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Abstract

Infrastructure drives economic development. This study investigates to what extent infrastructure and skilled

labour affect aggregate output, by analysing large heterogeneous panel data of 130 countries over two decades.

We implement an autoregressive distributed lag (ARDL) model to extract the long-run production technol-

ogy relationship among economic growth, infrastructure, and skilled labour. The complementarity of skilled

labour and infrastructure is conducive to skill-biased economic growth. Skill differences account for disparities

among workers’ wages worldwide, thereby widening inequalities in income and consequently, living standards.

Contrary to previous studies, such as Calderón et al. [2015], that have used frameworks assuming production

function homogeneity across countries, we propose a methodology to identify latent country groups based on

the long-run production technology embedded in the ARDL model, using the estimation procedure of Liu et al.

[2020]. We select the optimal number of groups by implementing a new information criterion under multiple

nuisance parameters and estimate the coefficients of the production functions for each country group. Based

on the complementarity estimates of country groups and the estimated country classifications, we find that the

effects of infrastructure generated grouped-heterogeneity of growth span across countries in estimated production

relationships.
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1 Introduction

Infrastructure is one of the foundations of both social and economic life, as it contributes to economic growth

and improvements in quality of life. From the road and water supply networks of Ancient Rome to the recent

information and communications technology networks, infrastructure has been crucial to the maintenance and

improvement of the productivity of commerce, agriculture, and industry. Therefore, many scholars and policymakers

have studied the effects of infrastructure on economic growth and welfare, as well as its underlying mechanisms

(Jimenez, 1995).The primary purpose of this study is to investigate to what extent infrastructure and other related

inputs affect aggregate output, using large heterogeneous panel data of 130 countries over a period of two decades.

In previous theoretical and empirical studies, most macroeconometric models assume that physical capital

(possibly including infrastructure) is the key input of a production function that generates aggregate output. This

implies that public and private capital are perfect substitutes for each other. However, empirical evidence does

exist against the ‘perfect substitutability’ theory, in that public and private capital can be complementary inputs

of production (An et al., 2019). Therefore, infrastructure must be separated from other forms of physical capital

while measuring returns.

Another important factor to consider regarding the specification of production function is the productive effect

of capital-labour complementarity, which has received overwhelming attention in the literature (Krusell et al., 2000;

Maliar et al., 2020; Na et al., 2020). Although some studies have found empirical evidence against capital-skill com-

plementarity (Duffy et al., 2004), most evidence continues to favour the hypothesis of capital-skill complementarity

(Correa et al., 2019; Tyers and Yang, 2000). Previous studies have also examined the theoretical and empirical

implications of capital-skill complementarity on economic inequality, the wage-gap between skilled and nonskilled

labour, and the productivity gaps among economic sectors (Krusell et al., 2000; Maliar et al., 2020).

Following the same reasoning of capital-skill complementarity, infrastructure (which is deemed as a part of

physical capital) should be considered as a complementary or substitute input to skilled labour in macroeconomic

production technology. Further, since building infrastructure implies vast expenditure, policymakers are often

concerned, not only with its direct effects (such as those that are growth enhancing), but also its indirect effects

(including income redistribution). The precise assessment and understanding of the contributions of infrastructure

to the global economy are important issues in economics.

A topic that is yet to be fully explored in the assessment of the economic effects of infrastructure is the treat-

ment of heterogeneity across units (Calderón and Servén, 2014). The effect of infrastructure on output may vary
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across units and over sample points due to various reasons, such as the heterogeneous features of infrastructure or

production technology. Although several previous empirical studies have attempted to use panel data to control

unobserved heterogeneity (represented by fixed effects), as in Eberhardt et al. [2013], the assumption of poolabil-

ity (except the constant term across cross sectional units) is generally restrictive and may yield biased estimates.

Resultantly, estimating the effect of infrastructure on the output of each country using time-series data may suffer

from efficiency loss. To balance the possibility of bias with that of efficiency loss while considering heterogeneity,

various econometric methods have been developed to endogenously find and classify latent groups in large panel

data settings (Su et al., 2016; Liu et al., 2020). In this study, we classify 130 countries in our panel data into finite

groups in terms of the features of the estimated production function. Subsequently, we present the group-wise

production functions. The classification algorithm (which is detailed in Section 3) is based on the work of Liu et al.

[2020].

Our main contribution to the literature is relating heterogeneity in parameters of production function with the

classification of countries in terms of the marginal effect of production inputs, especially between infrastructure and

skilled labour. This has important implications for domestic income inequalities across countries. Given the increase

in infrastructure investment, income inequality increases in countries with infrastructure-skill complementarity in

terms of wage increases for skilled labour. However, income inequality decreases in countries with substitutable

inputs between infrastructure and skilled labour arising from the wage reduction for skilled labour. We examine

the relationship between complementarity and income inequality based on our estimation results in Section 4.

This paper is organized as follows. Section 2 describes the dataset used in the empirical analysis. Section 3

presents the basic model to be estimated and the estimation procedures. Section 4 reports the estimation results

and discusses their empirical implications.

2 Data

As previously mentioned, this study investigates to what extent infrastructure and skilled labour affect aggregate

output, based on the analysis of large heterogeneous panel data of 130 countries over two decades (the sample

period being 1990-2015). As summarized in Table 1, the data generated are defined as follows: output-side real

gross domestic product (GDP) at chained purchasing power parities (PPPs) (in million 2011 US $), a measure of

aggregate output shown as Y , and capital stock at constant 2011 national prices (in million 2011 US $) shown as

K. The data on Y and K are generated from the Penn World Table (PWT) 9.1 (Feenstra et al., 2015). Data on
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average years of secondary schooling were collected from the Barro and Lee [2013] database. The average years of

secondary schooling of the population is depicted as s, which represents skilled labour (labour effectiveness), that

is defined by S = exp{s}.

<<Table 1 is around here >>

Additional data include the total length of the road network (TROADS; in kilometres), obtained from the

World Road Statistics; power generation capacity (EGC; in megawatts), collected from the United Nations Energy

Statistics; and the total number of main telephone lines (MLINES) and labour force (LWDI), both collected from

the World Development Indicator 2019. The variables enter production technologies as per person (divided by total

labour force), except for the secondary variable, S. Infrastructure variables are each defined as per person before

construction of the synthesis of infrastructure index.

The MLINES, EGC, and TROADS are used as to construct the infrastructure index. Following Calderón et al.

[2015], a principal component method is applied to the three series to construct an index for infrastructure. The

first main component of these three infrastructure availability services captures the synthesis of the infrastructure

index1.

3 Estimation and model selection

Our primary goal was to estimate the long-run relationship between the output and input variables, allowing for

heterogeneity in coefficients. However, unrestricted heterogeneity in coefficients can cause under-identification or

efficiency loss. When using the framework of the autoregressive distributed lag (ARDL) model to capture the

dynamics of the variables in it, ARDL(P,Q), the model is

P∑
p=0

λi,pyi,t−p =

Q∑
q=0

f ′i,t−qβi,q + µi + ui,t,

where all coefficients are assumed to be heterogeneous across countries. A country-specific intercept term (i.e. a

fixed effect term), µi, is included, and the error term ui,t is assumed to be idiosyncratic with a constant variance

σ2. The sample size of the cross-sectional dimension is shown as N and that of the time-series dimension as T . An

1The synthesized infrastructure index is given as 0.3654331 log
(
TROADS
LWDI

)
+ 0.3719091 log

(
EGC
LWDI

)
+ 0.2626578 log

(
MLINES
LWDI

)
,

which explains approximately 84 %of the focussed dimensions’ variation.
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error-correction model (ECM) representation of the ARDL(P,Q)2 3 model is given as follows:

∆yit = ϕi

(
yi,t−1 − f ′i,t−1θi

)
+

P−1∑
p=1

λi,p∆yi,t−p +

Q−1∑
q=0

∆f ′i,t−q︸ ︷︷ ︸
1×k

δi,q + µi + ϵit (1)

= ϕiξi,t−1(θi) +

(
∆yi,t−1 · · · ∆yi,t−p+1 ∆f ′i,t · · · ∆f ′i,t−q+1 1

)
λi

δi

µi

+ ϵit, ξi,t−1(θi) ≡ yi,t−1 − f ′i,t−1θi

= ϕiξi,t−1(θi) +Wiηi + ϵit. (2)

The error correction term, ξi,t−1(θi), captures the stable, long-run relationships between relevant variables. In

this case, it is interpreted as the production function (yi,t: output, fi,t = (ki,t, zi,t, si,t, zi,tsi,t)
′: physical capital,

infrastructure, skilled labour, and the cross-term of the last two inputs. Further details are described in Section 2).

yi,t−1 − f ′i,t−1θi = yi,t−1 − βk,iki,t−1 − βz,izi,t − βs,isi,t − βzs,izi,tsi,t (3)

Although Calderón et al. [2015] assumes the homogeneity of the coefficients on fi,t, that is, θi = θ = (βk, βz, βs, βzs)

for any i, this is a somewhat restrictive assumption. All countries would have similar production technologies and the

differences would only be attributed to those in input quantity. Allowing for country-wise coefficients would result

in a serious efficiency loss during estimation. Therefore, we allow for group-wise coefficients, but the membership

is unrestricted and estimated from the data. In other words, we assume the presence of group-wise, long-run

relationships for the country groups: G1,G2, . . . ,GG. Each country belongs to one of G groups,

ξi,t−1(θ
(1)) = yi,t−1 − f ′i,t−1θ

(1) = yi,t−1 − β
(1)
k ki,t−1 − β(1)

z zi,t − β(1)
s si,t − β(1)

zs zi,tsi,t, if i ∈ G1

ξi,t−1(θ
(2)) = yi,t−1 − f ′i,t−1θ

(2) = yi,t−1 − β
(2)
k ki,t−1 − β(2)

z zi,t − β(2)
s si,t − β(2)

zs zi,tsi,t, if i ∈ G2

...

ξi,t−1(θ
(G)) = yi,t−1 − f ′i,t−1θ

(G) = yi,t−1 − β
(G)
k ki,t−1 − β(G)

z zi,t − β(G)
s si,t − β(G)

zs zi,tsi,t, if i ∈ GG.

2The selection of P and Q is based on the method by Calderón et al., 2015, where the Akaike information criterion (AIC) is used
to determine the lag lengths of the ARDL model. Both lag lengths are selected by country, using the AIC. The lengths are confined to
2. Due to the lag-length selection strategy, the length of the in-sample time period is 24, even though the dataset included 26 years’
information.

3In addition, Calderón et al., 2015 apply the filtration to the original variables to remove the aggregate effects and time effects in
the sample; they subtract the cross section means of the variables from the original variables for this purpose. We also adopt their
filtration.
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We also assume that the short-run dynamics, driven by coefficient parameters, ϕi and ηi, are heterogeneous across

countries. Country-specific, unrestricted coefficients are used in the model. Under the assumption of homogeneous

long-run coefficients, Pesaran et al. [1999] propose the ‘Pooled Mean Group’ estimation method. In this study,

we extend this model with homogeneous long-run coefficients among all countries to that with heterogeneous

coefficients across a finite number of country groups. There are a small number of groups that show similar

patterns of production function. Under this set up, there are kG + N [(p − 1) + kq + 3] parameters in the model

({θ(g)}Gg=1, {λi, δi, µi, ϕi, σ
2
i }Ni=1).

3.1 Estimation of grouped coefficients

Here, we introduce the group membership variable gi, which takes a value of {1, 2, . . . , G} according to the group

to which the country i belongs. The concentrated log-likelihood function of model (2), after concentrating the

parameters {λi, δi, µi}Ni=1, is given as follows: by using QW,i ≡ IT −Wi (W
′
iWi)

−1
W′

i: define as θi ≡ θ(gi),

lnL
(
{θ(g)}Gg=1, {ϕi, σ

2
i }Ni=1

)
=

N∑
i=1

T∑
t=1

ℓit(θi, ϕi, σ
2
i )

=

N∑
i=1

{
T∑

t=1

−1

2

(
log (2π) + log σ2

i +
(∆yi − ϕi · ξi(θi))

′
QW,i (∆yi − ϕi · ξi(θi))
σ2
i

)}

= −NT

2
log (2π) +

N∑
i=1

(
−T

2
log σ2

i −
(∆yi − ϕi · ξi(θi))

′
QW,i (∆yi − ϕi · ξi(θi))
2σ2

i

)
.

The estimation algorithm is given as follows (see Liu et al., 2020):

1. Given the number of groups G and an initial value of the long-run parameter4 θ = (θ(1),θ(2), . . . , θ(G)) and

θi ≡ θ(gi), estimate the parameters of the short-run dynamics,
{
ϕ̂i, σ̂

2
i

}N

i=1
, and the error correction term

ξi(θi) as follows:

ϕ̂i = (ξi(θi)
′QW,iξi(θi))

−1
ξi(θi)

′QW,i∆yi

σ̂2
i = T−1 (∆yi − ϕi · ξi(θi))

′
QW,i (∆yi − ϕi · ξi(θi))

ξi(θi) = yi,−1 − Fi,−1θi, θi ≡ θ(gi)

for each i, 1 ≤ i ≤ N .

4The criterion function has multiple optima; the optimal value is sensitive to initial values. After attempting several initial parameters,
we select the one reaching the maximum.
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2. Select the optimal group for the i-th country as

g∗i = arg min
1≤g≤G

−T

2
log σ̂2

i −

(
∆yi − ϕ̂i · ξi(θ

(g))
)′

QW,i

(
∆yi − ϕ̂i · ξi(θ

(g))
)

2σ̂2
i


for each i, 1 ≤ i ≤ N . Then, we obtain the optimal membership as G∗ = (g∗1 , g

∗
2 , · · · , g∗N ) at this step.

3. Update the long-run parameter given the membership G∗ = (g∗1 , g
∗
2 , · · · , g∗N ) as (G∗

g ≡ { i | g∗i = g, 1 ≤ i ≤

N }),

θ̂1 =

∑
i∈G∗

1

(ϕi)
2

σ2
i

· (Fi,−1)
′
QW,i (Fi,−1)


−1 ∑

i∈G∗
1

ϕi

σ2
i

· (Fi,−1)
′
QW,i (∆yi − ϕi · yi,−1)

θ̂2 =

∑
i∈G∗

2

(ϕi)
2

σ2
i

· (Fi,−1)
′
QW,i (Fi,−1)


−1 ∑

i∈G∗
2

ϕi

σ2
i

· (Fi,−1)
′
QW,i (∆yi − ϕi · yi,−1)

...

θ̂G =

∑
i∈G∗

G

(ϕi)
2

σ2
i

· (Fi,−1)
′
QW,i (Fi,−1)


−1 ∑

i∈G∗
G

ϕi

σ2
i

· (Fi,−1)
′
QW,i (∆yi − ϕi · yi,−1)

4. Repeat steps 1-3 until convergence

The asymptotic properties of the coefficient estimator and the group membership were established by Liu et al.

[2020]. Details of the results are shown in the Appendix.

3.2 Model selection

Information criteria for model selection under the presence of incidental parameters are proposed in Lee and Phillips

[2015], who establish the conditions for the consistency of model selection, where the selected model is asymptotically

true. We slightly modify their Bayesian-like information criterion, using the modified profile likelihood contribution,

ℓit(θi, α̂i(θi)) and the correction term. The information criterion is defined as

IC(g) = − 2

NT

N∑
i=1

{
T∑

t=1

ℓit(θ
(gi), α̂i(θi))−Mi

(
θ(gi)

)}
+

h(NT )

NT
× gK, 1 ≤ gi ≤ g, (4)

Mi(θ) =
1

2

{
−ET

[
∂2ℓit(θ, α̂i(θ))

∂αi∂α′
i

]}−1{
ET

[
∂ℓit(θ, α̂i(θ))

∂αi

∂ℓis(θ, α̂i(θ))

∂α′
i

]}
.
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The requirement for the consistency is just that h(NT ) is a non-decreasing function of NT . After attempting some

candidates, we ultimately choose h(NT ) = (NT )3/8 since ln(NT ) is too loose and (NT )1/2 is too severe to pick

up moderate group sizes. The results of model selection by the information criterion, defined in (4), and by the

criterion proposed by Liu et al. [2020], are shown in Table 2. Both information criteria show that the optimally

selected model is the one with five groups (G = 5). In the estimation results section, we use those from the model

with G = 4, G = 5 and G = 6 to reduce the risk of false selection. Further research examining the validity of our

choice for the information criterion is ongoing.

<<Table 2 is around here >>

The classification result of the model with 5 groups and the coefficient estimates of the models with 4, 5, and

6 groups are summarized in Table 3 and Table 4. The results and interpretations are discussed in the following

section.

<<Table 3 is around here >>

<<Table 4 is around here >>

4 Results and interpretation

The model we investigate is the production function of the following form,

Y = KβkZβzSβs exp {βzs logZ logS} (5)

Where Y is the output per worker, K is the physical capital stock per worker, Z is the infrastructure service per

worker (the geometric average of telecommunication stock, road stock, and electricity-generating stock, defined in

the footnote of page 4), and S is the skilled labour (defined as the exponential of the average years of secondary

education in the population). This is an extended version of a Cobb-Douglas production function with an interaction

term (Na et al. [2020]). In the logarithm form, the estimated model is given as a linear-in-parameters model with
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an interaction term,

log Y = βk logK + βz logZ + βs logS + βzs logZ logS.

From this setup, the marginal product of infrastructure is

∂Y

∂Z
= (βz + βzs logS)

Y

Z
,

and the marginal product of the skilled labour is

∂Y

∂S
= (βs + βzs logZ)

Y

S
.

The term (βz+βzs logS) represents the total contribution of infrastructure to aggregate output, and (βs+βzs logZ)

is similarly defined for skilled labour. That is, they are interpreted as the effect of each input on the output.

The cross derivative of Y with respect to Z and S is given as:

∂2Y

∂S∂Z
= {βzs + (βz + βzs logS)(βs + βzs logZ)} Y

ZS
.

Therefore, the sign of the cross derivative is related to the concept of complementarity or substitutability in the

definition by Milgrom and Roberts [1990], which is determined by βs + βzs logZ, βz + βzs logS, and βzs. When

infrastructure and skilled labour are complementary, as infrastructure investment increases, the marginal product

of skilled labour rises. Subsequently, wages paid to skilled labour increase, which will widen the wage gap between

skilled and nonskilled workers. This wage increase would manifest in the Gini coefficient of the economy, leading

to a rise in the coefficient.

Conversely, when infrastructure and skilled labour are substitutable inputs, increases in infrastructure will reduce

the marginal product of skilled labour and the payment to the latter will decrease. This interpretation can help us

understand the narrowing mechanism of the income gap. Thus, the substitution between S and Z could lead to

decrease in the Gini coefficient of the economy.

4.1 Classification results

In this subsection, we discuss classification results in terms of the signs of the estimated marginal product of

skilled labour (∂Y/∂S), infrastructure (∂Y/∂Z), and the cross derivative of the production function with respect
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to both inputs (∂2Y/∂S∂Z). In Table 5, we show the estimated signs of the groups with the feature of substitution

between S and Z (∂2Y/∂S∂Z < 0). The numbers between the parentheses denote the positive and negative

estimates of the parameters for the corresponding model. For example, Group1 of the model with the number of

groups G = 4 contains 40 countries. The sample period used for the estimation is 24 years; therefore, there are

960 = 40 × 24 observations in this category. The table shows (960,0), (0,960), and (0,960) for ∂Y/∂S, ∂Y/∂Z,

and∂2Y/∂S∂Z respectively, which reveal that all estimated ∂Y/∂S in this category are positive. Likewise, all

estimated ∂Y/∂Z and ∂2Y/∂S∂Z are negative. This sign pattern is common to one of the models with G = 5 and

G = 6. Therefore, Group1 is characterized by a positive marginal product of skilled labour, a negative marginal

product of infrastructure, and a negative cross derivative with respect to both inputs. Group6 also has the same

sign pattern as Group1: this is closely related to the grouping process; a large percentage of the countries in

Group6 is separated from Group1. Group4 also has negative cross-derivative estimates. However, the sign

pattern of marginal products is the opposite, namely, the one of skilled labour is negative and that of infrastructure

is positive. Interpretations of these results and their statistical significance are discussed in the following subsection.

<<Table 5 is around here >>

In Table 6, Group2 and Group3 show positive cross-derivative estimates, while Group5 shows a mixed-sign

result of cross-derivative estimates.5 Group2 is clearly characterized by a negative sign for the marginal product of

skilled labour and a positive sign for that of infrastructure. Group3 and Group5 have negative marginal products.

<<Table 6 is around here >>

From these tables, it is clear that all the groups are classified in terms of the signs of marginal products and

cross derivatives, except for the cross-derivative estimates of Group5. We emphasize that our grouping method

can find and classify the different coefficient patterns in the macro production function.

Accordingly, Canada and Netherlands in Group2, Germany and the United Kingdom in Group3, and other

countries in the respective groups (see Table 3) clearly show skill-infrastructure complementarity. Some countries in

Group5 that Australia and New Zealand fell into (see Table 3 again), similarly had a complementary production

technology. These results are consistent with those in Taniguchi and Yamada [2022], Michaels et al. [2014], and

Krusell et al. [2000]. Given that the above listed countries are mostly Organisation for Economic Cooperation

5The cross-derivative estimates of Group5 are concentrated on just three points: 50% (42%) of estimates are just approximately
zero, 19% (25%) are approximately 0.44, and 31% (33%) are approximately 0.78 for the model with five (six) groups: the feature of
this group is that almost half of estimates are approximately zero, and the remaining are positive.
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and Development (OECD) countries, our results clearly expand the work of Taniguchi and Yamada [2022]. This

suggests that infrastructure-induced technical advancement in the countries raises skilled-labour contributions to

output, favouring skill premium. It appears that access to adequate infrastructure enables skilled workers to create

new production formula and disseminate the innovative approaches across enterprises in the countries. Additionally,

skilled workers diffuse the new production processes in industries that adopt them. These aspects increase the

marginal productivity of skilled labour and its remunerations in the form of wages.

Importantly, Burundi, Uganda, and many other African countries fell into Group1 that is characterized by

substitutable skill-infrastructure production technology. Bangladesh and Mongolia in Asia, Romania in Europe,

and El Salvador in America also fell into this group. Increasing infrastructure investment in these counties reduces

skill premium, implying that it decreases marginal product and wages of the skilled workers. Countries in Group6,

which are a subset of those in Group1, have a similar outcome of technical changes. In Japan, the United

States, and some other countries in Group4, increasing infrastructure investment and skill acquisitions leave

skill premium unchanged in the statistical sense. Overall, infrastructure and skill as complementary production

technologies enhance the productivity of skilled labour and increase its wages relative to that of unskilled workers.

The magnitude and statistical significance of the production factors are further discussed and additional countries

with complementary technologies are enlisted.

4.2 Negative marginal product of infrastructure and positive marginal product of

skilled labour

For the first country group (Group1), the direct effect of infrastructure on output per worker is negative and

significant. The point estimate in Table 4 is -0.296 (s.e.=0.04), -0.336 (s.e.=0.04), and -0.424 (s.e.=0.05) when

G = 4, G = 5, and G = 6, respectively. This negative effect can be due to certain data aggregations and

the network characteristic of infrastructure. For example, infrastructure (e.g. transport) investment has an output

reallocation effect (Melo et al., 2013). By classifying countries into groups, the effect can be negative if infrastructure

redistributes output to the winning locations. With network externalities, nonlinearity in infrastructure-output

relations implies that a positive effect is feasible when a critical network mass is reached (e.g. universal penetration

rate for telephones).

The negative point estimate of infrastructure does not always indicate that infrastructure is irrelevant. Since

infrastructure capital is already included in the physical capital stock, this implies that infrastructure has the normal
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productivity effect of capital as a whole. This explains the very large effect we find for physical capital. We find

that the elasticity of output with respect to the physical capital stock amount to approximately 0.80, 0.86, and

0.99, holding constant infrastructure and skilled labour. That is, we find a large effect from increasing the physical

capital stock and removing an equal amount of investment in infrastructure capital. This suggests that there is

large network externality to physical capital.

The estimated output effects of skilled labour, log S, are 0.172 (s.e.=0.02), 0.163 (s.e.=0.03), and 0.124 (s.e=0.03)

when G = 4, G = 5, and G = 6, respectively. This implies that if other forces are held constant, the (average)

increases in output per worker resulting from a 1% increase in skilled labour service are roughly 17.2%, 16.3%, and

12.4%, for G = 4, G = 5, and G = 6, respectively. For the coefficient of the interaction term between infrastructure

and skilled labour, logZ logS, the estimated effect is negative and significant, except for the estimate with six groups

(G = 6). The point estimates of the coefficient on the interaction term are -0.042 (s.e.=0.01), -0.038 (s.e.=0.01), and

-0.001 (s.e.=0.02), for G = 4, G = 5, and G = 6, respectively. The estimated total effects (the marginal products)

are depicted in Figure 1.

<<Figure 1 is around here >>

These estimates reveal the substitutability between skilled labour and infrastructure and could result in a reduc-

tion in income inequality. In this case, an increase in infrastructure causes income to flow from skilled to nonskilled

labour, indicating that the production sector using the latter requires relatively more intensive infrastructure ser-

vices. With increases in infrastructure, the wages of skilled labour decline and those of nonskilled labour increase,

reducing wage inequality. As evidence of this income gap reduction effect, we refer to Figure 2, which contains Gini

coefficient estimates of the last 10 years (2006-2015) and those of the first 10 years (1990-1999) of the sample period

with a 45-degree line.6 Points above (below) 45-degree lines indicate that the Gini coefficients increased (decreased)

in the last 10 years of the sample period. Figure 2 shows that the Gini coefficient estimates of Group2, Group3,

and Group5 (Group1, Group4, and Group6) are relatively increasing (or decreasing, as the case may be) at

the end of the sample period.

<<Figure 2 is around here >>

The panels in the middle columns of Figure 2 are based on the country classification using the five-groups model,

6The Gini coefficient estimates are calculated from Top 10% share, Bottom 50% share, and Top 1% share, taken from the website of
the World Inequality Database (https://wid.world/). Except Fiji and Balbados, all countries and almost all sample periods are covered
by available Gini coefficient estimates.
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and the top panel is the one for Group1. The ratio of the points (51.5%) below the 45-degree line is relatively

larger than that (48.5%) above the line, which implies that a relatively large number of countries exhibit downward

trends in their Gini coefficients over the sample period. Although some large deviations above the line are found for

some Group1 countries with lower Gini coefficients at the beginning of the sample period, a relatively large number

of countries are consistent with the above income gap reduction reasoning. Since some countries in Group1 with

the five-groups model are classified into Group6 with the six-groups model, the income gap reduction effects in

Group1 are mitigated.

The sign pattern of the marginal products of Z and S in Group6 is similar to that in Group1, but the

significance and effects of Z are less than those in Group1 (see Figure 1). The substitution effect between Z

and S (the cross derivative estimate) in Group6 is also negative but close to zero (see the note below Table 5).

This similarity in estimates between Group1 and Group6 is partly due to the over-specification of the number

of groups. Information criteria lead to five being selected as the optimal number of groups. As a result, adding

another group (the sixth group) yields estimates like those of the first group, suggesting that the sixth is a subgroup

of the first one, as predicted when the consistency of the grouping was established by Liu et al. [2020].

4.3 Positive marginal product of infrastructure, Negative marginal product of skilled

labour

Next, we consider estimation results of the second country group (Group2). Infrastructure has a positive and

significant direct effect on output per worker. From Table 4, the estimated coefficients are 0.578 (s.e.=0.05), 0.617

(s.e.=0.05), and 0.611 (s.e.=0.05), when G = 4, G = 5, and G = 6 respectively. This indicates that infrastructure

is an important and robust production factor across models with G = 4, G = 5, and G = 6. As an example of

growth-promoting infrastructure, we can consider road infrastructure, which can link markets and cause an increase

in competition. In addition, communication systems can increase the rate of diffusion of technology, increasing

output. The increases in output with respect to a 10% increase in infrastructure investments, on average, are 5.8%,

6.2%, and 6.1% for G = 4, G = 5, and G = 6, respectively.

For the coefficient of the interaction term logZ logS, the point estimates are 0.411 (s.e.=0.04), 0.431 (s.e.=0.04),

and 0.434 (s.e.=0.04) for G = 4, G = 5, and G = 6, respectively. This indicates that, aside from the direct increasing

effect on output, an increase in the volume of infrastructure services raises output indirectly by crowding-in skilled

labour leading to the consequent rise in the marginal products of skilled labour (see the top panels in Figure 3 for

13



the total effect of infrastructure). Infrastructure provision can improve health and education outcomes and enhance

skilled labour. Similarly, improved access to electricity may raise educational attainment and reduce the cost of

skill acquisition. Generally, infrastructure provision could increase overall economic output and performance.

<<Figure 3 is around here >>

Thus, infrastructure raises the marginal product and remuneration of skilled labour. Income flows from non-

skilled labour to skilled labour, increasing their wage premium, and consequently, the wage gap between the two.

As evidence of the mechanism, the Gini coefficients in this category tend to be upward: the relative frequencies

above the 45-degree line (increase in Gini coefficients) in the plot of Group2 are larger than those below the line

(decrease) in Figure 2.

If other forces are held constant, skilled labour earns roughly 4% more than nonskilled labour for every 10%

increase in infrastructure provision. The total contribution of infrastructure to growth and development is calculated

as its direct marginal product in addition to its indirect marginal growth contribution through the channel of skilled

labour. This depends largely on how efficiently skilled labour uses infrastructure in the production process.

Skilled labour is estimated to have a negative and significant relationship with productivity performance. The

estimated coefficients are -0.130 (s.e.=0.03), -0.130 (s.e.=0.03), and -0.134 (s.e.=0.03) for G = 4, G = 5, and G = 6,

respectively. Although part of the estimated marginal product of skilled labour is distributed at approximately zero

(see the note below Table 5), the negative estimates show that the suggestion to invest in schooling to raise output

does not hold in the data. Pritchett [2001] also pointed out the case where education for skill-acquisition is not

effective.

The second group (Group2) and fourth group (Group4) are similar in terms of the signs of the marginal

product of infrastructure and skilled labour; the former is positive and significant, and the latter is negative and

less significant (see Table 4, the top panels of Figure 3 for Group2, and the middle panels of Figure 1 for Group4).

The extent of the direct effect of both S and Z on the output (measured by βs and βz) in Group2 is larger than

that in Group4, and the total effect of infrastructure on output is generally positive, whereas the total effect of

skilled labour is generally close to zero. The cross derivatives in Group4 tend to be negative but they are also

distributed around zero (see the note below Table 5), except for a few points. Interestingly, these negative cross

derivatives in Group4 might lead a relatively large number of member countries to smaller Gini coefficients in the

last period of the sample (see the panels of Group 4 in Figure 2). The second and fourth groups are similar in

terms of the marginal products, but the substitutability and the complementarity between S and Z result in the
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different patterns of income distribution.

4.3.1 Other cases

Finally, the third group (Group3) and fifth group (Group5) are similar in the sign patterns of coefficient estimates;

both Z and S are negative and significant (see Figure 3) and the coefficient on the interaction term is positive

(or negative but almost zero in Group5, see the note below Table 6) and significant: the difference between

the two groups is in the relative magnitude of the coefficient on the interaction term. It is difficult to explain

why both marginal products were negative, but large and positive cross-derivative estimates highlight the strong

complementarity of infrastructure and skilled labour and the importance of their joint use as a determinant of

output in these categories.

5 Conclusion

In this study, we examined the effect of infrastructure on economic development. We estimated an extended

Cobb-Douglas production technology embedded in an autoregressive distributed lag (ARDL) model with grouped

coefficients and possible inputs’ complementarity. Nuisance parameters were controlled for, and an asymptotically

optimal model was selected using the Bayesian-like information criterion, which is based on a modified profile

likelihood. We found that the effects of infrastructure generated grouped-heterogeneity of growth across countries

in the estimated production relationships.

Another interesting finding is that our method is stable and consistent in classifying countries into groups.

While some estimated groups were only subsets of true groups, none were a mixture of elements from multiple true

groups. For example, Group1 exhibits a positive marginal product of skilled labour, a negative marginal product

of infrastructure, and a negative cross derivative with respect to both inputs. Group6 also exhibits the same

sign pattern as Group1, suggesting that a large part of country members in Group6 is separated from Group1.

Since infrastructure capital is somewhat included in the physical capital stock, the negative marginal product of

infrastructure suggests that it had the normal productivity effect of capital as a whole, implying a large network

externality to physical capital stock. Similarly, the negative cross derivative of inputs suggests that infrastructure

and skilled labour are close substitutes in the production process. This has a reduction implication to income

inequality of countries in Group1 and Group6 in terms of wage redistribution from skilled labour to nonskilled

one.
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Similarly, Group2 has a negative marginal product of skilled labour and positive marginal product of infras-

tructure and cross derivative. The positive cross derivative of inputs indicates that infrastructure crowds in skilled

labour in production, leading to a rise in its marginal products. Marginal products, which equal rewards to in-

puts, imply that infrastructure raises the wages paid to skilled labour. Thus, income flows from nonskilled labour

to skilled labour, thus increasing their wage premium and the wage gap between them. Group2 and Group4

are similar in terms of the signs of the marginal product of infrastructure and skilled labour, but are different in

terms of the complementarity between infrastructure and skilled labour, which lead to different patterns of income

distribution.

Likewise, the coefficient estimates of Group3 and Group5 exhibit similar sign patterns. One finding that is

difficult to explain is why both Group3 and Group5 have negative marginal products of the two inputs. However,

their large and positive cross-derivative estimates highlight the strong complementarity between infrastructure

and skilled labour, as well as the importance of their joint use as a determinant of output. Our model could

partially explain these counter-intuitive findings, but it might be too simple to capture the entire features of the

macro production function across countries. To obtain estimation results that are more intuitively appealing,

more elaborate input variables may be required (Duffy et al., 2004), or more refined specifications of production

function, such as nested constant-elasticity-of-substitution production functions (Sato, 1967) or a semiparametric

parsimonious flexible functional form (Coppejans, 2003), may be required. Such extensions will comprise our future

research.
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Appendix Asymptotic properties of the estimator

We introduce some notations frequently used in large panel data literature, including Hahn and Kuersteiner [2011].

The short-run parameters (nuisance parameters) are shown as αi ≡ (ϕi, σ
2
i )

′ and derivatives of the likelihood

contribution with respect to θ and α as (note that ET [Xt] = T−1
∑T

t=1 Xt and ĒT [XtYs] is an estimate of the

long-run covariance matrix between Xt and Ys):

Uit =
∂ℓit(θi,αi)

∂θi
, Vit =

∂ℓit(θi,αi)

∂αi
,

Uα,it =
∂2ℓit(θi,αi)

∂θi∂α′
i

, Uαα,it =
∂3ℓit(θi,αi)

∂θi(∂αi ⊗ ∂αi)′
, Vα,it =

∂2ℓit(θi,αi)

∂αi∂α′
i

, Vαα,it =
∂3ℓit(θi,αi)

∂αi(∂αi ⊗ ∂αi)′
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where (∂αi ⊗ ∂αi)
′ =

(
(∂ϕi, ∂σ

2
i )

′ ⊗ (∂ϕi, ∂σ
2
i )

′)′ = ((∂ϕi)
2, ∂ϕi∂σ

2
i , ∂σ

2
i ∂ϕi, (∂σ

2
i )

2
)
. and

ψit = {ET [Vα,it]}−1
Vit, Ũit = Uit − ΞiVit, Ũα,it = Uα,it − ΞiVα,it, Ũαα,it = Uαα,it − ΞiVαα,it

where Ξi = ET [Uα,it] {ET [Vα,it]}−1
. Liu et al. [2020] proved that the asymptotic distribution of the estimator is

given as follows:

√
NT

(
θ̂
(g)

− θ(g)
)

D−→ N

(
κI−1

g dg,
1

πg
I−1
g DgI−1

g

)
, g = 1, 2, . . . , G (≥ G0),

where κ = limN,T→∞

√
N
T , πg = limN,T→∞

Ng

N , and Ng is the number of countries in Gg,

Ig =
1

Ng

∑
i∈Gg

(
−ET

[
∂Uit

∂θ′i

]
+ ET

[
∂V ′

it

∂θi

]{
ET

[
∂V it

∂αi

]}−1

· ET

[
∂Vit

∂θ′i

])
,

Dg =
1

Ng

∑
i∈Gg

ĒT

[
ŨitŨ

′
is

]
,

dg =
1

Ng

∑
i∈Gg

{
ĒT

[
Ũα,itψis

]
+

1

2
ET

[
Ũαα,it

]
vec
(
ĒT

[
ψitψ

′
is

])}
.

The bias-corrected estimator is defined as θ̃
(g)

= θ̂
(g)

− T−1I−1
g dg, which we report as the estimation results.

Liu et al. [2020] established not only the consistency and the asymptotic normality of the long-run coefficient

parameter, but also the consistency of the group classification. This consistency implies that all estimated groups

are surely included in a certain true group if their numbers in the estimated mode (G) are greater than or equal to

the true number of groups (G0): G ≥ G0. Some estimated groups are only subsets of true groups if G ≥ G0, but

the appropriate combination of estimated groups can reproduce the true groups with probability one as the sample

size goes to infinity.

The important point is that, asymptotically, none of the estimated groups become a mixture of elements from

multiple true groups. Of course, when G = G0, the estimated group memberships are expected to be identical to

true group memberships. In this sense, the selection of the number of groups is especially important in our research.

Tables and Figures
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Figure 1: Marginal Products of S and Z: Group1, Group4, and Group6
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Figure 2: Changes in Gini coefficient estimates from the first 10 years to the last 10 years of the sample period
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Figure 3: Marginal Products of S and Z: Group2, Group3, and Group5
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Table 1: Summary statistics: Output and inputs from 1990-2015
Mean SD Min. Max. Units

Output-side GDP 0.0309 0.0312 0.0007 0.2248 2011 US dollars
Physical capital 0.1394 0.1453 0.0011 1.1420 2011 US dollars
Secondary education 2.6276 1.5897 0.0600 8.6500 Years
Electricity 0.0019 0.0022 0.0000 0.0143 Gigawatts
Main phone lines 0.4085 0.3860 0.0004 1.4906 Number of lines
Road networks 0.0165 0.0181 0.0004 0.1393 Kilometers

Note: Each variable, except the secondary variable, is transformed in per worker terms. The basic summary
statistics were calculated over a sample of 130 countries from 1990-2015.

23



T
a
b
le

2
:
M

o
d
e
l
se
le
c
ti
o
n

b
a
se
d

o
n

in
fo
rm

a
ti
o
n

c
ri
te
ri
a

G
=

1
G

=
2

G
=

3
G

=
4

G
=

5
G

=
6

G
=

7
G

=
8

G
=

9
G

=
1
0

IC
in

(4
)

−
3
.6
3
1

−
3
.6
9
5

−
3
.7
2
1

−
3
.7
4
2

−
3
.7
4
3
∗

−
3
.7
3
5

−
3
.7
2
0

−
3
.7
2
4

−
3
.7
1
5

−
3
.6
9
6

IC
fr
o
m

L
iu

e
t
a
l.

[2
0
2
0
]

−
1
.8
5
5

−
1
.8
8
9

−
1
.9
0
4

−
1
.9
1
9

−
1
.9
2
2
∗

−
1
.9
2
1

−
1
.9
1
7

−
1
.9
2
1

−
1
.9
1
9

−
1
.9
1
3

N
o
te
:
T
h
e
a
st
er
is
k
(∗
)
sh

o
w
s
th

e
m
in
im

u
m

v
a
lu
e
a
m
o
n
g
th

e
ca

n
d
id
a
te

m
o
d
el
s.

B
o
th

in
fo
rm

a
ti
o
n
cr
it
er
ia

sh
o
w

th
a
t
th

e
m
o
d
el

w
it
h
fi
v
e
g
ro
u
p
s
is

th
e
o
p
ti
m
a
l

m
o
d
el
.

24



Table 3: Country Classification List (G = 5)
Name Code Name Code Name Code Name Code Name Code

Group1 Group2 Group3 Group4 Group5

36 countries 21 countries 28 countries 29 countries 16 countries

Bangladesh BGD Colombia COL Kyrgyz KGZ Niger NER Tajikistan TJK

Sudan SDN Finland FIN Jordan JOR Morocco MAR Poland POL

Lithuania LTU Cyprus CYP Chile CHL Switzerland CHE Slovak Rep. SVK

Philippines PHL Israel ISR Peru PER Iceland ISL New Zealand NZL

Latvia LVA South Africa ZAF France FRA Zimbabwe ZWE Bulgaria BGR

Korea KOR Croatia HRV Greece GRC Syria SYR Guatemala GTM

Mozambique MOZ Sri Lanka LKA Spain ESP Paraguay PRY Nepal NPL

Togo TGO Portugal PRT Slovenia SVN Ireland IRL Dominica DOM

Czech Rep. CZE Indonesia IDN Germany DEU Italy ITA Australia AUS

Benin BEN Mali MLI Cameroon CMR Maldives MDV Belgium BEL

Uganda UGA Panama PAN Austria AUT Iraq IRQ Lesotho LSO

Senegal SEN Argentina ARG Zambia ZMB Russia RUS Ecuador ECU

Sweden SWE Netherlands NLD Ukraine UKR Mauritius MUS Pakistan PAK

Egypt EGY Kenya KEN Tunisia TUN Serbia SRB Ghana GHA

Burundi BDI Belize BLZ Gambia GMB Hungary HUN Jamaica JAM

Romania ROU Namibia NAM Turkey TUR Haiti HTI Malta MLT

India IND United Arab Emirates ARE Costa Rica CRI Yemen YEM

Estonia EST Canada CAN Algeria DZA Brunei Darussalam BRN

Cambodia KHM Albania ALB Brazil BRA United States USA

Gabon GAB Norway NOR Iran IRN Trinidad and Tobago TTO

Denmark DNK Thailand THA United Kingdom GBR Saudi Arabia SAU

Myanmar MMR Congo, Rep. COG Bolivia BOL

Qatar QAT Botswana BWA Japan JPN

Cote d’Ivoire CIV Barbados BRB Luxembourg LUX

Honduras HND Kazakhstan KAZ Liberia LBR

China CHN Uruguay URY Kuwait KWT

Lao PDR LAO Mexico MEX Vietnam VNM

Central Africa CAF Nicaragua NIC Moldova MDA

El Salvador SLV Malaysia MYS

Sierra Leone SLE

Fiji FJI

Mongolia MNG

Rwanda RWA

Malawi MWI

Venezuela VEN

Mauritania MRT

Note: There are a total of 130 countries, and each column reports the names and initials of country-membership of the groups.
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Table 5: Signs of estimated parameters: substitute technology
Group1 Group4 Group6

the number of groups in the estimated model is four (G = 4)
∂Y
∂S ( 960 , 0 ) ( 0 , 792 )
∂Y
∂Z ( 0 , 960 ) ( 792 , 0 )
∂2Y
∂S∂Z ( 0 , 960 ) ( 0 792 )

the number of groups in the estimated model is five (G = 5)
∂Y
∂S ( 864 , 0 ) ( 13 , 683 )
∂Y
∂Z ( 0 , 864 ) ( 696 , 0 )
∂2Y
∂S∂Z ( 0 , 864 ) ( 48 648 )

the number of groups in the estimated model is six (G = 6)
∂Y
∂S ( 648 , 0 ) ( 0 , 624 ) ( 384 , 0 )
∂Y
∂Z ( 0 , 648 ) ( 624 , 0 ) ( 0 , 384 )
∂2Y
∂S∂Z ( 0 , 648 ) ( 24 , 600 ) ( 24 , 360 )

Note: The entry (A,B) shows that the number of positive estimates is A and the number of negative estimates is B. The average cross

derivative estimates are -0.0933 (G = 4), -0.0922 (G = 5), -0.0538 (G = 6) for Group1, -0.0231 (G = 4), 0.0209 (G = 5), 0.0131

(G = 6) for Group4, and 0.0271 (G = 6) for Group6, where G is the number of groups in the estimated model.

Table 6: Signs of estimated parameters: substitute technology
Group2 Group3 Group5

the number of groups in the estimated model is four (G = 4)
∂Y
∂S ( 30 , 546 ) ( 0 , 792 )
∂Y
∂Z ( 576 , 0 ) ( 0 , 792 )
∂2Y
∂S∂Z ( 576 , 0 ) ( 792 0 )

the number of groups in the estimated model is five (G = 5)
∂Y
∂S ( 19 , 485 ) ( 19 , 653 ) ( 6 , 378 )
∂Y
∂Z ( 504 , 0 ) ( 0 , 672 ) ( 1 , 383 )
∂2Y
∂S∂Z ( 480 , 24 ) ( 672 0 ) ( 193 , 191 )

the number of groups in the estimated model is six (G = 6)
∂Y
∂S ( 25 , 479 ) ( 0 , 672 ) ( 4 , 284 )
∂Y
∂Z ( 504 , 0 ) ( 0 , 672 ) ( 17 , 271 )
∂2Y
∂S∂Z ( 504 , 0 ) ( 672 , 0 ) ( 192 , 96 )

Note: The entry (A,B) shows that the number of positive estimates is A and the number of negative estimates is B. The cross

derivative estimates are 0.3363 (G = 4), 0.3454 (G = 5), 0.3679 (G = 6) for Group2, 2.4239 (G = 4), 2.1891 (G = 5), 2.2106 (G = 6)

for Group3, and 0.3201 (G = 5), 0.3685 (G = 6) for Group5, where G is the number of groups in the estimated model.
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