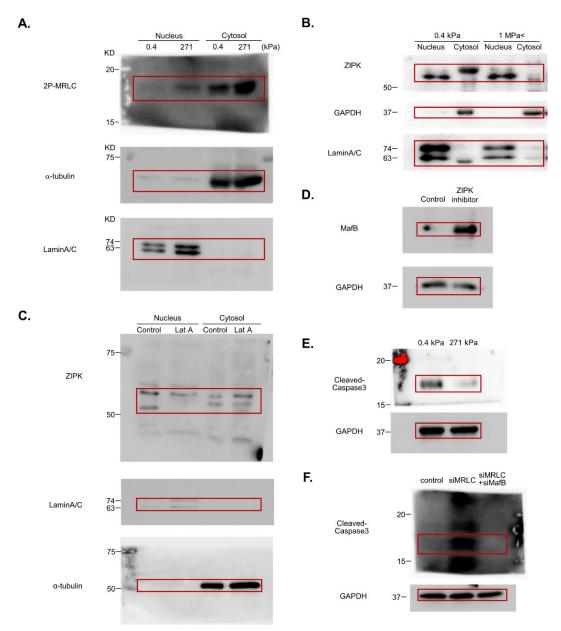


HOKKAIDO UNIVERSITY

Title	Substrate stiffness induces nuclear localization of myosin regulatory light chain to suppress apoptosis
Author(s)	Onishi, Katsuya; Ishihara, Seiichiro; Takahashi, Masayuki; Sakai, Akihiro; Enomoto, Atsushi; Suzuki, Kentaro; Haga, Hisashi
Citation	FEBS Letters, 597(5), 643-656 https://doi.org/10.1002/1873-3468.14592
Issue Date	2023-03-13
Doc URL	http://hdl.handle.net/2115/91296
Rights	This is the peer reviewed version of the following article: Onishi, K., Ishihara, S., Takahashi, M., Sakai, A., Enomoto, A., Suzuki, K. and Haga, H. (2023), Substrate stiffness induces nuclear localization of myosin regulatory light chain to suppress apoptosis. FEBS Lett, 597: 643-656., which has been published in final form at Link to final article using the https://doi.org/10.1002/1873-3468.14592. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley 's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Supplemental_data_revise-230128.pdf



Supplementary Material/Supporting Information

Fig. S1 | Representative force-indentation curves including the fit of the Hertzian model obtained by atomic force microscopy.

The curves for 0.4, 1.2, 2.3, 25, 61, 83, 134, and 271 kPa polyacrylamide gels are shown. Light blue: extended curve; dark blue: retract curve; green: fit curve of the Hertzian model.

Fig. S2 | Blot transparency

(A–F) Full unedited blots for Fig. 1E (A), Fig. 2E (B), Fig. 3E (C), Fig. 4E (D), Fig. 5B (E), and Fig. 5D (F).

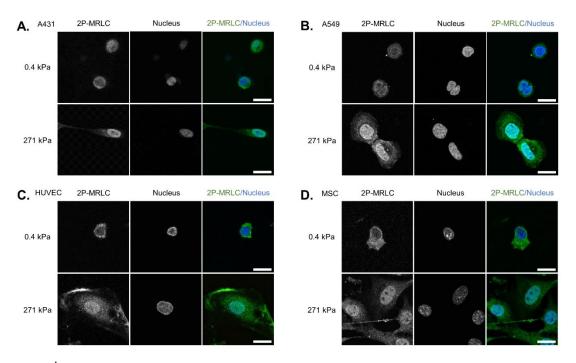
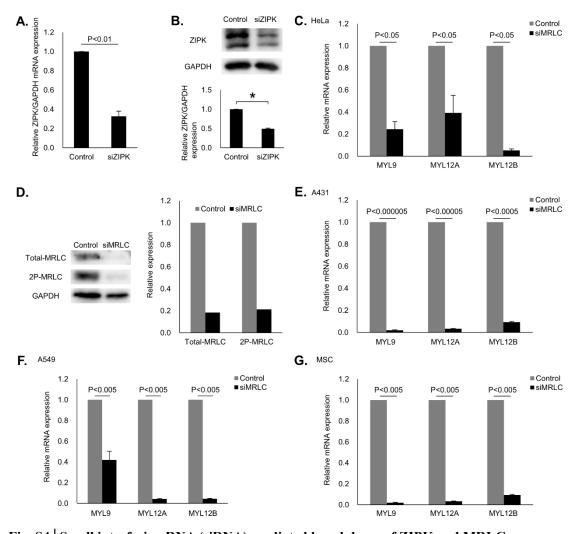
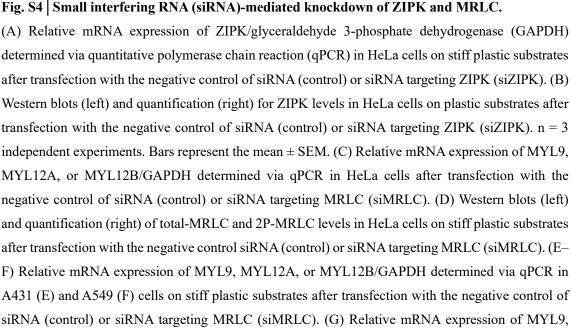
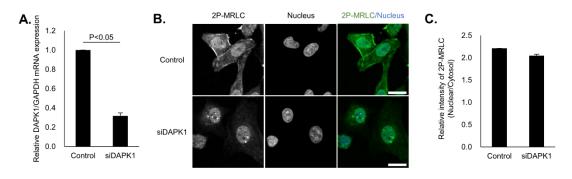





Fig. S3 | Stiff substrates promote the nuclear localization of 2P-MRLC in various cells.
(A–C) Representative immunofluorescent images of 2P-MRLC and nucleus in A431 cells (A), A549 cells (B), human umbilical vein endothelial cells (HUVECs) (C), and mesenchymal stem cells (MSCs)
(D) on soft (0.4 kPa) or stiff (271 kPa) polyacrylamide hydrogel substrates. Scale bars are 20 μm.

MYL12A, or MYL12B/s18 determined via qPCR in MSCs on stiff plastic substrates after transfection with the negative control of siRNA (Control) or siRNA targeting MRLC (siMRLC). n = 3 experiments except (B) and (D). n = 1 experiment in (B) and (D). Bars represent the mean \pm standard error of the mean (SEM). Statistical significance determined using an Welch's *t*-test except (B). *Statistical significance was determined with a 95% confidence interval in (B).

(A) Relative mRNA expression of DAPK1/GAPDH determined via qPCR in HeLa cells on stiff glass substrates coated with collagen-I after transfection with the negative control of siRNA (control) or siRNA targeting DAPK1 (siDAPK1). n = 3 experiments. Statistical significance determined using an unpaired *t*-test. Bars represent the mean \pm SEM. (B) Representative immunofluorescent images of 2P-MRLC and nucleus in HeLa cells on stiff glass substrates coated with collagen-I after transfection with the negative control of siRNA (control) or siRNA targeting DAPK1 (siDAPK1). (C) Quantification of the fluorescent intensity of 2P-MRLC in the nucleus relative to the cytosol from (B). n = at least 40 cells in two independent experiments. Scale bars are 20 µm. Bars represent the mean \pm SEM.

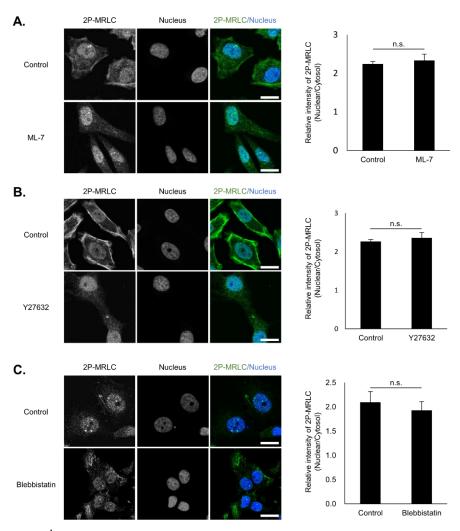
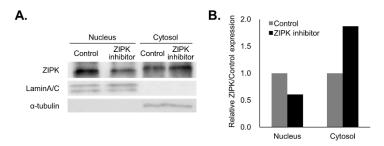



Fig. S6 | Myosin light-chain kinase (MLCK), Rho-associated protein kinase (ROCK), or myosin-II activity does not affect the nuclear localization of 2P-MRLC.

(A–C) Representative immunofluorescent images of 2P-MRLC and nucleus (left) and quantification of the fluorescent intensity of 2P-MRLC in the nucleus relative to that in the cytosol (right) in HeLa cells on stiff glass substrates coated with collagen-I after treatment with or without ML-7 (A), Y27632 (B), and blebbistatin (C). Scale bars are 20 μ m. n = at least 60 cells in three independent experiments. Bars represent the mean \pm SEM. Statistical significance determined using an unpaired *t*-test. n.s., not significant.

(A) Representative western blots of the nuclear and cytosolic extracts of HeLa cells on stiff plastic (>1MPa) substrates coated with collagen-I after treatment with DMSO (control) or ZIPK inhibitor using anti-ZIPK, anti- α -tubulin, and anti-LaminA/C antibodies. (B) Relative ZIPK expression of (A). Ratio of ZIPK to internal control is shown. LaminA/C and α -tubulin were used as the internal controls for nuclear and cytosolic extracts, respectively. n = 1 experiment.

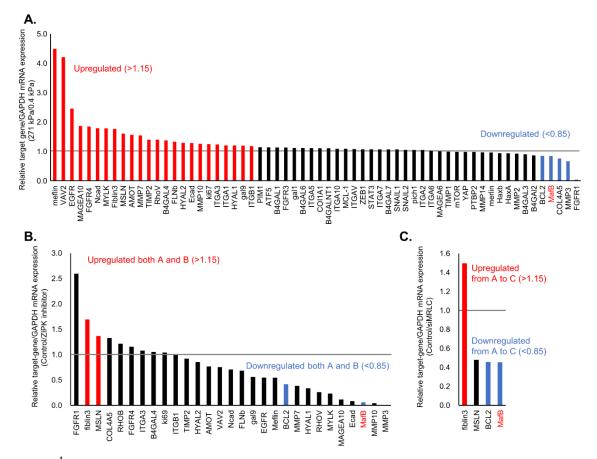
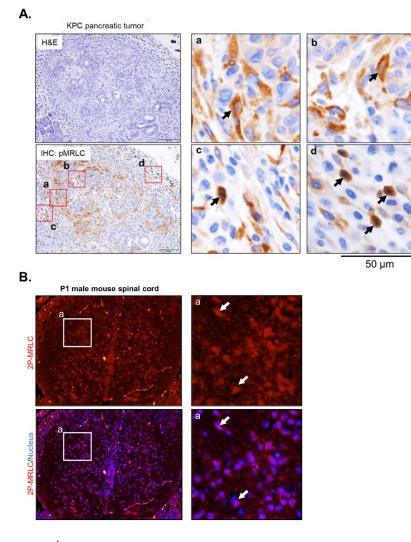
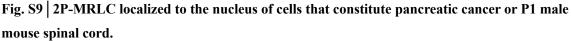




Fig S8 First screening to determine the genes whose expression is regulated by nuclear 2P-MRLC.

(A–C) Relative mRNA expression of the target-gene/GAPDH in HeLa cells on stiff (271 kPa) relative to soft (0.4 kPa) polyacrylamide hydrogel substrates (A), on stiff plastic substrates after treatment with dimethyl sulfoxide (DMSO) (control) relative to ZIPK inhibitor (B), and on stiff plastic substrates after transfection with the negative control of siRNA (Control) relative to siRNA targeting MRLC (siMRLC) (C). n = 1 experiment.

(A) Tissue sections from pancreatic cancer developed in the KPC model were stained with hematoxylin and eosin (H&E, left upper panel) and 2P-MRLC (left lower panel). Boxed regions (a–d) were magnified in adjacent panels. Arrows indicate the cells in which weak to moderate nuclear 2P-MRLC signals were observed. (B) Immunohistochemical staining image of 2P-MRLC in P1 male mouse spinal cord. Arrows indicate the cells in which nuclear 2P-MRLC signals were observed.

	0.4 kF	^o a polyacrylam	idogel		271 k	Pa polyacrylam	idogel			
	Youn	ig's modurus (Pa)		Your	ig's modurus (Pa)			
	observation1				observation1 observation2 observat					
1	671	267	502	1	231268	329984	251283			
2	580	268	529	2		221447	289208			
3	611	263	439	3		252433	251263			
5	574 633	268 276	438 382	4		271227 269021	308161 256243			
6	601	285	461	6		205329	259916			
7	616	268		7	300420	263960	269490			
8	639	267		8		258155	267851			
9	642	293		9		267966	265150			
10	595	252		10	290666	240917	263252			
11	676	290		11	278668	259150	272202			
12	628	262		12	263981	254876	301057			
13		261		13 14	344578 299499	255106 263214	217952 225290			
14				14		289055	263075			
16				16		333266	306067			
17	\			17	274488	251046	286385			
18	\			18		216469	296650			
19	\			19		260815	259507			
20				20	293726	268294	293050			
21				21	280136	281202	256357			
22 23	\			22 23	318173	260041	246022			
23	\			23	324545 285231	304266 302475	338419 282265			
25	\			25		293541	274546			
26	\			26		246878	276934			
27	\			27	295780	286564	330781			
28				28	276019	256352	293625			
29	\			29		296078	197557			
30	\			30	310409	262328	204092			
31	\			31	270763	288534	270601			
32	1	\		32 33	309633 317040	273034 322436	249181 268061			
33		\		34	285053	323938	276660			
35				35	289968	283203	281837			
36				36		250771	298086			
37				37	243319	287612	297591			
38				38	268620	284160	194276			
39		\		39		278212	238683			
40		\		40	264054	303136	255428			
41		\		41	223098	291964	259199			
42		\		42	268468 258314	309408 260997	272817 241105			
43		\		43	264616	266839	229824			
45		\		45	233456	294010	286258			
46		\		46		333687	276079			
47		\		47	292256	360067	253108			
48		/	١	48	252526	273204	230880			
49			\	49		263494	251904			
50			\	50	260820	275072	283750			
51 52			\	51 52	247566 297129	313501 261915	206712 310177			
53			\	52	248867	201915	257946			
54			\	54	231170	257436	290873			
55			\	55		289533	240142			
56			\	56	260453	250910	261035			
57			\	57	286254	284574	277182			
58			\	58	275389	293892	245182			
59			\	59	262303	272803	258451			
60			\	60	258893	217460 254262	217080			
61 62			\	61	256847 265750		266810 251651			
63			\	62 63	265750	260326 267226	257680			
64			\	64	275701	244815	250931			
Average	622	271	458		275134	274869	264232			
Average of 3										
observation		450				271412				
							6219			

		1.2 kPa polyacrylamidogel				2.3 kPa polyacrylamidogel				25 kPa polyacrylamidogel			
		Young's modurus (Pa)				Young's modurus (Pa)				Young's modurus (Pa)			
		observatio n1	observatio n2	observatio n3		observatio n1	observatio n2	observatio n3		observatio n1	observatio n2	observatio n3	
	1	1266	1234	1192	1	2304	2082	2379	1	25094	25790	25694	
	2	1255	1197	1262	2	2371	2113	2367	2	24265	25694	25780	
	3	1232	1209	1178	3	2309	2058	2303	3	26727	24413	25336	
	4	1238	1246	1146	4	2126	2234	2326	4	24451	22356	26751	
	5	1252	1189	1287	5	2316	2000	2338	5	23537	25836	28074	
	6	1259	1209	1244	6	2445	2069	2297	6	26805	25553	28644	
	7	1226	1235	1193	7	2457	2065	2331	7	23967	24598	26793	
	8	1230	1316	1173	8	2249	2135	2492	8	20526	24812	26656	
	9	1271	1197	1225	9	2441	2169	2255	9	21915	27189	26405	
	10	1252	1200	1364	10	2436	2207	2308	10	24157	26491	27750	
	11	1232	1213	1192	11	2349	2291	2527	11	30813	26764	25865	
	12	1220	1330	1162	12	2339	2264	2661	12	19602	26442	26431	
	13	1270	1187	1183	13	2480	2263	2218	13	20440	26713		
	14	1291	1168	1172	14	2466	2342	2461	14	24372	25758		
	15	1229	1206	1161	15	2407	2456	2722	15				
	16	1223	1308	1169	16	2386	2436	2749	16				
Average		1247	1228	1206		2368	2199	2421		24048	25601	26682	
Average of 3 observation			1227			2329				25443			
Standard deviation		20				116				1324			

		61 kPa	polyacryla	midogel		83 kPa	polyacryla	midogel		134 kPa	polyacryla	imidogel
		Young	's modurus	(Pa)	1	Young	's modurus	(Pa)		Young	s modurus	(Pa)
		observatio	observatio	observatio	1	observatio	observatio	observatio		observatio	observatio	observatio
		n1	n2	n3		n1	n2	n3		n1	n2	n3
	1	63703	65464	64909	1	81832	73843	92066	1	131155	132182	140372
	2	65595	63892	57912	2	80386	79391	86330	2	123964	130869	147846
	3	64058	64034	65021	3	74731	73572	87568	3	146293	120081	157140
	4	59764	64810	65878	4	77431	80661	97728	4	137199	119565	160753
	5	65333	66265	58240	5	87489	74037	101888	5	129129	126708	131741
	6	65418	60514	68843	6	80980	79988	90742	6	129219	127388	133748
	7	65263	59134	64795	7	77926	77039	92846	7	156365	116083	159137
	8	64025	59205	62578	8	75694	80669	88877	8	161540	125827	158791
	9	60762	62197	54550	9	78797	79132	85110	9	122408	126776	120077
	10	64036	55074	62253	10	83778	80554	94486	10	142108	113690	141171
	11	66027	51914	60611	11	77360	77020	90142	11	129076	112099	148232
	12	66184	59004	57587	12	80227	79920	96050	12	180155	124953	137112
	13	55796	62633	52431	13	80362	73431	98399	13	127245	111028	117866
	14	58050	55639	59007	14	83463	78854	85601	14	130763	136657	131320
	15	61625	48124	57789	15	75671	75847	82417	15	124935	134832	131608
	16	62107	61101	63795	16	81659	79945	87510	16	138476	123216	134432
Average		62984	59938	61012		79862	77744	91110		138127	123872	140709
Average of 3 observation			61311				82905				134236	
Standard			1545				7184				9068	

Table S1 | Surface stiffness of polyacrylamide gels.

The surface stiffness of polyacrylamide gels was measured using atomic force microscopy (AFM). A maximum of 64 spots (271 kPa) or 16 spots (0.4, 1.2, 2.3, 25, 61, 83 and 134 kPa) were measured in a $1-\mu m^2$ range per observation. Spots that could not be measured were excluded.

qPCR Primers										
Target Genes	haat	Sequences (5' to 3')								
	host	Forward	Reverse							
GAPDH	human	TCCTGTTCGACAGTCAGCCGC	TGACCAGGCGCCCAATACGAC							
MYL9	human	ACCCACCAGAAGCCAAGATGTC	GGACTGGTCAAACATTGCGAAGAC							
MYL12A	human	GCCGGGACTTAACCACCAC	GTTGGATTCTTCCCCAATGAAGC							
MYL12B	human	TGCCATGATGAATGAGGCCC	TCCTGAATGGTGCCTGTTGC							
DAPK1	human	GCTGCAAATGATCCCACGTC	ACCGAAGGCTATGGGTTCTTC							
ZIPK	human	TCTTCGAGAACAAGAC	CAGCATGATGTTTTCC							
MafB	human	ACCAGCTCGTGTCCATGTC	CTGCTGGACGCGTTTATACC							
s18	mouse	ACTTTTGGGCCTTCGTGTC	GCAAAGGCCCAGAGACTCAT							
MafB	mouse	AGGTATAAACGCGTCCAGCAG	TGGCGAGTTTCTCGCACTTG							
MYL9	mouse	TTTGGGGAGAAGCTGAACGG	TCCTCGTGGATGAAGCCTGAG							
MYL12A	mouse	ACTGCGGAGTCTGGAAAGTTAG	TGGCGGTTAAATCCCTGCTC							
MYL12B	mouse	TCTGGGGAAGAATCCCACTGATGC	TAATCCTCCTGGATGGTGCCTGTG							

 Table S2 | Primers for real-time quantitative polymerase chain reaction (qPCR) analysis.