

HOKKAIDO UNIVERSITY

Title	Mutualism enhances Wolbachia infection rates in ant-attended Tuberculatus aphid species (Hemiptera : Aphididae)
Author(s)	Yao, Izumi
Citation	Evolutionary Ecology, 37, 627-643 https://doi.org/10.1007/s10682-023-10237-5
Issue Date	2023-03-23
Doc URL	http://hdl.handle.net/2115/91369
Rights	This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature 's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10682-023-10237-5
Туре	article (author version)
Additional Information	There are other files related to this item in HUSCAP. Check the above URL.
File Information	wol in ant-attended aphids (Evol Ecol) .pdf ()

1 Title: Mutualism enhances Wolbachia infection rates in ant-attende	1 Tuberculatus aphid
--	----------------------

- 2 species (Hemiptera: Aphididae)
- 3 Author name: Izumi Yao¹
- 4 1: Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido

5 University

- 6 Corresponding Author: Izumi Yao
- 7 Address: Kitaku, Kita9 Nishi9, Sapporo 060-8589, Japan

8	E-mail: iyao@res.agr.hokudai.ac.jp
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	

19 Abstract

20 Some aphid species form close associations with ants: offering them honeydew and obtaining protection from ants in return. However, mutualistic interactions with ants can 21 22 also have a negative influence on aphid physiological and morphological traits. Wolbachia 23 are intracellular bacteria whose major genotypes are classified into 17 supergroups (A to S except G and R). Aphid species within the genus Tuberculatus feed on Fagaceae leaves and 24 exhibit two contrasting ecological characteristics, ant-attendance and non-attendance. 25 26 Previous work has found that ant-attended species exhibit lower dispersal and are likely to form aggregated colonies. Considering that host-parasitoid interactions may well be one of 27 the most common horizontal transmission routes of Wolbachia, it is therefore expected that 28 ant associations will be associated with higher Wolbachia infection rate in Tuberculatus 29 aphid species. This study compared Wolbachia infection rates between 11 ant-attended and 30 12 non-attended Tuberculatus aphid species, which were collected throughout Japan and 31 around Mt. Kariwangsan in South Korea. Mean infection rates of Wolbachia were 30.2% in 32 33 ant-attended species and 3.1% in non-attended species. The Wolbachia haplotypes detected were classified into supergroups B, M, N, and O. A phylogenetic tree of *Tuberculatus* 34

35	aphids constructed from a mitochondrial gene of cytochrome oxidase subunit I (COI) and
36	nuclear gene of 18S rRNA was used to examine the correlation between Wolbachia
37	infection rates and ant associations. The phylogenetic comparative analysis showed that
38	Wolbachia infection rates were significantly higher in ant-attended species. Possible
39	Wolbachia infection routes are discussed in terms of the differences in the ecological
40	characteristics between ant-attended and non-attended aphid species. This study shows that
41	the spread of microorganisms is affected by host species interactions, and contributes new
42	insights into the evolution of mutualistic interactions.

43 Introduction

44	Aphids (Insecta: Hemiptera: Aphididae) feed on plant phloem sap using their sucking and
45	piercing mouthparts, and excrete honeydew including carbohydrates and amino acids (Yao
46	and Akimoto 2001, 2002; Leroy et al. 2011; Renyard et al. 2021). Some aphid species form
47	close associations with ants by offering them honeydew and obtain protection from ants in
48	return (Way 1963; Yao et al. 2000). However, there is growing evidence that mutualistic
49	interactions with ants can have negative effects on aphid physiological and morphological
50	traits, such as changes in sugar and amino acid composition of honeydew (Fischer and
51	Shingleton 2001; Yao and Akimoto 2001, 2002) and decreases in colony size, body size and
52	embryo numbers (Stadler and Dixon 1998; Flatt and Weisser 2000; Yao et al. 2000;
53	Katayama and Suzuki 2002). These examples show that evolution of ant-aphid interactions
54	has resulted in both benefits and costs to aphids (Stadler and Dixon 2005; Yao 2014).
55	Recently, a number of studies have raised the possibility that microorganisms are
56	involved in the establishment of aphid-ant mutualisms. For example, the bacterium
57	Staphylococcus xylosus in Aphis fabae produces a blend of semiochemicals that attracts ant

58	scouts (Fischer et al. 2015). Additionally, it is reported that the ant Lasius niger could
59	potentially use cuticular hydrocarbons cues to discriminate among aphid lines (Aphis fabae)
60	harbouring different endosymbionts (Hertaeg et al. 2021). Henry et al. (2015) demonstrated
61	that two symbiont species, Hamiltonella defensa and Regiella insecticola, which protect
62	aphids from natural enemies (Oliver et al. 2003; Scarborough et al. 2005; Vorburger et al.
63	2010), were more likely to occur in aphid species that are not tended by ants.
64	Wolbachia are intracellular bacteria that occur in arthropods and nematodes (Werren
65	et al. 2008; Kauer et al. 2021). It is suggested that more than half of arthropod species are
66	infected with Wolbachia (Hilgenboecker et al. 2008; Weinert et al. 2015). At present, it has
67	been reported that the major genotypes of Wolbachia are highly diverse and classified
68	phylogenetically into 17 supergroups (A to S except for G and R) (Glowska et al. 2015;
69	Lefoulon et al. 2020). The roles of Wolbachia in hosts range from parasitism to mutualism.
70	Wolbachia infection can alter host reproduction by inducing feminization, parthenogenesis,
71	male killing, and cytoplasmic incompatibility (Werren et al. 2008). By contrast, Wolbachia
72	has been observed associating mutualistically with the bedbug Cimex lectularius, providing

73 B vitamins to the host (Hosokawa et al. 2010).

74	Wolbachia has been found in some aphid species (Gómez-Valero et al. 2004; Wang et
75	al. 2009; Augustinos et al. 2011; De Clerck et al. 2014; Yao 2019; Ren et al. 2020).
76	However, the roles of Wolbachia in host aphids are unknown. De Clerck et al. (2015)
77	claimed that Wolbachia in the banana black aphid Pentalonia nigronervosa could provide
78	nutrition to the host by association with Buchnera aphidicola, the primary endosymbiont of
79	aphids, while Manzano-Marín (2020) rejected the nutrition provision hypothesis by arguing
80	that it was based on a biased interpretation of antibiotic treatment analyses and incorrect
81	genome-based metabolic inference.
82	Tuberculatus aphids feed on Fagaceae (oak, chestnut, and beech) leaves and do not
83	alternate host plants during the season (Quednau 1999) (Table S1). This group encompasses
84	species with two contrasting ecological characteristics, ant-attendance and non-attendance
85	(Yao 2011). In a previous phylogenetic independent contrasts analysis, it was found that
86	ant-attended species have higher wing loading (the ratio of wing area to body size) (Yao

88	than to their wings, resulting in lowered dispersal. Lower dispersal is likely to result in the
89	formation of aggregated colonies (Stadler et al. 2003). It has also been demonstrated that
90	ant-attended colonies attract more parasitoid wasps compared to ant-excluded colonies
91	(Völkl 1992; Kaneko 2002, 2003; Sadeghi-Namaghi and Amiri-Jami 2018). Considering
92	that host-parasitoid interactions may well be one of the most common horizontal
93	transmission routes of Wolbachia (reviewed by Sanaei et al. 2021), it is expected that ant
94	associations will be associated with higher Wolbachia infection rates in Tuberculatus aphid
95	species.
96	This study (1) examined Wolbachia infection rates and the type of Wolbachia
97	supergroup in <i>Tuberculatus</i> aphid species collected throughout Japan and around Mt.
98	Kariwangsan in South Korea, (2) estimated molecular phylogenetic trees based on a
99	mitochondrion gene and a nuclear gene, and (3) evaluated the correlation with Wolbachia
100	infection rates and ant associations using a phylogenetic comparative method. Infection
101	routes of Wolbachia to aphids are discussed in terms of horizontal transmission via
102	parasitoid wasps and ants.

104 Materials & Methods

105 **DNA extraction and** *Wolbachia* infection rate

106 Tuberculatus aphids (Aphididae: Calaphidini), 11 ant-attended and 12 non-attended species

- 107 (Table 1 and Table S1), were collected from regions throughout Japan and around Mt.
- 108 Kariwangsan of South Korea (Fig. S1 and Table S2). A species was regarded as
- 109 ant-attended if aphids offered honeydew directly from their anus to attending ants. Because
- 110 it was difficult to physically identify in the field three of the ant-attended aphid species (T.
- 111 *fulviabdominalis*, *T. indicus*, and *T. pilosulus*) and seven of the non-attended aphid species
- 112 (*T. higuchii* A- and B-types, *T. kashiwae* A- and B-types, *T. yokoyamai*, *T.* sp. D, and *T.* sp.
- 113 F), those species were identified through the genetic sequencing (Table S1). Sampling was
- 114 conducted on viviparous females, which appears from April to September. Since
- 115 *Tuberculatus* aphid species parthenogenetically produce nymphs in summer, several nymph
- 116 individuals on a leaf are a high likely to be clones. Therefore, aphids were collected from
- 117 more than ten leaves in a tree, to avoid collecting clonal aphids. Individuals were placed

118	into 99.5% ethanol and stored at -20 $^{\circ}$ C. Before DNA extraction, the collected aphids were
119	dissected to check for the presence of parasitoid wasps. Aphids with parasitoid wasps were
120	excluded from DNA extraction. Total DNA was extracted from each dissected aphid (whole
121	body) with the Wizard genomic DNA purification kit (Promega, Tokyo, Japan). Since the
122	16S rRNA gene is highly conserved in a wide variety of microorganisms, it was used for
123	polymerase chain reaction (PCR) amplification to determine the presence or absence of
124	Wolbachia. In the small-scale experiment, using a gene map of the 16S rRNA locus of
125	Wolbachia (Simões et al. 2011), seven pairs of primers were selected and tested for each of
126	23 Tuberculatus species, in which two to three individuals per species were tested (Table 2).
127	One pair of primers, 16SWolbF (16S-3f) (Casiraghi et al. 2001) and WspecR (16S-2r)
128	(Werren and Windsor 2000), was identified as the most appropriate for assessing the 23
129	species because it was able to amplify Wolbachia at the maximum number of species
130	(seven species) of the 23 species (Table 3). After the small-scale experiment, a full-scale
131	experiment using the pair of primers was conducted on all collected samples (Table 1). To
132	check whether DNA extraction was successful, the barcoding region (in mitochondrion) of

133	primer pairs, <i>LCO1490</i> and <i>HCO2198</i> , was also used (Table 2). Because more than 90% of
134	individuals of <i>T. macrotuberculatus</i> in the Ishikari site (site 4 in this study) harboured
135	Wolbachia (Yao 2019), one individual of the species from the site was used for a positive
136	control sample for <i>Wolbachia</i> detection. PCR was performed in 10 μ L volumes which
137	included 2 μL of 5×KAPATaq Extra buffer (Nippon Genetics, Tokyo, Japan), 1 μL 25 mM
138	MgCl ₂ , 0.3 μ L dNTP mixture (10 mM of each), 0.5 μ L of 10 μ M of each primer, 1 μ L
139	template DNA, and 0.05 μL KAPATaq Extra DNA polymerase (5 units/ μL). Reaction
140	cycle parameters were: 94 °C for 1 min; 40 cycles of 94 °C for 20 sec, 50 °C for 20 sec,
141	and 68 °C for 1 min, followed by a final extension of 68 °C for 1 min. When PCR products
142	had faint bands, the samples were rechecked by PCR in 20μ L reaction volume. If the bands
143	were false, nothing was amplified in $20\mu L$ reaction volume. The PCR product was checked
144	using 1.5% agarose gel electrophoresis with ethidium bromide stain illuminated by UV
145	light. The Wolbachia infection rate of each species was defined as the percentage of
146	individuals amplified with the Wolbachia-specific primer out of all individuals amplified
147	with the barcoding region primer. The correlation between the Wolbachia infection ratio in

148	each collection site and geographical distance was tested by a Mantel test (Mantel 1967)
149	using the package vegan (Oksanen et al. 2012) in R (R Development Core Team 2021). The
150	values of latitude and longitude of collection sites were obtained from Google Maps and
151	were used for the geographic distance matrix. Wolbachia infection rates at the collection
152	sites were used for an environmental parameter distance matrix. Except for exhaustive
153	infection of T . sp. B, a Mantel test was applied to the species that was collected from more
154	than a single site.
155	
156	Phylogenetic trees for <i>Tuberculatus</i> aphids
157	A phylogenetic tree of the 23 Tuberculatus aphid species was constructed from the
158	nucleotide sequences of a mitochondrion gene of a partial of cytochrome oxidase subunit I
159	
	(COI) (940bp) from DDBJ (DNA Data Bank of Japan) (Table 1). Besides the COI gene, a
160	(<i>COI</i>) (940bp) from DDBJ (DNA Data Bank of Japan) (Table 1). Besides the <i>COI</i> gene, a partial of the nuclear gene of <i>18S rRNA</i> (approx. 670bp) was amplified and used to
160 161	(<i>COI</i>) (940bp) from DDBJ (DNA Data Bank of Japan) (Table 1). Besides the <i>COI</i> gene, a partial of the nuclear gene of <i>18S rRNA</i> (approx. 670bp) was amplified and used to construct phylogenetic trees. For reading the sequences of <i>18S rRNA</i> gene, PCR was

163	same reagents, and reaction cycles, as mentioned in the previous section were used, but the
164	annealing temperature was changed to 47 °C. PCR products were purified and sent to a
165	sequencing service (using Sanger sequencing) (Eurofins, Japan). The sequence data of the
166	18S rRNA gene (515bp) were deposited in the DDBJ and accession numbers are listed in
167	Table 1. A combined sequence of COI and 18S rRNA genes (1,455bp) was used for the
168	construction of phylogenetic trees. The appropriateness of the combined sequence was
169	checked by a homogeneity test implemented in PAUP* 4.0b10 PPC (Swofford 2002) ($P >$
170	0.05). Maximum likelihood (ML) analysis was performed using PAUP* 4.0a 169. For the
171	ML tree, parameters were chosen based on the Akaike Information Criterion, as
172	implemented in Modeltest ver 3.7 (Posada and Crandall 1998). The GTR + I + G model
173	was selected for the combined sequence of COI and 18S rRNA genes. ML trees were
174	searched heuristically with TBR branch swapping. For the bootstrap test on ML, 1,000
175	replicates were performed using fast stepwise addition as a starting option. Because
176	phylogenetic tree for the comparative analysis of independent contrasts must be fully
177	dichotomous with no gaps in the data, outgroup species were excluded from the analysis.

Phylogenetic independent contrasts

180	As a consequence of their common ancestry, closely related species share many
181	characteristics, and similarity between lineages is often influenced by relatedness rather
182	than by independent evolution. Most statistical tests assume independence of data points
183	and, therefore, data that are phylogenetically non-independent will tend to inflate the
184	degrees of freedom (Felsenstein 1985; Harvey and Pagel 1991). Comparative analysis by
185	independent contrasts (CAIC) uses independent comparisons of components within a
186	phylogeny, with each comparison being made at a different nodes in the phylogeny (Purvis
187	and Rambaut 1995). To examine the correlation between Wolbachia infection rates
188	(continuous data as dependent variables) and ant association (discrete data as independent
189	variables) in <i>Tuberculatus</i> species, phylogenetically independent contrasts were calculated
190	using the pic function implemented in the package ape (Paradis and Schliep 2019) in R.
191	Discrete data of ant association were coded as continuous variable using the contr.treatment
192	function in R. The extent of ant association was categorized as either 0 (non-attendance) or

193	1 (facultative and obligate ant-attendance). Wolbachia infection rates were arcsine-square
194	root transformed before analysis. The regression of contrasts between ant association and
195	Wolbachia infection rates passes through the origin (the intercept is set to zero) as
196	recommended by Garland et al. (1992).
197	
198	Wolbachia supergroups
199	For Wolbachia that were detected in aphids (Table S2), the PCR products were sequenced
200	with the same primers ($16S$ - $3f$ and $16S$ - $2r$) (Table 2). PCR products were purified with
201	FastGene Gel/PCR Extraction Kit (Nippon Genetics, Tokyo, Japan). The cycle sequencing
202	reaction was performed with a 5 μL volume consisting of 2 μL of Quick Start Mix
203	(Beckman Coulter, Tokyo, Japan), 0.5 μL of 10 μM forward or reverse primers, and 2.5 μL
204	of 10 ng/ μ L template DNA. The reaction cycle was 40 cycles of 94 °C for 20 sec, 50 °C for
205	20 sec, and 60 °C for 1 min. DNA sequencing was analyzed using the CEQ2000XL DNA
206	Analysis System (Beckman Coulter, Tokyo, Japan). The length of sequences that were
207	successfully read through the samples were from about 500bp to 900bp.

208	Multiple sequence alignments including the sequences of 16 Wolbachia supergroups (A, B,
209	C, D, E, F, H, I, J, K, L, M, N, O, Q, S) that were cited by Bing et al. (2014) (A to O), Ren
210	et al. (2020) (O found in aphids), Glowska et al. (2015) (Q), and Lefoulon et al. (2020) (S)
211	(Table S3) were processed with Clustal W (Thompson et al. 1994) on the DDBJ.
212	Supergroup P was not included in multiple sequence alignments because it had insufficient
213	sequence length for the lower region of the gene. After multiple sequence alignments, the
214	length of sequences was 471bp. To determine what types of Wolbachia supergroup are
215	present in Tuberculatus aphids, neighbor joining (NJ) with the BioNJ method was applied
216	to the constructed Wolbachia phylogenetic tree. NJ analysis was performed using PAUP*
217	4.0a 169. The distance matrix was calculated using the Jukes-Cantor substitution model.
218	For the bootstrap test on NJ, 1,000 replicates were performed using fast stepwise addition
219	as a starting option.
220	

222 *Wolbachia* infection rate

Results

223	Wolbachia was detected in eight of 11 ant-attended aphid species (Table 1 and Fig. S1(a-f))
224	and five of 12 non-attended species (Table 1 and Fig. S1(g-l)), in which at least one
225	individual was detected. Mean Wolbachia infection rates were 30.2% in ant-attended
226	species and 3.1% in non-attended species (Table 1). A large variation of Wolbachia
227	infection rates was found in ant-attended species (0% in T. indicus (Fig. S1b), T. pappus
228	(Fig. S1e), and T. sp. E (Fig. S1f); 100% in T. sp. B (Fig. S1f). The Mantel test on T.
229	fulviabdominalis and T. macrotuberculatus showed that Wolbachia infection rates was
230	significantly correlated with distance between collection sites (for <i>T. fulviabdominalis</i> ,
231	Mantel statistic $r = 0.842$, $P = 0.035$ (Table 1 and Fig. S1b); for <i>T. macrotuberculatus</i> ,
232	Mantel statistic $r = 0.164$, $P = 0.03$ (Table 1 and Fig. S1d).
233	
234	Phylogenetic independent contrasts
235	The ML phylogenetic tree based on the combined sequences of COI and 18S rRNA genes
236	showed fully resolved tree topology (Fig. 1). CAIC showed a significant positive
237	correlation between contrasts of <i>Wolbachia</i> infection rates and ant association (CAIC, $F_{1,21}$

= 13.7, P = 0.00134, Fig. 2); Wolbachia infection rates in Tuberculatus aphids were 238 significantly higher in ant-attended species compared to non-attended species. 239 240 241 Wolbachia supergroups Because the sequencing for T. pilosulus and T. sp. D was unsuccesful, only 11 242 243 Wolbachia-positive were analyzed. The results of sequencing showed that each species harboured one haplotype of Wolbachia except for T. macrotuberculatus (Fig. 3). 244 Tuberculatus macrotuberculatus harboured two haplotypes (Fig. 3): one haplotype was 245 246 found at nine sites (sites 1 to 8 and site 23), the other at site 22. A NJ tree showed that 12 haplotypes of Wolbachia were classified into four supergroups B, M, N, and O (Fig. 3). The 247 haplotypes of Wolbachia in T. kuricola, T. stigmatus, T. higuchii B-type and T. paiki were 248 placed into supergroup B. Wolbachia in T. macrotuberculatus collected from all infected 249 250 sites except for site 22, T. quercicola and T. sp. B belonged to supergroup M. Wolbachia in T. macrotuberculatus collected from the site 22, T. capitatus, T. fulviabdominalis and T. 251 252 japonicus were placed into supergroup N. Tuberculatus higuchii A-type harboured

253	Wolbachia of supergroup O, which was supported with a high bootstrap value (100%).
254	Twelve DNA sequences of Wolbachia's 16S rRNA were deposited in the DDBJ and
255	accession numbers are listed in Fig. 3 and Table S3.
256	
257	Discussion
258	The phylogenetic comparative analysis showed that Wolbachia infection rates were higher
259	in aphid species that have mutualistic associations with ants. One possible infection route
260	of Wolbachia to aphids could be horizontal transmission between Wolbachia-infected
261	parasitoid wasps and aphids. Regardless of whether aphids are attended by ants, aphid
262	colonies are frequently attacked by parasitoid wasps (Brodeur and Rosenheim 2000). Field
263	experiments on some ant-attended aphid species demonstrated that ant-attended colonies
264	attracted more parasitoid wasps compared to ant-excluded colonies (Völkl 1992; Kaneko
265	2002, 2003; Sadeghi-Namaghi and Amiri-Jami 2018). These behaviours of parasitoid wasps
266	are thought to be triggered by visual and chemical cues from aphid colonies attended by
267	ants (Mouratidis et al. 2021). Ant-attended species form dense colonies (Stadler et al. 2003)

268	and disperse less than non-attended species (Oliver et al. 2007; Yao 2010), which could by
269	itself an explanation for a higher Wolbachia prevalence. A study using fluorescence in situ
270	hybridization on the parasitoid wasp Eretmocerus sp. showed that Wolbachia were present
271	in the mouthparts and ovipositors of wasps feeding on Wolbachia-infected whitefly Bemisia
272	tabaci (Ahmed et al. 2015). Thus, the horizontal transmission of endosymbionts via the
273	parasitoids of insects represents a potential pathway. Besides parasitoid wasps, ants are also
274	known to harbour Wolbachia (Keller et al. 2001; Shoemaker et al. 2003; Tsutsui et al. 2003;
275	Viljakainen et al. 2008; Frost et al. 2010; Reeves et al. 2020) and thus could be a possible
276	agent to spread Wolbachia into aphid populations. In a study of scale insects and their
277	associated groups (ants, wasps, beetles, flies, mites, moths, and thrips), Sanaei et al. (2022)
278	showed that significantly higher Wolbachia infection rates in ant-attended scale insects,
279	suggesting a possible horizontal transfer route between ants and scale insects. This study
280	did not aim to identify the Wolbachia strains of parasitoid wasps or attending ants. Further
281	studies on Wolbachia strains for aphids and their parasitoid wasps or their mutualistic ants
282	are need to elucidate the possible routes by ants.

283	Although the average Wolbachia infection rates was higher in ant-attended species
284	(30.2%) than in non-attended species (3.1%), a wide range of variation was found in the
285	infection rates for ant-attended species (0-100%). The difference in realized infection rate
286	can be attributed to ecological or environmental factors affecting the cost-benefit balance of
287	Wolbachia infection to hosts (Gavotte et al. 2010; White et al. 2011; Okayama et al. 2016).
288	Higher infection levels across all populations of <i>T. capitatus</i> (on average 94.6% from 15
289	sites) and T. sp. B (100 % from 4 sites) could be responsible for positive selection
290	favouring benefits from Wolbachia infection such as nutrition provision (Hosokawa et al.
291	2010; De Clerck et al. 2015; but see Manzano-Marín 2020) or resistance to parasitoid
292	wasps (Oliver et al. 2003). Hence, it could be possible that Wolbachia plays obligate
293	mutualistic roles in <i>T. capitatus</i> and <i>T.</i> sp. B. On the other hand, for the species with
294	infection rate of between 10 and 52 %, it is difficult to determine whether Wolbachia
295	infection is a mutualistic or parasitic interaction with the species. The previous study of
296	seasonal changes in <i>Wolbachia</i> density in a population (site 4 in this study) of <i>T</i> .
297	macrotuberculatus showed that 315 of 316 (99.7%) of the aphids harboured Wolbachia and

298	Wolbachia density in an individual aphid exhibited no significant fluctuations during the
299	survey period, implying that seasonal deterioration of host plants did not affect Wolbachia
300	density, even though host aphids decreased in their body size and embryo numbers (Yao
301	2019). Wolbachia of the aphids in this site seems to give a beneficial effect on the
302	nutritional status of aphids during the harsh summer. However, in this study, no
303	Wolbachia-infected aphids were found in 13 of 23 collection sites of <i>T. macrotuberculatus</i> .
304	Furthermore, there was a significant correlation between geographical distance and
305	difference in infection rates in two species T. fulviabdominalis and T. macrotuberculatus.
306	This means that there is an isolation-by-distance effect among the collection sites. Indeed, it
307	has been demonstrated that the genetic structure of <i>T. macrotuberculatus</i> in Hokkaido
308	populations shows a higher inbreeding coefficient in each subpopulation and less dispersal
309	due to ant attendance (Yao 2010), suggesting that region-specific patterns as to whether
310	Wolbachia infection is costly or beneficial could occur in isolated populations. For the
311	species with less than 5 % infection rate, three of four species (<i>T. japonicus</i> , <i>T. paiki</i> , and <i>T</i> .
312	sp. D) are non-attended species and sometimes have been observed with ant-attended

host plant (*Quercus dentata*). This sympatric host plant use might provide the non-attended
species with an opportunistic infection of *Wolbachia*, such as via plant-mediated horizontal
transmission (Li et al. 2017).

317	Wolbachia haplotypes were clustered into the four supergroups B, M, N, and O. Out of
318	the 11 Wolbachia-infected Tuberculatus species in the phylogenetic tree, T. higuchii A-type
319	fell into supergroup O that has been firstly detected in the white fly Bemisia tabaci (Bing et
320	al. 2014) and recently found in the galling aphid species, Kaburagia rhusicola and
321	Schlechtendalia chinensis (Ren et al. 2020). Detection in the novel host and a monophyletic
322	group with a high bootstrap value (100%) will support existence of supergroup O. Given
323	that supergroup O has so far been found only in China, it could have originated in East Asia
324	and spread into Japan. As Wolbachia supergroups have evolved independently, infections
325	by different supergroups presumably represent independent gains of the trait even for two
326	species with the same ant-attendance state, but these are ignored in the current analysis.
327	This would be overcome by the comparison of characteristics of hosts infected by different

328	supergroups and distributed in close distance areas. Tuberculatus macrotuberculatus
329	harboured two phylogenetically-distant supergroups of M and N as previously seen in
330	Moreira et al. (2019); the two sites of southern island, site 22 and site 23 (apart from
331	approximately 40 km, Fig. S1d), had the supergroup N and supergroup M, respectively.
332	Comparison between the two populations may help to elucidate the difference of
333	independent gains of Wolbachia supergroup involving aphid-ant mutualisms.
334	This study has revealed that the ecological characteristics of aphid hosts have
335	influenced the extent of Wolbachia spread in these species. Further studies are needed to
336	clarify what roles Wolbachia play in aphids, especially for ant-attended aphid species.
337	
338	Acknowledgments
339	I thank S. Sugimoto of Plant Protection Station and the members of SEHU for collecting
340	aphids. I thank K. Yoshizawa, T. Kanbe, S. Suzuki, and S. Akimoto of Hokkaido University
341	for providing help during this study. This work was supported by JSPS Kakenhi Grant
342	Numbers 24570016 and 15K07210 for IY.

344	Authors' contributions IY conceived the study, collected samples, carried out molecular
345	work, analyzed the data and wrote the manuscript.
346	Availability of data and material Data are available by request to the author.
347	Declarations
348	Ethics approval N/A.
349	Conflicts of interest/Competing interests The author declares no conflicts of interest or
350	competing interests.
351	Consent to participate N/A.
352	Consent for publication N/A.
353	
354	References
355	Ahmed MZ, Li SJ, Xue X, Yin XJ, Ren SX, Jiggins FM, Greeff JM, Qiu BL (2015) The
356	intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for
357	efficient horizontal transmission. PLoS Pathog 11:e1004672.

358 https://doi.org/10.1371/journal.ppat.1004672

359	Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A,
360	Scarvelakis M, Doudoumis V, Ramos S, Aguiar AF, Borges PAV, Khadem M, Latorre
361	A, Tsiamis G, Bourtzis K (2011) Detection and characterization of Wolbachia
362	infections in natural populations of Aphids: Is the hidden diversity fully unraveled?
363	PLoS One 6:e28695. https://doi.org /10.1371/journal.pone.0028695
364	Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C,
365	Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the
366	endosymbiont Wolbachia pipientis. Appl Environ Microbiol 72:7098-7110.
367	https://doi.org/10.1128/AEM.00731-06
368	Barker SC, Whiting MF, Johnson KP, Murrell A (2003) Phylogeny of lice (Insecta:
369	Phthiraptera) inferred from small subunit rRNA. Zool Scr 32:407-414.
370	https://doi.org/10.1046/j.1463-6409.2003.00120.x
371	Bing XL, Xia WQ, Gui JD, Yan GH, Wang XW, Liu SS (2014) Diversity and evolution of
372	the Wolbachia endosymbionts of Bemisia (Hemiptera: Aleyrodidae) whiteflies. Ecol

373	Evol 4:2714-2737. l	nttps://doi.org/	10.1002/	ece3.1126
-----	---------------------	------------------	----------	-----------

- 374 Brodeur J, Rosenheim JA (2000) Intraguild interactions in aphid parasitoids. Entomol Exp
- 375 Appl 97:93-108. https://doi.org/10.1046/j.1570-7458.2000.00720.x
- 376 Casiraghi M, Anderson TJ, Bandi C, Bazzocchi C, Genchi C (2001) A phylogenetic
- analysis of filarial nematodes: comparison with the phylogeny of *Wolbachia*
- 378 endosymbionts. Parasitology 122:93–103. https://doi.org/10.1017/s0031182000007149
- 379 De Clerck C, Fujiwara A, Joncour P, Léonard S, Félix ML, Francis F, Jijakli MH, Tsuchida
- 380 T, Massart S (2015) A metagenomic approach from aphid's hemolymph sheds light on
- 381 the potential roles of co-existing endosymbionts. Microbiome 3:63.
- 382 https://doi.org/10.1186/s40168-015-0130-5
- 383 De Clerck C, Tsuchida T, Massart S, Lepoivre P, Francis F, Jijakli MH. 2014. Combination
- 384 of genomic and proteomic approaches to characterize the symbiotic population of the
- banana aphid (Hemiptera: Aphididae). Environ Entomol 43:29–36.
- 386 https://doi.org/10.1603/EN13107
- 387 Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15.

- 388 https://doi.org/10.1086/284325
- 389 Fischer M, Shingleton A (2001) Host plant and ants influence the honeydew sugar
- composition of aphids. Funct Ecol 15:544-550.
- 391 https://doi.org/10.1046/j.0269-8463.2001.00550.x
- 392 Fischer CY, Lognay GC, Detrain C, Heil M, Grigorescu A, Sabri A, Thonart P, Haubruge E,
- 393 Verheggen FJ (2015) Chemoecology 25:223-232.
- 394 https://doi.org/10.1007/s00049-015-0188-3
- 395 Flatt T, Weisser W (2000) The effects of mutualistic ants on aphid life history traits.
- 396 Ecology 81:3522-3529.
- 397 https://doi.org/10.1890/0012-9658(2000)081[3522:TEOMAO]2.0.CO;2
- 398 Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification
- 399 of mitochondrial cytochrome *c* oxidase subunit I from diverse metazoan
- 400 invertebrates. Mol Marine Biol Biotechnol 3:294–299. PMID: 7881515
- 401 Frost CL, FernÁndez-MarÍn H, Smith JE, Hughes WOH (2010) Multiple gains and losses
- 402 of *Wolbachia* symbionts across a tribe of fungus-growing ants. Mol Ecol 19:4077-4085.

- 403 https://doi.org/10.1111/j.1365-294X.2010.04764.x
- 404 Garland TJr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data
- 405 using phylogenetically independent contrasts. Syst Biol 41:18-32.
- 406 https://doi.org/10.1093/sysbio/41.1.18
- 407 Gavotte L, Mercer DR, Stoeckle JJ, Dobson SL (2010) Costs and benefits of Wolbachia
- 408 infection in immature Aedes albopictus depend upon sex and competition level. J
- 409 Invertebr Pathol 105:341-346. http://dx.doi.org/10.1016/j.jip.2010.08.005
- 410 Glowska E, Dragun-Damian A, Dabert M, Gerth M (2015) New Wolbachia supergroups
- 411 detected in quill mites (Acari: Syringophilidae). Infect Genet Evol 30:140-146.
- 412 https://doi.org/10.1016/j.meegid.2014.12.019
- 413 Gómez-Valero L, Soriano-Navarro M, Pérez-Brocal V, Heddi A, Moya A, García-Verdugo
- 414 JM, Latorre A (2004) Coexistence of *Wolbachia* with *Buchnera aphidicola* and a
- 415 secondary symbiont in the aphid *Cinara cedri*. J Bacteriol
- 416 186:6626-6633. https://doi.org/10.1128/JB.186.19.6626-6633.2004
- 417 Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford

418 University Press, New York

419 H	Ienry LM,	Maiden MCJ.	Ferrari J,	Godfray	HCJ (2015)) Insect life	history	and t	the
-------	-----------	-------------	------------	---------	-------	-------	---------------	---------	-------	-----

- 420 evolution of bacterial mutualism. Ecol Lett 18:516-525.
- 421 https://doi.org/10.1111/ele.12425
- 422 Hertaeg C, Risse M, Vorburger C, De Moraes CM, Mescher MC (2021) Aphids harbouring
- 423 different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can
- 424 be recognized by ant mutualists. Sci Rep 11:1-10
- 425 https://doi.org/10.1038/s41598-021-98098-2
- 426 Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How
- 427 many species are infected with *Wolbachia*? A statistical analysis of current data.
- 428 FEMS Microbiol Lett 281:215-220. https://doi.org/10.1111/j.1574-6968.2008.01110.x
- 429 Hosokawa T, Koga R, Kikuchi Y, Meng XY, Fukatsu T (2010) Wolbachia as a
- 430 bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769-774.
- 431 https://doi.org/10.1073/pnas.0911476107
- 432 Kaneko S (2002) Aphid-attending ants increase the number of emerging adults of the

- 433 aphid's primary parasitoid and hyperparasitoids by repelling intraguild predators.
- 434 Entomol Sci 5:131-146. http://dl.ndl.go.jp/info:ndljp/pid/10656505.
- 435 Kaneko S (2003) Different impacts of two species of aphid-attending ants with different
- 436 aggressiveness on the number of emerging adults of the aphid's primary parasitoid and
- 437 hyperparasitoids. Ecol Res 18:199-212.
- 438 https://doi.org/10.1046/j.1440-1703.2003.00547.x.
- 439 Katayama N, Suzuki N (2002) Cost and benefit of ant attendance for Aphis craccivora
- 440 (Hemiptera: Aphididae) with reference to aphid colony size. Can Entomol 134:241-249.
- 441 https://doi.org/10.4039/Ent134241-2
- 442 Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR,
- 443 Bordenstein SR (2021) Living in the endosymbiotic world of *Wolbachia*: A centennial
- 444 review. Cell Host Microbe 29:879-893. https://doi.org/10.1016/j.chom.2021.03.006
- 445 Keller L, Liautard C, Reuter M, Brown WD, Sundström L, Chapuisat M (2001) Sex ratio
- 446 and *Wolbachia* infection in the ant *Formica exsecta*. Heredity 87:227-233.
- 447 https://doi.org/10.1046/j.1365-2540.2001.00918.x

448	Lefoulon E, Clark T, Borveto F, Perriat-Sanguinet M, Moulia C, Slatko BE, Gavotte L.
449	(2020) Pseudoscorpion Wolbachia symbionts: Diversity and evidence for a new
450	supergroup S. BMC Microbiol 20:188. https://doi.org/10.1186/s12866-020-01863-y
451	Leroy PD, Wathelet B, Sabri A, Francis F, Verheggen FJ, Capella Q, Thonart P, Haubruge E
452	(2011) Aphid-host plant interactions: does aphid honeydew exactly reflect the host
453	plant amino acid composition? Arthropod-Plant Interact 5:193-199.
454	https://doi.org/10.1007/s11829-011-9128-5
455	Li SJ, Ahmed MZ, Lv N, Shi PQ, Wang XM, Huang JL, Qiu BL (2017) Plant-mediated
456	horizontal transmission of Wolbachia between whiteflies. ISME J
457	11:1019-1028. http://dx.doi.org/10.1038/ismej.2016.164
458	Mantel N (1967) The detection of disease clustering and a generalized regression
459	approach. Cancer Res 27:209–220
460	Manzano-Marín A (2020) No evidence for Wolbachia as a nutritional co-obligate
461	endosymbiont in the aphid <i>Pentalonia nigronervosa</i> . Microbiome 8:72.
462	https://doi.org/10.1186/s40168-020-00865-2

463	Moreira M, Aguiar AMF, Bourtzis K, Latorre A, Khadem M (2019) Wolbachia
464	(Alphaproteobacteria: Rickettsiales) infections in isolated aphid populations from
465	oceanic islands of the azores archipelago: Revisiting the supergroups M and N.
466	Environ Entomol 48:326-334. https://doi.org/10.1093/ee/nvy189
467	Mouratidis A, Vacas S, Herrero J, Navarro-Llopis V, Dicke M, Tena A (2021) Parasitic
468	wasps avoid ant-protected hemipteran hosts via the detection of ant cuticular
469	hydrocarbons. Proc R Soc London Ser B Biol Sci 288:20201684.
470	https://doi.org/10.1098/rspb.2020.1684
471	Okayama K, Katsuki M, Sumida Y, Okada K (2016) Costs and benefits of symbiosis
472	between a bean beetle and Wolbachia. Anim Behav 119:19-26.
473	https://doi.org/10.1016/j.anbehav.2016.07.004
474	Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB et al. (2012) vegan:
475	Community Ecology Package 2012.
476	Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in

477 aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803-1807.

- 478 http://www.pnas.org/content/100/4/1803.short.
- 479 Oliver TH, Mashanova A, Leather SR, Cook JM, Jansen VAA (2007) Ant semiochemicals
- 480 limit apterous aphid dispersal. Proc R Soc London Ser B Biol Sci 274:3127-3131.
- 481 https://doi.org/10.1098/rspb.2007.1251
- 482 Paradis E, Schliep K (2019) ape 5.0: an environment for modern phylogenetics and
- 483 evolutionary analyses in R. Bioinformatics 35:526-528.
- 484 https://doi.org/10.1093/bioinformatics/bty633
- 485 Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution.
- 486 Bioinformatics 14:817–818. https://doi.org/10.1093/ bioinformatics/14.9.817
- 487 Purvis A, Rambaut A (1995) Comparative analysis by independent contrasts (CAIC): an
- 488 Apple Macintosh application for analysing comparative
- data. Bioinformatics 11:247-251. https://doi.org/10.1093/bioinformatics/11.3.247
- 490 Quednau FW (1999) Atlas of the drepanosiphine aphids of the world. Part I: Panaphidini
- 491 Oestlund, 1922-Myzocallidina Börner, 1942 (1930) (Hemiptera: Aphididae:
- 492 Calaphidinae). Contributions of the American Entomological Institute, 31(1).

493	R Core Team (2021). R: A language and environment for statistical computing. R
494	Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
495	Reeves DD, Price SL, Ramalho MO, Moreau CS (2020) The Diversity and distribution of
496	Wolbachia, Rhizobiales, and Ophiocordyceps within the widespread Neotropical turtle
497	ant, Cephalotes atratus (Hymenoptera: Formicidae). Neotrop Entomol 49:52-60.
498	https://doi.org/10.1007/s13744-019-00735-z
499	Ren W, Wei H, Yang Y, Shao S, Wu H, Chen X, Yang Z (2020) Molecular detection and
500	phylogenetic analyses of Wolbachia in natural populations of nine galling Aphid
501	species. Sci Rep 10:12025. https://doi.org/10.1038/s41598-020-68925-z
502	Renyard A, Gries R, Lee J, Chalissery JM, Damin S, Britton R, Gries G (2021) All sugars
503	ain't sweet: selection of particular mono-, di- and trisaccharides by western carpenter
504	ants and European fire ants. R Soc Open Sci 8:210804.
505	https://doi.org/10.1098/rsos.210804
506	Ros VID, Fleming VM, Feil EJ, Breeuwer AJ (2009) How diverse is the genus Wolbachia?
507	Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered

508 from spider mites (Acari: Tetranychidae). Appl Environ Microbiol /5:1036-	Appl Environ Microbiol 75:1036-1043
---	-------------------------------------

- 509 https://doi.org/10.1128/AEM.01109-08
- 510 Sadeghi-Namaghi H, Amiri-Jami A (2018) Success of aphid parasitoids and their hosts
- 511 varies with ant attendance: A field study. Entomol Sci 21:406-411.
- 512 https://doi.org/10.1111/ens.12319
- 513 Sanaei E, Charlat S, Engelstädter J (2021) Wolbachia host shifts: routes, mechanisms,
- 514 constraints and evolutionary consequences. Biol Rev 96:433-453.
- 515 https://doi.org/10.1111/brv.12663
- 516 Sanaei E, Lin YP, Cook LG, Engelstädter J (2022) Wolbachia in scale insects: a distinct
- 517 pattern of infection frequencies and potential transfer routes via ant associates. Environ
- 518 Microbiol 24:1326-1339. https://doi.org/10.1111/1462-2920.15833
- 519 Scarborough C, Ferrari J, Godfray H (2005) Aphid protected from pathogen by
- 520 endosymbiont. Science 310:1781.
- 521 https://www.science.org/doi/10.1126/science.1120180
- 522 Shoemaker DD, Ahrens M, Sheill L, Mescher M, Keller L, Ross KG (2003) Distribution

- 523 and prevalence of *Wolbachia* infections in native populations of the fire ant *Solenopsis*
- *invicta* (Hymenoptera: Formicidae). Environ Entomol 32:1329–1336.
- 525 https://doi.org/10.1603/0046-225X-32.6.1329
- 526 Simões PM, Mialdea G, Reiss D, Sagot MF, Charlat S (2011) Wolbachia detection: an
- 527 assessment of standard PCR Protocols. Mol Ecol Res 11:565-572.
- 528 https://doi.org/10.1111/j.1755-0998.2010.02955.x
- 529 Stadler B, Dixon AFG (1998) Costs of ant attendance for aphids. J Anim Ecol 67:454-459.
- 530 https://doi.org/10.1046/j.1365-2656.1998.00209.x
- 531 Stadler B, Dixon AFG (2005) Ecology and evolution of aphid-ant interactions. Annu Rev
- 532 Ecol Evol Syst 36:345-372. https://doi.org/10.1146/annurev.ecolsys.36.091704.175531
- 533 Stadler B, Kindlmann P, Šmilauer P, Fiedler K (2003) A comparative analysis of
- 534 morphological and ecological characters of European aphids and lycaenids in relation
- 535 to ant attendance. Oecologia 135:422-430. https://doi.org/10.1007/s00442-003-1193-8
- 536 Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (and other methods).
- 537 Version 4. Sinauer Associates, Sunderland, Massachusetts.

538	Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of
539	progressive multiple sequence alignment through sequence weighting, position-specific
540	gap penalties and weight matrix choice. Nucleic Acids Res 22:4673-4680.
541	https://doi.org/10.1093/nar/22.22.4673
542	Tsutsui ND, Kauppinen SN, Oyafuso AF, Grosberg RK (2003) The distribution and
543	evolutionary history of Wolbachia infection in native and introduced populations of the
544	invasive argentine ant (Linepithema humile). Mol Ecol
545	12:3057-3068. https://doi.org/10.1046/j.1365-294X.2003.01979.x
546	Viljakainen L, Reuter M, Pamilo P (2008) Wolbachia transmission dynamics in Formica
547	wood ants. BMC Evol Biol 8:55. https://doi.org/10.1186/1471-2148-8-55
548	Vorburger C, Gehrer P, Rodriguez P (2010) A strain of the bacterial symbiont Regiella
549	insecticola protects aphids against parasitoids. Biol Lett 6:109-111.
550	https://doi.org/10.1098/rsbl.2009.0642
551	Völkl W (1992) Aphids or their parasitoids: who actually benefits from ant-attendance? J
552	Anim Ecol 61:273-281. https://doi.org/10.2307/5320

553	Wang Z, Shen ZR, Song Y, Liu HY, Li ZX (2009) Distribution and diversity of Wolbachia
554	in different populations of the wheat aphid Sitobion miscanthi (Hemiptera: Aphididae)
555	in China. Eur J Entomol 106:49-55. https://doi.org/10.14411/eje.2009.007
556	Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. Annu Rev
557	Entomol 8:307-344. https://doi.org/10.1146/annurev.en.08.010163.001515
558	Weinert L, Araujo-Jnr EV, Ahmed MZ, Welch JJ (2015) The incidence of bacterial
559	endosymbionts in terrestrial arthropods. Proc R Soc London Ser B Biol Sci
560	282:20150249. http://dx.doi.org/10.1098/rspb.2015.0249
561	Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate
562	biology. Nat Rev Microbiol 6:741-751. https://doi.org/10.1038/nrmicro1969.
563	Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a
564	global equilibrium? Proc R Soc London Ser B Biol Sci 267:1277-1285.
565	https://doi.org/10.1098/rspb.2000.1139
566	White JA, Kelly SE, Cockburn SN, Perlman SJ, Hunter MS (2011) Endosymbiont costs and
567	benefits in a parasitoid infected with both Wolbachia and Cardinium. Heredity

- 568 106:585-591. https://doi.org/10.1038/hdy.2010.89
- 569 Yao I (2010) Contrasting patterns of genetic structure and dispersal ability in ant-attended
- and non-attended *Tuberculatus* aphids. Biol Lett 6:282-286.
- 571 https://doi.org/10.1098/rsbl.2009.0781.
- 572 Yao I (2011) Phylogenetic comparative methods reveal higher wing loading in ant-attended
- 573 *Tuberculatus* aphids (Hemiptera: Aphididae). Can Entomol 143:35-43.
- 574 https://doi.org/10.4039/n10-050
- 575 Yao I (2014) Costs and constraints in aphid-ant mutualism. Ecol Res 29:383-391.
- 576 https://doi.org/10.1007/s11284-014-1151-4
- 577 Yao I (2019) Seasonal changes in the density of the symbionts *Buchnera* and *Wolbachia* of
- 578 the aphid *Tuberculatus macrotuberculatus* on *Quercus dentata*. Entomol Exp Appl
- 579 167:261-268. https://doi.org/10.1111/eea.12743
- 580 Yao I and Akimoto SI (2001) Ant attendance changes the sugar composition of the
- 581 honeydew of the drepanosiphid aphid *Tuberculatus quercicola*. Oecologia 128:36-43.
- 582 http://link.springer.com/10.1007/s004420100633

583	Yao I and Akimoto SI (2002) Flexibility in the composition and concentration of amino
584	acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecological
585	Entomology 27:745-752. http://doi.wiley.com/10.1046/j.1365-2311.2002.00455.x
586	Yao I, Shibao H, Akimoto SI (2000) Costs and benefits of ant attendance to the
587	drepanosiphid aphid Tuberculatus quercicola. Oikos 89:3-10.
588	https://doi.org/10.1034/j.1600-0706.2000.890101.x
589	Zhou W, Rousset F, O'Neill S (1998) Phylogeny and PCR-based classification of
590	Wolbachia strains using wsp gene sequences. Proc R Soc London Ser B Biol Sci
591	265:509-515. https://doi.org/10.1098/rspb.1998.0324
592	
593	Figure legends
594	Fig. 1. Maximum likelihood phylogenetic tree based on the combined sequences of COI
595	and 18S rRNA genes.
596	(Note) Operational taxonomic units (OTUs) shown in bold font indicate ant-attended
597	species. The numbers on the branches of phylogenetic tree show bootstrap values (>50%).

598 Full terms of abbreviations are provided in Table 1.

600	Fig. 2. Correlation between contrasts of ant association and <i>Wolbachia</i> infection rates.
601	(Note) Contrastant and contrastwol represent independent contrasts that were calculated
602	based on the status of ant association and <i>Wolbachia</i> infection rates at each node ($n = 22$) in
603	the ML phylogenetic tree.
604	
605	Fig. 3. Bootstrap 50 % majority-rule consensus tree inferred by neighbor-joining
606	(NJ) analysis for 16 Wolbachia supergroups
607	(Note) The labels of operational taxonomic units (OTUs) mean Wolbachia sp. (indicated by
608	w) and its host species. Thick vertical lines with alphabets indicate the clades of Wolbachia
609	supergroups. See also Table S3. Bootstrap values of more than 50% were shown on
610	branches. Full terms of abbreviations are provided in Table 1.
611	

					Mantal				
				тскі	Mantel				
	Collection			Infection	statistic				
Ant-attended	sites	Ν	wol^+	rate (%)	r	Р	Abbreviation	COI	18S rRNA
T. capitatus	15	56	53	94.6	0.032	0.196	capi	AB592769	LC654240
T. fulviabdominalis	8	55	12	21.8	0.842	0.035	fulvi	AB592755	LC654241
T. indicus	11	53	0	0.0	-	-	ind	AB592759	LC654242
T. kuricola	10	54	15	27.8	-0.093	0.719	kuri	AB592750	LC654243
Т.									
macrotuberculatus	23	54	28	51.9	0.164	0.030	mt	AB592752	LC654244
T. pappus	1	10	0	0.0	-	-	pap	AB861442	LC654245
T. pilosulus	16	79	1	1.3	0.596	0.059	pilosulus	AB592758	LC654246
T. quercicola	11	54	8	14.8	-0.105	0.551	que	AB592754	LC654247
T. stigmatus	15	56	11	19.6	-0.039	0.415	sti	AB592760	LC654248
<i>T</i> . sp. B	4	31	31	100.0	-	-	spB	AB592753	LC654249
<i>T</i> . sp. E	1	9	0	0.0	-	-	spE	AB861448	LC654250
Average	10.5	46.5	14.5	30.2					
Non-attended									
T. higuchii A-type	14	71	8	11.3	-0.100	0.560	higa	AB592762	LC654251
T. higuchii B-type	7	42	8	19.0	-0.089	0.657	higb	AB592764	LC654252
T. japonicus	7	59	1	1.7	0.814	0.143	japo	AB592756	LC654253
T. kashiwae A-type	5	39	0	0.0	-	-	kasa	AB592765	LC654254
T. kashiwae B-type	4	47	0	0.0	-	-	kasb	AB592766	LC654255
T. paiki	18	51	1	2.0	0.086	0.221	paiki	AB592768	LC654256
T. pilosus	11	52	0	0.0	-	-	pilosus	AB592751	LC654257
Т.									
auerciformosanus									
que ego mostinus	9	52	0	0.0	-	-	qfor	AB592761	LC654258
T. yokoyamai	9 3	52 18	0 0	0.0 0.0	-	-	qfor yoko	AB592761 AB592767	LC654258 LC654259
T. yokoyamai T. sp.C	9 3 1	52 18 41	0 0 0	0.0 0.0 0.0	-	-	qfor yoko spC	AB592761 AB592767 AB592757	LC654258 LC654259 LC654260
T. yokoyamai T. sp.C T. sp.D	9 3 1 1	52 18 41 29	0 0 0 1	0.0 0.0 0.0 3.4	- - -	- - -	qfor yoko spC spD	AB592761 AB592767 AB592757 AB592763	LC654258 LC654259 LC654260 LC654261

Table 1. Tuberculatus aphid species used in the study and Wolbachia infection rate

(Note): Collection sites represent the number of collection sites for aphids (see Table S2 for details). *N* and *wol*⁺ mean the numbers of aphid individuals amplified with barcoding region primers and those with *Wolbachia* specific primers. Infection rate (%) was defined by the per cent of *wol*⁺ divided by *N*. Except for exhaustive infection of *T*. sp. B, a Mantel test was applied to the species that were collected from more than a single site. Statistics of Mantel test, r, and *P*-values are given. The bold font shows a significant difference below 0.05 of *P*-values. Abbreviated names were used in Table 3, all figures and supplementary files. Accession numbers of *COI* and *18S rRNA* genes from DDBJ were used to create phylogenetic trees of the aphids.

Table 2. Primer set used in the small-scale experiment of *Wolbachia* detection and theamplification of *18S rRNA* gene in host aphids

Primer name	Primer sequence (5' to 3')	Product size (bp)	References	
WspecF (16S-2f)		438	Werren and Windsor	
wspeer (105-25)	CATACCTATICGAAGGGATAG	50	(2000)	
WspecR (16S-2r)	AGCTTCGAGTGAAACCAATTC			
16SWolbF (16S-3f)		1014	Casiraghi et al.	
	GAAGATAATGACGGTACTCAC	1014	(2001)	
16SwolbR3 (16S-3r) ^{*1}	GTCACTGATCCCACTTTAAATAAC			
553F_W (16S-6f)	ATACGGAGAGGGGCTAGCGTTA	781	Simões et al. (2011)	
1334R_W (16S-6r)	CTTCATRYACTCGAGTTGCWGAGT			
16SW4m		1400	Gomez-Valero et al.	
10 <i>SWup</i>	GUTAALALATGLAAGTUGAA	1400	(2004)	
16SWlo	AGCTTCGAGTGAAACCAATTCCC			
groEL-F (Wol)	CAACRGTRGSRRYAACTGCDGG	550	Ros et al. (2009)	
groEL-R (Wol)	GATADCCRCGRTCAAAYTGC			
wsp81F	TGGTCCAATAAGTGATGAAGAAA	610	Zhou et al. (1998)	
wsp691R	AAAAATTAAACGCTACTCCA			
FbpA_F1	GCTGCTCCRCTTGGYWTGAT	509	Baldo et al. (2006)	
FbpA_R1	CCRCCAGARAAAAYYACTATTC			
16SWolbF (16S-3f)	GAAGATAATGACGGTACTCAC	972	This study	
WspecR (16S-2r)	AGCTTCGAGTGAAACCAATTC			
LCO1490	GGTCAACAAATCATAAAGATATTGG	708	Folmer et al. (1994)	
HCO2198	TAAACTTCAGGGTGACCAAAAAATCA			
Nal		670	Barker et al. (2003)	
Ns1		(approximately)		
Ns2a	CGCGGCTGCTGGCACCAGACTTGC			

(Note) *1. Reverse primer was not used in this study.

Primer combination	capi	fulvi	ind	kuri	mt	pap	pilosulus	que	sti	spB	spE	
16S-2f*16S-2r	+	_	_	_	+	_	_	+	+	+	_	
16S-6f*16S-6r	+	+_	_	_	+	_	+_	+	+_	+	_	
16SWup*16SWlo	+	_	_	_	+	_	_	+	_	+	_	
groEL-F*groEL-R	+	_	_	_	+	_	_	+	_	+	_	
FbpA_F1*FbpA_R1	+	_	_	_	+	_	_	+	_	+	_	
wsp81F*wsp691R	+	_	_	_	_	_	_	_	_	_	_	•
16S-3f*16S-2r	+	_	_	_	+	_	_	+	+	+	_	
Primer combination	higa	higb	japo	kasa	kasb	paiki	pilosus	qfor	yoko	spC	spD	spF
Primer combination 16S-2f*16S-2r	higa _	higb +	japo —	kasa _	kasb —	paiki _	pilosus –	qfor _	yoko _	spC –	spD _	spF +_
Primer combination 16S-2f*16S-2r 16S-6f*16S-6r	higa _ +_	higb + +	japo 	kasa _	kasb _	paiki _	pilosus _ _	qfor _ _	yoko _ +_	spC _	spD _ +_	spF +_
Primer combination 16S-2f*16S-2r 16S-6f*16S-6r 16SWup*16SWlo	higa _ +_ _	higb + +	japo +	kasa 	kasb 	paiki _ _ _	pilosus _ _ _	qfor 	yoko _ +_ _	spC _ _ _	spD - +_	spF +_ _
Primer combination 16S-2f*16S-2r 16S-6f*16S-6r 16SWup*16SWlo groEL-F*groEL-R	higa + -	higb + + _	japo - + +	kasa 	kasb 	paiki _ _ _ _	pilosus _ _ _ _	qfor 	yoko + -	spC 	spD + -	spF +_ _ _
Primer combination16S-2f*16S-2r16S-6f*16S-6r16SWup*16SWlogroEL-F*groEL-RFbpA_F1*FbpA_R1	higa _ +_ _ _	higb + - - +	japo + +	kasa 	kasb 	paiki _ _ _ _	pilosus _ _ _ _ _	qfor _ _ _ _	yoko 	spC 	spD + - -	spF +_ _ _ _
Primer combination16S-2f*16S-2r16S-6f*16S-6r16SWup*16SWlogroEL-F*groEL-RFbpA_F1*FbpA_R1wsp81F*wsp691R	higa _ +_ _ _ _ _	higb + - - +	japo - + + - + +	kasa 	kasb 	paiki _ _ _ _ _ _	pilosus 	qfor _ _ _ _ _ _	yoko 	spC 	spD + - -	spF +_ - - -

Table 3. Result of the small-scale experiment using seven pairs of primers

(Note) Symbols + and – indicate that a clear band appeared and no band appeared,

respectively. Symbols +– mean that a faint band appeared in 10 μ L of PCR reaction

volume, but disappeared when rechecked with PCR in 20 μ L volume. Full terms of

abbreviations are provided in Table 1.

Fig. 2

