
 

Instructions for use

Title Multifunctional Triggering by Solid-Phase Molecular Motion : Relaxor Ferroelectricity, Modulation of Magnetic
Exchange Interactions, and Enhancement of Negative Thermal Expansion

Author(s) Li, Simin; Takahashi, Kiyonori; Huang, Rui-Kang; Xue, Chen; Kokado, Kenta; Hoshino, Norihisa; Akutagawa,
Tomoyuki; Nishihara, Sadafumi; Nakamura, Takayoshi

Citation Chemistry of materials, 35(6), 2421-2428
https://doi.org/10.1021/acs.chemmater.2c03552

Issue Date 2023-03-08

Doc URL http://hdl.handle.net/2115/91294

Rights
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of
materials, copyright c American Chemical Society after peer review and technical editing by the publisher. To access
the final edited and published work see https://pubs.acs.org/articlesonrequest/AOR-GCAKW5R4HYHTFXUPX3QT.

Type article (author version)

File Information 4ApyB18toACSJournals_rev.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Multifunctional triggering by solid-phase molecular motion: relaxor 

ferroelectricity, modulation of magnetic exchange interactions, and 

enhancement of negative thermal expansion 

Simin Li,[a] Kiyonori Takahashi,[a,b]* Rui-Kang Huang,[a,b] Chen Xue,[a,b] Kenta Kokado, [a,b,c,d] Norihisa 
Hoshino,[e] Tomoyuki Akutagawa,[e] Sadafumi Nishihara,[d,f] Takayoshi Nakamura[a,b]* 
[a] Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan 
[b] Graduate School of Environmental Science, Hokkaido University, Sapporo 001-0020, Japan  
[c] Toyota Technological Institute, Hisakata, Tempaku-ku, Nagoya, 468-8511, Japan 
[d] JST PRESTO, Honcho, Kawaguchi, Saitama 332-0012, Japan 
[e] Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 1-1 Katahira, Aoba-ku, Sendai, 
Miyagi 980-8577, Japan  
[f] Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-hiroshima, Hiroshima, 
739-8527, Japan 

KEYWORDS. Multifunctional materials, Supramolecular cation, Molecular motion, Ferroelectricity, Magnetic, Negative 

thermal expansion 

 

ABSTRACT: Although the development of artificial molecular machines has garnered considerable attention in recent years, the 
construction of multifunctional solid-state molecular machines still faces several challenges. Herein, we report a supramolecular 
approach as an efficient strategy for building multifunctional trigger systems. In crystals composed of [Ni(dmit)2]

− with a spin of S 
= 1/2 and supramolecular structures consisting of 4-aminopyridinium+ and benzo[18]crown-6, supramolecular cations with 
dynamic degrees of freedom affect the magnetic and dielectric properties and induce negative thermal expansion (NTE). The 
supramolecular cations in the crystals form one-dimensional columns. Two adjacent columns form a supramolecular ladder 
structure via π•••π interactions between the phenylene groups of benzo[18]crown-6, and are arranged within a two-dimensional 
layer. A disorder between the two sites of the phenylene ring was observed in one of the crystallographically independent 
benzo[18]crown-6. Disordered benzo[18]crown-6 formed polar domains within the crystal, resulting in relaxor ferroelectricity. 
With increasing temperature, the supramolecular ladders elongated and the translational motion of the benzo[18]crown-6 caused the 
molecular ladder to move closer to each other. Consequently, the crystals shrunk in the direction perpendicular to the ladder, 
exhibiting uniaxial NTE, and the magnetic exchange interaction between the [Ni(dmit)2]

- crystals was disrupted. 

INTRODUCTION 

The development of artificial molecular machines based on 
molecular motion has been actively studied in various fields;1-7 
however, most studies have focused on motion in the liquid 
phase. Because the molecular motion in the liquid phase is 
random and incoherent,7 it is difficult to determine the 
directionality of isotropic mechanical motion. Molecules in the 
crystalline state generally have tightly packed and ordered 
structures, leaving insufficient space for molecular motion. 
However, if sufficient space is created in the solid, molecular 
motion and reorientation become possible, which are the basis 
for the development of multifunctional molecular machines in 
the crystalline state.6-10 

It is well known that the introduction of supramolecular 
cations into molecular crystals can result in solid-state 
dynamic molecular systems.9-12 For instance, 180° flip-flop 
motion of m-fluoroanilinium+ has been observed in the 
crystals of (m-fluoroanilinium+)(dibenzo[18]crown-
6)[Ni(dmit)2]

− (dmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolate). 

The m-fluoroanilinium+ rotations are correlated with each 
other, resulting in ferroelectricity owing to dipole inversion 
induced by the outer electric field.9 

Furthermore, supramolecular cations with dynamic degrees of 
freedom can modulate the magnetic exchange interaction (J) 
between magnetic [Ni(dmit)2]

− with a spin of S = 1/2.10-13 
Notably, the magnetic behavior of the [Ni(dmit)2]

− dimer is 
significantly influenced by the rotation of [18]crown-6 in 
Cs2([18]crown-6)3 in (Cs+)2([18]crown-6)3[Ni(dmit)2]

−
2.

12 

We recently reported that one-dimensional (1D) chain 
structures formed by hydrogen bonds are also useful for 
realizing molecular motion in crystals.14-16 For instance, in 
[CuII(3,4-difuluorobenzoate)2(pyridine)2(H2O)], penta-
coordinated mononuclear copper (II) complexes are linked by 
O-H•••O hydrogen bonds to form 1D chains. The dynamic 
motion of fluorobenzoate ligands was observed as a change in 
the dielectric constant.14 In (4,4'-
bipyridinium)(dibenzo[24]crown-8)[Ni(dmit)2]

−, 
monoprotonated 4,4-bipyridinium forms a 1D chain through 
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CE2A and CE2B in the crystal, resulting in relaxor 
ferroelectricity.   

Supramolecular cations with dynamic degrees of freedom also 
modulate the magnetic exchange between [Ni(dmit)2]

– anions. 
The temperature dependence of the molar magnetic 
susceptibilities (χm) is shown as χmT versus T plot in Figure 4a. 
[Ni(dmit)2]

– exhibits relatively strong antiferromagnetic 
interactions, even near room temperature. In the crystal, two 
crystallographically independent [Ni(dmit)2]

– anions (marked 
by dm1 and dm2 in Figure 1a) are strongly dimerized with the 
corresponding intradimer transfer integrals t1 and t2 of 118.00 
and 50.98 meV at 282 K, respectively (Figures 4a). Because 
the magnitude of J is proportional to the square of the transfer 
integral (t),31-33 a large t within the dimer suggests that the 
magnetic behavior of the crystal is dominated by the J 
between the dimers. Therefore, we decided to apply the 
singlet–triplet thermal excitation (S-T) model to reproduce 
the temperature dependence of χmT for crystal 1 using the 
Landé g-factor 2.042 obtained from the EPR spectra (Figure 
S11). However, the experimental data could not be fitted to the 
model with constant J (Figure S12). 

We applied a modified S-T model in which J depends on 
temperature, and succeeded in reproducing the experimental 
results of χmT. The temperature dependence of χmT agrees well 
with the modified S-T model with g = 2.042 and J/kB = 0.32 T 
– 303.42 (Figure 4a, left axis). This J trend corresponds to the 
temperature dependence of t in the intradimer. The 
temperature dependences of t1 and t2 were evaluated from the 
coordinates of the [Ni(dmit)2]

– dimer at different temperatures, 
and are summarized in Figure 4a (right axis). Both t1 and t2 
increased with decreasing temperature to 142.03 and 123.82 
meV at 108 K, respectively.  

Decreases in t1 and t2 with increasing temperature were due to 
the relative conformational change of [Ni(dmit)2]

– in the dimer. 
We plotted the temperature dependence of the interplanar 
distance between [Ni(dmit)2]

– in each dimer (ddm1 and ddm2) in 
addition to the dihedral angles (ϕdm1 and ϕdm2) determined as 
the angle formed by three sulfur atoms of the [Ni(dmit)2]

– 
dimer (S4-S5-S4 and S16-S17-S18 in Figure 4b). In both 
dimers, the interplanar distances of ddm1 and ddm2 increased 
with increasing temperature (Figure 4c), resulting in a 
decrease in J within the dimer. In addition, ϕdm, a measure of 
the short-axis slip of the [Ni(dmit)2]

– dimer, changed more 
significantly with increasing temperature for dm2, resulting in 
a more attenuated t2 than t1 (Figure 4d). The conformational 
change of the supramolecular cation perturbed the through-
space interaction of the singly occupied molecular orbital of 
[Ni(dmit)2]

–, thereby affecting the magnetic behavior of the 
crystal. 

 

CONCLUSION  

We reported a multifunctional trigger system for (4-
ApyH+)(B[18]crown-6)[Ni(dmit)2]

–. The supramolecular 
structure composed of B[18]crown-6 and 4-ApyH+ formed a 
ladder structure in the crystal. Pairs of B[18]crown-6 with 
disordered phenylene rings formed polar domains, and these 
fluctuations caused relaxor ferroelectric-like dielectric 
responses. The disorder of B[18]crown-6 with increasing 
temperature modulated the supramolecular structure, and the 
crystals exhibited NTE perpendicular to the supramolecular 
ladder and further perturbed the magnetic exchange interaction 

in [Ni(dmit)2]
−. The design principle of the multifunctional 

trigger system proposed in this study provides opportunities 
for the development of functional materials based on artificial 
molecular machines.  

 

Experimental  

General 

All the reagents were used without further purification. 
Elemental analyses were performed using a CHN analyzer 
(CE440, Exeter Analytical, Inc.) at the Instrumental Analysis 
Division, Equipped Management Center, Creative Research 
Institution, Hokkaido University. 

Crystal Preparation 

Precursors of (TBA+)[Ni(dmit)2]
– (TBA = tetra-n-

butylammonium) and (4-ApyH+)(BF4) were prepared 
according to previously reported methods.34,35 Crystals of 1 

were obtained through natural evaporation. (4-ApyH+)(BF4) 
(54.88 mg, 0.30 mmol), B[18]crown-6 (140.56 mg, 0.45 
mmol), and (TBA+)[Ni(dmit)2]

– (103.79 mg, 0.15 mmol) were 
dissolved in acetonitrile, and (4-ApyH+)(B[18]crown-
6)[Ni(dmit)2] (1) was obtained as black block crystals (94.32 
mg, 73.21% yield). The theoretical and experimental 
compositions (%) of crystal 1 (C27H31N2NiO6S10) were C 
37.76, H 3.64, N 3.26, and C 37.74, H 3.54, N 3.18, 
respectively. The structures were determined using elemental 
and X-ray analyses. The crystal data, data collection, and 
reduction parameters of crystal 1 at various temperatures are 
listed in Table S1. The powder X-ray diffraction (PXRD) 
pattern of the polycrystalline sample of 1 was in good 
agreement with those simulated using single-crystal analysis, 
verifying the purity (Figure S2). The thermogravimetric (TG) 
measurements are shown in Figure S3.  

Crystal Structure Determination 

Temperature-dependent structural analysis of the single 
crystals was performed using a Rigaku XtaLAB synergy 
diffractometer with a single microfocus MoKα X-ray radiation 
source (PhotonJet-S) equipped with a hybrid pixel (HyPix) 
array detector (HyPix-6000HE). Multiscan absorption 
corrections were applied to the reflection data. A single crystal 
was mounted on a mounted CryoLoop (Hampton Research) 
with Paratone 8277 (Hampton Research). Temperature 
dependence was measured for the same crystal. Data 
collection, cell refinement, and data reduction were performed 
using CrysAlisPRO

 (Rigaku Oxford Diffraction, 2017). The 
initial structure was solved using SHELXT,36 and structural 
refinement was performed by full-matrix least-squares 
techniques on F

2 using OLEX2 software.37 Anisotropic 
refinement was applied to all atoms except for hydrogen atoms. 
These data are provided free of charge by the Cambridge 
Crystallographic Data Centre (CCDC No. 2183639, 2183640, 
2183651, 2183652, 2183641, 2183647, 2183642, 2183646, 
2183643, 2183644, 2183645, 2183649, 2183650, 2183648,  
for the structure at the temperatures of 108, 136, 162, 177, 197, 
223, 249, 266, 282, 309, 333, 348, 368, and 381 K, 
respectively). 

Dielectric and Polarization Measurements 

 Temperature- and frequency-dependent dielectric constants 
were measured using an impedance analyzer 4294A (Agilent) 
using the four-probe AC impedance method at a frequency 
range of 102 – 104 Hz with about 100.05 Hz increments. The 



 

ferroelectric hysteresis curve was obtained using a 
ferroelectric tester (Multiferroic II, Radiant Technologies) at 
the temperature at 50 K and frequency of 0.1 Hz by remnant 
hysteresis measurement. The temperature was controlled using 
cryostats with temperature controller models 331 or 335 (Lake 
Shore Cryotronics Inc.). Electrical contacts were prepared 
using a gold paste to attach the 10 µm ɸ gold wires to the 
single crystals. 

Magnetic Measurements 

The temperature-dependent magnetic susceptibilities were 
measured using a Quantum Design MPMS3 SQUID 
magnetometer in a temperature range of 2 – 300 K. A 
magnetic field of 1 T was applied for all the temperature-
dependent measurements. Prior to sample measurements, 
measurements under similar conditions were performed on the 
sample holder (wrap), and their results were directly 
subtracted from the obtained sample data. In addition to the 
paramagnetic impurity (Curie constant 6.16 ×  10–3 cm3 K 
mol–1), which follows the Curie law, a temperature-
independent diamagnetic component –4.50 × 10–4 cm3 mol–1 
was also subtracted from the obtained data.38  

Electron spin resonance (ESR) 

ESR spectra were measured using a JEOL JES FA-100 
spectrometer at room temperature. The single crystals were 
mounted on the support of a quartz sample holder.  

Theoretical Calculations 

Transfer integral (t): The extended Hückel molecular orbital 
method within the tight-binding approximation was applied to 
determine the transfer integrals (t) between [Ni(dmit)2] anions. 
The lowest-unoccupied molecular orbital of the [Ni(dmit)2] 
molecule was used as the basis function.39 According to 
previous studies, semiempirical parameters for Slater-type 
atomic orbitals were obtained.39 The t values between each 
pair of molecules were assumed to be proportional to the 
overlap integral (S) according to the equation t = –10 S eV. 

Determination of CTLE 

Complexation energy: Complexation energy based on 
intermolecular interactions was obtained by subtracting the 
energy of each individual molecule from the energy of the 
complex. From the atomic positions estimated from single-
crystal X-ray structure analysis results at 277 K, we extracted 
six different molecular cluster pairs (CE2A-CE2A, CE2B-

CE2B, and CE2A-CE2B; Figure 1) of B[18]crown-6 (CE2) 
disordered into two sites. The intermolecular interactions of 
the B[18]crown-6 dimer were estimated from single-point 
computations at the B3LYP/6-31G(d,p) level.40,41 Grimme's 
D3 dispersion model was used for dispersion correction.42 
Computations were performed using the GAUSSIAN16 code 
set. To remove errors due to the overestimation of stabilization 
energy (basis set superposition error), the counterpoise 
correction implemented in GAUSSIAN16 was applied.43   
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