

Title	Associations of COVID-19 symptoms with omicron subvariants BA.2 and BA.5, host status, and clinical outcomes in Japan: a registry-based observational study
Author(s)	Nakakubo, Sho; Kishida, Naoki; Okuda, Kenichi; Kamada, Keisuke; Iwama, Masami; Suzuki, Masaru; Yokota, Isao; Ito, Yoichi M.; Nasuhara, Yasuyuki; Boucher, Richard C.; Konno, Satoshi
Citation	Lancet Infectious Diseases, 23(11), 1244-1256 https://doi.org/10.1016/S1473-3099(23)00271-2
Issue Date	2023-11
Doc URL	http://hdl.handle.net/2115/91341
Rights	© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	Lancet Infect Dis 23(11) 1244-256.pdf

1 Article

2	Associations of COVID-19 symptoms with omicron subvariants BA.2 and BA.5, host status, and
3	clinical outcomes in Japan: a registry-based observational study
4	
5	Sho Nakakubo ^{1*#} , M.D.; Naoki Kishida ^{2*} , Ph.D.; Kenichi Okuda ^{3*} , M.D.; Keisuke Kamada ^{1,4,5} , M.D.;
6	Masami Iwama ⁶ ; Masaru Suzuki ¹ , M.D.; Isao Yokota ⁷ , Ph.D.; Prof. Yoichi M. Ito ⁸ , Ph.D.; Prof.
7	Yasuyuki Nasuhara9, M.D.; Prof. Richard C. Boucher3, M.D.; Prof. Satoshi Konno ^{1,10} , M.D.
8	¹ Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
9	² Emergency Management Bureau, City of Sapporo, Sapporo, Japan
10	³ Marsico Lung Institute/Cystic Fibrosis Research Center, University of North Carolina at Chapel Hill,
11	Chapel Hill, NC, United States
12	⁴ Department of Mycobacterium Reference and Research, The Research Institute of Tuberculosis,
13	Japan Anti-Tuberculosis Association, Tokyo, Japan
14	⁵ Department of Epidemiology and Clinical Research, The Research Institute of Tuberculosis, Japan
15	Anti-Tuberculosis Association, Tokyo, Japan
16	⁶ Management Section, Medical Management Office, Health and Welfare Bureau, City of Sapporo,
17	Sapporo, Japan
18	⁷ Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
19	⁸ Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care,

20	Hokkaido	University	Hospital,	Sapporo,	Japan
----	----------	------------	-----------	----------	-------

- ⁹ Division of Hospital Safety Management, Hokkaido University Hospital, Sapporo, Japan
- ¹⁰ Hokkaido University, Institute for Vaccine Research and Development
- 23 (*These authors equally contributed to the work)
- 24
- 25 [#]Corresponding author:
- 26 Sho Nakakubo, M.D.
- 27 Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University
- 28 North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
- 29 E-mail: shonakakubo@pop.med.hokudai.ac.jp
- 30 Tel: +81-11-706-5911
- 31
- 32 Word count: 3481 words
- 33

34 Abstract

Background: Previous SARS-CoV-2 infection and vaccination, coupled to rapid evolution of SARS-35 CoV-2 variants, have modified COVID-19 clinical manifestations. We characterized the clinical 36 symptoms of COVID-19 individuals in omicron BA.2 and BA.5 Japanese pandemic periods to identify 37 38 omicron and subvariant associations between symptoms, immune status, and clinical outcomes. 39 Methods: Individuals registered in Sapporo's web-based COVID-19 information system entered 12 pre-selected symptoms, days since symptom onset, vaccination history, SARS-CoV-2 infection history, 40 41 and background. Symptom prevalence, variables associated with symptoms, and symptoms associated 42 with progression to severe disease were analysed. 43 Findings: For 157 861 omicron-infected symptomatic individuals, cough was the most common 44 symptom (99 032/62.7%), followed by sore throat (95 838/60.7%), nasal discharge (69 968/44.3%), 45 and fever (61 218/38.8%). Omicron BA.5 infection was associated with a higher systemic symptom prevalence than BA.2 in vaccinated and unvaccinated individuals (adjusted odds ratio for fever: 2.18 46 [95% CI 2.12 - 2.25]). Omicron breakthrough-infected individuals with \geq 3 vaccinations or previous 47 infection were less likely to exhibit systemic symptoms (fever: 0.50 [0.49-0.51]), but more likely to 48 49 exhibit upper respiratory symptoms (sore throat: 1.33 [1.29-1.36], nasal discharge: 1.84 [1.80-1.89]]. 50 Infected elderly individuals had lower odds for all symptoms. However, when symptoms were manifest, 51 systemic symptoms were associated with an increased odds (dyspnea: 3.01 [1.84-4.91], fever: 2.93 52 [1.89-4.52]), whereas upper respiratory symptoms with a decreased odds (sore throat: 0.38 [0.24-0.63],

53 nasal discharge: 0.48 [0.28-0.81]), for severe disease.

54	Interpretation: Host immunological status, omicron subvariant, and age were associated with a
55	spectrum of COVID-19 symptoms and outcomes. BA.5 produced a higher systemic symptom
56	prevalence than BA.2. Vaccination and prior infection reduced systemic symptom prevalence and
57	improved outcomes but increased upper respiratory tract symptom prevalence. Systemic, but not upper
58	respiratory, symptoms in the elderly heralded severe disease. Our findings may serve as a practical
59	guide to utilize COVID-19 symptoms to appropriately modify healthcare strategies and predict clinical
60	outcomes for elderly patients with omicron infections.
61	Funding: Japan Agency for Medical Research and Development.
62	
63	Keywords: COVID-19, omicron subvariant, vaccination, upper respiratory symptoms, older age.

66 **Research in context**

Evidence before this study: COVID-19 clinical symptoms and disease severity have evolved over 67 the COVID-19 pandemic as host immunity has become more widespread through vaccination and 68 natural infection and the transition to mutant strains. Data linking patient clinical presentations to viral, 69 70 host factor, and disease outcomes must be continuously updated to guide healthcare responses to 71 successive SARS-CoV-2 mutant strains. We searched PubMed up to November 2022, using terms ("COVID-19" or "SARS-CoV-2") AND "symptom" AND ("vaccination" or "natural infection" or 72 73 "age") AND "omicron". Multiple studies of the original Wuhan strain have described associations between COVID-19 symptoms and viral loads, vaccination status, and clinical outcomes. To the best 74 of our knowledge, the most up-to-date report relating COVID-19 symptoms and outcomes with SARS-75 76 CoV-2 mutant strains focused on delta vs. the original dominant omicron strain BA.1. This United 77 Kingdom self-reporting prospective observational study of 63 002 individuals infected with SARS-CoV-2 delta or omicron described a shorter symptom interval and a lower risk of hospitalization with 78 the omicron vs. delta variant. Another prospective cohort study of 1119 United States essential and 79 80 frontline workers with SARS-CoV-2 delta or omicron infections reported similar findings but also an 81 unexplained increase in total symptom burden in individuals with breakthrough infections for the omicron variant after vaccination (\geq three doses). Notably, no large-scale epidemiological studies 82 83 describing the relative COVID-19 symptoms and outcomes in the newer BA.2 and BA.5 omicron subvariants, nor relationships to host immune status, are available despite the widespread prevalence 84

85 of these variants.

Added value of this study: Using a highly integrated large-scale web-based healthcare registry system 86 in Sapporo, Japan, we enrolled 157 861 individuals with symptomatic COVID-19 BA.2 and BA.5 87 omicron infections into this study. We report comprehensive and updated data describing BA.2 vs BA.5 88 clinical manifestations, linked to individual background, vaccination status, history of previous SARS-89 90 CoV-2 infection, and clinical outcomes. The large study population, the focus on COVID-19 clinical 91 symptoms, and recent period (from April 25, 2022 to September 25, 2022) for data acquisition, allowed 92 us to: 1) compare the relative symptom prevalence for BA.2 vs. BA.5 infections; and 2) identify novel 93 associations between mutant omicron strains, specific symptoms, host immune status, as modified by 94 vaccination or previous infection, and clinical outcomes. 95 Implications of all the available evidence: We found that individuals infected with BA.5 exhibited a 96 higher risk for systemic symptoms than BA.2, independent of host factors, including vaccination status. 97 Individuals infected with BA.2 or BA.5, who were vaccinated with \geq three doses or had a history of previous infection, were less likely to develop systemic symptoms, but more likely to develop upper 98 99 respiratory symptoms, than unvaccinated, vaccinated with \leq two doses, or previously uninfected 100 individuals. Our study also found that older individuals were less likely to develop clinical symptoms 101 with omicron infection. However, when symptoms were manifest, systemic symptoms were associated 102 with an increased risk, whereas upper respiratory symptoms were associated with a decreased risk, of 103 severe disease. In summary, our study provides the most up-to-date characterization of clinical

104	manifestations of COVID-19 in the omicron BA.2 and BA.5 pandemic periods. Our findings may
105	serve as a practical guide to utilize COVID-19 symptoms to broadly modify healthcare strategies and
106	predict clinical outcomes for elderly patients with omicron infections. Continuous updates for our
107	observations are needed as newer SARS-CoV-2 variants emerge.

110 Introduction

111 The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory 112 syndrome 2 (SARS-CoV-2), has caused more than 759 million infections worldwide¹. Since early in 113 the pandemic, multifaceted host factors, e.g., age and underlying disease, have been reported to impact the clinical course of individuals infected with SARS-CoV-2²⁻⁵. Associated with the widespread 114 implementation of SARS-CoV-2 vaccines and previous infections, the severity and mortality rates of 115 the COVID-19 syndrome have decreased⁵⁻⁷. The emergence of mutant strains likely has also modified 116 the clinical manifestations of COVID-19^{8,9}. A challenge for healthcare providers/public health officials 117 is appropriately advising individuals with breakthrough infections and implementing healthcare 118 strategies in the current omicron pandemic period¹⁰⁻¹². 119

120 Patient clinical symptoms are the most accessible information describing the status of 121 individuals with infections in healthcare settings. However, data linking patient manifestations to viral, 122 host factor, and clinical outcomes must be continuously updated to maximize their utility and guide appropriate healthcare strategies^{13,14}. Studies designed to compare the symptoms of alpha vs. delta 123 SARS-CoV-2 variants with those of the original Wuhan strain¹⁵, and the original omicron variant 124 compared to the delta variant, helped guide healthcare strategies⁸. However, no large-scale 125 126 epidemiological studies describing COVID-19 symptoms and outcomes as a function of host factors across newer omicron subvariants are available. 127

128 Sapporo, a Japanese metropolitan city with 2 million people, launched a registration system

129	to automate the acquisition of self-entered personal information from individuals with COVID-19.
130	This unique system, in which individuals enter their current status via the internet, enables the
131	collection of timely data describing COVID-19 symptoms that can be linked to databases representing
132	individuals' backgrounds, vaccination and previous SARS-CoV-2 infection status, and severity
133	outcomes. Our objective was to update the characterization of COVID-19 clinical symptoms during
134	the omicron BA.2-BA.5 variant pandemic period and identify associations between clinical symptoms,
135	host factors, immune status, and clinical outcomes relevant to the patient and healthcare communities.
136	
137	Methods
138	Study population and data sources
139	This registry-based observational study was based on the Sapporo population. Data from
140	treatment decision sites (TDS) and registration centres for test-positive patients (RCPP) were utilized
141	for analyses (Fig. S1). Individuals residing in Sapporo were eligible to register for TDS and RCPP if
142	they met the following criteria: 1) symptomatic individuals who tested positive for SARS-CoV-2
143	(polymerase chain reaction or antigen test); 2) individuals who were not tested for SARS-CoV-2 but
144	developed new symptoms after a household member tested positive for SARS-CoV-2. Those
145	diagnosed with COVID-19 were requested to immediately register clinical information with the TDS
146	through a web device, including the presence/absence of 12 preselected specific symptoms at the time
147	of registration and the date of symptom onset. Details of the two registration systems are given in Fig.

S1 and **Supplementary methods**.

149	Individuals were excluded from the study if they: (1) entered the date of onset inappropriately,
150	(2) registered > 5 days after symptom onset, or (3) registered as asymptomatic. Detailed inclusion and
151	exclusion criteria and the treatment of missing values are described in Supplementary methods.
152	
153	Data collected
154	Data from the TDS and the RCPP are integrated and stored at the Sapporo City Public Health
155	Center. The following data were extracted from these systems: 1) date of first symptom onset; 2)
156	dietary intake; 3) presence of 12 predefined symptoms (fever, cough, sore throat, nasal discharge,
157	sputum, headache, joint or muscle pain, severe fatigue, dyspnoea, diarrhoea, and taste or smell
158	disorder) at registration; and 4) demographic information (age, sex, height, weight, and underlying
159	disease). Data describing previous SARS-CoV-2 infection and progression to severe disease, i.e.,
160	requiring oxygenation or mechanical ventilation, or death, were collected from the Health Center Real-
161	time Information-sharing System for COVID-19 operated by the Ministry of Health, Labor, and
162	Welfare, as well as data linked to patient information in the TDS and RCPP. Vaccination history,
163	including the timelines of vaccination, was accessed from the Vaccination Record System operated by
164	the Japan Government Digital Agency (Fig. S1).
165	

166 Characterization of SARS-CoV-2 omicron subvariants

167	Whole genome analyses were performed at the Sapporo City Institute of Public Health to
168	identify SARS-CoV-2 variants prevalent in Sapporo. Randomly collected specimens with positive
169	SARS-CoV-2 test results were analysed for approximately 50-80 cases per week and the proportions
170	of omicron subvariants calculated. In this study, omicron subvariant epidemic periods were defined as
171	when the percentage of the most predominant subvariants exceeded 80%.

173 Statistical analysis

174 Continuous data were presented as medians (interquartile range [IQR]) and categorical data were presented as numbers and percentages. A 95% confidence interval (CI) for symptom prevalence, 175 odds ratio (OR) and hazard ratio (HR) was calculated by the score method and Wald test, respectively. 176 177 Multivariable analyses were performed to identify factors associated with the prevalence of each 178 symptom and to test the association between each symptom and progression to severe disease. All 179 available variables from the registry system that have been reported as predictors of COVID-19 outcomes were incorporated^{3,8,16}. Vaccination status was divided into two groups with more vs. less 180 than three vaccinations as the boundary, a number clinically relevant to omicron variants¹⁷⁻¹⁹. 181 Propensity score matching was performed using a 1:1 nearest available matching algorithm without 182 183 replacement and a caliper of 0.05. The propensity score for each variable was calculated by logistic regression analysis with the variables. Absolute value of standardized difference greater than 0.1 was 184 considered as a sign of imbalance. All statistical analyses were performed using JMP[®] Pro Version 185

186	16.2.0 and SAS [®] Version 9.4 (SAS Institute Inc., Cary, NC, USA). The detailed statistical methods for
187	the results presented in the figures or tables are described in Supplementary methods.
188	
189	Role of the funding source
190	The funders of the study had no role in study design, data collection, data analysis, data interpretation,
191	or writing of the report.
192	
193	Results
194	Study population
195	Data collected from the TDS and RCPP systems were analysed between April 25, 2022, and
196	September 25, 2022. The epidemic period for the omicron subvariant BA.2 spanned April 25 to June
197	26, and that for BA.5 spanned July 18 to September 25 (Fig. 1). After individuals who met the
198	exclusion criteria were excluded (< 5.6%), a total of 157 861 symptomatic COVID-19 cases (34 336
199	and 123 525 for the BA.2 and BA.5 groups, respectively) were analysed (Fig. 1).
200	The median age of all individuals included in the study was 33 years (IQR 17-47) (Table 1).
201	The most prevalent age group was the 30-year-old group (27 665 individuals [17.6%]). Those aged
202	\geq 65 years accounted for 10 874 (6.9%) of the total. Forty-eight percent were men, and the median
203	BMI was 21.1 kg/m ² (IQR 18.6–24.0). The proportion of individuals with an underlying disease was
204	highest for hypertension (8781 [5.6%]), followed by chronic respiratory (5652 [3.6%]) and

205	cardiovascular diseases (1620 [1.0%]). SARS-CoV-2 vaccination status of the cohort was: 60 033
206	(38.0%) unvaccinated, 1052 (0.7%) one dose, 38 304 (24.3%) two doses, 53 389 (33.8%) three doses,
207	and 5083 (3.2%) four doses. The vast majority (99.3%) of vaccinations administered were mRNA
208	vaccines (BNT162b2 or mRNA-1273) (Table S1). Additionally, 5767 individuals (3.7%) had a history
209	of previous SARS-CoV-2 infection.
210	Coughing was the most prevalent symptom per individual (99 032 [62.7%]), followed by sore
211	throat (95 838 [60.7%]), nasal discharge (69 968 [44.3%]), headache (66 425 [42.1%]), and fever (61
212	218 [38.8%]) (Fig. 2A, Table S2). Mild positive correlations were observed amongst systemic or upper
213	airway symptoms whereas no correlation was observed between systemic and upper airway symptoms
214	(Fig. S2). A total of 142 (0.1%) individuals developed severe disease (31 [0.02%] for individuals
215	younger than 65 years of age and 111 [1.01%] for those 65 years of age or older), including four
216	individuals who died within 30 days after onset (Table 1).
217	
218	Clinical manifestations of individuals infected with omicron BA.2 or BA.5
219	The clinical features of symptomatic individuals with BA.2 vs. BA.5 infections were

compared (**Table 1**). The BA.2 group had a lower median age, BMI, history of cerebrovascular disease, and a higher proportion of unvaccinated and ≤ 2 dose-vaccinated individuals. The BA.5 group exhibited higher proportions of other comorbidities, e.g., malignancy, immunodeficiency, cardiovascular disease, hypertension, and diabetes, previous SARS-CoV-2 infection, and contained all 224 individuals with a fourth vaccine dose.

241

225	All 12 predefined symptoms, except for nasal discharge and phlegm, were more prevalent in
226	the BA.5 vs. BA.2 populations (Fig. 2A, Table S2), findings that were replicated in the unvaccinated
227	BA.5 vs. BA.2 subgroups (Fig. S3, Table S3). Multivariable logistic regression analyses of the BA.5
228	and BA.2 population data identified associations that predicted an increased odds for BA.5-infected
229	populations of fever (adjusted OR [95% CI]: 2.18 [2.12-2.25]), decreased food intake (1.80 [1.75-
230	1.86]), severe fatigue (1.64 [1.59-1.69]), joint or muscle pain, smell or taste disorders, headache,
231	dyspnoea, diarrhoea, and sore throat, juxtaposed to a decreased odds of nasal discharge and phlegm
232	(Fig. 2B, Table S4). Logistic regression analysis demonstrated comparable odds for progression to
233	severe disease between the two subvariant groups (Table S5).
233 234	severe disease between the two subvariant groups (Table S5) . As a sensitivity analysis, we performed propensity score matching on backgrounds between
234	As a sensitivity analysis, we performed propensity score matching on backgrounds between
234 235	As a sensitivity analysis, we performed propensity score matching on backgrounds between BA.2 and BA.5-infected individuals, including the duration from last vaccination date to symptom
234 235 236	As a sensitivity analysis, we performed propensity score matching on backgrounds between BA.2 and BA.5-infected individuals, including the duration from last vaccination date to symptom development. For this matched analysis, we focused on unvaccinated, two-dose, and three-dose
234 235 236 237	As a sensitivity analysis, we performed propensity score matching on backgrounds between BA.2 and BA.5-infected individuals, including the duration from last vaccination date to symptom development. For this matched analysis, we focused on unvaccinated, two-dose, and three-dose vaccinated and included BA.2 or BA.5-infected individuals who registered COVID-19 symptoms in

proportion in the BA.5 vs. BA.2 groups of systemic (fever: 2606 [64.1%] vs. 2040 [50.2%], decreased

food intake: 1533 [37.7%] vs. 1219 [30%]) vs. a lower proportion of upper airway (nasal discharge:

247	three-dose vaccinated individuals with BA.2 vs. BA.5 infection (Fig. S4, Table S6).
246	These findings were similarly observed in matched subgroup analyses of unvaccinated, two-dose, or
245	symptoms with BA.5 vs. BA.2 (Fig. 2C), consistent with data observed in the unmatched analysis.
244	ratios for each symptom demonstrated specific associations between higher odds for systemic
243	1372 [33.8%] vs. 1571 (38.7%), Phlegm: 905 [22.3%] vs. 1088 [26.8%]) symptoms (Table 2). Odds

249 Associations between vaccine status and COVID-19 symptoms

250 Individuals were divided into two subgroups to determine the effects of the modification of 251 host immune status by vaccination on the prevalence of COVID-19 symptoms. The group with ≥ 3 252 vaccinations exhibited breakthrough infections with a lower proportion of fever, decreased food intake, 253 severe fatigue, joint or muscle pain, and diarrhoea than the group with ≤ 2 vaccinations (Fig. S5A, 254 Table S2). In contrast, cough, sore throat, nasal discharge, and phlegm were more common with 255 breakthrough infections in the ≥ 3 vaccination group. The relative frequencies of 12 preselected 256 omicron symptoms were calculated on each day after symptom onset (Table S7). Cox regression analyses, using the presence of symptoms as the occurrence of an event, revealed that the appearance 257 of coughing, sore throat, nasal discharge, and phlegm, but not systemic symptoms, was accelerated in 258 259 the \geq 3 vs. \leq 2 vaccination groups (Fig. S5B, Table S8).

260 Logistic regression analyses also demonstrated that individuals with breakthrough infections 261 after \geq 3 vaccinations had a decreased odds of systemic symptoms, including fever (0.50 [0.49–0.51]),

262	decreased food intake (0.39 [0.37-0.40]), severe fatigue (0.59 [0.58-0.61]), joint or muscle pain,
263	headache, diarrhoea, smell or taste disorders, and dyspnoea, as compared to individuals with ≤ 2
264	vaccinations (Fig. 3A, Table S4). In contrast, the likelihood of upper airway symptoms, including
265	nasal discharge (1.84 [1.80-1.89]), cough (1.49 [1.45-1.52]), sore throat (1.33 [1.29-1.36]), and
266	phlegm, were higher in individuals who received ≥ 3 vaccinations than those who received ≤ 2
267	vaccinations. These findings were replicated in a 1:1 matched analysis of individuals who registered
268	COVID-19 symptoms in the system on the same day as symptom onset (Figure 3B, Table S9).
269	In individuals with two or three vaccinations, we also analysed for associations between time
270	that passed since last vaccination and symptom prevalence, referenced to unvaccinated individuals.
271	Consistent with the logistic regression analyses in the unmatched population groups with ≥ 3 vs. ≤ 2
272	vaccinations, individuals with three vaccinations had lower odds of systemic symptoms (fever,
273	headache, severe fatigue, decreased food intake, and joint and muscle pain), but a higher odd of nasal
274	discharge, as compared to individuals with two vaccinations throughout the period since last
275	vaccination. For individuals with both two- and three-dose vaccinations, the ORs of systemic
276	symptoms increased, whereas the ORs of sore throat and nasal discharge decreased, over time since
277	last vaccination (Fig. 3C, Table S10). These data indicate that the effects of vaccine on reducing
278	systemic, but increasing upper respiratory, symptoms waned over time after last vaccination in
279	individuals with omicron breakthrough infection.

The study population was also divided into subgroups based on a history of previous SARS-

CoV-2 infection. The individuals with previous SARS-CoV-2 infection exhibited associations similar
to vaccination status, including a higher likelihood of upper respiratory symptoms and a lower
likelihood of systemic symptoms (Fig. S6, Table S2, S4, and S7).

284

285 Associations between COVID-19 symptoms and clinical outcomes in elderly individuals

The proportion of each symptom by age group was calculated (**Fig. 4A, Table S11**). Fever and decreased food intake were most prevalent in individuals under 10 years of age and decreased with age. Cough prevalence exhibited bimodal peaks in the 20s and 70s age groups. Other symptoms were most prevalent in individuals in their 20s and 30s, with proportions decreasing with increasing age throughout the 70s. Consistent with these data, multivariable analyses identified advanced age (\geq 65 years) as an independent factor associated with a lower likelihood of development of any of the 12 preselected symptoms than younger ages (**Fig. 4B, Table S12**).

Multivariable analyses also identified specific COVID-19 symptoms associated with adverse clinical outcomes in elderly individuals. Dyspnea, fever, decreased food intake, and severe fatigue were associated with an increased odds of severe disease (3.01 [1.84–4.91], 2.91 [1.89–4.51], 2.41 [1.55–3.74], and 1.93 [1.22–3.07], respectively) (**Fig. 4C, Table S5**). Indeed, the combination of these four symptoms was associated with progressively increasing odds of severe disease (adjusted OR [95% CI] for the number of symptoms 1–4, with none as a reference: 2.98 [1.73–5.14], 7.46 [4.15–13.41], 14.38 [7.14–28.98], and 40.72 [14.72–112.68], respectively) (**Table S13**). In contrast, sore throat and

300	nasal discharge were associated with a decreased odds of severe disease (0.39 [0.24–0.63] and 0.48
301	[0.28–0.82], respectively) (Fig. 4C, Table S5). The combination of these two upper airway symptoms
302	was associated with a decreased odds of severe disease (adjusted OR [95% CI] with no upper
303	respiratory symptom as a reference: 0.20 [0.09–0.46]) (Table S13).

305 **Discussion**

This registry-based self-entry COVID-19 symptom study was conducted over an interval 306 when two omicron subvariants were prevalent. Collectively, individuals with omicron infections 307 308 exhibited more commonly upper respiratory symptoms, e.g., cough, sore throat, and nasal discharge, than systemic symptoms (Fig. 2A). The clinical features of individuals with omicron breakthrough 309 310 infections differed from those in the early Wuhan strain-dominated pandemic period, which was 311 characterized by a higher prevalence of fever, cough, dyspnoea, and fatigue and a lower prevalence of upper airway symptoms²⁰⁻²². The pattern of a higher incidence of upper respiratory symptoms and a 312 313 lower incidence of systemic symptoms was replicated in unvaccinated individuals with omicron 314 infections (Fig. S3), suggesting that viral strain is a variable causing differences in clinical manifestations between individuals with the Wuhan strain vs. omicron infections. 315

The omicron subvariants themselves also differed in symptom prevalence. Although emerging later in the pandemic, BA.5 was associated with a higher prevalence of systemic symptoms than BA.2 (**Fig. 2B**). The increased BA.5 systemic symptom prevalence may reflect greater escape from humoral immunity as compared to $BA.2^{23,24}$ and, as indicated by differences in unvaccinated individuals, intrinsic strain differences (**Fig. S4, Table S6**). Notably, the risk of progression to severe disease did not significantly differ between BA.2 vs. BA.5 (**Table S5**).

322 Significant associations between vaccination status or previous COVID-19 infection and specific symptoms following omicron breakthrough infection were also identified. For example, a 323 reduced risk of systemic symptoms, including fever, fatigue, and headache, was observed in 324 individuals with omicron infections and ≥ 3 vaccinations or a history of previous infection. In contrast, 325 a strong correlation was observed between a history of ≥ 3 vaccinations or previous infection and 326 increased upper airway symptom prevalence (Fig. 3A/B, S5, and S6). Notably, it was shown that these 327 vaccine effects on COVID-19 clinical symptoms waned over time after vaccination (Fig. 3C). These 328 329 contrasting systemic vs. upper respiratory post-vaccination symptom manifestations may reflect: 1) 330 vaccine-mediated reductions in viral load, reduced cytokine release into the systemic circulation, and, hence, reduced systemic symptoms²⁵⁻²⁷, and 2) vaccine-mediated amplification of local host antiviral 331 responses to upper respiratory tract SARS-CoV-2 infection, the consequences being increased 332 symptom prevalence with earlier symptom peaks (Fig. S5B)^{28,29}. The increased prevalence of post-333 breakthrough upper respiratory symptoms after vaccinations likely accounts for the unexplained 334 increase in total symptom burden, but reduced systemic symptoms (fever and chills), recently reported 335 in a cohort of vaccinated United States Essential and Frontline workers after SARS-CoV-2 336 337 breakthrough infections²⁵.

338	We observed a decreasing prevalence of COVID-19 symptoms with age (Fig. 4B). These
339	findings are consistent with an earlier study showing that typical COVID-19 symptoms were less
340	commonly reported in adult groups with advanced age ^{30,31} . Importantly, if systemic symptoms were
341	present in the elderly (\geq 65-year-old group), strong associations with severe disease were observed
342	(Fig. 4C), consistent with reports of pre-vaccinated United States veterans ³ . Unexpectedly, our data
343	suggest that upper respiratory tract symptoms are associated with a reduced risk of severe disease in
344	the elderly.
345	The structure of this study of single-queried symptomatic individuals with COVID-19
346	infection is associated with limitations. First, asymptomatic individuals with COVID-19 were not
347	enrolled in the TDS or RCPP, and those who registered as asymptomatic were excluded from the study.
348	Accordingly, we were unable to capture all COVID-19 cases during the study period in the overall
349	Sapporo population. Our findings, therefore, are limited to symptomatic individuals with omicron
350	infection and do not describe how distinct omicron subvariants, age, vaccination, or previous infection
351	may have affected the prevalence of symptoms in the overall population. While practically challenging,
352	future studies may consider prospective COVID-19 screening of large cohorts to identify all incident
353	infections and characterize clinical symptoms. Second, there may have been differences in testing
354	behaviours of individuals in specific subgroups. For example, given the temporal difference between
355	the omicron subvariant BA.2 vs BA.5 pandemic periods, individual testing behaviours may have
356	differed between the two periods, a potential confounding factor in comparing symptom prevalence

357	between the two omicron subvariants. It is also possible that elderly individuals may have developed
358	more frequent testing behaviours as compared to younger individuals, which might have contributed
359	to our findings of lower symptom prevalence in elderly individuals. Third, while COVID-19 clinical
360	symptoms generally track the kinetics of SARS-CoV-2 infections, symptom information was collected
361	at a single time point upon registration in our study. Consequently, we were unable to provide
362	longitudinal data describing the evolution of COVID-19 symptoms over a single infection.
363	Several other limitations exist more generally in our study design. First, since symptom data
364	were entered directly by individuals without the assistance of healthcare providers, the data are subject
365	to individual perception variance. However, these are the data provided in clinical encounters. Second,
366	since symptom data were analysed for 12 predefined questions, COVID-19 symptoms other than the
367	predefined questions, including neurological and psychological symptoms, were not evaluated. Third,
368	the reporting of clinical symptom intensity was not collected, eliminating quantitative assessments of
369	symptom intensity. Fourth, the small number of individuals with severe disease may have resulted in
370	a statistically underpowered detection of factors potentially associated with severe COVID-19
371	outcomes. Nevertheless, the significance of the specific symptoms identified as independent factors
372	associated with severe outcomes was statistically robust. Finally, our study may represent clinical
373	pictures of omicron infection relatively unique to Sapporo, Japan. Future replication studies are
374	needed to test whether our findings are generalized under different healthcare systems and population
375	demographics.

376	In conclusion, our symptom-based description of the clinical manifestations of COVID-19
377	during the BA.2- and BA.5-dominated COVID-19 pandemic periods provides practical insights into
378	clinical features of the current COVID-19 pandemic. First, BA.5 infections were associated with more
379	prevalent systemic symptoms than BA.2 infections in both vaccinated and unvaccinated individuals.
380	These data suggest that BA.5 emerged as a more troublesome variant than the BA.2 antecedent. Second,
381	an increased prevalence of local upper respiratory tract symptoms, but reduced systemic symptom
382	prevalence, was observed post-vaccination (or previous infection) following omicron breakthrough
383	infections. Thus, it might be appropriate to counsel individuals contemplating vaccination that post-
384	vaccination breakthrough COVID-19 infections may be associated with an increased likelihood of
385	upper airway symptoms, with offsetting benefits being a shorter symptom interval and a reduced risk
386	of severe outcomes. Third, individuals with advanced age experienced, on average, fewer omicron-
387	induced symptoms, but when present, systemic but not upper respiratory symptoms heralded worsened
388	outcomes. These observations may serve as a practical guide to utilize COVID-19 symptoms to predict
389	clinical outcomes for elderly patients with omicron infections.

391 Acknowledgment

The authors thank the Public Health Office, Health and Welfare Bureau, City of Sapporo, which has long been involved in the identification of all infected populations in Sapporo since the beginning of the COVID-19 epidemic and in the management and integration of the data. Additionally, we thank the Sapporo City Institute of Public Health for providing genomic information on Sapporo's prevalent
 SARS-CoV-2 mutant strains. We also thank Eric C. Roe at University of North Carolina at Chapel Hill
 for editorial assistance.

398

399 Ethics Appro	val
------------------	-----

The research protocol was approved by the Ethics Committee of Hokkaido University Hospital (Research No. 022-0225). Analysis was performed using database in Sapporo city, with no additional risks to the patients. Therefore, the requirement for informed consent from individual participants was waived by the ethics committee. All methods were performed in accordance with the relevant guidelines and regulations of the Ethics Committee of Hokkaido University Hospital. All patient data were anonymized.

406

407 **Contributors**

408 SN, NK, and KO conceptualized the study. NK and MI were responsible for data curation. SN, NK, 409 and MI accessed and verified the underlying data in the study. SN and NK conducted investigation 410 process. SN, KO, KK, MS, IY and YMI were responsible for methodology. SN, IY and YMI analysed 411 the study data. SN wrote the original draft, and it was reviewed and edited by KO, KK, MS, YN, RCB, 412 and SK. YN, RCB, and SK contributed as supervisor. All authors approved the final version of the 413 manuscript, and the corresponding author (SN) was responsible for the decision to submit for414 publication.

415

416 **Declaration of interests**

417	KO reports grants from the National Heart, Lung, and Blood Institute, the Cystic Fibrosis Foundation
418	(CFF), and the Cystic Fibrosis Research Institute. IY reports grants from the Japan Agency for Medical
419	Research and Development (AMED), the Health, Labour and Welfare Policy Research Grants and
420	Medi-Physics, and speaker fees from Chugai Pharmaceutical Co. and AstraZeneca, outside the
421	submitted work. RCB reports grants from the National Institutes of Health, the National Institute of
422	Diabetes and Digestive and Kidney Diseases, and the CFF. SK reports grants from the AMED. The
423	other authors declare that they have no conflict of interest.

424

425 Funding

This project was supported in part by AMED under Grant JP223fa627005 and JP21zf0127004, the National Institutes of Health, the National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK065988 to RCB), the National Heart, Lung, and Blood Institute (R01HL163602 to KO), the Cystic Fibrosis Foundation (RDP BOUCHE15R0 to RCB; BOUCHE19XX0 to RCB and KO; OKUDA20G0 to KO), and a research grant from the Cystic Fibrosis Research Institute to KO. This project was also partially supported by the Rapidly Emerging Antiviral Drug Development Initiative

432	at the University of North Carolina at Chapel Hill, funded by the North Carolina coronavirus state and
433	local fiscal recovery funds program appropriated by the North Carolina General Assembly, and by the
434	project of junior scientist promotion at Hokkaido University.
435	
436	Data sharing statement
437	This study is an analysis of confidential data held by the City of Sapporo. The data will not be made
438	publicly available at the request of the City of Sapporo.
439	
440	References
441	1. WHO COVID-19 Dashboard. Geneva: World Health Organization. Available online:
442	https://covid19whoint/ (last cited: [Mar. 12th, 2023])
443	2. Terada M, Ohtsu H, Saito S, et al. Risk factors for severity on admission and the disease
444	progression during hospitalisation in a large cohort of patients with COVID-19 in Japan. BMJ Open
445	2021; 11 (6): e047007.
446	3. Ioannou GN, Locke E, Green P, et al. Risk Factors for Hospitalization, Mechanical Ventilation,
447	or Death Among 10131 US Veterans With SARS-CoV-2 Infection. JAMA Netw Open 2020; 3(9):
448	e2022310.
449	4. O'Driscoll M, Ribeiro Dos Santos G, Wang L, et al. Age-specific mortality and immunity
450	patterns of SARS-CoV-2. Nature 2021; 590(7844): 140-5.
	25

451	5.	Lacy J, Mensah A, Simmons R, et al. Protective effect of a first SARS-CoV-2 infection from
452	reinfe	ection: a matched retrospective cohort study using PCR testing data in England. Epidemiol Infect
453	2022;	; 150 : e109.

454	6.	Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and
455	Oxfor	d-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in
456	older	adults in England: test negative case-control study. BMJ 2021; 373: n1088.

457 7. Shrotri M, Krutikov M, Palmer T, et al. Vaccine effectiveness of the first dose of ChAdOx1

458 nCoV-19 and BNT162b2 against SARS-CoV-2 infection in residents of long-term care facilities in

459 England (VIVALDI): a prospective cohort study. *Lancet Infect Dis* 2021; **21**(11): 1529-38.

8. Menni C, Valdes AM, Polidori L, et al. Symptom prevalence, duration, and risk of hospital
admission in individuals infected with SARS-CoV-2 during periods of omicron and delta variant
dominance: a prospective observational study from the ZOE COVID Study. *Lancet* 2022; **399**(10335):
1618-24.

Bager P, Wohlfahrt J, Bhatt S, et al. Risk of hospitalisation associated with infection with
SARS-CoV-2 omicron variant versus delta variant in Denmark: an observational cohort study. *The Lancet Infect Dis* 2022; 22(7): 967-76.

467 10. Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread
468 escape from neutralizing antibody responses. *Cell* 2022; **185**(3): 467-84.e15.

469 11. Martinuzzi E, Boutros J, Glaichenhaus N, Marquette CH, Hofman P, Benzaquen J. Escape of

470	SARS-CoV-2 Variant Omicron to Mucosal Immunity	in Vaccinated Subjects. Open Forum Infect Dis
471	2022; 9 (8): ofac362.	

- 472 12. Kuhlmann C, Mayer CK, Claassen M, et al. Breakthrough infections with SARS-CoV-2
- 473 omicron despite mRNA vaccine booster dose. *Lancet* 2022; **399**(10325): 625-6.
- 13. Alizadehsani R, Alizadeh Sani Z, Behjati M, et al. Risk factors prediction, clinical outcomes,
- 475 and mortality in COVID-19 patients. *J Med Virol* 2021; **93**(4): 2307-20.
- 476 14. Jain V, Yuan JM. Predictive symptoms and comorbidities for severe COVID-19 and intensive
- 477 care unit admission: a systematic review and meta-analysis. *Int J Public Health* 2020; **65**(5): 533-46.
- 478 15. Fernández-de-Las-Peñas C, Cancela-Cilleruelo I, Rodríguez-Jiménez J, et al. Associated-
- 479 Onset Symptoms and Post-COVID-19 Symptoms in Hospitalized COVID-19 Survivors Infected with
- 480 Wuhan, Alpha or Delta SARS-CoV-2 Variant. *Pathogens* 2022; **11**(7).
- 481 16. Kim L, Garg S, O'Halloran A, et al. Risk Factors for Intensive Care Unit Admission and In-
- 482 hospital Mortality Among Hospitalized Adults Identified through the US Coronavirus Disease 2019
- 483 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). *Clin Infect Dis* 2021;
- 484 **72**(9): e206-e14.
- 17. Nemet I, Kliker L, Lustig Y, et al. Third BNT162b2 Vaccination Neutralization of SARSCoV-2 Omicron Infection. *N Engl J Med* 2022; **386**(5): 492-4.
- 487 18. Accorsi EK, Britton A, Fleming-Dutra KE, et al. Association Between 3 Doses of mRNA
 488 COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta

- 489 Variants. *JAMA* 2022; **327**(7): 639-51.
- 490 19. Lauring AS, Tenforde MW, Chappell JD, et al. Clinical severity of, and effectiveness of
- 491 mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United
- 492 States: prospective observational study. *BMJ* 2022; **376**: e069761.
- 493 20. Komagamine J, Yabuki T. Initial symptoms of patients with coronavirus disease 2019 in
- 494 Japan: A descriptive study. *J Gen Fam Med* 2021; **22**(1): 61-4.
- 495 21. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China.
- 496 *N Engl J Med* 2020; **382**(18): 1708-20.
- 497 22. Mehta OP, Bhandari P, Raut A, Kacimi SEO, Huy NT. Coronavirus Disease (COVID-19):
- 498 Comprehensive Review of Clinical Presentation. *Front Public Health* 2020; **8**: 582932.
- 499 23. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2
- 500 Omicron BA.4 and BA.5 from vaccine and BA.1 serum. *Cell* 2022; **185**(14): 2422-33.e13.
- 501 24. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by
- 502 Omicron infection. *Nature* 2022; **608**(7923): 593-602.
- 503 25. Network TH-R. Association of mRNA Vaccination With Clinical and Virologic Features of
- 504 COVID-19 Among US Essential and Frontline Workers. *JAMA* 2022; **328**(15): 1523-33.
- 505 26. Fan Q, Shi J, Yang Y, et al. Clinical characteristics and immune profile alterations in
- 506 vaccinated individuals with breakthrough Delta SARS-CoV-2 infections. *Nat Commun* 2022; **13**(1):
- 507 3979.

508 27. Mucosal IgA against SARS-CoV-2 Omicron Infection. N Engl J	Med 2022; 387(21): e55
--	------------------------

- 509 28. Ssemaganda A, Nguyen HM, Nuhu F, et al. Expansion of cytotoxic tissue-resident CD8+ T
- 510 cells and CCR6+CD161+CD4+T cells in the nasal mucosa following mRNA COVID-19 vaccination.
- 511 *Nat Commun* 2022; **13**(1): 3357.
- 512 29. Lim JME, Tan AT, Le Bert N, Hang SK, Low JGH, Bertoletti A. SARS-CoV-2 breakthrough
- 513 infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad
- 514 specificity. *J Exp Med* 2022; **219**(10).
- 515 30. Gómez-Belda AB, Fernández-Garcés M, Mateo-Sanchis E, et al. COVID-19 in older adults:
- 516 What are the differences with younger patients? *Geriatr Gerontol Int* 2021; **21**(1): 60-5.
- 517 31. Trevisan C, Noale M, Prinelli F, et al. Age-Related Changes in Clinical Presentation of Covid-
- 518 19: the EPICOVID19 Web-Based Survey. *Eur J Intern Med* 2021; **86**: 41-7.
- 519

520 **Figure legends**

Figure 1. Schematic representations of the study period and eligibility determination. The bars indicate the number of cases with new COVID-19 infection per day in Sapporo, Japan. The stacked area graph shows proportions of mutant strains detected. The BA.2 or BA.5 pandemic period was defined as when the detection rate of omicron subvariant BA.2 or BA.5 exceeded 80%, respectively, during the study period.

526

527 Figure 2. Associations of COVID-19 symptoms with the omicron subvariants BA.2 and BA.5.

528 A. Prevalence of COVID-19 symptoms in the total study population and in individuals with BA.2 or 529 BA.5 infections. Error bars indicate 95% confidence intervals (CIs). B. Associations between omicron 530 subvariants and symptom odds. Multivariable analysis used each symptom as an outcome and mutant 531 strain, age, body mass index, underlying disease, vaccination history, and history of previous infection 532 as explanatory variables. The type of omicron subvariant (BA.5 or not) and the adjusted odds ratio (OR) for each symptom are arranged from highest to lowest. Points indicate ORs, and bars indicate 533 534 95% CIs. The detailed results of the multivariable analysis are presented in Table S4. C. Differences 535 in symptom odds between omicron subvariants BA.2 and BA.5 identified by a 1:1 propensity score 536 matching analysis. Individuals infected with omicron subvariant BA.2 or BA.5 were grouped and matched for background clinical conditions, vaccine status, a history of previous infections, and time 537 538 after last vaccination (N = 4063 per each group). Only individuals, who were registered into the system

on the same day as symptom onset, were included in the matched analysis. Odds ratios of symptoms
in BA.5 to BA.2 groups are shown in order from highest to lowest. Points indicate ORs, and bars
indicate 95% CIs.

542

543 Figure 3. Associations between vaccine status and COVID-19 symptoms.

544 A. Associations between vaccine status and symptom odds. Multivariable analysis used each symptom as an outcome and mutant strain, age, body mass index, underlying disease, vaccination history, and 545 546 history of previous infection as explanatory variables. The detailed results of the multivariable analysis 547 are presented in Table S4. Three or more vaccinations and the adjusted odds ratio (OR) for each 548 symptom are arranged from highest to lowest. Points indicate ORs, and bars indicate 95% confidence 549 intervals (CIs). B. Differences in symptom odds by vaccine status identified by a 1:1 propensity score 550 matching analysis. Individuals, excluding those under 10 years of age, were grouped for individuals 551 with \geq 3 vaccinations or the others, and background matched between the two groups. Only individuals, 552 who were registered into the system on the same day as symptom onset, were included in the matched 553 analysis. The symptom odds ratios of individuals with 3 vaccinations to the others are shown in order 554 from highest to lowest. Points indicate ORs, and bars indicate 95% CIs. The detailed results of matching analysis are shown in Table S9. C. Associations of vaccination dose, times since last 555 vaccination, and symptom odds. Days since last vaccination were included as a variable as 60-days 556 scales in the multivariable analysis. ORs of each symptom in individuals with two- or three-dose 557

vaccinations were plotted over time as 60-days scales after last vaccination, referenced to unvaccinated
individuals. Points indicate ORs, and bars indicate 95% confidence intervals (CIs). The detailed results
of the multivariable analysis are presented in Table S10.

561

562 Figure 4. Associations of COVID-19 symptoms with age and progression to severe disease.

563 A. Prevalence of COVID-19 symptoms according to age. The shade colour of the cells is linked to the high and low percentage values. B. Associations between age and symptom odds. Multivariable 564 565 analysis used each symptom as an outcome and mutant strain, age (elderly or non-elderly), body mass 566 index, underlying disease, vaccination history, and history of spontaneous infection as explanatory 567 variables. Elderly individuals (age ≥ 65 years) and the adjusted odds ratio (OR) for each symptom are 568 arranged from highest to lowest. The detailed results of the multivariable analysis are presented in 569 Table S12. C. Associations of COVID-19 symptoms with progression to severe disease in elderly 570 subjects. Multivariable analysis was performed using progression to severe disease as an outcome and 571 mutant strain, age, body mass index, underlying disease, vaccination history, history of previous infection, and all symptoms as explanatory variables. Symptoms are sorted in descending order of OR 572 573 for progression to severe disease. Points indicate ORs, and bars indicate 95% confidence intervals. The 574 detailed results of the multivariable analysis are presented in Table S5.

576	Table 1. Clinical characteristics of the study population.	
-----	--	--

	Total (N=15 7861)	BA.2 (n=34 336)	BA.5 (n=123 525)
Median age (IQR) –yr.	33 (17-47)	28 (13-42)	34 (19-48)
Age * – no. (%)			
< 10	23 219 (14.7)	6427 (18.8)	16 792 (13.6)
10s	21 165 (13.4)	6012 (17.6)	15 153 (12.3)
20s	26 259 (16.7)	5667 (16.6)	20 592 (16.7)
30s	27 665 (17.6)	6093 (17.8)	21 572 (17.5)
40s	26 536 (16.8)	5465 (16.0)	21 071 (17.1)
50s	16 629 (10.6)	2434 (7.1)	14 195 (11.5)
60s	8881 (5.6)	1156 (3.4)	7725 (6.3)
70s	4839 (3.1)	647 (1.9)	4192 (3.4)
≥ 80	2359 (1.5)	310 (0.9)	2049 (1.7)
Elderly (Age \geq 65) – no. (%)	10 874 (6.9)	1441 (4.2)	9433 (7.6)
Sex ** – no. (%)			
Male	75 281 (47.7)	16 292 (47.5)	58 989 (47.8)
Female	82 468 (52.3)	18 012 (52.5)	64 456 (52.2)
Median BMI *** (IQR) -kg/m ²	21.1 (18.6 - 24.0)	20.7 (18.1-23.5)	21.2 (18.7-24.1)
Obesity $(BMI \ge 30) - no. (\%)$	6729 (4.3)	1241 (3.6)	5488 (4.4)
Comorbidities – no. (%)			
Malignancy	1284 (0.8)	188 (0.5)	1096 (0.9)
Immunocompromised	291 (0.2)	44 (0.1)	247 (0.2)
Chronic respiratory diseases	5652 (3.6)	1186 (3.5)	4466 (3.6)
Chronic kidney diseases	88 (0.1)	15 (0.1)	73 (0.0)
Cardiovascular diseases	1620 (1.0)	229 (0.7)	1391 (1.1)
Cerebrovascular diseases	102 (0.1)	22 (0.1)	80 (0.1)
Hypertension	8781 (5.6)	1270 (3.7)	7511 (6.1)
Diabetes	3740 (2.4)	550 (1.6)	3190 (2.6)
SARS-CoV-2 vaccination – no. (%)			
Unvaccinated	60 033 (38.0)	15 339 (44.7)	44 694 (36.2)
One dose	1052 (0.7)	341 (1.0)	711 (0.6)
Two doses	38 304 (24.3)	11 232 (32.7)	27 072 (21.9)
Three doses	53 389 (33.8)	7424 (21.6)	45 965 (37.2)
Four doses	5083 (3.2)	0 (0.0)	5083 (4.1)
Previous SARS-CoV-2 infection – no.	5767 (3.7)	732 (2.1)	5035 (4.1)
(%)	5707 (5.7)	132 (2.1)	5055 (4.1)
Progression to severe disease – no. (%)	142 (0.1)	19 (0.1)	123 (0.1)
Among the elderly (Age \geq 65 years)	111 (1.01)	12 (0.83)	99 (1.04)

Among individuals aged < 65 years	31 (0.02)	7 (0.02)	24 (0.02)
Death within 30 days – no.	4	2	2

577 *N=157 552, **N=157 749, ***N=157 781.

578 BMI, body mass index (kg/m²); IQR, interquartile range; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

	Before match			1:1 matched			
	BA.2	BA.5	Std diff	BA.2	BA.5	Std diff	
Total	4692	16 995		4063	4063		
Age, mean (SD)	26.7 (19.3)	30.2 (20.3)	-0.173	25.4 (19.7)	24.0 (19.0)	0.073	
Age group							
< 10	1191 (25.4)	3643 (21.4)	0.093	1191 (29.3)	1229 (30.2)	-0.020	
10s	828 (17.6)	2327 (13.7)	0.109	720 (17.7)	803 (19.8)	-0.052	
20s	703 (15.0)	2544 (15.0)	0.000	580 (14.3)	569 (14.0)	0.008	
30s	720 (15.3)	2833 (16.7)	-0.036	565 (13.9)	556 (13.7)	0.006	
40s	639 (13.6)	2631 (15.5)	-0.053	485 (11.9)	464 (11.4)	0.016	
50s	331 (7.1)	1725 (10.2)	-0.111	285 (7.0)	244 (6.0)	0.041	
60s	160 (3.4)	709 (4.2)	-0.040	129 (3.2)	116 (2.9)	0.019	
70s	80 (1.7)	327 (1.9)	-0.016	69 (1.7)	54 (1.3)	0.030	
≥ 80	40 (0.9)	256 (1.5)	-0.061	39 (1.0)	28 (0.7)	0.030	
Male	2337 (0.50)	8679 (51.1)	-0.025	2056 (50.6)	2014 (49.6)	0.021	
Obesity (BMI \ge 30)	179 (3.8)	702 (4.1)	-0.016	145 (3.6)	119 (2.9)	0.036	
Comorbidities							
Malignancy	24 (0.5)	135 (0.8)	-0.035	22 (0.5)	16 (0.4)	0.022	
Immunocompromised	5 (0.1)	35 (0.2)	-0.025	4 (0.1)	1 (0.0)	0.030	
Chronic respiratory							
diseases	176 (3.8)	615 (3.6)	0.007	141 (3.5)	138 (3.4)	0.004	
Chronic kidney	5 (0, 1)	7 (0, 0)	0.020	2 (0, 1)	0 (0 1)	0.000	
diseases	5 (0.1)	5 (0.0)	0.030	3 (0.1)	3 (0.1)	0.000	
Cardiovascular							
diseases	30 (0.6)	153 (0.9)	-0.030	22 (0.5)	26 (0.6)	-0.013	
Cerebrovascular			0 0 0 6	• (0.4)			
diseases	4 (0.1)	4 (0.0)	0.026	3 (0.1)	3 (0.1)	0.000	
Hypertension	176 (3.8)	821 (4.8)	-0.053	141 (3.5)	135 (3.3)	0.008	
Diabetes	73 (1.6)	338 (2.0)	-0.033	61 (1.5)	59 (1.5)	0.004	
Unvaccinated	2402 (51.2)	7393 (43.5)	0.155	2402 (59.1)	2452 (60.3)	-0.025	
Days since last							
vaccination							
Two doses							
-60	42 (0.9)	47 (0.3)	0.081	41 (1.0)	46 (1.1)	-0.012	
61-120	41 (0.9)	190 (1.1)	-0.025	41 (1.0)	35 (0.9)	0.015	
121-180	210 (4.5)	195 (1.1)	0.202	198 (4.9)	177 (4.4)	0.025	

580	Table 2. Propensity score matching analysis of day-of-onset symptoms in unvaccinated, two- and three-
581	dose populations.

180-240	759 (16.2)	225 (1.3)	0.545	221 (5.4)	225 (5.5)	-0.004
241-	200 (4.3)	2770 (16.3)	-0.404	200 (4.9)	197 (4.8)	0.003
Three doses		~ /			()	
-60	347 (7.4)	284 (1.7)	0.278	271 (6.7)	280 (6.9)	-0.009
61-120	455 (9.7)	1504 (8.9)	0.029	453 (11.1)	410 (10.1)	0.034
121-180	228 (4.9)	2890 (17.0)	-0.397	228 (5.6)	233 (5.7)	-0.005
181-240	8 (0.2)	1381 (8.1)	-0.407	8 (0.2)	8 (0.2)	0.000
241-	0 (0.0)	116 (0.7)	-0.117	0 (0.0)	0 (0.0)	0.000
Previous SARS-CoV-2						
infection	120 (2.6)	804 (4.7)	-0.116	109 (2.7)	107 (2.6)	0.003
Prevalence of						
symptoms						
Fever				2040 (50.2)	2606 (64.1)	
Cough				1990 (49.0)	1888 (46.5)	
Sore throat				2039 (50.2)	2018 (49.7)	
Nasal discharge				1571 (38.7)	1372 (33.8)	
Phlegm				1088 (26.8)	905 (22.3)	
Headache				1656 (40.8)	1855 (45.7)	
Joint or muscle pain				1000 (10.0)	1205 (29.7)	
Decreased food intake				1219 (30.0)	1533 (37.7)	
Severe fatigue				1083 (26.7)	1252 (30.8)	
Dyspnea				407 (10.0)	471 (11.6)	
Diarrhea				239 (5.9)	246 (6.1)	
Smell or taste disorder				239 (3.9) 78 (1.9)	97 (2.4)	
Number of symptoms,				/0(1.9)	<i>71</i> (2.4)	
				3 (2-5)	3 (2-5)	
median (IQR)						

582 Data are n (%) unless otherwise specified.

583 Absolute value of standardized difference (Std diff) greater than 0.1 is considered as a sign of imbalance.

584 BMI, body mass index (kg/m²); SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SD, standard deviation.

Figure 1

■ BA.2 ■ BA.5 ■ Others

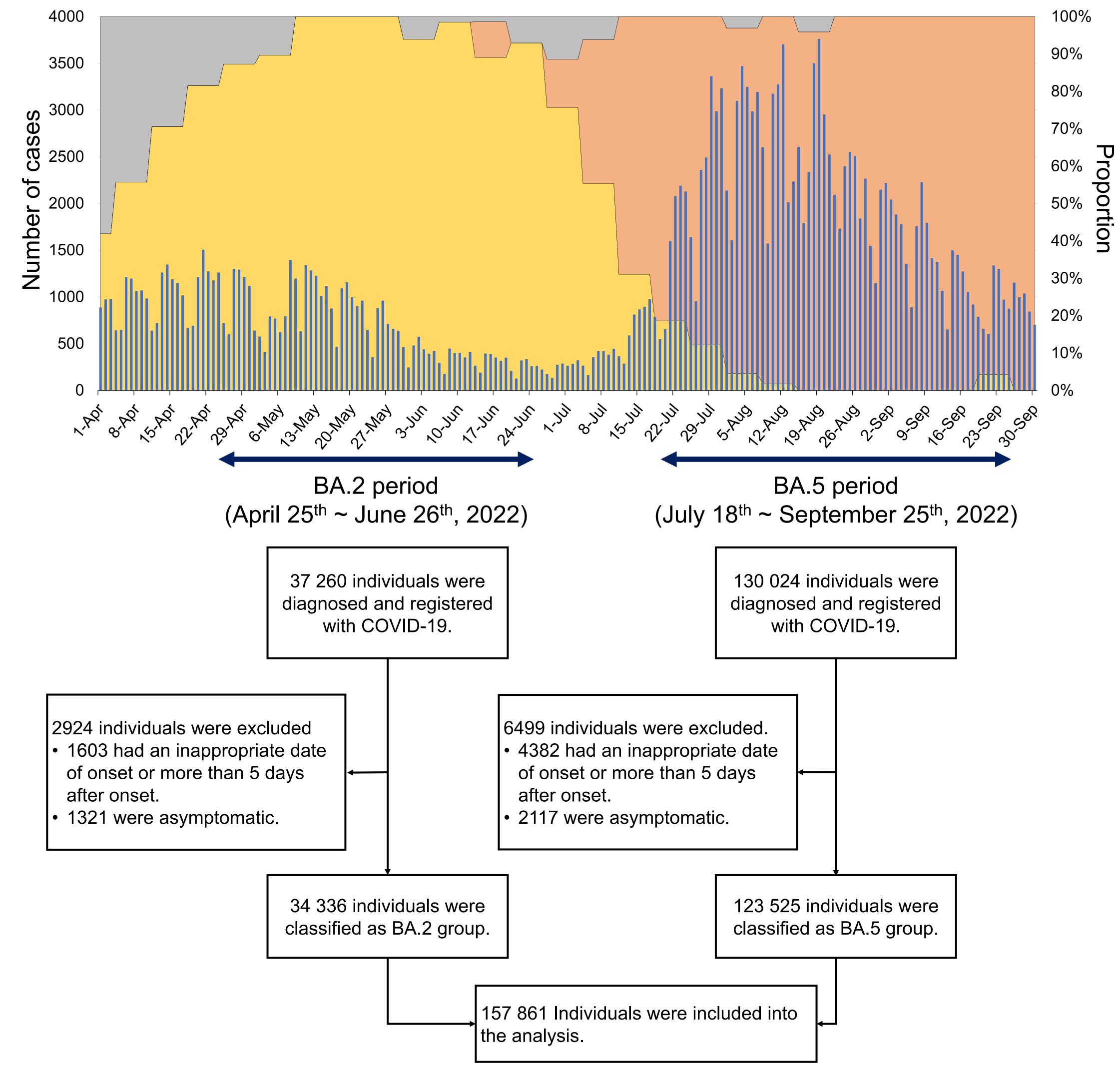
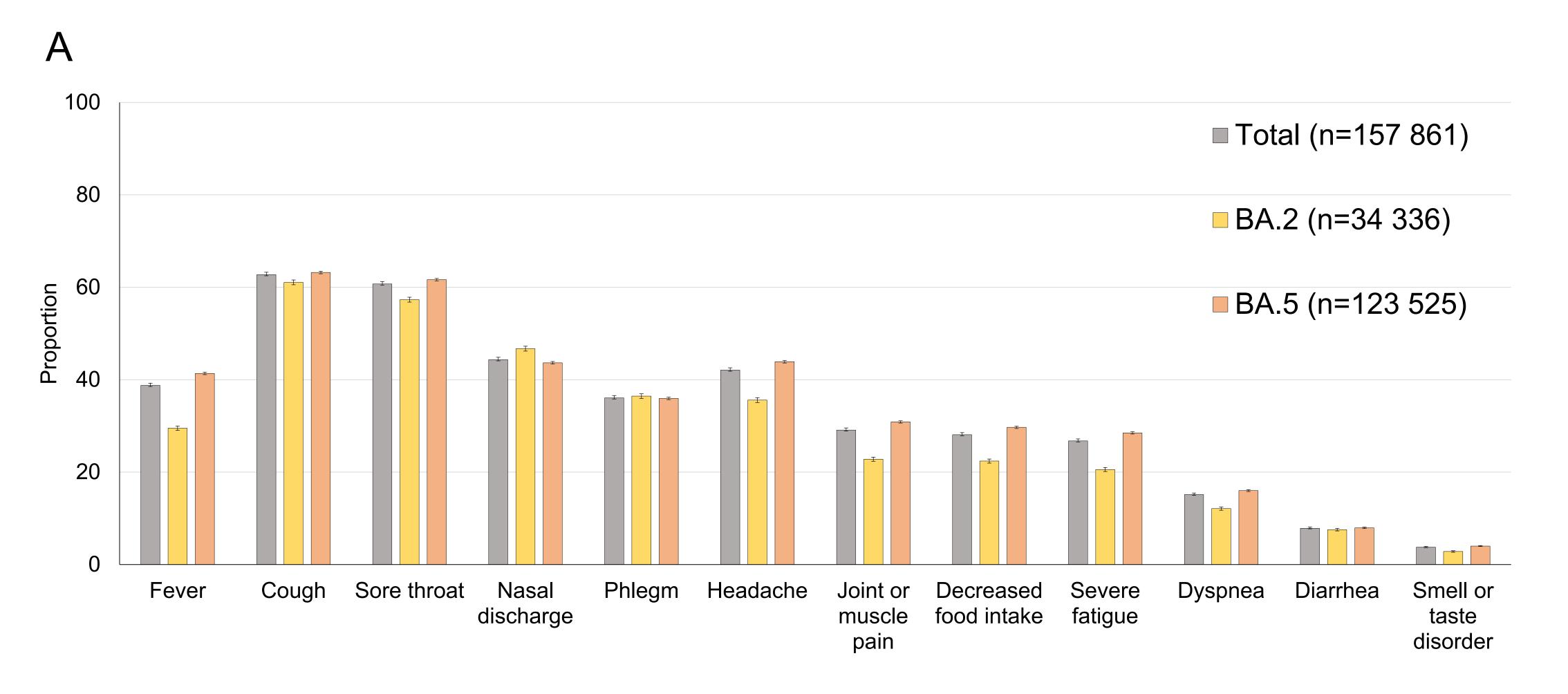
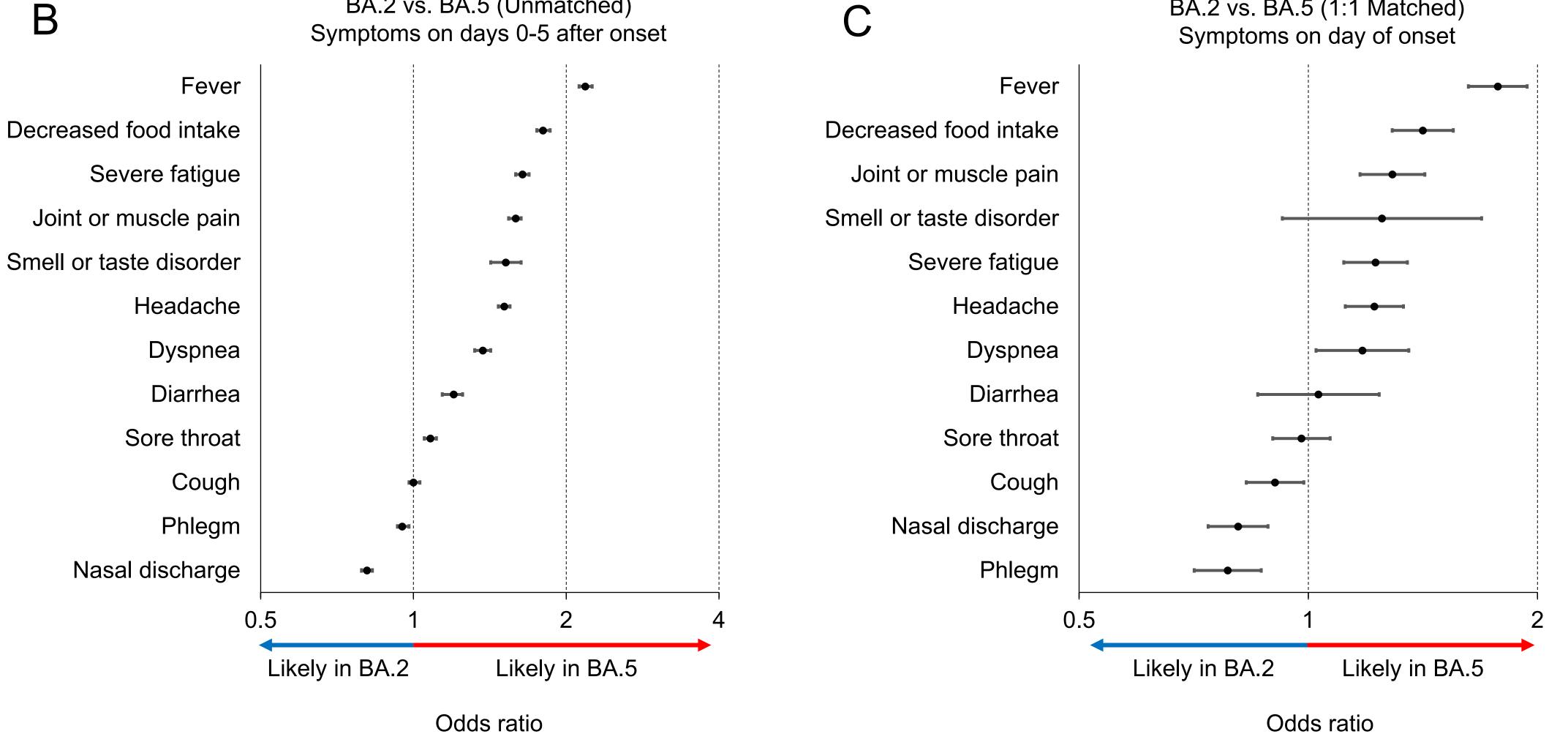
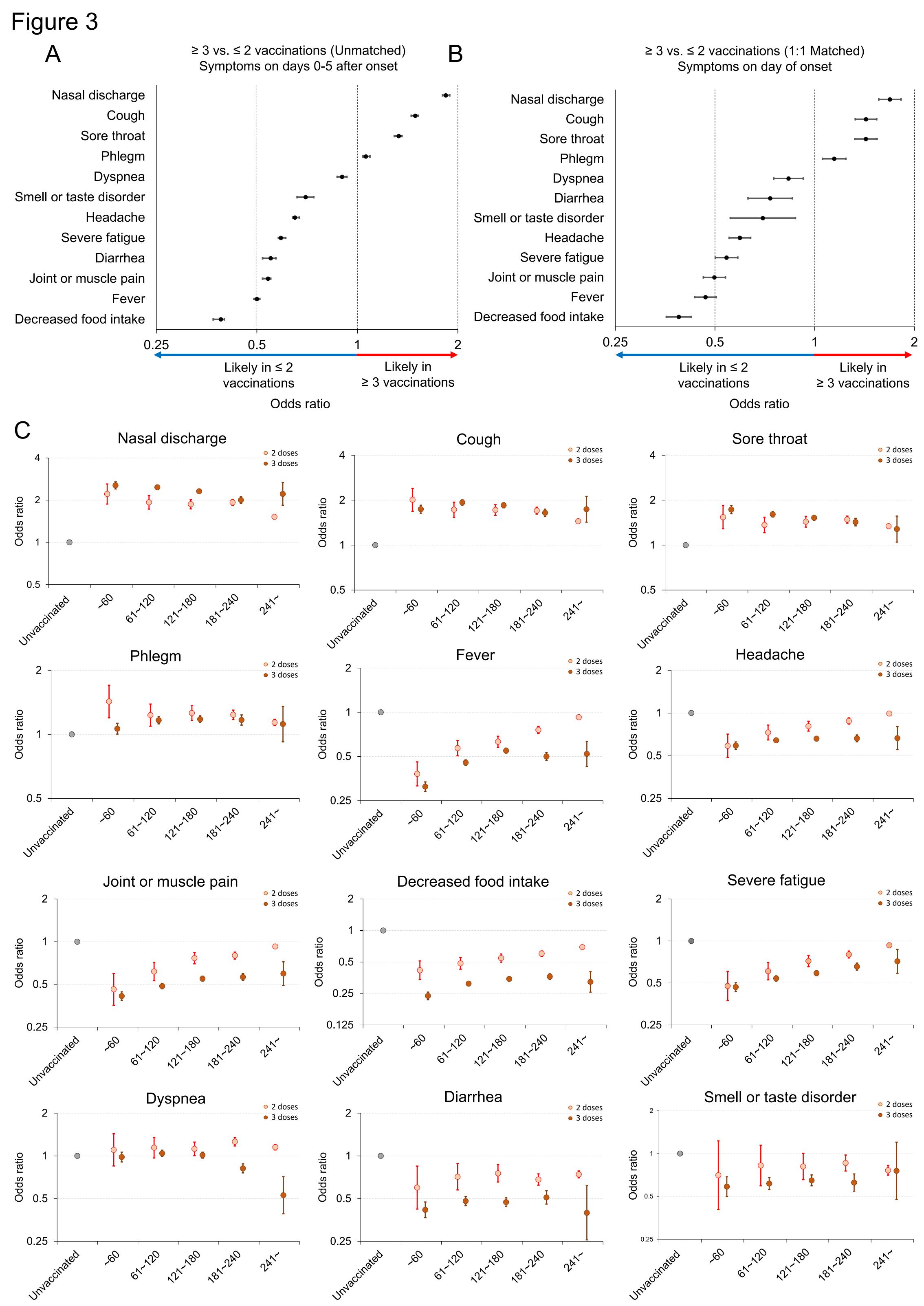
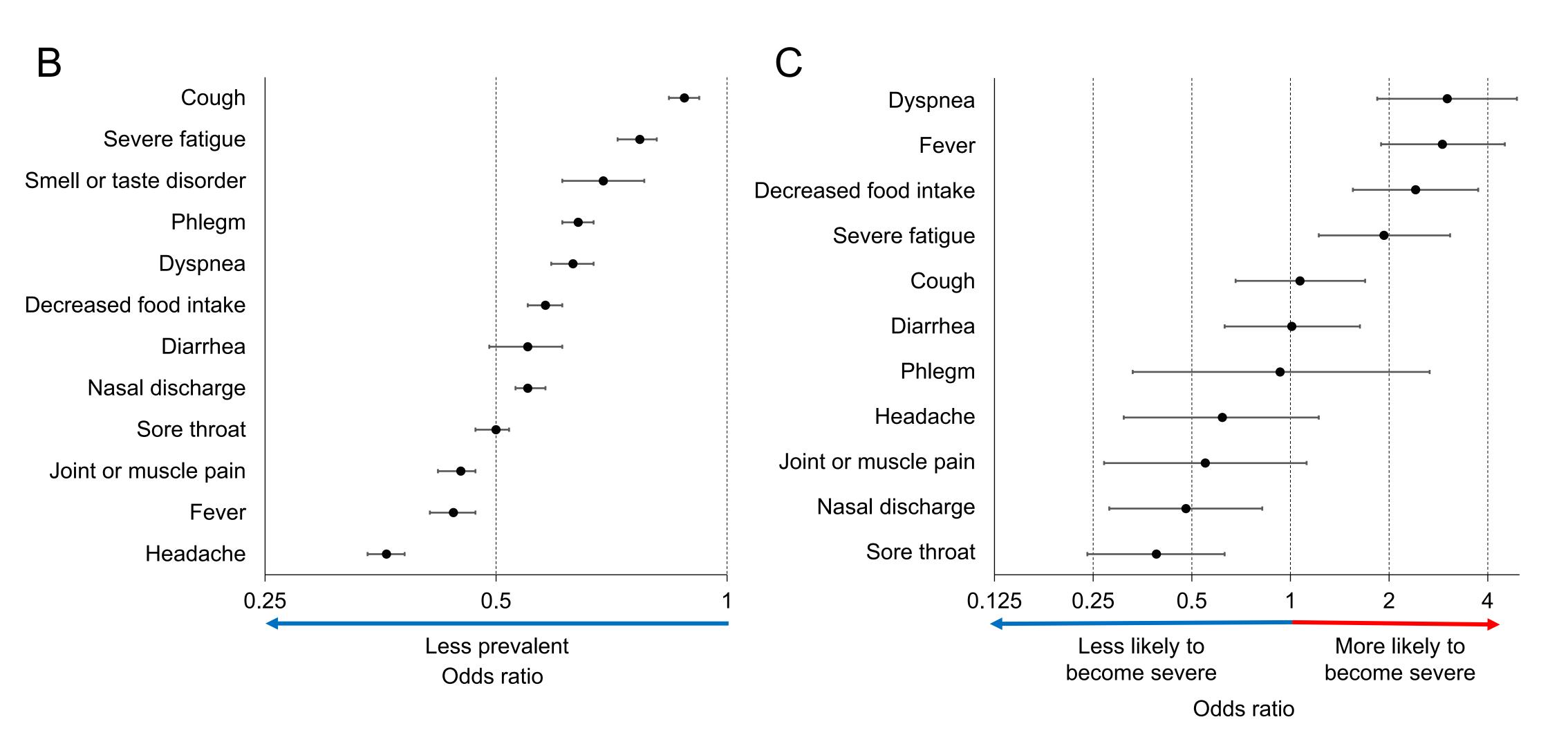




Figure 2




Figure 4

Α

	<10	10s	20s	30s	40s	50s	60s	70s	80 or over	Total
Fever	54.3%	48.2%	41.2%	38.3%	34.1%	29.5%	20.6%	14.5%	16.5%	<mark>38.8%</mark>
Cough	46.7%	59.5%	69.6%	65.0%	63.8%	67.5%	69.5%	69.5%	61.6%	62.7%
Sore throat	22.0%	65.3%	73.4%	69.1%	67.7%	67.6%	63.5%	54.6%	35.1%	60.7%
Nasal discharge	36.8%	42.6%	50.6%	48.1%	44.6%	44.5%	43.8%	38.1%	30.8%	<mark>44.3%</mark>
Phlegm	15.7%	34.1%	47.6%	43.0%	39.3%	36.2%	33.4%	31.2%	28.1%	36.1%
Headache	21.2%	44.4%	50.2%	51.9%	48.8%	44.6%	32.0%	20.5%	10.1%	<mark>42.1%</mark>
Joint or muscle pain	8.2%	21.0%	36.3%	40.3%	38.0%	33.8%	24.1%	16.1%	8.4%	29.1%
Decreased food intake	34.7%	35.1%	30.4%	26.6%	25.3%	24.5%	16.8%	15.0%	18.4%	28.1%
Severe fatigue	15.0%	25.5%	33.5%	34.4%	29.8%	25.8%	18.3%	15.6%	17.4%	26.8%
Dyspnea	4.7%	12.7%	22.2%	18.3%	16.4%	16.7%	13.4%	11.3%	14.0%	15.1%
Diarrhea	8.3%	7.7%	8.8%	8.9%	8.2%	7.1%	5.0%	3.6%	3.3%	7.8%
Smell or taste disorder	1.1%	3.2%	5.0%	4.8%	4.0%	4.3%	3.8%	3.0%	2.0%	3.7%

0%

100%

