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EMBEDDING ALEXANDER QUANDLES INTO GROUPS

TOSHIYUKI AKITA

ABSTRACT. For any twisted conjugate quandle Q, and in particular any Alexan-
der quandle, there exists a group G such that Q is embedded into the conjugation
quandle of G.

1. EMBEDDABLE QUANDLES

A non-empty set Q equipped with a binary operation Q×Q → Q, (x,y) 7→ x∗ y
is called a quandle if it satisfies the following three axioms:

(1) x∗ x = x (x ∈ Q),
(2) (x∗ y)∗ z = (x∗ z)∗ (y∗ z) (x,y,z ∈ Q),
(3) For all x ∈ Q, the map Sx : Q → Q defined by y 7→ y∗ x is bijective.

Quandles were introduced independently by Joyce [7] and Matveev [9]. Since then,
quandles have been important objects in the study of knots and links, set-theoretical
solutions of the Yang-Baxter equation, Hopf algebras and many others. We refer
to Nosaka [10] for further details of quandles.

A map f : Q → Q′ of quandles is called a quandle homomorphism if it satisfies
f (x ∗ y) = f (x) ∗ f (y) (x,y ∈ Q). Given a group G, the set G equipped with a
quandle operation h ∗ g B g−1hg is called the conjugation quandle of G and is
denoted by Conj(G). A quandle Q is called embeddable if there exists a group
G and an injective quandle homomorphism Q → Conj(G). Not all quandles are
embeddable (see the bottom of §2).

In their paper [2], Bardakov-Dey-Singh proposed the question “For which quan-
dles X does there exists a group G such that X embeds in the conjugation quandle
Conj(G)?” [2, Question 3.1], and proved that Alexander quandles associated with
fixed-point free involutions are embeddable [2, Proposition 3.2]. The following is a
list of embeddable quandles of which the author is aware: (1) free quandles and free
n-quandles (Joyce [7, Theorem 4.1 and Corollary 10.3]), (2) commutative quan-
dles, latin quandles and simple quandles (Bardakov-Nasybullov [3, §5]), (3) core
quandles (Bergman [4, (6.5)]), (4) generalized Alexander quandles associated with
fixed-point free automorphisms (Dhanwani-Raundal-Singh [6, Proposition 3.12]),
and (5) free c-nilpotent quandles (Darné [5, Proposition 2.18]).

In this short note, we will show that twisted conjugation quandles, which include
all Alexander quandles, are embeddable, thereby generalize the aforementioned
result of Bardakov-Dey-Singh.
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2. EMBEDDINGS OF TWISTED CONJUGATION QUANDLES

Let G be an additive abelian group and let ϕ : G → G be a group automorphism
of G. The Alexander quandle Alex(G,ϕ) associated with ϕ is the set G equipped
with the quandle operation

g∗hB ϕ(g)+h−ϕ(h).
Let G be a group and let ϕ : G → G be an automorphism of G. The twisted con-
jugation quandle Conj(G,ϕ) associated with ϕ is the the set G equipped with the
quandle operation

g∗hB ϕ(h−1g)h.
Observe that an Alexander quandle Alex(G,ϕ) is precisely a twisted conjugation
quandle Conj(G,ϕ) whose underlying group G is abelian. Twisted conjugation
quandles appeared in Andruskiewitsch-Graña [1, §1.3.7] under the name twisted
homogeneous crossed sets. We prefer the name twisted conjugation quandles be-
cause Conj(G,ϕ) = Conj(G) if ϕ is the identity map. It should be emphasized that
Conj(G,ϕ) is different from the generalized Alexander quandle associated with
(G,ϕ). The latter has the same underlying set G, but with the different quandle
operation g∗hB ϕ(gh−1)h. Now we prove that Conj(G,ϕ) is embeddable:

Theorem. Any twisted conjugation quandle is embeddable. In particular, any
Alexander quandle is embeddable.

Proof. Given a twisted conjugation quandle Conj(G,ϕ), we will construct an ex-
plicit embedding Conj(G,ϕ) → Conj(H). Let Z be the additive group of inte-
gers, and let H B G⋊ϕ Z be the semidirect product of G and Z associated with ϕ .
Namely, H equals to G×Z as sets. The group law on H is given by

(g,m) · (h,n)B (ϕ n(g)h,m+n).

The inverse of (g,m) ∈ H is

(g,m)−1 = (ϕ−m(g−1),−m).

Observe that

(g,1)∗ (h,1)B (h,1)−1 · (g,1) · (h,1) = (ϕ−1(h−1),−1) · (g,1) · (h,1)
= (ϕ−1(h−1),−1) · (ϕ(g)h,2) = (ϕ 2(ϕ−1(h−1))ϕ(g)h,1)

= (ϕ(h−1)ϕ(g)h,1) = (ϕ(h−1g)h,1)

holds in Conj(H), and we conclude that the injective map G → H defined by
g 7→ (g,1) is an injective quandle homomorphism Conj(G,ϕ) → Conj(H), hence
verifying the theorem. □

Now let Q be an arbitrary quandle. The associated group As(Q) of Q is the
group defined by the presentation

As(Q)B 〈ex (x ∈ Q) | e−1
y exey = ex∗y (x,y ∈ Q)〉.

A quandle Q is called injective if the canonical map Q → As(Q) defined by x 7→ ex
(x ∈ Q) is injective. The injectivity of finite quandles is important in the study of
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set-theoretical solutions of the Yang-Baxter equation (see Lebed-Vendramin [8] for
instance). According to Joyce [7, Section 6] (see also Dhanwani-Raundal-Singh
[6, Theorem 3.8]), a quandle Q is injective if and only if Q is embeddable. As a
byproduct of the theorem, we obtain the following corollary:

Corollary. Any twisted conjugation quandle is injective. In particular, any Alexan-
der quandle is injective.

Finally, we remark that not all quandles are embeddable. Indeed, there exist
quandles which are not injective and hence are not embeddable. See Joyce [7,
Section 6] and Bardakov-Nasybullov [3, §4] for examples of such quandles.
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