

HOKKAIDO UNIVERSITY

Title	In-situ biogas upgrading with H-2 addition in an anaerobic membrane bioreactor (AnMBR) digesting waste activated sludge
Author(s)	Hafuka, Akira; Fujino, Sota; Kimura, Katsuki; Oshita, Kazuyuki; Konakahara, Naoya; Takahashi, Shigetoshi
Citation	Science of the total environment, 828, 154573 https://doi.org/10.1016/j.scitotenv.2022.154573
Issue Date	2022-07-01
Doc URL	http://hdl.handle.net/2115/91289
Rights	© <2022>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Revised manuscript for STOTEN_clean_100322.pdf

1	In-situ biogas upgrading with H ₂ addition in an anaerobic membrane bioreactor
2	(AnMBR) digesting waste activated sludge
3	
4	Akira Hafuka, ^{a,*} Sota Fujino, ^a Katsuki Kimura, ^a Kazuyuki Oshita, ^b Naoya Konakahara, ^c
5	Shigetoshi Takahashi ^c
6	
7	^a Division of Environmental Engineering, Graduate School of Engineering, Hokkaido
8	University, North-13, West-8, Kita-ku, Sapporo 060-8628, Japan
9	^b Department of Environmental Engineering, Graduate School of Engineering, Kyoto
10	University, Katsura C1-3, Nishikyo-ku, Kyoto, 615-8540, Japan
11	^c Technology Center, Takuma Co., Ltd., 2-2-33 Kinrakuji-cho, Amagasaki, 660-0806, Japan
12	
13	*Corresponding author (A. Hafuka): E-mail address: ahafuka@eng.hokudai.ac.jp; Tel: +81-
14	11-706-6273.

16 Abstract

Biological in-situ biogas upgrading is a promising approach for sustainable energy-powered 17 technologies. This method increases the CH₄ content in biogas via hydrogenotrophic 18 19 methanogenesis with an external H₂ supply. In this study, an anaerobic membrane bioreactor (AnMBR) was employed for in-situ biogas upgrading. The AnMBR was 20 21 operated in semi-batch mode using waste activated sludge as the substrate. Pulsed H₂ addition into the reactor and biogas recirculation effectively increased the CH₄ content in 22 the biogas. The addition of 4 equivalents of H₂ relative to CO₂ did not lead to appreciable 23 24 biogas upgrading, although the acetate concentration increased significantly. When 11 equivalents of H₂ were introduced, the biogas was successfully upgraded, and the CH₄ 25 content increased to 92%. The CH4 yield and CH4 production rate were 0.31 L/g-VSinput 26 and 0.086 L/L/d, respectively. In this phase of the process, H₂ addition increased the acetate 27 concentration and the pH because of CO₂ depletion. Compared with a continuously-stirred 28 tank reactor, the AnMBR system attained higher CH4 content, even without the addition of 29 30 H₂. The longer solid retention time (100 d) in the AnMBR led to greater degradation of volatile solids. Severe membrane fouling was not observed, and the transmembrane 31 pressure remained stable under 10 kPa for 117 d of continuous filtration without cleaning of 32

33	the membrane. The AnMBR could be a promising reactor configuration to achieve in-situ
34	biogas upgrading during sludge digestion.
35	
36	Keywords: Biomethanation; power to gas; anaerobic digestion; mesophilic; sewage sludge;
37	membrane fouling
38	
39	1. Introduction
40	Wastewater treatment processes generate significant amounts of sludge, which places a
41	heavy burden on the environment (Ahmad et al., 2016). Dewatering followed by
42	incineration is widely used to treat sludge. Anaerobic digestion (AD) is another option to
43	treat sludge and it generates biogas. Biogas, which represents a potential energy source,
44	generally consists of methane (CH4) and carbon dioxide (CO2). The CH4 and CO2 contents
45	of biogas range from 40%–75% and from 25%–60%, respectively (Ryckebosch et al.,
46	2011). This insufficient CH4 content makes it difficult to use the biogas directly as a bio-
47	natural gas; therefore, biogas upgrading, i.e., increasing the CH4 content in biogas, is often
48	conducted (Nguyen et al., 2021; Sun et al., 2015). The obtained biogas with higher CH4
49	content (>90%) can be used as vehicle fuel or natural gas (Deng and Hagg, 2010). Biogas

50	upgrading methods can be categorized as physical, chemical, or biological technologies
51	(Angelidaki et al., 2018), and some physical and chemical technologies are now
52	commercially available. Physical strategies, such as water scrubbing, pressure swing
53	adsorption, and membrane separation remove CO2 from the biogas to increase its relative
54	CH4 content; therefore, these physical techniques release CO2 into the atmosphere (Fu et
55	al., 2021). Chemical absorption using amines has also been applied to remove CO ₂ from
56	biogas; however, this method requires energy-intensive regeneration of the amine solution
57	(Ardolino et al., 2021). In contrast to absorption technologies, chemical reactions can
58	convert CO ₂ into CH ₄ using catalysts and an external H ₂ source via the Sabatier reaction
59	$(CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O)$. However, chemical reactions have disadvantages, including
60	the high reaction temperature (~300 °C) (Xia et al., 2016). Biological technologies that
61	convert CO ₂ to CH ₄ via hydrogenotrophic methanogenesis (CO ₂ + 4H ₂ \rightarrow CH ₄ + 2H ₂ O)
62	have attracted significant attention in recent years owing to their mild operational
63	conditions (i.e., low pressure and temperature) (Angelidaki et al., 2018; Fu et al., 2021; Lai
64	et al., 2021). Biological technologies can be further categorized as in-situ, ex-situ, or
65	hybrid-type biogas upgrading (Angelidaki et al., 2018; Zhao et al., 2021). In contrast to the
66	ex-situ and hybrid methods, the in-situ approach can achieve biogas generation and

67 upgrading in a single reactor by suppling H₂ directly to the anaerobic digester.

68

69	The power-to-gas strategy has also contributed to the increased attention regarding
70	biological biogas upgrading (Thema et al., 2019). This approach focuses on converting
71	surplus electricity from renewable energy sources (e.g., wind and solar energy) to gas fuel,
72	which is relatively easier to store and transport. Dihydrogen gas can be generated from the
73	electrolysis of water using surplus electricity. In general, further conversion of H ₂ to CH ₄ is
74	desirable because the volumetric energy density of H ₂ is relatively low, and current
75	infrastructure can be used to store, transport, and use CH4 (Götz et al., 2016). Therefore, in-
76	situ biogas upgrading with H_2 addition has been studied using batch tests (Luo et al., 2012;
77	Wang et al., 2016), continuously-stirred tank reactors (CSTRs) (Bassani et al., 2015; Jensen
78	et al., 2018; Zhu et al., 2019), and up-flow anaerobic sludge blankets (Bassani et al., 2016;
79	Park et al., 2021; Xu et al., 2020).
80	

Anaerobic digestion of sludge enables biogas generation, while also reducing the volume of sludge and destroying pathogens (Appels et al., 2008). However, the quality of effluent is generally poor because of the low growth rates of anaerobic microorganisms and washout

84	of these microorganisms from the digester. To solve these problems, anaerobic membrane
85	bioreactors (AnMBRs) have been applied for sludge digestion (Abdelrahman et al., 2020).
86	An AnMBR comprises a system that couples membrane filtration with anaerobic treatment.
87	The distinguishing feature of AnMBRs involves the decoupling of hydraulic retention time
88	and solid retention time (Skouteris et al., 2012), which can prolong the SRT without
89	simultaneously extending the HRT following solid-liquid separation with membranes.
90	Therefore, AnMBRs generate higher-quality effluent than conventional CSTRs because the
91	membrane removes suspended solids (SS). Additionally, anaerobic microorganisms can be
92	retained inside the digester. Deschamps et al. (2021) have recently reported in-situ biogas
93	upgrading with H ₂ addition in an AnMBR treating industrial wastewater. However, in-situ
94	biogas upgrading in an AnMBR configuration has not yet been applied for sewage sludge.
95	Therefore, the objective of the current study was to achieve in-situ biogas upgrading in an
96	AnMBR digesting sewage sludge. Waste activated sludge (WAS) was used as the substrate,
97	and the WAS digestion and biogas upgrading performance of the AnMBR system were
98	investigated. We tested the hypothesis that the amount of H ₂ added would be a key factor
99	for in-situ biogas upgrading in the AnMBR.
100	

2. Materials and Methods

102 2.1 Reactor setup

103	Figure 1 shows a schematic diagram of the AnMBR experimental apparatus, which
104	comprised a jar fermenter (BMS-03NP4, Biott Corporation, Tokyo, Japan) and an external
105	membrane unit. The external cross-flow configuration was selected to mitigate membrane
106	fouling (Hafuka et al., 2019). A vessel with a working volume of 2.37 L was continuously
107	mixed with a stirrer at 40 rpm. The temperature was held constant at 37 °C (i.e., mesophilic
108	conditions) with a heating jacket. The external membrane unit had a working volume of 0.1
109	L, and the unit contained a polyvinylidene fluoride hollow fiber microfiltration (MF)
110	membrane (Microza®, Asahi Kasei Corp., Tokyo, Japan). The total effective area of the
111	membrane was 0.0016 m ² , the inner diameter of each membrane fiber was 2.6 mm, and the
112	pore size of the membrane was 0.1 μ m. The vessel was inoculated with seed sludge (2.16
113	L) obtained from a full-scale mesophilic digester in a sewage treatment plant. The
114	concentrations of total solids and volatile solids of the seed sludge were 13.1 g/L and, 8.9
115	g/L, respectively. Before starting the reactor operation, air in the reactor was purged with
116	N2 gas. The WAS fed into the AnMBR was obtained from another full-scale sewage
117	treatment plant using a conventional activated sludge process. Raw WAS was screened

118	through a 1 mm mesh screen, and then the supernatant was removed to thicken the sludge.
119	The AnMBR was operated in semi-batch mode. Sludge feeding (0.21–0.57 L) and sludge
120	withdrawal (0.16–0.57 L) were performed manually once per week. The digested sludge
121	was circulated continuously using a peristaltic pump, and membrane filtration of the
122	digested sludge was performed at a constant cross-flow velocity of 0.5 m/s. This cross-flow
123	velocity is within the range of reported values (Abdelrahman et al., 2020). The digested
124	sludge was continuously filtered through the hollow fiber membrane, and the filtrate was
125	collected (i.e., inside-out filtration). The membrane flux was held constant by controlling
126	the filtrate flow rate with a peristaltic pump. The pressure inside and outside of the
127	membrane was measured daily using manometers, and the transmembrane pressure (TMP)
128	values were calculated from these data. The pH and oxidation-reduction potential (ORP) of
129	the digested sludge inside the fermenter were measured using an attached pH/ORP meter.
130	The biogas produced from the fermenter was stored in an aluminum gas bag, and the
131	volume of the biogas was measured using a wet gas meter (W-NK-0.5A, Shinagawa Co.,
132	Tokyo, Japan). The HRT and SRT of the reactor were controlled by changing the filtrate
133	flow rate and the sludge withdrawal volume according to Equations 1 and 2, respectively:
134	HRT (d) = $\frac{\text{Working volume of the reacotor (L)}}{\text{Input of WAS (L/d)}}$ (1)

139 **Figure 1.** Schematic diagram of the AnMBR.

140

141 2.2 Reactor operating conditions

142 The whole operating period of the reactor was 221 days, and it was divided into seven

143 separate phases, each involving distinct operational conditions (Table 1). The HRT and the

- 144 SRT values were selected based on a previous study (Abdelrahman et al., 2020). During
- 145 phase 1 (operation days 1–42), both the HRT and the SRT were set to 80 d (i.e., CSTR

146	mode without using the membrane module). Phase 1 was considered the acclimatization
147	period. The operation of the AnMBR began in phase 2 (operation days 42–102), during
148	which the HRT and SRT were set to 30 and 100 d, respectively. During phase 3 (operation
149	days 102–123), biogas was continuously re-circulated at 0.52 L/min between the fermenter
150	and gasbag using a diaphragm-type air pump (APN-10D3-W, IWAKI CO., LTD., Tokyo,
151	Japan). Biogas produced in the fermenter was passed through the gasbag and then re-
152	introduced into the fermenter through a diffuser. The diffuser, which had 12 pinholes ($\phi =$
153	0.6 mm), was located at the bottom of the vessel. Phase 4 (operation days 123–137)
154	involved in-situ biogas upgrading with added H ₂ and biogas recirculation. Hydrogen gas
155	(99.99%) was collected from canned standard hydrogen gas (1020-11201, GL Sciences
156	Inc., Tokyo, Japan) and added to the gasbag five times per week (totally 0.54 L/week; see
157	supplementary material). During phase 5 (operation days $137-158$), the H ₂ addition rate
158	was increased to 1.50 L/week. To confirm the effect of AnMBR operation on CH ₄ content
159	In blogas, CSTK operation without H ₂ addition was continued during phase 6 (operation down 158, 170) and where 7 (an anticipation down 170, 221).
100	days $138-179$ and phase / (operation days $179-221$).

Phase No.	Operational mode	HRT	SRT	Filtration flux	H ₂ addition	Biogas recirculation rate
		(d)	(d)	(LMH)	(L/week)	(L/min)
1	CSTR	80	80	-	-	-
2	AnMBR	33	107	1.29	-	-
3	AnMBR	30	102	1.46	-	0.52
4	AnMBR	30	98	1.38	0.54	0.52
5	AnMBR	29	98	1.46	1.50	0.52
6	CSTR	54	54	-	-	0.52
7	CSTR	29	29	-	-	0.52

162	Table 1.	Operational	conditions of each	phase of the reactor.

164 2.3 Analytical methods

165	Selected physical and chemical properties of the WAS, membrane permeate, and digested
166	sludge were analyzed weekly. The concentrations of total solids (TS), volatile solids (VS),
167	chemical oxygen demand with potassium dichromate (COD $_{Cr}$), ammonium nitrogen (NH4 ⁺ -
168	N), and alkalinity were determined as previously described (Hafuka et al., 2019). The
169	concentrations of volatile fatty acids (VFAs; e.g., acetate, propionate, <i>i</i> -butyrate, <i>n</i> -butyrate,
170	<i>i</i> -valerate, and <i>n</i> -valerate) in the digested sludge were measured for samples after
171	centrifugation and filtration (0.20 µm; 25HP020AN, Toyo Roshi Kaisya, Ltd., Tokyo,
172	Japan) using a high-performance liquid chromatography system (LC-10AD, Shimadzu
173	Corporation, Kyoto, Japan) equipped with an electrical conductivity detector and a
174	stainless-steel-packed column with dimensions 0.3 m \times 8.0 mm (Shim-pack SCR-102H;
175	Shimadzu Corporation, Kyoto, Japan). The CH4, CO2, and H2 contents of the biogas were
176	determined using a gas chromatograph (GC-14B, Shimadzu Corporation, Kyoto, Japan)
177	equipped with a thermal conductivity detector and a 6.0 m \times 3.0 mm stainless-steel-packed
178	column (Shincarbon St; Shinwa Chemical Industries, Ltd., Kyoto, Japan).
179	

180 VS degradation efficiency was calculated based on the VS mass balance in each phase.

Biogas production rate and biogas yield were calculated by using cumulative biogas 181 volume obtained in each phase. The CH₄ production rate and CH₄ yield were calculated by 182 using average CH₄ content in biogas obtained in each phase. The efficiency of the COD 183 rejection by the membrane was calculated according to Equation 3, 184 COD rejection efficiency of the membrane (%) 185 $= \frac{\text{COD}_{\text{digested sludge}} - \text{COD}_{\text{permeate}}}{\text{COD}_{\text{digested sludge}}} \times 100$ (3) 186 187 where COD_{digested sludge} (i.e., total COD) and COD_{permeate} (i.e., soluble COD) are the COD 188 189 concentrations of the digested sludge and permeate (mg/L), respectively. 190 2.4 Membrane cleaning 191 Membrane cleaning was conducted after the 221-day operation of the reactor. The 192 193 membrane unit was removed from the AnMBR and the inside of the hollow fiber

194 membrane was washed with tap water to physically remove the cake foulant. The filtration

- resistance of the membrane was determined by filtering tap water at a pressure of 70 kPa.
- 196 Filtration resistances before and after cleaning were compared with the filtration resistance
- 197 of the pristine membrane, which was measured prior to the reactor operation. The filtration

198 resistances of the membranes were obtained according to Equations 4:

199
$$R = \frac{\text{TMP (Pa)}}{\mu (\text{Pa} \cdot \text{s}) \times J (\text{m}^3/(\text{m}^2 \cdot \text{s}))}$$
(4)

200

201 where *R* is the filtration resistance, μ is the viscosity of water, and *J* is the permeate flux.

202

- 204 Pearson correlation coefficients were calculated to identify the significance of a correlation
- 205 between two parameters. The *t*-test was applied to analyze the minimum and maximum
- acetate concentration and CH₄ content; *p*-values less than 0.05 were regarded as significant.
- 207 These analyses were performed using Origin Pro 9.8 software.

208

209 3. Results and Discussion

- 210 3.1 In-situ biogas upgrading in an AnMBR
- 211 The average TS and VS concentrations of the WAS were 9.9 g/L (\pm 2.2 g/L) and 7.9 g/L (\pm
- 212 1.8 g/L), respectively (Table 2). The VS/TS ratio remained stable at approximately 80% (\pm
- 213 2%), and the average total COD (T-COD) concentration in the WAS reached 12.4 ± 3.2 g/L.

Parameters (unit)	Values ± Standard deviations			
TS (g/L)	9.9 ± 2.2			
VS (g/L)	7.9 ± 1.8			
VS/TS (%)	80 ± 2			
T-COD (g/L)	12.4 ± 3.2			
$\mathrm{NH_{4}^{+}}$ (mg-N/L)	18 ± 11			
pH (-)	6.8 ± 0.2			

Table 2. Characteristics of the raw WAS (n = 30).

Table 3 summarizes the performance of the reactor during each phase. The CH₄ content in 217 the biogas was $83.1\% (\pm 3.9\%)$ in phase 2. Biogas recirculation began in phase 3 to 218 investigate its effect on the CH4 content in biogas. As a result, the CH4 content did not 219 220 change with biogas recirculation ($85.2 \pm 2.3\%$ in phase 3). In phase 4, H₂ was introduced into the reactor to achieve in-situ biogas upgrading. Dihydrogen gas was added such that a 221 4:1 stoichiometric ratio of H₂/CO₂ was obtained; the cumulative biogas volume and average 222 CO₂ content obtained in phase 3 were used to determine the added amount of H₂. It was 223 confirmed that H₂ did not remain in the biogas, but rather, it was consumed one day after 224

225	addition. As a result, the CH4 content did not change (remained at 83.6 \pm 0.5%), indicating
226	that the biogas was not upgraded in phase 4. In phase 5, the amount of H_2 added was
227	increased to 11 molar equivalents relative to the CO ₂ generated in the reactor. This quantity
228	was also determined based on the cumulative biogas volume and average CO2 content
229	obtained in phase 4. In this phase, the CH ₄ content increased significantly (to $92.0 \pm 1.6\%$)
230	compared with that detected in phases 2, 3, and 4 ($ t = 4.41$, $p < 0.05$) (Figure 2). The CH ₄
231	yield and CH ₄ production rate were 0.31 L/g-VS _{input} and 0.086 L/L/d, respectively. H ₂ did
232	not remain in the biogas samples. This result indicates that H ₂ consumption rate was higher
233	than 0.13 L/L/d. Although high CH ₄ content (i.e., 92%) was obtained in the present study,
234	the CH ₄ production rate and H ₂ consumption rare were lower than those reported in
235	previous studies probably due to the lower OLR (Alfaro et al., 2019; Lovato et al., 2017).
236	Energy balance analysis was conducted according to the Equations reported in previous
237	studies (Chen et al., 2019; Cheng et al., 2021; Xiao et al., 2018). In phase 5, the energy
238	production and net energy balance were 10.2 kJ/g-VS and 0.5 kJ/g-VS, respectively (see
239	supplementary material).

Phase	Organic loading rate	VS degradation	Biogas yield	Biogas production rate	CH4 content CH4 yield		CH4 production rate	
	(g-VS/L/d)	(%)	(L/g-VS _{input})	(L/L/d)	(%)	(L/g-VS _{input})	(L/L/d)	
1	0.13	47	0.22	0.024	_a	-	-	
2	0.21	65	0.29	0.076	83.1 ± 3.9	0.24	0.063	
3	0.27	63	0.22	0.059	85.2 ± 2.3	0.19	0.050	
4	0.26	55	0.33	0.087	83.6 ± 0.5	0.28	0.073	
5	0.28	57	0.33	0.093	92.0 ± 1.6	0.31	0.086	
6	0.29	44	0.30	0.084	80.3 ± 1.5	0.24	0.068	
7	0.37	37	0.36	0.134	77.7 ± 3.0	0.28	0.104	

Table 3. WAS digestion performance of the system during each phase. ^a A biogas sample was not recovered.

Figure 2. Comparison in CH₄ content in biogas among operational phases.

The AnMBR investigated in this work achieved in-situ biogas upgrading following the treatment of WAS, and the CH₄ content in the biogas reached 92% in phase 5 of the process. There are very few studies regarding in-situ biogas upgrading using sewage sludge as the substrate (Alfaro et al., 2019; Lovato et al., 2017). Compared with those studies, the system evaluated in this work obtained high CH₄ content. Furthermore, in phase 5, the CO₂ in the biogas was converted to CH₄ following the addition of H₂; this reduced the CO₂ content in the biogas to 8%. This also decreased the amount of CO₂ dissolved in the liquid

254	phase, which induced the increased pH in the reactor (Figure 3a). In one operational cycle
255	(i.e., one week), the pH decreased because of the WAS input, and then it gradually
256	increased within the cycle. Compared with the pH value measured in phases 2, 3, and 4, it
257	increased significantly to 7.3 ($ t = 5.12, p < 0.01$) in phase 5 following the successful in-
258	situ biogas upgrading upon adding H_2 (see supplementary material). Although a rise in pH
259	occurred during phase 5, the pH values were in the range from 7.0–7.4, which was within
260	the ideal pH range for AD (Mao et al., 2015). The ORP was below -390 mV during
261	operation, confirming AD conditions in the fermenter (Figure 3b). The alkalinity gradually
262	decreased from 5000 mg/L at the start of operation and stabilized at around 2500 mg/L
263	during phases 3–7 (Figure 3c). The NH4 ⁺ concentration was also stable at approximately
264	600 mg-N/L during phases 3–7 and remained below the inhibition level (Rajagopal et al.,
265	2013) (Figure 3d).

Figure 3. (a) pH, (b) ORP, (c) alkalinity, and (d) NH₄⁺ concentration in the fermenter.

270	3.3 Possible contributing factors for the successful in-situ biogas upgrading in an AnMBR
271	Multiple factors contributed to the successful in-situ biogas upgrading demonstrated in this
272	study. First, the amount of H2 added (i.e., 11 molar equivalents of H2 relative to the CO2
273	generated in the reactor) in phase 5 was optimal for in-situ biogas upgrading. The $\mathrm{H_2/CO_2}$
274	ratio of 11:1 was consistent with results obtained by Agneessens et al. (2017). They
275	investigated the effect of H2 addition on in-situ biogas upgrading in CSTRs and observed
276	that with a 10:1 ratio of H_2/CO_2 , the CO ₂ content in the headspace of the reactor decreased
277	to 7.9%. Second, pulsed H ₂ addition in this study might be effective for in-situ biogas
278	upgrading. Agneessens et al. (2017) also found that pulsed H ₂ addition increased the H ₂
279	uptake rates and the activity of certain hydrogenotrophic methanogens. Third, although the
280	gas diffuser configuration and the biogas recirculation rate were not optimized in this study,
281	biogas recirculation through the gas diffuser could facilitate H2 gas transfer to the liquid
282	phase. It is well known that the low gas-liquid mass transfer rate of H ₂ is one of the limiting
283	factors in the in-situ biogas upgrading process because microorganisms use the dissolved
284	H ₂ in the reactor (Bassani et al., 2016; Jensen et al., 2018; Park et al., 2021). Fourth, the
285	relatively low OLR (0.28 g-VS/L/d) in phase 5 may prevent process failure. H ₂ addition
286	and in-situ biogas upgrading deplete the amount of dissolved CO2 in the reactor, which

287	leads to the accumulation of VFAs (Mulat et al., 2017). Therefore, a high OLR might result
288	in significant VFA accumulation during in-situ biogas upgrading, which could lead to
289	reactor acidification and process deterioration (Franke-Whittle et al., 2014). Indeed, the
290	acetate concentration increased in phases 4 and 5 because of H_2 addition (Figure 4). The
291	acetate concentration remained stable at approximately 2.3 mg/L during phases 1, 2, and 3,
292	but then it increased significantly to 11 mg/L in phases 4 and 5 ($ t = 7.40$, $p < 0.01$). No
293	other VFAs were detected in any of the analyzed samples. Compared with the acetate
294	concentrations in phases 4 and 5, those in phases 6 and 7 decreased significantly ($ t = 5.85$,
295	p < 0.01) during CSTR operation without H ₂ addition. Although H ₂ was consumed and
296	acetate accumulated in phase 4, the CH ₄ content did not increase (see Table 3). However,
297	the biogas yield increased from $0.22 \text{ L/g-VS}_{input}$ in phase 3 to $0.33 \text{ L/g-VS}_{input}$ in phase 4.
298	These results indicated that H ₂ addition might inhibit acetate consumption and promote
299	acetate production by homoacetogens (Agneessens et al., 2017 and 2018; Liu et al., 2016;
300	Mulat et al., 2017).

Figure 4. Comparison in acetate concentration in the fermenter among operational phases.

305 *3.4 Comparison between AnMBRs and CSTRs without H*₂ addition

The CH₄ contents in phases 2 and 3 were high (83.1% and 85.2%, respectively) even if H₂

307 was not added during the AnMBR mode of operation, relative to the general value (i.e., 40-

308 75%). Therefore, the CSTR mode of operation without H₂ addition was used for phases 6

and 7 to investigate the effect of the operational mode on the CH₄ content in biogas. As a

- 310 result, the CH₄ contents in phases 6 and 7 were 80.3% (\pm 1.5%) and 77.7% (\pm 3.0%),
- respectively (see Table 3). Compared with the CH₄ contents in phases 2, 3, and 4, those in
- 312 phases 6 and 7 were significantly lower (|t| = 6.58, p < 0.05) (see Figure 2). This result

313	indicated that the CH4 content increased during AnMBR operation compared with CSTR
314	operation even if H ₂ was not supplied to AnMBR. This suggested that it might be easier to
315	increase the CH4 content in AnMBRs because the baseline CH4 content was higher than
316	that in CSTRs.
317	
318	There are three possible reasons for the higher CH4 content in the AnMBR. First, the
319	membrane permeate might release dissolved inorganic carbon (i.e., dissolved CO2 and
320	HCO ₃ ⁻) outside of the fermenter, which would lead to higher CH ₄ content (Yu et al., 2018).
321	In contrast to the CSTR mode of operation, this study involved continuous membrane
322	filtration in the AnMBR mode of operation during phases 2–5. Therefore, dissolved
323	inorganic carbon in the permeate may continuously flow outward, which would promote
324	further dissolution of CO ₂ into the liquid phase in the fermenter. Because the Henry's
325	constant of CO ₂ is higher than that of CH ₄ (Sander et al., 2015), the CH ₄ content in biogas
326	might show a relative increase in an AnMBR. Both the gradual reduction in pH during
327	phases 2–5 in the AnMBR and stable pH at approximately 7.3 during phases 6 and 7 in the
328	CSTR support this explanation (see Figure 3a). However, this could be a disadvantage of
329	AnMBRs because it is associated with a lost carbon source for conversion to CH4.

331	Second, the characteristics of the WAS substrate and the relatively long SRT in AnMBRs
332	may lead to higher CH4 content in biogas. It is well known that proteins are the major
333	organic components of WAS (Xiao et al., 2017), and biogas obtained from the AD of WAS
334	has high CH ₄ content (\sim 71%) (Bougrier et al., 2007). In the present study, the SRT was
335	positively correlated with both the CH ₄ content ($r = 0.95$, $p < 0.05$) and the VS degradation
336	efficiency ($r = 0.94$, $p < 0.01$) (Figure 5a and 5b). As shown in Figure 5a, the data point
337	obtained from phase 5 was out of correlation because the biogas was successfully upgraded
338	following H ₂ addition. Compared with the CSTR mode, the AnMBR system developed in
339	this study achieved a higher VS degradation efficiency (see Figure 5b and Table 3).
340	Therefore, it is likely that the proteins in WAS were degraded well in the AnMBR because
341	of the longer SRT, which resulted in biogas with higher CH4 content. The change in the
342	biogas production rate could be explained by the organic loading rate (OLR). A positive
343	correlation between the OLR and the biogas production rate ($r = 0.91, p < 0.01$) was
344	observed (Figure 5c). Therefore, the higher biogas production rate in phase 7 was a result of
345	the higher OLR (see Table 3).

347	Third, changes in the microbial community might affect the CH ₄ content. Although the
348	microbial community was not investigated in the present study, Yu et al. (2016) reported
349	that hydrogenotrophic methanogenesis played a more important role in an anaerobic
350	dynamic membrane bioreactor, resulting in biogas with higher CH4 content. Further
351	investigations are required to confirm these hypotheses.

- 355 degradation efficiency, and (c) organic loading rate and biogas production rate.
- 356

357 *3.5 Performance of the membrane unit*

358 Although membrane fouling is an inevitable challenge in membrane-based treatment

359	processes (Meng et al., 2017; Wang et al., 2014), severe membrane fouling was not
360	observed in this study (Figure 6a). The TMP was stable under 10 kPa for 117 d of
361	continuous filtration without cleaning the membrane (phases 2–5). There are two reasons
362	for the successful mitigation of membrane fouling. One is that the reactor configuration
363	incorporated external cross-flow. There are two types of AnMBR configurations: external
364	cross-flow and submerged configurations (Abdelrahman et al., 2020). In external cross-
365	flow configurations, the membrane unit is outside of the digester, whereas in the submerged
366	configurations, membranes are immersed in the digester or external sludge tank. The high
367	shear force on the membranes in a cross-flow configuration can better control membrane
368	fouling (Abdelrahman et al., 2020). In addition, the use of an external membrane unit
369	outside the digester can provide ease of membrane maintenance since the head space of the
370	digester cannot be opened frequently in order to maintain anaerobic conditions. Although
371	cross-flow velocity of 0.5 m/s in the present study require additional energy (to power the
372	cross-flow pumps), they are proven to mitigate membrane fouling, and energy can be
373	recovered from the AD system in the form of biogas. Second, the relatively low filtration
374	flux (i.e., 1.25 LMH \approx 0.03 m/d) effectively prevented a drastic increase in the TMP in this
375	study. AnMBRs treating WAS have relatively long HRTs compared with aerobic or

anaerobic membrane bioreactors treating low-strength wastewater. Therefore, a relatively
low flux is often sufficient for WAS digestion in AnMBRs, which could mitigate membrane
fouling (Hafuka et al., 2019).

380	In the AnMBR, the COD concentration in the membrane permeate stabilized at 210 mg/L
381	during phases 2–5, which suggested that the effluent quality was higher than that of a
382	conventional CSTR (Figure 6b). The COD concentration in the digested sludge was in the
383	range from 8000 to 25,200 mg/L, and it increased gradually from 10,500 to 19,000 mg/L
384	during phases 2–5, while membrane filtration continued. The same trend was observed for
385	the concentrations of TS and VS (Figure 6c). Overall, the efficiency of COD rejection by
386	the membrane was greater than 95%. This result was attributed to the membrane's highly
387	efficient rejection of suspended COD. The COD, TS, and VS concentrations in digested
388	sludge gradually increased during phases 2-5 because of the solid-liquid separation by the
389	membrane. In addition, these concentrations were higher than those in the WAS (see Table
390	2). These results suggested that the membrane thickened the WAS and helped retain the
391	digested sludge inside the reactor (Hafuka et al., 2016); these factors led to a higher content
392	of microbial biomass inside the reactor. In the present study, the AnMBR demonstrated a

393	high V	/S degradation	efficiency	compared to	that of the	CSTR	because of	f the	longer	SRT
-----	--------	----------------	------------	-------------	-------------	------	------------	-------	--------	-----

- 394 (100 d; see Figure 5b). This result originated from the distinctive feature of AnMBRs, i.e.,
- 395 the decoupling of the HRT and SRT. AnMBRs can prolong the SRT without simultaneously
- 396 extending the HRT, which shortens the overall treatment time and reduces the footprint of
- 397 the reactor (Cheng et al., 2021).
- 398

- 401 sludge and membrane permeate, as well as the efficiency of COD rejection by the
- 402 membrane; (c) TS and VS concentrations in the fermenter.

The filtration resistance of the pristine membrane was 6.3×10^{11} m⁻¹ (Figure 7). The resistance increased to 11.5×10^{11} m⁻¹ due to membrane fouling after the 221-day operation of the reactor. Hydraulic physical cleaning was effective in removing membrane foulants and the resistance decreased to 7.0×10^{11} m⁻¹. This result suggests that physically reversible fouling had high contribution to the membrane fouling in the present study (Hafuka et al., 2019).

410

411

412 Figure 7. Filtration resistances of the pristine membrane, the fouled membrane, and the

413 membrane after physical cleaning.

415 **4. Conclusions**

In this study, an AnMBR was employed to digest waste activated sludge in a semi-batch 416 417 mode, and the system demonstrated successful in-situ biogas upgrading. The CH4 content reached 92% when 11 equivalents of H₂ were added (relative to the CO₂ generated by the 418 fermenter). To our knowledge, this represents the first report detailing in-situ biogas 419 420 upgrading in an AnMBR digesting WAS. The addition of H₂ increased the acetate concentration, and successful biogas upgrading led to an increased pH. Compared with the 421 CSTR mode of operation, the AnMBR mode of operation without added H₂ obtained higher 422 423 CH4 contents. It was possible to conduct continuous membrane filtration of the digested sludge over 117 d without cleaning the membrane. No appreciable rise in the TMP was 424 observed because of the low filtration flux and cross-flow filtration. The present study has 425 some limitations such as the low OLR and lacks an energy balance analysis. Further 426 427 research to solve these problems is now under way. 428

429 Acknowledgments

430 This research was financially supported by Takuma Co., Ltd., Japan. We also thank

431 Suzanne Adam, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this

432	manuscript.
433	
434	Appendix A. Supplementary Material
435	Supplementary materials are available.
436	
437	References
438	Abdelrahman, A.M., Ozgun, H., Dereli, R.K., Isik, O., Ozcan, O.Y., van Lier, J.B., Ozturk,
439	I., Ersahin, M.E., 2021. Anaerobic membrane bioreactors for sludge digestion: Current
440	status and future perspectives. Crit. Rev. Environ. Sci. Technol. 51, 2119-2157.
441	https://doi.org/10.1080/10643389.2020.1780879.
442	Agneessens, L.M., Ottosen, L.D.M., Andersen, M., Olesen, C.B., Feilberg, A., Kofoed,
443	M.V.W., 2018. Parameters affecting acetate concentrations during in-situ biological
444	hydrogen methanation. Bioresour. Technol. 258, 33-40.
445	https://doi.org/10.1016/j.biortech.2018.02.102.
446	Agneessens, L.M., Ottosen, L.D.M., Voigt, N.V., Nielsen, J.L., de Jonge, N., Fischer, C.H.,
447	Kofoed, M.V.W., 2017. In-situ biogas upgrading with pulse H2 additions: The
448	relevance of methanogen adaption and inorganic carbon level. Bioresour. Technol. 233,

- 449 256–263. https://doi.org/10.1016/j.biortech.2017.02.016.
- 450 Ahmad, T., Ahmad, K., Alam, M., 2016. Sustainable management of water treatment sludge
- 451 through 3'R' concept. J. Clean. Prod. 124, 1–13.
- 452 https://doi.org/10.1016/j.jclepro.2016.02.073.
- 453 Alfaro, N., Fdz-Polanco, M., Fdz-Polanco, F., Diaz, I., 2019. H₂ addition through a
- 454 submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage
- 455 sludge. Bioresour. Technol. 280, 1-8. https://doi.org/10.1016/j.biortech.2019.01.135.
- 456 Angelidaki, I., Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., Kougias, P.G.,
- 457 2018. Biogas upgrading and utilization: Current status and perspectives. Biotechnol.

458 Adv. 36, 452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011.

- 459 Appels, L., Baeyens, J., Degreve, J., Dewil, R., 2008. Principles and potential of the
- 460 anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34,
- 461 755–781. https://doi.org/10.1016/j.pecs.2008.06.002.
- 462 Ardolino, F., Cardamone, G.F., Parrillo, F., Arena, U., 2021. Biogas-to-biomethane
- 463 upgrading: A comparative review and assessment in a life cycle perspective. Renew.
- 464 Sust. Energ. Rev. 139, 110588. https://doi.org/10.1016/j.rser.2020.110588.
- 465 Bassani, I., Kougias, P.G., Angelidaki, I., 2016. In-situ biogas upgrading in thermophilic

466	granular UASB reactor: key factors affecting the hydrogen mass transfer rate.
467	Bioresour. Technol. 221, 485–491. https://doi.org/10.1016/j.biortech.2016.09.083.
468	Bassani, I., Kougias, P.G., Treu, L., Angelidaki, I., 2015. Biogas Upgrading via
469	Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at
470	Mesophilic and Thermophilic Conditions. Environ. Sci. Technol. 49, 12585–12593.
471	https://doi.org/10.1021/acs.est.5b03451.
472	Bougrier, C., Delgenes, J.P., Carrere, H., 2007. Impacts of thermal pre-treatments on the
473	semi-continuous anaerobic digestion of waste activated sludge. Biochem. Eng. J. 34,
474	20-27. https://doi.org/10.1016/j.bej.2006.11.013.
475	Chen, R., Wen, W., Jiang, H.Y., Lei, Z., Li, M.Z., Li, Y.Y., 2019. Energy recovery potential
476	of thermophilic high-solids co-digestion of coffee processing wastewater and waste
477	activated sludge by anaerobic membrane bioreactor. Bioresour. Technol. 274, 127-133.
478	https://doi.org/10.1016/j.biortech.2018.11.080.
479	Cheng, H., Li, Y.M., Hu, Y.S., Guo, G.Z., Cong, M., Xiao, B.Y., Li, Y.Y., 2021. Bioenergy
480	recovery from methanogenic co-digestion of food waste and sewage sludge by a high-
481	solid anaerobic membrane bioreactor (AnMBR): Mass balance and energy potential.
482	Bioresour. Technol. 326, 124754. https://doi.org/10.1016/j.biortech.2021.124754.
	36

483	Deng, L.Y., Hagg,	, M.B., 2010. [Techno-economic	evaluation of	of biogas	upgrading process
-----	-------------------	-----------------	-----------------	---------------	-----------	-------------------

- using CO₂ facilitated transport membrane. Int. J. Greenh. Gas Control. 4, 638–646.
- 485 https://doi.org/10.1016/j.ijggc.2009.12.013.
- 486 Deschamps, L., Imatoukene, N., Lemaire, J., Mounkaila, M., Filali, R., Lopez, M.,
- 487 Theoleyre, M.A., 2021. In-situ biogas upgrading by bio-methanation with an
- 488 innovative membrane bioreactor combining sludge filtration and H₂ injection.
- 489 Bioresour. Technol. 337, 125444. https://doi.org/10.1016/j.biortech.2021.125444.
- 490 Franke-Whittle, I.H., Walter, A., Ebner, C., Insam, H., 2014. Investigation into the effect of
- 491 high concentrations of volatile fatty acids in anaerobic digestion on methanogenic
- 492 communities. Waste Manage. 34, 2080–2089.
- 493 https://doi.org/10.1016/j.wasman.2014.07.020.
- 494 Fu, S.F., Angelidaki, I., Zhang, Y.F., 2021. In situ Biogas Upgrading by CO₂-to-CH₄
- Bioconversion. Trends Biotechnol. 39, 336–347.
- 496 https://doi.org/10.1016/j.tibtech.2020.08.006.
- 497 Götz, M., Lefebvre, J., Mors, F., Koch, A.M., Graf, F., Bajohr, S., Reimert, R., Kolb, T.,
- 498 2016. Renewable Power-to-Gas: A technological and economic review. Renew. Energ.
- 499 85, 1371–1390. https://doi.org/10.1016/j.renene.2015.07.066.

500	Hafuka, A., Mashiko, R., Odashima, R., Yamamura, H., Satoh, H., Watanabe, Y., 2019.
501	Digestion performance and contributions of organic and inorganic fouling in an
502	anaerobic membrane bioreactor treating waste activated sludge. Bioresour. Technol.
503	272, 63-69. https://doi.org/10.1016/j.biortech.2018.09.147.
504	Hafuka, A., Mimura, K., Ding, Q., Yamamura, H., Satoh, H., Watanabe, Y., 2016.
505	Performance of anaerobic membrane bioreactor during digestion and thickening of
506	aerobic membrane bioreactor excess sludge. Bioresour. Technol. 218, 476–479.
507	https://doi.org/10.1016/j.biortech.2016.06.124.
508	Jensen, M.B., Kofoed, M.V.W., Fischer, K., Voigt, N.V., Agneessens, L.M., Batstone, D.J.,
509	Ottosen, L.D.M., 2018. Venturi-type injection system as a potential H ₂ mass transfer
510	technology for full-scale in situ biomethanation. Appl. Energy 222, 840-846.
511	https://doi.org/10.1016/j.apenergy.2018.04.034
512	Lai, C.Y., Zhou, L., Yuan, Z., Guo, J., 2021. Hydrogen-driven microbial biogas upgrading:

- 513 Advances, challenges and solutions. Water Res. 197, 117120.
- 514 https://doi.org/10.1016/j.watres.2021.117120.
- Liu, R.B., Hao, X.D., Wei, J., 2016. Function of homoacetogenesis on the heterotrophic
- 516 methane production with exogenous H_2/CO_2 involved. Chem. Eng. J. 284, 1196–1203.

517 https://doi.org/10.1016/j.cej.2015.09.081.

- 518 Lovato, G., Alvarado-Morales, M., Kovalovszki, A., Peprah, M., Kougias, P.G., Rodrigues,
- 519 J.A.D., Angelidaki, I., 2017. In-situ biogas upgrading process: Modeling and
- simulations aspects. Bioresour. Technol. 245, 332–341.
- 521 https://doi.org/10.1016/j.biortech.2017.08.181.
- 522 Luo, G., Johansson, S., Boe, K., Xie, L., Zhou, Q., Angelidaki, I., 2012. Simultaneous
- 523 hydrogen utilization and in situ biogas upgrading in an anaerobic reactor. Biotechnol.
- 524 Bioeng. 109, 1088–1094. https://doi.org/10.1002/bit.24360.
- 525 Mao, C.L., Feng, Y.Z., Wang, X.J., Ren, G.X., 2015. Review on research achievements of
- 526 biogas from anaerobic digestion. Renew. Sust. Energ. Rev. 45, 540–555.
- 527 https://doi.org/10.1016/j.rser.2015.02.032.
- 528 Meng, F.G., Zhang, S.Q., Oh, Y., Zhou, Z.B., Shin, H.S., Chae, S.R., 2017. Fouling in
- 529 membrane bioreactors: An updated review. Water Res. 114, 151–180.
- 530 https://doi.org/10.1016/j.watres.2017.02.006.
- 531 Mulat, D.G., Mosbaek, F., Ward, A.J., Polag, D., Greule, M., Keppler, F., Nielsen, J.L.,
- 532 Feilberg, A., 2017. Exogenous addition of H₂ for an in situ biogas upgrading through
- biological reduction of carbon dioxide into methane. Waste Manage. 68, 146–156.

- 534 https://doi.org/10.1016/j.wasman.2017.05.054.
- 535 Nguyen, L.N., Kumar, J., Vu, M.T., Mohammed, J.A.H., Pathak, N., Commault, A.S.,
- 536 Sutherland, D., Zdarta, J., Tyagi, V.K., Nghiem, L.D., 2021. Biomethane production
- from anaerobic co-digestion at wastewater treatment plants: A critical review on
- development and innovations in biogas upgrading techniques. Sci. Total Environ. 765,
- 539 142753. https://doi.org/10.1016/j.scitotenv.2020.142753.
- 540 Park, J.G., Kwon, H.J., Cheon, A.I., Jun, H.B., 2021. Jet-nozzle based improvement of
- 541 dissolved H₂ concentration for efficient in-situ biogas upgrading in an up-flow
- 542 anaerobic sludge blanket (UASB) reactor. Renew. Energ. 168, 270–279.
- 543 https://doi.org/10.1016/j.renene.2020.12.019.
- 544 Rajagopal, R., Masse, D.I., Singh, G., 2013. A critical review on inhibition of anaerobic
- 545 digestion process by excess ammonia. Bioresour. Technol. 143, 632–641.
- 546 https://doi.org/10.1016/j.biortech.2013.06.030.
- 547 Ryckebosch, E., Drouillon, M., Veruaeren, H., 2011. Techniques for transformation of
- 548 biogas to biomethane. Biomass Bioenergy 35, 1633–1645.
- 549 https://doi.org/10.1016/j.biombioe.2011.02.033.
- 550 Sander, R., 2015. Compilation of Henry's law constants (version 4.0) for water as solvent,

- 551 Atmospheric Chem. Phys. 15, 4399–4981. https://doi.org/10.5194/acp-15-4399-2015.
- 552 Skouteris, G., Hermosilla, D., Lopez, P., Negro, C., Blanco, A., 2012. Anaerobic membrane
- bioreactors for wastewater treatment: A review. Chem. Eng. J. 198, 138–148.
- 554 https://doi.org/10.1016/j.cej.2012.05.070.
- 555 Sun, Q., Li, H.L., Yan, J.Y., Liu, L.C., Yu, Z.X., Yu, X.H., 2015. Selection of appropriate
- biogas upgrading technology-a review of biogas cleaning, upgrading and utilization.
- 557 Renew. Sust. Energ. Rev. 51, 521–532. https://doi.org/10.1016/j.rser.2015.06.029.
- 558 Thema, M., Bauer, F., Sterner, M., 2019. Power-to-Gas: Electrolysis and methanation status
- 559 review. Renew. Sust. Energ. Rev. 112, 775–787.
- 560 https://doi.org/10.1016/j.rser.2019.06.030.
- 561 Wang, H., Zhang, Y.F., Angelidaki, I., 2016. Ammonia inhibition on hydrogen enriched
- 562 anaerobic digestion of manure under mesophilic and thermophilic conditions. Water
- 563 Res. 105, 314–319. https://doi.org/10.1016/j.watres.2016.09.006.
- 564 Wang, Z.W., Ma, J.X., Tang, C.Y.Y., Kimura, K., Wang, Q.Y., Han, X.M., 2014. Membrane
- cleaning in membrane bioreactors: A review. J. Membr. Sci. 468, 276–307.
- 566 https://doi.org/10.1016/j.memsci.2014.05.060.
- 567 Xia, A., Cheng, J., Murphy, J.D., 2016. Innovation in biological production and upgrading

568	of methane and hydrogen for use as gaseous transport biofuel. Biotechnol. Adv. 34,
569	451-472. https://doi.org/10.1016/j.biotechadv.2015.12.009.
570	Xiao, B.Y., Qin, Y., Qu, J., Chen, H., Yu, P.F., Liu, J.X., Li, Y.Y., 2018. Comparison of
571	single-stage and two-stage thermophilic anaerobic digestion of food waste:
572	Performance, energy balance and reaction process. Energy Convers. Manag. 156,
573	215-223. https://doi.org/10.1016/j.enconman.2017.10.092.
574	Xiao, K.K., Chen, Y., Jiang, X., Seow, W.Y., He, C., Yin, Y., Zhou, Y., 2017. Comparison of
575	different treatment methods for protein solubilisation from waste activated sludge.
576	Water Res. 122, 492–502. https://doi.org/10.1016/j.watres.2017.06.024.
577	Xu, H., Wang, K.J., Zhang, X.Q., Gong, H., Xia, Y., Holmes, D.E., 2020. Application of in-
578	situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment.
579	Bioresour. Technol. 299, 122598. https://doi.org/10.1016/j.biortech.2019.122598.
580	Yu, D.W., Meng, X.S., Liu, J.B., Dian, L., Sui, Q.W., Zhang, J.Y., Zhong, H., Wei, Y.S.,
581	2018. Formation and characteristics of a ternary pH buffer system for in-situ biogas
582	upgrading in two-phase anaerobic membrane bioreactor treating starch wastewater.
583	Bioresour. Technol. 269, 57-66. https://doi.org/10.1016/j.biortech.2018.08.072.
584	Yu, H.G., Wang, Z.W., Wu, Z.C., Zhu, C.W., 2016. Enhanced waste activated sludge

- 585 digestion using a submerged anaerobic dynamic membrane bioreactor: performance,
- sludge characteristics and microbial community. Sci. Rep. 6, 20111.
- 587 https://doi.org/10.1038/srep20111.
- 588 Zhao, J., Li, Y., Dong, R.J., 2021. Recent progress towards in-situ biogas upgrading
- technologies. Sci. Total Environ. 800, 149667. https://doi.org/
- 590 10.1016/j.scitotenv.2021.149667.
- 591 Zhu, X.P., Cao, Q., Chen, Y.C., Sun, X.Y., Liu, X.F., Li, D., 2019. Effects of mixing and
- 592 sodium formate on thermophilic in-situ biogas upgrading by H₂ addition. J. Clean.
- 593 Prod. 216, 373–381. https://doi.org/10.1016/j.jclepro.2019.01.245.