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Abstract 19 

Some aphid species form close associations with ants: offering them honeydew and 20 

obtaining protection from ants in return. However, mutualistic interactions with ants can 21 

also have a negative influence on aphid physiological and morphological traits. Wolbachia 22 

are intracellular bacteria whose major genotypes are classified into 17 supergroups (A to S 23 

except G and R). Aphid species within the genus Tuberculatus feed on Fagaceae leaves and 24 

exhibit two contrasting ecological characteristics, ant-attendance and non-attendance. 25 

Previous work has found that ant-attended species exhibit lower dispersal and are likely to 26 

form aggregated colonies. Considering that host-parasitoid interactions may well be one of 27 

the most common horizontal transmission routes of Wolbachia, it is therefore expected that 28 

ant associations will be associated with higher Wolbachia infection rate in Tuberculatus 29 

aphid species. This study compared Wolbachia infection rates between 11 ant-attended and 30 

12 non-attended Tuberculatus aphid species, which were collected throughout Japan and 31 

around Mt. Kariwangsan in South Korea. Mean infection rates of Wolbachia were 30.2% in 32 

ant-attended species and 3.1% in non-attended species. The Wolbachia haplotypes detected 33 

were classified into supergroups B, M, N, and O. A phylogenetic tree of Tuberculatus 34 
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aphids constructed from a mitochondrial gene of cytochrome oxidase subunit I (COI) and 35 

nuclear gene of 18S rRNA was used to examine the correlation between Wolbachia 36 

infection rates and ant associations. The phylogenetic comparative analysis showed that 37 

Wolbachia infection rates were significantly higher in ant-attended species. Possible 38 

Wolbachia infection routes are discussed in terms of the differences in the ecological 39 

characteristics between ant-attended and non-attended aphid species. This study shows that 40 

the spread of microorganisms is affected by host species interactions, and contributes new 41 

insights into the evolution of mutualistic interactions.  42 
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Introduction 43 

Aphids (Insecta: Hemiptera: Aphididae) feed on plant phloem sap using their sucking and 44 

piercing mouthparts, and excrete honeydew including carbohydrates and amino acids (Yao 45 

and Akimoto 2001, 2002; Leroy et al. 2011; Renyard et al. 2021). Some aphid species form 46 

close associations with ants by offering them honeydew and obtain protection from ants in 47 

return (Way 1963; Yao et al. 2000). However, there is growing evidence that mutualistic 48 

interactions with ants can have negative effects on aphid physiological and morphological 49 

traits, such as changes in sugar and amino acid composition of honeydew (Fischer and 50 

Shingleton 2001; Yao and Akimoto 2001, 2002) and decreases in colony size, body size and 51 

embryo numbers (Stadler and Dixon 1998; Flatt and Weisser 2000; Yao et al. 2000; 52 

Katayama and Suzuki 2002). These examples show that evolution of ant-aphid interactions 53 

has resulted in both benefits and costs to aphids (Stadler and Dixon 2005; Yao 2014).  54 

Recently, a number of studies have raised the possibility that microorganisms are 55 

involved in the establishment of aphid-ant mutualisms. For example, the bacterium 56 

Staphylococcus xylosus in Aphis fabae produces a blend of semiochemicals that attracts ant 57 
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scouts (Fischer et al. 2015). Additionally, it is reported that the ant Lasius niger could 58 

potentially use cuticular hydrocarbons cues to discriminate among aphid lines (Aphis fabae) 59 

harbouring different endosymbionts (Hertaeg et al. 2021). Henry et al. (2015) demonstrated 60 

that two symbiont species, Hamiltonella defensa and Regiella insecticola, which protect 61 

aphids from natural enemies (Oliver et al. 2003; Scarborough et al. 2005; Vorburger et al. 62 

2010), were more likely to occur in aphid species that are not tended by ants.  63 

Wolbachia are intracellular bacteria that occur in arthropods and nematodes (Werren 64 

et al. 2008; Kauer et al. 2021). It is suggested that more than half of arthropod species are 65 

infected with Wolbachia (Hilgenboecker et al. 2008; Weinert et al. 2015). At present, it has 66 

been reported that the major genotypes of Wolbachia are highly diverse and classified 67 

phylogenetically into 17 supergroups (A to S except for G and R) (Glowska et al. 2015; 68 

Lefoulon et al. 2020). The roles of Wolbachia in hosts range from parasitism to mutualism. 69 

Wolbachia infection can alter host reproduction by inducing feminization, parthenogenesis, 70 

male killing, and cytoplasmic incompatibility (Werren et al. 2008). By contrast, Wolbachia 71 

has been observed associating mutualistically with the bedbug Cimex lectularius, providing 72 
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B vitamins to the host (Hosokawa et al. 2010). 73 

Wolbachia has been found in some aphid species (Gómez-Valero et al. 2004; Wang et 74 

al. 2009; Augustinos et al. 2011; De Clerck et al. 2014; Yao 2019; Ren et al. 2020). 75 

However, the roles of Wolbachia in host aphids are unknown. De Clerck et al. (2015) 76 

claimed that Wolbachia in the banana black aphid Pentalonia nigronervosa could provide 77 

nutrition to the host by association with Buchnera aphidicola, the primary endosymbiont of 78 

aphids, while Manzano-Marín (2020) rejected the nutrition provision hypothesis by arguing 79 

that it was based on a biased interpretation of antibiotic treatment analyses and incorrect 80 

genome-based metabolic inference. 81 

Tuberculatus aphids feed on Fagaceae (oak, chestnut, and beech) leaves and do not 82 

alternate host plants during the season (Quednau 1999) (Table S1). This group encompasses 83 

species with two contrasting ecological characteristics, ant-attendance and non-attendance 84 

(Yao 2011). In a previous phylogenetic independent contrasts analysis, it was found that 85 

ant-attended species have higher wing loading (the ratio of wing area to body size) (Yao 86 

2011), suggesting that ant-attended aphids have allocated more resources to their bodies 87 
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than to their wings, resulting in lowered dispersal. Lower dispersal is likely to result in the 88 

formation of aggregated colonies (Stadler et al. 2003). It has also been demonstrated that 89 

ant-attended colonies attract more parasitoid wasps compared to ant-excluded colonies 90 

(Völkl 1992; Kaneko 2002, 2003; Sadeghi-Namaghi and Amiri-Jami 2018). Considering 91 

that host-parasitoid interactions may well be one of the most common horizontal 92 

transmission routes of Wolbachia (reviewed by Sanaei et al. 2021), it is expected that ant 93 

associations will be associated with higher Wolbachia infection rates in Tuberculatus aphid 94 

species. 95 

This study (1) examined Wolbachia infection rates and the type of Wolbachia 96 

supergroup in Tuberculatus aphid species collected throughout Japan and around Mt. 97 

Kariwangsan in South Korea, (2) estimated molecular phylogenetic trees based on a 98 

mitochondrion gene and a nuclear gene, and (3) evaluated the correlation with Wolbachia 99 

infection rates and ant associations using a phylogenetic comparative method. Infection 100 

routes of Wolbachia to aphids are discussed in terms of horizontal transmission via 101 

parasitoid wasps and ants. 102 
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 103 

Materials & Methods 104 

DNA extraction and Wolbachia infection rate 105 

Tuberculatus aphids (Aphididae: Calaphidini), 11 ant-attended and 12 non-attended species 106 

(Table 1 and Table S1), were collected from regions throughout Japan and around Mt. 107 

Kariwangsan of South Korea (Fig. S1 and Table S2). A species was regarded as 108 

ant-attended if aphids offered honeydew directly from their anus to attending ants. Because 109 

it was difficult to physically identify in the field three of the ant-attended aphid species (T. 110 

fulviabdominalis, T. indicus, and T. pilosulus) and seven of the non-attended aphid species 111 

(T. higuchii A- and B-types, T. kashiwae A- and B-types, T. yokoyamai, T. sp. D, and T. sp. 112 

F), those species were identified through the genetic sequencing (Table S1). Sampling was 113 

conducted on viviparous females, which appears from April to September. Since 114 

Tuberculatus aphid species parthenogenetically produce nymphs in summer, several nymph 115 

individuals on a leaf are a high likely to be clones. Therefore, aphids were collected from 116 

more than ten leaves in a tree, to avoid collecting clonal aphids. Individuals were placed 117 
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into 99.5% ethanol and stored at -20℃. Before DNA extraction, the collected aphids were 118 

dissected to check for the presence of parasitoid wasps. Aphids with parasitoid wasps were 119 

excluded from DNA extraction. Total DNA was extracted from each dissected aphid (whole 120 

body) with the Wizard genomic DNA purification kit (Promega, Tokyo, Japan). Since the 121 

16S rRNA gene is highly conserved in a wide variety of microorganisms, it was used for 122 

polymerase chain reaction (PCR) amplification to determine the presence or absence of 123 

Wolbachia. In the small-scale experiment, using a gene map of the 16S rRNA locus of 124 

Wolbachia (Simões et al. 2011), seven pairs of primers were selected and tested for each of 125 

23 Tuberculatus species, in which two to three individuals per species were tested (Table 2). 126 

One pair of primers, 16SWolbF (16S-3f) (Casiraghi et al. 2001) and WspecR (16S-2r) 127 

(Werren and Windsor 2000), was identified as the most appropriate for assessing the 23 128 

species because it was able to amplify Wolbachia at the maximum number of species 129 

(seven species) of the 23 species (Table 3). After the small-scale experiment, a full-scale 130 

experiment using the pair of primers was conducted on all collected samples (Table 1). To 131 

check whether DNA extraction was successful, the barcoding region (in mitochondrion) of 132 
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primer pairs, LCO1490 and HCO2198, was also used (Table 2). Because more than 90% of 133 

individuals of T. macrotuberculatus in the Ishikari site (site 4 in this study) harboured 134 

Wolbachia (Yao 2019), one individual of the species from the site was used for a positive 135 

control sample for Wolbachia detection. PCR was performed in 10 µL volumes which 136 

included 2 µL of 5×KAPATaq Extra buffer (Nippon Genetics, Tokyo, Japan), 1 µL 25 mM 137 

MgCl2, 0.3 µL dNTP mixture (10 mM of each), 0.5 µL of 10 µM of each primer, 1 µL 138 

template DNA, and 0.05 µL KAPATaq Extra DNA polymerase (5 units/ µL). Reaction 139 

cycle parameters were: 94 °C for 1 min; 40 cycles of 94 °C for 20 sec, 50 °C for 20 sec, 140 

and 68 °C for 1 min, followed by a final extension of 68 °C for 1 min. When PCR products 141 

had faint bands, the samples were rechecked by PCR in 20µL reaction volume. If the bands 142 

were false, nothing was amplified in 20µL reaction volume. The PCR product was checked 143 

using 1.5% agarose gel electrophoresis with ethidium bromide stain illuminated by UV 144 

light. The Wolbachia infection rate of each species was defined as the percentage of 145 

individuals amplified with the Wolbachia-specific primer out of all individuals amplified 146 

with the barcoding region primer. The correlation between the Wolbachia infection ratio in 147 
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each collection site and geographical distance was tested by a Mantel test (Mantel 1967) 148 

using the package vegan (Oksanen et al. 2012) in R (R Development Core Team 2021). The 149 

values of latitude and longitude of collection sites were obtained from Google Maps and 150 

were used for the geographic distance matrix. Wolbachia infection rates at the collection 151 

sites were used for an environmental parameter distance matrix. Except for exhaustive 152 

infection of T. sp. B, a Mantel test was applied to the species that was collected from more 153 

than a single site. 154 

 155 

Phylogenetic trees for Tuberculatus aphids 156 

A phylogenetic tree of the 23 Tuberculatus aphid species was constructed from the 157 

nucleotide sequences of a mitochondrion gene of a partial of cytochrome oxidase subunit I 158 

(COI) (940bp) from DDBJ (DNA Data Bank of Japan) (Table 1). Besides the COI gene, a 159 

partial of the nuclear gene of 18S rRNA (approx. 670bp) was amplified and used to 160 

construct phylogenetic trees. For reading the sequences of 18S rRNA gene, PCR was 161 

performed in 20µL reaction volume with a pair of primers (Ns1 and Ns2a; Table 2), the 162 



 12 

same reagents, and reaction cycles, as mentioned in the previous section were used, but the 163 

annealing temperature was changed to 47 °C. PCR products were purified and sent to a 164 

sequencing service (using Sanger sequencing) (Eurofins, Japan). The sequence data of the 165 

18S rRNA gene (515bp) were deposited in the DDBJ and accession numbers are listed in 166 

Table 1. A combined sequence of COI and 18S rRNA genes (1,455bp) was used for the 167 

construction of phylogenetic trees. The appropriateness of the combined sequence was 168 

checked by a homogeneity test implemented in PAUP* 4.0b10 PPC (Swofford 2002) (P > 169 

0.05). Maximum likelihood (ML) analysis was performed using PAUP* 4.0a 169. For the 170 

ML tree, parameters were chosen based on the Akaike Information Criterion, as 171 

implemented in Modeltest ver 3.7 (Posada and Crandall 1998). The GTR + I + G model 172 

was selected for the combined sequence of COI and 18S rRNA genes. ML trees were 173 

searched heuristically with TBR branch swapping. For the bootstrap test on ML, 1,000 174 

replicates were performed using fast stepwise addition as a starting option. Because 175 

phylogenetic tree for the comparative analysis of independent contrasts must be fully 176 

dichotomous with no gaps in the data, outgroup species were excluded from the analysis. 177 
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 178 

Phylogenetic independent contrasts 179 

As a consequence of their common ancestry, closely related species share many 180 

characteristics, and similarity between lineages is often influenced by relatedness rather 181 

than by independent evolution. Most statistical tests assume independence of data points 182 

and, therefore, data that are phylogenetically non-independent will tend to inflate the 183 

degrees of freedom (Felsenstein 1985; Harvey and Pagel 1991). Comparative analysis by 184 

independent contrasts (CAIC) uses independent comparisons of components within a 185 

phylogeny, with each comparison being made at a different nodes in the phylogeny (Purvis 186 

and Rambaut 1995). To examine the correlation between Wolbachia infection rates 187 

(continuous data as dependent variables) and ant association (discrete data as independent 188 

variables) in Tuberculatus species, phylogenetically independent contrasts were calculated 189 

using the pic function implemented in the package ape (Paradis and Schliep 2019) in R. 190 

Discrete data of ant association were coded as continuous variable using the contr.treatment 191 

function in R. The extent of ant association was categorized as either 0 (non-attendance) or 192 
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1 (facultative and obligate ant-attendance). Wolbachia infection rates were arcsine-square 193 

root transformed before analysis. The regression of contrasts between ant association and 194 

Wolbachia infection rates passes through the origin (the intercept is set to zero) as 195 

recommended by Garland et al. (1992). 196 

 197 

Wolbachia supergroups 198 

For Wolbachia that were detected in aphids (Table S2), the PCR products were sequenced 199 

with the same primers (16S-3f and 16S-2r) (Table 2). PCR products were purified with 200 

FastGene Gel/PCR Extraction Kit (Nippon Genetics, Tokyo, Japan). The cycle sequencing 201 

reaction was performed with a 5 µL volume consisting of 2 µL of Quick Start Mix 202 

(Beckman Coulter, Tokyo, Japan), 0.5 µL of 10 µM forward or reverse primers, and 2.5 µL 203 

of 10 ng/µL template DNA. The reaction cycle was 40 cycles of 94 °C for 20 sec, 50 °C for 204 

20 sec, and 60 °C for 1 min. DNA sequencing was analyzed using the CEQ2000XL DNA 205 

Analysis System (Beckman Coulter, Tokyo, Japan). The length of sequences that were 206 

successfully read through the samples were from about 500bp to 900bp. 207 
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Multiple sequence alignments including the sequences of 16 Wolbachia supergroups (A, B, 208 

C, D, E, F, H, I, J, K, L, M, N, O, Q, S) that were cited by Bing et al. (2014) (A to O), Ren 209 

et al. (2020) (O found in aphids), Glowska et al. (2015) (Q), and Lefoulon et al. (2020) (S) 210 

(Table S3) were processed with Clustal W (Thompson et al. 1994) on the DDBJ. 211 

Supergroup P was not included in multiple sequence alignments because it had insufficient 212 

sequence length for the lower region of the gene. After multiple sequence alignments, the 213 

length of sequences was 471bp. To determine what types of Wolbachia supergroup are 214 

present in Tuberculatus aphids, neighbor joining (NJ) with the BioNJ method was applied 215 

to the constructed Wolbachia phylogenetic tree. NJ analysis was performed using PAUP* 216 

4.0a 169. The distance matrix was calculated using the Jukes-Cantor substitution model. 217 

For the bootstrap test on NJ, 1,000 replicates were performed using fast stepwise addition 218 

as a starting option. 219 

 220 

Results 221 

Wolbachia infection rate 222 
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Wolbachia was detected in eight of 11 ant-attended aphid species (Table 1 and Fig. S1(a-f)) 223 

and five of 12 non-attended species (Table 1 and Fig. S1(g-l)), in which at least one 224 

individual was detected. Mean Wolbachia infection rates were 30.2% in ant-attended 225 

species and 3.1% in non-attended species (Table 1). A large variation of Wolbachia 226 

infection rates was found in ant-attended species (0% in T. indicus (Fig. S1b), T. pappus 227 

(Fig. S1e), and T. sp. E (Fig. S1f); 100% in T. sp. B (Fig. S1f). The Mantel test on T. 228 

fulviabdominalis and T. macrotuberculatus showed that Wolbachia infection rates was 229 

significantly correlated with distance between collection sites (for T. fulviabdominalis, 230 

Mantel statistic r = 0.842, P = 0.035 (Table 1 and Fig. S1b); for T. macrotuberculatus, 231 

Mantel statistic r = 0.164, P = 0.03 (Table 1 and Fig. S1d). 232 

 233 

Phylogenetic independent contrasts 234 

The ML phylogenetic tree based on the combined sequences of COI and 18S rRNA genes 235 

showed fully resolved tree topology (Fig. 1). CAIC showed a significant positive 236 

correlation between contrasts of Wolbachia infection rates and ant association (CAIC, F1, 21 237 
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= 13.7, P = 0.00134, Fig. 2); Wolbachia infection rates in Tuberculatus aphids were 238 

significantly higher in ant-attended species compared to non-attended species.  239 

 240 

Wolbachia supergroups 241 

Because the sequencing for T. pilosulus and T. sp. D was unsuccesful, only 11 242 

Wolbachia-positive were analyzed. The results of sequencing showed that each species 243 

harboured one haplotype of Wolbachia except for T. macrotuberculatus (Fig. 3). 244 

Tuberculatus macrotuberculatus harboured two haplotypes (Fig. 3): one haplotype was 245 

found at nine sites (sites 1 to 8 and site 23), the other at site 22. A NJ tree showed that 12 246 

haplotypes of Wolbachia were classified into four supergroups B, M, N, and O (Fig. 3). The 247 

haplotypes of Wolbachia in T. kuricola, T. stigmatus, T. higuchii B-type and T. paiki were 248 

placed into supergroup B. Wolbachia in T. macrotuberculatus collected from all infected 249 

sites except for site 22, T. quercicola and T. sp. B belonged to supergroup M. Wolbachia in 250 

T. macrotuberculatus collected from the site 22, T. capitatus, T. fulviabdominalis and T. 251 

japonicus were placed into supergroup N. Tuberculatus higuchii A-type harboured 252 
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Wolbachia of supergroup O, which was supported with a high bootstrap value (100%). 253 

Twelve DNA sequences of Wolbachia’s 16S rRNA were deposited in the DDBJ and 254 

accession numbers are listed in Fig. 3 and Table S3. 255 

 256 

Discussion 257 

The phylogenetic comparative analysis showed that Wolbachia infection rates were higher 258 

in aphid species that have mutualistic associations with ants. One possible infection route 259 

of Wolbachia to aphids could be horizontal transmission between Wolbachia-infected 260 

parasitoid wasps and aphids. Regardless of whether aphids are attended by ants, aphid 261 

colonies are frequently attacked by parasitoid wasps (Brodeur and Rosenheim 2000). Field 262 

experiments on some ant-attended aphid species demonstrated that ant-attended colonies 263 

attracted more parasitoid wasps compared to ant-excluded colonies (Völkl 1992; Kaneko 264 

2002, 2003; Sadeghi-Namaghi and Amiri-Jami 2018). These behaviours of parasitoid wasps 265 

are thought to be triggered by visual and chemical cues from aphid colonies attended by 266 

ants (Mouratidis et al. 2021). Ant-attended species form dense colonies (Stadler et al. 2003) 267 



 19 

and disperse less than non-attended species (Oliver et al. 2007; Yao 2010), which could by 268 

itself an explanation for a higher Wolbachia prevalence. A study using fluorescence in situ 269 

hybridization on the parasitoid wasp Eretmocerus sp. showed that Wolbachia were present 270 

in the mouthparts and ovipositors of wasps feeding on Wolbachia-infected whitefly Bemisia 271 

tabaci (Ahmed et al. 2015). Thus, the horizontal transmission of endosymbionts via the 272 

parasitoids of insects represents a potential pathway. Besides parasitoid wasps, ants are also 273 

known to harbour Wolbachia (Keller et al. 2001; Shoemaker et al. 2003; Tsutsui et al. 2003; 274 

Viljakainen et al. 2008; Frost et al. 2010; Reeves et al. 2020) and thus could be a possible 275 

agent to spread Wolbachia into aphid populations. In a study of scale insects and their 276 

associated groups (ants, wasps, beetles, flies, mites, moths, and thrips), Sanaei et al. (2022) 277 

showed that significantly higher Wolbachia infection rates in ant-attended scale insects, 278 

suggesting a possible horizontal transfer route between ants and scale insects. This study 279 

did not aim to identify the Wolbachia strains of parasitoid wasps or attending ants. Further 280 

studies on Wolbachia strains for aphids and their parasitoid wasps or their mutualistic ants 281 

are need to elucidate the possible routes by ants.   282 
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Although the average Wolbachia infection rates was higher in ant-attended species 283 

(30.2%) than in non-attended species (3.1%), a wide range of variation was found in the 284 

infection rates for ant-attended species (0-100%). The difference in realized infection rate 285 

can be attributed to ecological or environmental factors affecting the cost-benefit balance of 286 

Wolbachia infection to hosts (Gavotte et al. 2010; White et al. 2011; Okayama et al. 2016). 287 

Higher infection levels across all populations of T. capitatus (on average 94.6% from 15 288 

sites) and T. sp. B (100 % from 4 sites) could be responsible for positive selection 289 

favouring benefits from Wolbachia infection such as nutrition provision (Hosokawa et al. 290 

2010; De Clerck et al. 2015; but see Manzano-Marín 2020) or resistance to parasitoid 291 

wasps (Oliver et al. 2003). Hence, it could be possible that Wolbachia plays obligate 292 

mutualistic roles in T. capitatus and T. sp. B. On the other hand, for the species with 293 

infection rate of between 10 and 52 %, it is difficult to determine whether Wolbachia 294 

infection is a mutualistic or parasitic interaction with the species. The previous study of 295 

seasonal changes in Wolbachia density in a population (site 4 in this study) of T. 296 

macrotuberculatus showed that 315 of 316 (99.7%) of the aphids harboured Wolbachia and 297 
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Wolbachia density in an individual aphid exhibited no significant fluctuations during the 298 

survey period, implying that seasonal deterioration of host plants did not affect Wolbachia 299 

density, even though host aphids decreased in their body size and embryo numbers (Yao 300 

2019). Wolbachia of the aphids in this site seems to give a beneficial effect on the 301 

nutritional status of aphids during the harsh summer. However, in this study, no 302 

Wolbachia-infected aphids were found in 13 of 23 collection sites of T. macrotuberculatus. 303 

Furthermore, there was a significant correlation between geographical distance and 304 

difference in infection rates in two species T. fulviabdominalis and T. macrotuberculatus. 305 

This means that there is an isolation-by-distance effect among the collection sites. Indeed, it 306 

has been demonstrated that the genetic structure of T. macrotuberculatus in Hokkaido 307 

populations shows a higher inbreeding coefficient in each subpopulation and less dispersal 308 

due to ant attendance (Yao 2010), suggesting that region-specific patterns as to whether 309 

Wolbachia infection is costly or beneficial could occur in isolated populations. For the 310 

species with less than 5 % infection rate, three of four species (T. japonicus, T. paiki, and T. 311 

sp. D) are non-attended species and sometimes have been observed with ant-attended 312 
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species (T. fulviabdominalis, T. macrotuberculatus, T. stigmatus and T. sp. B) on the same 313 

host plant (Quercus dentata). This sympatric host plant use might provide the non-attended 314 

species with an opportunistic infection of Wolbachia, such as via plant-mediated horizontal 315 

transmission (Li et al. 2017). 316 

Wolbachia haplotypes were clustered into the four supergroups B, M, N, and O. Out of 317 

the 11 Wolbachia-infected Tuberculatus species in the phylogenetic tree, T. higuchii A-type 318 

fell into supergroup O that has been firstly detected in the white fly Bemisia tabaci (Bing et 319 

al. 2014) and recently found in the galling aphid species, Kaburagia rhusicola and 320 

Schlechtendalia chinensis (Ren et al. 2020). Detection in the novel host and a monophyletic 321 

group with a high bootstrap value (100%) will support existence of supergroup O. Given 322 

that supergroup O has so far been found only in China, it could have originated in East Asia 323 

and spread into Japan. As Wolbachia supergroups have evolved independently, infections 324 

by different supergroups presumably represent independent gains of the trait even for two 325 

species with the same ant-attendance state, but these are ignored in the current analysis. 326 

This would be overcome by the comparison of characteristics of hosts infected by different 327 
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supergroups and distributed in close distance areas. Tuberculatus macrotuberculatus 328 

harboured two phylogenetically-distant supergroups of M and N as previously seen in 329 

Moreira et al. (2019); the two sites of southern island, site 22 and site 23 (apart from 330 

approximately 40 km, Fig. S1d), had the supergroup N and supergroup M, respectively. 331 

Comparison between the two populations may help to elucidate the difference of 332 

independent gains of Wolbachia supergroup involving aphid-ant mutualisms. 333 

This study has revealed that the ecological characteristics of aphid hosts have 334 

influenced the extent of Wolbachia spread in these species. Further studies are needed to 335 

clarify what roles Wolbachia play in aphids, especially for ant-attended aphid species.  336 
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 592 

Figure legends 593 

Fig. 1. Maximum likelihood phylogenetic tree based on the combined sequences of COI 594 

and 18S rRNA genes. 595 

(Note) Operational taxonomic units (OTUs) shown in bold font indicate ant-attended 596 

species. The numbers on the branches of phylogenetic tree show bootstrap values (>50%). 597 
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Full terms of abbreviations are provided in Table 1. 598 

 599 

Fig. 2. Correlation between contrasts of ant association and Wolbachia infection rates. 600 

(Note) Contrastant and contrastwol represent independent contrasts that were calculated 601 

based on the status of ant association and Wolbachia infection rates at each node (n = 22) in 602 

the ML phylogenetic tree. 603 

 604 

Fig. 3. Bootstrap 50 % majority-rule consensus tree inferred by neighbor-joining 605 

(NJ) analysis for 16 Wolbachia supergroups 606 

(Note) The labels of operational taxonomic units (OTUs) mean Wolbachia sp. (indicated by 607 

w) and its host species. Thick vertical lines with alphabets indicate the clades of Wolbachia 608 

supergroups. See also Table S3. Bootstrap values of more than 50% were shown on 609 

branches. Full terms of abbreviations are provided in Table 1. 610 

 611 



Table 1. Tuberculatus aphid species used in the study and Wolbachia infection rate 

Ant-attended 

Collection 

sites N wol+ 

Infection 

rate (%) 

Mantel 

statistic 

r P Abbreviation COI 18S rRNA 

T. capitatus 15 56 53 94.6 0.032 0.196 capi AB592769 LC654240 

T. fulviabdominalis 8 55 12 21.8 0.842 0.035 fulvi AB592755 LC654241 

T. indicus 11 53 0 0.0 - - ind AB592759 LC654242 

T. kuricola 10 54 15 27.8 -0.093 0.719 kuri AB592750 LC654243 

T. 

macrotuberculatus 23 54 28 51.9 0.164 0.030 mt AB592752 LC654244 

T. pappus 1 10 0 0.0 - - pap AB861442 LC654245  

T. pilosulus 16 79 1 1.3 0.596 0.059 pilosulus AB592758 LC654246 

T. quercicola 11 54 8 14.8 -0.105 0.551 que AB592754 LC654247 

T. stigmatus 15 56 11 19.6 -0.039 0.415 sti AB592760 LC654248 

T. sp. B 4 31 31 100.0 - - spB AB592753 LC654249  

T. sp. E 1 9 0 0.0 - - spE AB861448 LC654250 

Average 10.5 46.5 14.5 30.2           

Non-attended                   

T. higuchii A-type 14 71 8 11.3 -0.100 0.560 higa AB592762 LC654251 

T. higuchii B-type 7 42 8 19.0 -0.089 0.657 higb AB592764 LC654252 

T. japonicus 7 59 1 1.7 0.814 0.143 japo AB592756 LC654253 

T. kashiwae A-type 5 39 0 0.0 - - kasa AB592765 LC654254 

T. kashiwae B-type 4 47 0 0.0 - - kasb AB592766 LC654255 

T. paiki 18 51 1 2.0 0.086 0.221 paiki AB592768 LC654256 

T. pilosus 11 52 0 0.0 - - pilosus AB592751 LC654257 

T. 

querciformosanus 9 52 0 0.0 - - qfor AB592761 LC654258 

T. yokoyamai 3 18 0 0.0 - - yoko AB592767 LC654259 

T. sp.C 1 41 0 0.0 - - spC AB592757 LC654260 

T. sp.D 1 29 1 3.4 - - spD AB592763 LC654261 

T. sp.F 1 4 0 0.0 - - spF AB861457 LC654262 



(Note): Collection sites represent the number of collection sites for aphids (see Table S2 for 

details). N and wol+ mean the numbers of aphid individuals amplified with barcoding region 

primers and those with Wolbachia specific primers. Infection rate (%) was defined by the per 

cent of wol+ divided by N. Except for exhaustive infection of T. sp. B, a Mantel test was applied 

to the species that were collected from more than a single site. Statistics of Mantel test, r, and 

P-values are given. The bold font shows a significant difference below 0.05 of P-values. 

Abbreviated names were used in Table 3, all figures and supplementary files. Accession 

numbers of COI and 18S rRNA genes from DDBJ were used to create phylogenetic trees of the 

aphids. 

 

Average 6.8 42.1 1.6 3.1           



Table 2. Primer set used in the small-scale experiment of Wolbachia detection and the 

amplification of 18S rRNA gene in host aphids 

(Note) *1. Reverse primer was not used in this study.  

Primer name Primer sequence (5’ to 3’) Product size (bp) References 

WspecF (16S-2f) CATACCTATTCGAAGGGATAG 438 
Werren and Windsor 

(2000) 

WspecR (16S-2r) AGCTTCGAGTGAAACCAATTC     

16SWolbF (16S-3f) GAAGATAATGACGGTACTCAC 1014 
Casiraghi et al. 

(2001) 

16SwolbR3 (16S-3r)*1 GTCACTGATCCCACTTTAAATAAC     

553F_W (16S-6f) ATACGGAGAGGGCTAGCGTTA 781 Simões et al. (2011) 

1334R_W (16S-6r) CTTCATRYACTCGAGTTGCWGAGT     

16SWup GCCTAACACATGCAAGTCGAA 1400 
Gomez-Valero et al. 

(2004) 

16SWlo AGCTTCGAGTGAAACCAATTCCC     

groEL-F (Wol) CAACRGTRGSRRYAACTGCDGG 550 Ros et al. (2009) 

groEL-R (Wol) GATADCCRCGRTCAAAYTGC     

wsp81F TGGTCCAATAAGTGATGAAGAAA 610 Zhou et al. (1998) 

wsp691R AAAAATTAAACGCTACTCCA     

FbpA_F1 GCTGCTCCRCTTGGYWTGAT 509 Baldo et al. (2006) 

FbpA_R1 CCRCCAGARAAAAYYACTATTC     

16SWolbF (16S-3f) GAAGATAATGACGGTACTCAC 972 This study 

WspecR (16S-2r) AGCTTCGAGTGAAACCAATTC     

        

LCO1490 GGTCAACAAATCATAAAGATATTGG 708 Folmer et al. (1994) 

HCO2198 TAAACTTCAGGGTGACCAAAAAATCA     

        

Ns1 GTAGTCATATGCTTGTCT C 
670 

(approximately) 

Barker et al. (2003) 

Ns2a CGCGGCTGCTGGCACCAGACTTGC     



(Note) Symbols + and – indicate that a clear band appeared and no band appeared, 

respectively. Symbols +– mean that a faint band appeared in 10 µL of PCR reaction 

volume, but disappeared when rechecked with PCR in 20 µL volume. Full terms of 

abbreviations are provided in Table 1. 

 

                        
 

Primer combination capi fulvi ind kuri mt pap pilosulus que sti spB spE 
 

16S-2f*16S-2r + – – – + – – + + + – 
 

16S-6f*16S-6r + +– – – + – +– + +– + – 
 

16SWup*16SWlo + – – – + – – + – + – 
 

groEL-F*groEL-R + – – – + – – + – + – 
 

FbpA_F1*FbpA_R1 + – – – + – – + – + – 
 

wsp81F*wsp691R + – – – – – – – – – – 
 

16S-3f*16S-2r + – – – + – – + + + – 
 

             

             

Primer combination higa higb japo kasa kasb paiki pilosus qfor yoko spC spD spF 

16S-2f*16S-2r – + – – – – – – – – – +– 

16S-6f*16S-6r +– + – – – – – – +– – +– – 

16SWup*16SWlo – – + – – – – – – – – – 

groEL-F*groEL-R – – + – – – – – – – – – 

FbpA_F1*FbpA_R1 – + – – – – – – – – – – 

wsp81F*wsp691R – – + – – – – – – – – – 

16S-3f*16S-2r – + + – – – – – – – – – 

Table 3. Result of the small-scale experiment using seven pairs of primers 
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