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A magnetic bubble crystal is a two-dimensional soliton lattice consisting of multiple spin-density waves
similar to a magnetic skyrmion crystal. Nevertheless, the emergence of the bubble crystal with a collinear
spin texture is rare compared to that of the skyrmion crystal with a noncoplanar spin texture. Here, we
theoretically report the stabilization mechanisms of the bubble crystal in tetragonal magnets. By performing
numerical calculations based on an efficient steepest descent method for an effective spin model with magnetic
anisotropy and multiple spin interactions in momentum space on a two-dimensional square lattice, we construct
magnetic-field-temperature phase diagrams for various sets of model parameters. We find that the bubble crystal
is stabilized at finite temperatures near the skyrmion crystal by an easy-axis anisotropic two-spin interaction.
Through a detailed analysis, we also show that the high-harmonic wave-vector interaction and the biquadratic
interaction play important roles in the stability of the bubble crystal. Our results indicate a close relationship
between the bubble crystal and the skyrmion crystal in terms of the stabilization mechanisms, which suggests
the possibility of the bubble crystal in the skyrmion-hosting materials by controlling the easy-axis magnetic
anisotropy through external and/or chemical pressure.

DOI: 10.1103/PhysRevB.108.024426

I. INTRODUCTION

Multiple-Q states, which are characterized by a superpo-
sition of multiple spin-density waves, have attracted great
interest for years [1–7]. They often manifest themselves not
only in complex spin textures including noncollinear and
noncoplanar ones, but also in unconventional charge/spin
transports. For example, a magnetic skyrmion crystal (SkX)
consisting of multiple spiral waves in Fig. 1(a) leads to
the topological Hall effect [8–11] owing to their emer-
gent magnetic fields acting on conduction electrons. Since
the emergent magnetic field relies on neither net magne-
tization nor relativistic spin-orbit coupling and its mag-
nitude reaches 103–104 T [12], the use of multiple-Q
states for spintronics applications has been also extensively
studied [13–18].

Exploring such multiple-Q states is one of the challenges
in both experiments and theory. Especially, it is impor-
tant to understand a fundamental essence to realize the
multiple-Q states. In this context, centrosymmetric tetragonal
compounds, such as GdRu2Si2 [19–21] and EuAl4 [22–28],
are prototypical ones to examine the origin of the multiple-
Q states since they exhibit a variety of multiple-Q states
despite their simple lattice structures: the square (rhombic)
SkXs with (without) fourfold rotational symmetry, double-Q
vortex crystal, and so on. Their stabilization mechanisms are
narrowed down owing to the simple lattice structure without
geometrical frustration and the Dzyaloshinskii-Moriya inter-
action [29,30]: multiple-spin interaction and high-harmonic
interactions by itinerant frustration [31], dipolar interac-
tion [32], bond-dependent anisotropic interaction [7,33],
and their competition [34] based on microscopic and phe-
nomenological analyses [35,36]. Especially, an effective

spin model incorporating the multiple-spin interaction, high-
harmonic interaction, and anisotropic two-spin interaction
can qualitatively reproduce the magnetic-field-temperature
phase diagram in GdRu2Si2 [20,37] and the ground-state

(a) skyrmion crystal

(b) bubble crystal

1- 10

FIG. 1. Schematic spin configurations of (a) the SkX with the
noncoplanar spin texture and (b) the bubble crystal with the collinear
spin texture in a tetragonal system. The arrows represent the direction
of the spin moments, and their color shows the z-spin component.
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phase diagram in EuAl4 [26]. Since multiple-Q instabili-
ties have been implied in similar centrosymmetric tetragonal
magnets, such as EuGa4 [25,38,39], Eu(Ga1−xAlx )4 [40,41],
Mn2−xZnxSb [42], and PrMn2Ge2 [43], there is a chance that
unknown multiple-Q states appear in these relevant materials.
To stimulate experimental identification, a further theoreti-
cal investigation based on microscopic model calculations is
desired.

In the present paper, we focus on the stabilization con-
ditions of a magnetic bubble crystal, which corresponds to
another multiple-Q state formed by a collinear-type superpo-
sition of multiple sinusoidal waves as schematically shown
in Fig. 1(b). Although it has been found in magnets with
strong magnetic anisotropy [44–46], its candidate materials
have still been limited [47]. Meanwhile, it was shown that
the emergence of the bubble crystal is closely related to that
of the SkX in the hexagonal magnetic insulators [48] and
metals [49]; the synergy between a larger easy-axis two-spin
or single-ion magnetic anisotropy and an external magnetic
field tends to stabilize the bubble crystal. Thus, one can expect
that a similar instability toward the bubble crystal occurs in the
skyrmion-hosting tetragonal magnets by increasing the easy-
axis two-spin magnetic anisotropy under external pressure
and/or chemical substitution. The systematic investigation of
the magnetic field-temperature phase diagram in such a situ-
ation is a reference to encourage searching for the materials
hosting the bubble crystal.

To get an insight into the stabilization of the bubble
crystal and its relevance with that of the SkX in centrosym-
metric tetragonal magnets, we construct the magnetic-field-
temperature phase diagram of an effective spin model with
momentum-resolved interaction on a two-dimensional square
lattice by performing an efficient steepest descent method,
which enables us to obtain thermodynamic phases with small
computational cost [37]. By systematically changing the de-
gree of the easy-axis two-spin magnetic anisotropy, we find
two additional key ingredients for the square-type bubble
crystal: One is the high-harmonic wave-vector interaction,
and the other is the biquadratic interaction. We show the
emergence of the finite-temperature phase transition from the
bubble crystal to the SkX by lowering the temperature in both
mechanisms when the strength of the easy-axis anisotropic
two-spin interaction is moderate. Furthermore, we show that
the bubble crystal is realized in the ground state as the degree
of the easy-axis two-spin anisotropy increases. From the ob-
tained phase diagrams, we discuss the conditions of the bubble
crystal in tetragonal magnets, which will be useful for future
exploration in experiments.

The rest of this paper is organized as follows. In Sec. II,
we describe the effective spin model on the square lattice and
briefly introduce the numerical method to derive thermody-
namic states. We discuss the stability of the bubble crystal by
constructing the magnetic-field-temperature phase diagrams
in Sec. III. We show the behavior of the bubble crystal under
the high-harmonic wave-vector interaction and biquadratic
interaction in Secs. III A and III B, respectively. Finally, a
summary is presented in Sec. IV. We show the Supplemental
Material data about the phase diagram in the presence of the
high-harmonic wave-vector interaction in the Appendix.

II. MODEL AND METHOD

A. Model

We consider an effective spin model, which is obtained by
perturbatively expanding the Kondo lattice model in terms
of the spin-charge coupling between itinerant electron and
classical localized spins in the weak-coupling regime [50].
The model is given by

H = − J
∑
ν,α,β

�
αβ

Qν
Sα

Qν
Sβ

−Qν

+ K

N

∑
ν

⎛
⎝∑

α,β

�
αβ

Qν
Sα

Qν
Sβ

−Qν

⎞
⎠

2

− H
∑

j

Sz
j, (1)

where Sα
Qν

in the first and second terms represents the mo-
mentum representation of the spin with the wave vector
±Q1,±Q2, . . . ,±QNQ

and the spin component α = x, y, z;
NQ is the number of channels in the momentum-resolved
interactions. Sz

j in the third term represents the z component
of the classical localized spin at site j with the unit spin length
|S j | = 1. Sα

j and Sα
Qν

are related by the Fourier transformation

with each other; Sα
Q = ∑

j Sα
j e−iQ·r j /

√
N ; N is the total num-

ber of spins and r j is the position vector at site j.
The Hamiltonian in Eq. (1) consists of three terms: the

bilinear spin interaction, biquadratic spin interaction, and Zee-
man coupling under an external magnetic field along the
z direction with the coupling constants, J > 0, K � 0, and
H � 0, respectively. We set J = 1 as the energy unit. The
first term originates from the second-order contribution with
respect to the Kondo coupling, whereas, the second term is
from the fourth-order one in the perturbation scheme [50–53];
we neglect other four-spin interactions between different Qν

for simplicity: In the perturbation process, we suppose the
situation where the Fermi surface nesting at Qν is important,
that is the bare susceptibility of itinerant electrons in the
Kondo lattice model exhibits significant maxima at Qν , and
this feature remains the same in the presence of the magnetic
field. �

αβ

Qν
in the first and second terms in Eq. (1) represents

the momentum-dependent anisotropic form factor that arises
from the relativistic spin-orbit coupling and dipolar interac-
tion. The anisotropic form factor is derived by performing the
perturbation expansion of the Kondo lattice model including
the spin-orbit coupling with respect to the spin-charge cou-
pling [54]; we use the same anisotropic form factor for the
bilinear and biquadratic terms for simplicity.

Nonzero components of �
αβ

Qν
depend on the symmetry of

the lattice structure and the wave-vector Qν [54]. We consider
the two-dimensional square lattice as shown in Fig. 2(a) by
setting r j = (rx

j , ry
j ) with the lattice constant as unity and inte-

gers rx
j and ry

j , where site symmetry in each lattice site is D4h.
By supposing the situation where the Fermi surface nesting
at fourfold symmetric ±Q1 = ±(Q, 0) and ±Q2 = ±(0, Q)
with Q = π/3 is important, the dominant interactions are
expressed by those at Q1 and Q2 channels. In such a situation,
�

αβ

Qν
has only diagonal components regarding spins (α = β ),
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)a( )b(

x

y

FIG. 2. (a) Square lattice structure in real space. (b) The repre-
sentative wave vectors of the model in Eq. (1) in momentum space.
The interactions at Q1 = (Q, 0) and Q2 = (0, Q) [Q3 = (Q, Q) and
Q4 = (−Q, Q)] denoted by the circles (squares) represent the domi-
nant (subdominant) interactions.

which is represented by

�Q1
≡ (

�xx
Q1

, �
yy
Q1

, �zz
Q1

) = (�x, �y, �z ),

�Q2
≡ (

�xx
Q2

, �
yy
Q2

, �zz
Q2

) = (�y, �x, �z ), (2)

otherwise �
αβ

Qν
= 0. We set �y = 0.95κ , �x = 0.95�y, and

�z = 1, where κ � 0 represents the parameter for the easy-
axis anisotropic two-spin interaction that originates from
the spin-orbit coupling; �y > �x indicates that the spiral
plane perpendicular to Q1 and Q2 is favored. It is noted
that �x = �y = �z in the absence of the spin-orbit cou-
pling; κ tends to deviate from the isotropic relation for a
larger spin-orbit coupling. The result for κ = 1 reproduces
the previous result to investigate the instability toward the
SkX [20,37]; κ < 1 (κ > 1) enhances (suppresses) the degree
of the easy-axis anisotropic two-spin interaction. It is noted
that finite-temperature phase transitions are allowed in the
two-dimensional system in the presence of the anisotropy.

The model in Eq. (1) exhibits a variety of multiple-Q states
with changing K , H , and the temperature T as demonstrated
for κ = 1 [34,37]. Especially, the double-Q SkX consisting
of a superposition of two spiral waves with Q1 and Q2 is
stabilized from zero to finite temperatures for nonzero K and
H . With this in mind, we examine the instability toward the
double-Q bubble crystal, which is characterized by a superpo-
sition of two sinusoidal waves with Q1 and Q2 while changing
κ . The different choices of �x/�y with �x > 0 and �y > 0 do
not alter the instability toward the bubble crystal unless �z

is comparable or smaller than �x, �y since the bubble crystal
corresponds to a collinear spin texture; �x and �y do not
contribute to the energy.

In addition, we consider another scenario to realize
the bubble crystal by taking into account the subdom-
inant contributions from the high-harmonic wave-vectors
±Q3 = ±(Q1 + Q2) and ±Q4 = ±(−Q1 + Q2), which is ex-
pressed as

�Q3
= �Q4

= (κ�′, κ�′, �′). (3)

The introduction of �Q3
and �Q4

in addition to �Q1
and �Q2

favors the double-Q superposition of Q1 and Q2 compared
to the individual single-Q spiral of Q1 or Q2 even when
K = 0 [31,37,55]. The relation among Q1–Q4 is presented in

Fig. 2(b). We here neglect the in-plane anisotropic component
�

xy
Q3

= �
yx
Q3

and �
xy
Q4

= �
yx
Q4

for simplicity by assuming that the
magnitude of �′ (κ�′) is smaller than that of �z (�x,y). For
κ = 1 and K = 0, the instability toward the SkX occurs for
�′ � 0.1 [37]. We discuss the possibility of the bubble crystal
when introducing κ �= 1 for the model with nonzero �′.

B. Method

The thermodynamics and optimal spin configurations of
the model in Eq. (1) are investigated by using the steepest
descent method [37,56] in which we perform numerical op-
timizations of the free energy using a JAX-based [57] library
Optax [58]. This method provides a numerically exact solu-
tion in the thermodynamic limit at any temperature, which has
been used for similar models to investigate various multiple-Q
states [37,56,59].

To identify magnetic phases for each (κ, K, �′, H ), we
calculate the Qν components of the magnetic moments mα

Qν

and scalar chirality χ sc, which are given by

mα
Qν

= 1

N

√∑
j, j′

〈
Sα

j Sα
j′
〉
eiQν ·(r j−r j′ ), (4)

χ sc = 1

2N

∑
j

∑
δ,δ′=±1

δδ′〈S j · (S j+δx̂ × S j+δ′ ŷ)〉, (5)

where x̂ (ŷ) represents a translation by the lattice constant
along the x (y) direction. We also calculate the z component
of the total magnetization as

Mz = 1

N

∑
j

〈
Sz

j

〉
. (6)

III. RESULTS

We discuss the instability toward the bubble crystal on
the square lattice by focusing on two mechanisms: the
higher-harmonic wave-vector interaction in Sec. III A and
the biquadratic interaction in Sec. III B. We show magnetic-
field-temperature phase diagrams for the different easy-axis
magnetic anisotropic two-spin interactions in each case.

A. Higher-harmonic wave-vector interaction

First, we discuss the result in the presence of the high-
harmonic wave-vector interaction; we set K = 0 in this
section. Figure 3 shows the magnetic-field (H)-temperature
(T ) phase diagrams at �′ = 0.3 with changing κ from 0.3 to
1.4 by 0.1, which is obtained by the steepest descent method in
Sec. II B. Although several tri- and multicritical points emerge
in the phase diagram, we here do not go into the details of the
multicriticality but focus on the stability region of the bubble
crystal.

1. Case of κ = 1

The result at κ = 1 has been discussed in Ref. [37] where
six phases including the SkX appear, but the bubble crystal
does not appear in the phase diagram. In the low-T and low-
H region, the single-Q proper-screw spiral (1Q PS) state is
stabilized, whose ordering vector is Q1,2 not Q3,4 owing to
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1Q PS

2Q CS

1Q C

2Q S I

1Q S

PM

SkX
bubble

FIG. 3. Magnetic-field (H )-temperature (T ) phase diagrams of the model in Eq. (1) at �′ = 0.3 and K = 0 with changing κ for
0.3� κ � 1.4 by 
κ = 0.1. 1Q and 2Q represent the single-Q and double-Q states, respectively. PS, C, S, CS, SkX, and PM stand
for proper-screw, conical, sinusoidal, chiral stripe, skyrmion crystal, and paramagnetic state, respectively. The dashed lines represent the
second-order phase transitions. The phase diagram at κ = 1 is the same as that in Ref. [37].

�′ < �x,y,z and spiral plane is perpendicular to Q1,2 owing to
�x < �y < �z. The real-space spin configuration of the 1Q PS
state is presented in Fig. 4(a). When H increases, the 1Q PS
state continuously changes into the double-Q chiral stripe (2Q
CS) state. This state is characterized by a superposition of the
proper-screw spiral wave at Q1 (Q2) and the sinusoidal wave
at Q2 (Q1), i.e., my

Q1
, mz

Q1
, mx

Q2
�= 0 (my

Q1
, mx

Q2
, mz

Q2
�= 0) [53].

Since the amplitude of the sinusoidal component is smaller
than that of the proper-screw spiral component, the real-space
spin configuration of the 2Q CS state resembles that of the 1Q
PS state as shown in Figs. 4(a) and 4(b); the small sinusoidal
y-spin oscillation along the x direction can be found in the
2Q CS state. Reflecting the double-Q structure, mx

Q3
= mx

Q4

(or my
Q3

= my
Q4

) is slightly induced, which is smaller than
|mQ1

| and |mQ2
|.

With a further increase in H , the 2Q CS state is re-
placed by the SkX through the first-order phase transition.
The SkX consists of two proper-screw spiral waves at Q1 and
Q2; my

Q1
= mx

Q2
�= 0 and mz

Q1
= mz

Q2
�= 0 so that the fourfold

rotational or improper rotational symmetry is preserved. In
addition, mx

Q3
= my

Q3
= mx

Q4
= my

Q4
and mz

Q3
= mz

Q4
become

nonzero owing to the superposition of the spiral waves at Q1

and Q2, which means that �′ assists the stabilization of the
SkX. Indeed, the SkX phase vanishes for �′ = 0 [37]. The
SkX is the only phase to have nonzero scalar chirality χ sc

in the phase diagram. It is noted that there is a degeneracy
between the SkX with positive χ sc and negative one. Such
a degeneracy is lifted by considering the anisotropic form
factor in the Q3,4 channel; �

xy
Q3

> 0 (�xy
Q3

< 0) leads to the
antitype (Bloch-type) SkX with positive (negative) χ sc [60].
We present the spin configuration of the SkX in Fig. 4(c),
where the antitype SkX emerges.

The SkX shows a first-order phase transition to the single-
Q conical spiral (1Q C) state with increasing H . The 1Q C
state is represented by the spiral modulation on the xy plane
with Q1,2, whose spin configuration is shown in Fig. 4(d). The
1Q C state changes into the double-Q sinusoidal I (2Q S I)
state with increasing H discontinuously. The 2Q S I state
consists of y(x)-spin sinusoidal oscillations at Q1 (Q2) with
the equal amplitude, i.e., my

Q1
= mx

Q2
. The spin configuration is

presented in Fig. 4(e). In contrast to the 2Q CS and SkX with
the double-Q spin modulations, no mα

Q3
and mα

Q4
are induced

in the 2Q S I state. The 2Q S I state continuously turns into
the paramagnetic (PM) state without the finite-q modulation.
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(a) 1Q PS (b) 2Q CS

(d) 1Q C(c) SkX

(e) 2Q S I (f) 1Q S

(g) bubble (h) 2Q S II

(d) 1(d) 1(c) SkX

x

y

1- 10

FIG. 4. The spin configurations of (a) the 1Q PS, (b) 2Q CS,
(c) SkX, (d) 1Q C, (e) 2Q S I, (f) 1Q S, (g) bubble crystal, and
(h) 2Q S II states in the 6×6 magnetic unit cell, which appear in
Figs. 3 and 8. The arrows represent the direction of the spin moments,
and their color shows the z-spin component. The model parameters
(�′, K, κ, T, H ) are shown in each figure.

With the increase of T in the low-H region, the single-Q
sinusoidal (1Q S) state appears. The 1Q S state has a z-spin
oscillation without x, y-spin ones, i.e., mz

Q1
�= 0 and mx

Q1
=

my
Q1

= 0 or mz
Q2

�= 0 and mx
Q2

= my
Q2

= 0. The appearance of
the 1Q S state is attributed to �z > �x,y.

2. Case of κ < 1

For the large easy-axis magnetic anisotropic two-spin inter-
action, i.e., κ < 1, the bubble crystal is realized for κ � 0.9
in the intermediate-field and finite-temperature regions. As
shown in the phase diagram at κ = 0.9 in Fig. 3, the bubble
crystal emerges in the competing region among the 1Q PS,
1Q S, SkX, and 2Q S I phases. For smaller κ , the region where
the bubble crystal is stabilized extends to a lower-T region
but not to a zero temperature. The bubble crystal is mainly
expressed as a collinear superposition of two sinusoidal waves
with the z-spin component at Q1 and Q2; mz

Q1
equals to mz

Q2
.

1- 10

(a) (b)

(c) (d)

FIG. 5. The spin configurations of the bubble crystal at (a) T =
0.1 and H = 0.95, (b) T = 0.2 and H = 0.85, (c) T = 0.3 and
H = 0.75, and (d) T = 0.4 and H = 0.65 for �′ = 0.3 and K = 0
in the 6×6 magnetic unit cell. The arrows represent the direction of
the spin moments, and their color shows the z-spin component.

In addition, mz
Q3

= mz
Q4

is also induced, although it is smaller
than mz

Q1,2
. In the real-space spin configuration in Fig. 4(g), a

quarter of the number of spins in the magnetic unit cell point
along the −z direction, whereas, the remaining spins point
along the z direction; the magnetization per magnetic unit
cell takes 0.5 in the zero-temperature limit. When the effect
of thermal fluctuations is considered, spin moments shrink
nonuniformly as shown in the case of κ = 0.3 in Figs. 5(a)–
5(d). The tendency of the nonuniform spin-length distribution
becomes larger for larger T .

We show the T dependence of physical quantities in the
phase transition between the bubble crystal and the SkX at
�′ = 0.3, K = 0, κ = 0.8, and H = 0.7 in Fig. 6. The data of
Mz, χ sc, mx,y

Q1,2
, mz

Q1,2
, mx,y

Q3,4
, and mz

Q3,4
are shown in Figs. 6(a)–

6(f), respectively. In this set of model parameters, the phase
sequence is represented by the 1Q PS, SkX, bubble crystal,
and PM states with increasing T . The phase transition be-
tween the 1Q PS and SkX and that between the bubble crystal
and PM state are of the first order [61], whereas, the transition
between the SkX and bubble crystal is of the second order; see
the T dependence of Mz in Fig. 6(a) for example. In the latter
phase transition, both mz

Q1,2
and mz

Q3,4
remain nonzero with

keeping the double-Q structure as shown in Figs. 6(d) and 6(f).
Meanwhile, both mx,y

Q1,2
and mx,y

Q3,4
in the SkX phase gradually

become smaller as T increases, which follow the mean-field
critical exponent as (mx,y

Q1,2
)2 ∝ Tc − T and (mx,y

Q3,4
)2 ∝ Tc − T

(Tc is the transition temperature) as shown in the inset of
Figs. 6(c) and 6(e), respectively, and vanish in the bubble
crystal phase, as shown in Figs. 6(c) and 6(e). Accordingly,
χ sc vanishes in the bubble crystal phase as shown in Fig. 6(b).

The emergence of the bubble crystal is attributed to the in-
terplay between the easy-axis anisotropic two-spin interaction
κ and the high-harmonic wave-vector interaction �′ under the
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(d)

(e)

(f)
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PM

0.00

0.02

 0.35  0.40

0

5

 0.35  0.40

FIG. 6. T dependence of (a) the magnetization Mz, (b) the scalar
chirality χ sc, (c) mx,y

Q1,2
, (d) mz

Q1,2
, (e) mx,y

Q3,4
, and (f) mz

Q3,4
at �′ = 0.3,

K = 0, κ = 0.8, and H = 0.7. The inset of (c) [(e)] shows (my
Q1

)2

and (mx
Q2

)2 [(my
Q3

)2 = (mx
Q3

)2 and (mx
Q4

)2 = (my
Q4

)2] in the vicinity
of the phase boundary between the SkX and the bubble crystal. The
vertical dashed lines represent the phase boundaries. The blue, red,
green, and white regions represent the 1Q PS, SkX, bubble crystal,
and PM states, respectively.

magnetic field. This is understood from the effective coupling
in the form of Sz

Q1
Sz

Q2
Sz

−Q3
Sz

0 and Sz
−Q1

Sz
Q2

Sz
−Q4

Sz
0 appearing in

the free energy where the magnitude of Sz
Q3

and Sz
Q4

depends

on �′. Since larger �′ tends to make Sz
Q3

and Sz
Q4

larger, it
results in the stabilization of the bubble crystal as will be
discussed in more detail in Sec. III A 4. The above effective
coupling indicates that uniform magnetization also plays an
important role in stabilizing the bubble crystal, which might
be a reason why the bubble crystal appears only for nonzero
H in Fig. 3. In other words, it is difficult to stabilize the bubble
crystal without a net magnetization, as shown in Fig. 1(b).

Intriguingly, the bubble crystal appears next to the SkX
upon increasing T for the moderate easy-axis anisotropic two-
spin interaction 0.6 � κ � 0.9 as shown in Fig. 3. This is
naturally understood from the difference in the spin config-
urations between the bubble crystal and the SkX. The spin
configuration for these phases is commonly well approxi-
mated by

S j ∝

⎛
⎜⎝

axy(cos Q1 + cos Q2)

axy(cos Q1 − cos Q2)

az(sin Q1 + sin Q2) + M̃z

⎞
⎟⎠

T

, (7)

where T is the transpose of the vector and Qν = Qν · r j + φν ;
φν is the phase degree of freedom in the spiral wave and
is chosen so that the skyrmion core is located at the center
of the square plaquette so as to satisfy Sz

j �= −1 for all j as
shown in Fig. 4(c). axy, az, and M̃z are variational parameters,
which are related to mx,y

Q1,2
, mz

Q1,2
, and Mz, respectively. These

parameters are determined by the model parameters and T .
The spin configuration with nonzero axy, az, and M̃z corre-
sponds to the SkX, whereas, that with nonzero az and M̃z but
axy = 0 corresponds to the bubble crystal. Since the energy
scale of the z-spin component is larger than that of the xy-spin
component owing to �z > �x,y, the situation where only the z-
spin component is ordered and exhibits the double-Q structure
with az �= 0 and axy = 0 can occur when the temperature is
lowered from the high-temperature PM state, which means
the appearance of the bubble crystal in the high-T region. As
T decreases, the xy-spin component additionally shows the
double-Q structure so that the phase turns into the SkX with
az �= 0 and axy �= 0, as shown in Figs. 6(c) and 6(e).

It is worth noting that a similar situation also occurs in the
low-field region where the 1Q S and 1Q PS states appear in
the phase diagrams at κ = 0.7–1 in Fig. 3; only the z-spin
component is ordered in the high-T region, and the xy-spin
component is also ordered with decreasing T . Thus, the ten-
dency that the collinear spin state appears in the high-T region
and the noncollinear/noncoplanar state appears in the low-T
region is commonly seen in the classical spin system with
magnetic anisotropy.

Finally, we discuss the behaviors of the other phases in
the phase diagram in Fig. 3 with changing κ . The states with
nonzero mz

Qν
, i.e., 1Q PS, 2Q CS, SkX, and 1Q S states, tend

to be stabilized, whereas, those without mz
Qν

, i.e., 1Q C and
2Q S I, tend to be destabilized as κ decreases from κ = 1.
As shown in the phase diagram in Fig. 3, the 1Q C state
vanishes at κ = 0.9 and the 2Q S I state vanishes at κ = 0.5.
In the low-field region, the 2Q CS state is replaced by the
1Q PS state as shown in the phase diagrams for κ = 0.8–1
and the 1Q PS state is replaced by the 1Q S state as shown
in the phase diagrams for κ = 0.4–1. This is because the
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1Q S state has a more component of mz
Qν

compared to the
other phases. It is noted that the spin configuration close to
the high-field phase boundary in the 1Q S state is charac-
terized by the up-up-up-up-down-down structure instead of
the up-up-up-down-down-down structure in Fig. 4(f). In the
intermediate-field region, the SkX is replaced by the bubble
crystal as discussed above.

3. Case of κ > 1

For κ > 1, the bubble crystal does not appear in contrast
to the situation for κ < 1 as shown in Fig. 3, which clearly
indicates that the easy-axis anisotropic two-spin interaction
plays an important role in stabilizing the bubble crystal. For
the other phases, their stability region tends to be larger
(smaller) as the contribution of the xy-spin component in the
spin configuration becomes larger (smaller). In the low-field
region, the 1Q PS and 1Q S states are replaced with the 2Q
CS state owing to the energy gain arising from the sinusoidal
in-plane-spin component in the latter state. For larger κ � 1.3,
the 2Q CS state vanishes. In the intermediate-field region, the
region of the 1Q C state is extended and that of the SkX
is shrunk for κ = 1.1 and vanishes for κ = 1.2. Since the
relative amplitude relation of �x,y,z is switched from �z >

�y > �x to �y > �z > �x at κ 	 1.053, and to �y > �x > �z

at κ 	 1.170, the result indicates that the relation of �z > �x

is important in stabilizing the SkX. This is naturally under-
stood from the fact that the SkX consists of two vertical spiral
waves instead of the inplane spiral waves, the latter of which
is realized when �y > �x > �z. In the high-field region, the
2Q S I state is more stabilized for κ > 1, whose region is
extended to that for H = 0 at finite temperatures as also found
in frustrated localized spin models [32,33].

4. Case of other �′

We also discuss the stability of the bubble crystal while
changing �′ for fixed κ . Figure 7 shows the H–T phase
diagrams at κ = 0.3 for �′ = 0 [Fig. 7(a)], 0.1 [Fig. 7(b)],
0.5 [Fig. 7(c)], and 0.7 [Fig. 7(d)]; the phase diagram at larger
κ = 0.9 for different �′ is also shown in the Appendix. The
data indicate that large (small) �′ tends to enhance (suppress)
the region of the bubble crystal for small κ . In particular,
no bubble crystal appears in the phase diagram at �′ = 0 in
Fig. 7(a), which means that the high-harmonic wave-vector
interaction can be a microscopic origin of the bubble crystal.
The instability of the bubble crystal appears for �′ = 0.1 in
Fig. 7(b), where it is stabilized in a tiny region at finite temper-
atures 0.63 � T � 0.75. For larger �′ in Figs. 7(c) and 7(d),
the bubble crystal becomes stable even at T = 0.

B. Biquadratic interaction

Next, we discuss the result under the biquadratic interac-
tion; we set �′ = 0 in this section. We show a set of the H–T
phase diagrams at K = 0.3 while changing κ from 0.3 to 1.4
by 0.1 in Fig. 8. Since the behavior of the phases against κ is
similar to that for �′ = 0.3 and K = 0 in Fig. 3, we discuss the
similarities and differences between them by mainly focusing
on the stability region of the bubble crystal.

bubble

1Q S

PM

(c) (d)

)b()a(

FIG. 7. H–T phase diagrams for (a) �′ = 0, (b) �′ = 0.1,
(c) �′ = 0.5, and (d) �′ = 0.7 at K = 0 and κ = 0.3. The dashed
lines represent the second-order phase transitions.

The H–T phase diagram at κ = 1 in Fig. 8 consists of five
phases in addition to the PM state, which is consistent with
the result in Ref. [37]. Similar to the phase diagram under
�′ = 0.3 at κ = 1 in Fig. 3, the 2Q CS, SkX, and 2Q S I
states are stabilized in the low-, intermediate-, and high-field
regions from zero to finite temperatures, respectively, and the
1Q S state appears in the low-field region at high temperatures
next to the PM state. Meanwhile, there are two differences
from the phase diagram for nonzero �′. One is that the 1Q C
and 1Q PS states do not appear since the biquadratic interac-
tion tends to favor multiple-Q states rather than the single-Q
states [31]. The other is the appearance of the 2Q S II state
sandwiched by the 2Q CS and 1Q S states in the low-field
region. The 2Q S II state is characterized by a superposition
of two sinusoidal waves in different spin components, i.e.,
mz

Q1
, mx

Q2
�= 0, or my

Q1
, mz

Q2
�= 0, whose spin configuration is

shown in Fig. 4(h).
When we set κ < 1, the bubble crystal appears in the phase

diagrams for κ � 0.8 as shown in Fig. 8, whose stability
tendency is similar to that in the case of �′ �= 0 in Sec. III A;
it is stabilized in the intermediate-field and finite-temperature
region next to the SkX. Thus, the finite-temperature phase
transition is also expected in the mechanism based on the
biquadratic interaction.

The results indicate that the interplay between K and κ can
become another microscopic mechanism of the bubble crystal.
In fact, the region of the bubble crystal becomes narrower as
K decreases as shown in the phase diagrams at K = 0.1 in
Fig. 9(a) and at K = 0.2 in Fig. 9(b). On the other hand, its
region is extended for larger K as shown in the cases of K =
0.4 in Fig. 9(c) and K = 0.5 in Fig. 9(d); the bubble crystal
remains stable at zero temperature for K = 0.5.

For κ > 1, the 1Q S and 2Q S II states are replaced by the
2Q S I state. In addition, the regions for the SkX and 2Q CS
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FIG. 8. H–T phase diagrams of the model in Eq. (1) at �′ = 0 and K = 0.3 with changing κ for 0.3 � κ � 1.4 by 
κ = 0.1. The dashed
lines represent the second-order phase transitions. It is noted that the transition between the 2Q CS and 2Q S II states at κ = 0.9 and 1 is also
second order. The phase diagram at κ = 1 is the same as that in Ref. [37].

states become narrower as κ increases as shown in the phase
diagrams in Fig. 8. In the end, all the regions are occupied
by the 2Q S I state at κ = 1.4, which is different from the
situation in Fig. 3 where the 1Q C state appears besides the
2Q S I state.

IV. SUMMARY

To summarize, we have investigated the stabilization
mechanisms of the bubble crystal in tetragonal magnets. We
constructed the magnetic-field-temperature phase diagrams
while changing the easy-axis magnetic anisotropic two-spin
interaction in a systematic way by the efficient steepest de-
scent method. We found that there are two key ingredients
in addition to the easy-axis two-spin magnetic anisotropy to
realize the bubble crystal: the high-harmonic wave-vector in-
teraction and the biquadratic interaction. We showed that the
bubble crystal phase appears in the high-temperature region of
the SkX phase for a moderate easy-axis anisotropic two-spin
interaction; they are transformed into each other by chang-
ing the temperature. In addition, we showed that the bubble
crystal remains stable in the zero-temperature limit for the
large high-harmonic wave-vector interaction or biquadratic
interaction in addition to the large easy-axis anisotropic

two-spin interaction. Meanwhile, the bubble crystal is desta-
bilized when the magnetic anisotropic two-spin interaction
tends to be easy plane.

The present result indicates that the instability toward
the bubble crystal can occur in the high-temperature region
to the SkX phase. Thus, there is a chance of inducing the
bubble crystal in the skyrmion-hosting materials, such as
GdRu2Si2 [19–21] and EuAl4 [26,28] if the easy-axis two-
spin magnetic anisotropy is strengthened by applying an
external pressure and chemical substitution.

Furthermore, our model can be also applied to materials
with strong easy-axis two-spin magnetic anisotropy so that
the SkX is not stabilized. CeAuSb2 is one of the candidates,
which exhibits the single-Q striped and the double-Q states in
the low-field and high-field regions, respectively [62–64]. In
particular, the recent study indicates that the single-Q striped
state corresponds to the 1Q S state and the double-Q state
corresponds to the bubble crystal [47]. Since the magnetic-
field-temperature phase diagrams in Figs. 7(c) and 7(d) well
correspond to the above situation in CeAuSb2, our model in
Eq. (1) might be an effective spin model for CeAuSb2, which
means that not only the easy-axis anisotropic two-spin inter-
action, but also the high-harmonic wave-vector interaction is
important.
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FIG. 9. H–T phase diagrams for (a) K = 0.1, (b) K = 0.2,
(c) K = 0.4, and (d) K = 0.5 at �′ = 0 and κ = 0.3. The dashed
lines represent the second-order phase transitions.
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1Q PS

2Q CS

2Q S I

1Q S

SkX
bubble

FIG. 10. H–T phase diagrams of the model in Eq. (1) at K = 0
and κ = 0.9 for (a) �′ = 0.1 and (b) �′ = 0.5. The dashed lines
represent the second-order phase transitions. It is noted that the phase
transition between the 2Q CS and the 2Q S I states in (a) is also
second order except for the region where the SkX appears between
them.

APPENDIX: PHASE DIAGRAM FOR DIFFERENT �′

Figure 10 shows the H–T phase diagrams at K = 0 and
κ = 0.9 for different �′; the result for �′ = 0.1 (�′ = 0.5) is
shown in Fig. 10(a) [Fig. 10(b)]. By referring to the result
at K = 0, κ = 0.9, and �′ = 0.3 in Fig. 3, one can find that
the region of the bubble crystal is shrunk (extended) with
decreasing (increasing) �′, which is a similar tendency for
small κ in Fig. 7 in Sec. III A 4. In addition, one notes that
the phase boundary between the SkX and the bubble crystal
is almost unchanged by �′, which indicates that the energy
gain by �′ is comparable between them. These results suggest
that the bubble crystal can be robustly stabilized in the high-
temperature region next to the SkX even for less anisotropy
κ 	 1 when the contribution from the high-harmonic wave-
vector interaction becomes large.
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