ocean
bottom) interfere with the algorithm.
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Figure S2: Bloom Forecasting for representative West, Central and East
stations. In the West stations 20, 25, and 26 as low risk (despite being endemic
for blooms) that are all very far from the coast with respect to high risk habitats,
manifesting the lower ocean-pressure and the risk-sink character of these sites.
In East and Central stations 3, 14 and 10 as high risk (where 3 is epidemic
and the last two are endemic) that are all very coastal with respect to low risk
habitats, manifesting the critical land-pressure effect. Thus, bloom risk should be
assessed also on bloom persistence and shift and not just on average magnitude or
extreme outbreaks to incorporate dynamical features of blooms. It is noticeable
how for epidemic dynamics is baselined by the highest environmental complexity
and implies the highest forecasting skills considering the coincidence of magnitude,
timing and duration of observed and predicted CHL-a (from top to bottom plots).
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Figure S3: Spatial Biogeochemical Patterns for the Largest FL-Bay Bloom.
Patterns for the 2005 bloom that is the second largest and most widespread bloom
up to date. Patterns are similar to those of the 1999 bloom (Fig. 4.7).
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Figure S4: Biogeochemical network and variable influence for representative
mangrove habitats. Causality network and OTE of biogeochemical variables for
representative stations 25 and 26 in the western region under bloom and non-bloom
regime. The size of each node is proportional to the Shannon Entropy of each
variables, while the color is proportional to OTE. The higher OTE, the warmer the
color. The width of each edge is proportional to tei,j(X), while the color is just to
distinguish links. The direction is related to the dominant causality of factors Xi and
Xj , i.e. TEXi,Xj

(thresholded TE difference). The distance is related to the node
configuration in a circle, made through the Python package ”networkx layout”. For
visualization clarity all nodes in bloom condition are magnified 1000 times, and the
nodes in non-bloom condition are magnified 100 times. Width edges are magnified
30 times.
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Central Bay

Figure S5: Biogeochemical network and variable influence for representative
marsh habitats. Causality network and OTE of biogeochemical variables for
representative stations 14 and 20 in the central region under bloom and non-bloom
regime. The size of each node is proportional to the Shannon Entropy of each
variables, while the color is proportional to OTE. The higher OTE, the warmer the
color. The width of each edge is proportional to tei,j(X), while the color is just to
distinguish links. The direction is related to the dominant causality of factors Xi and
Xj , i.e. TEXi,Xj

(thresholded TE difference). The distance is related to the node
configuration in a circle, made through the Python package ”networkx layout”. For
visualization clarity all nodes in bloom condition are magnified 1000 times, and the
nodes in non-bloom condition are magnified 100 times. Width edges are magnified
30 times.
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Figure S6: Biogeochemical network and variable influence for representative
coastal seagrass habitats. Causality network and OTE of biogeochemical variables
for representative stations 3 and 10 in the central and eastern region under bloom
and non-bloom regime. The size of each node is proportional to the Shannon
Entropy of each variables, while the color is proportional to OTE. The higher OTE,
the warmer the color. The width of each edge is proportional to tei,j(X), while the
color is just to distinguish links. The direction is related to the dominant causality of
factors Xi and Xj , i.e. TEXi,Xj

(thresholded TE difference). The distance is related
to the node configuration in a circle, made through the Python package ”networkx
layout”. For visualization clarity all nodes in bloom condition are magnified 1000
times, and the nodes in non-bloom condition are magnified 100 times. Width edges
are magnified 30 times.
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Appendix A. Supplement for Chapter 4

A

B

Figure S7: North Atlantic basin tropical cyclones in 1999 and 2005. All tropical
cyclone tracks are shown for 1999 (A) and 2005 (B). Colors are proportional to
cyclone’s intensity at peak in each node, from category 1 to 5 (from light blue to
red).
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