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A new index representative of seismic cracks to assess post-seismic landslide 

susceptibility 

 

 

Abstract 

In a major earthquake, strong shaking reduces the natural soil strength. Therefore, 

evaluating of the susceptibility of post-seismic landslides may help prevent further 

disasters in an affected area. This study developed an index representing the spatial 

density of seismic cracks (dense crack index: DCI) to express the degree of local ground 

effects. An area of 6 km2 with 196 slides identified after the 2016 Kumamoto earthquake 

(Mw 7.0) was analyzed using models that incorporated the weight of evidence (WoE), 

logistic regression (LR), and random forest (RF) methods, with the DCI as a conditioning 

factor. The WoE and RF models confirmed the importance of the DCI, although the 

improvement in performance as indicated by area under the curve values was marginal or 

negligible. This was largely due to combinations of other factors that enabled inclusion 

of locations with strong seismic waves, which compensated for the absence of the index. 

The contribution of the DCI could be improved if more accurate LiDAR data were used 

in the analysis. 

 

Key words: Post-seismic landslides, Landslide susceptibility, Seismic cracks, Weight of 
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evidence, Logistic regression, Random forest, 2016 Kumamoto earthquake 

 

 

Introduction 

An intense earthquake can trigger numerous landslides over a wide area, causing damage 

to human life, property, and infrastructure. Following an earthquake, an area will remain 

prone to landslides, because the ground affected by strong tremors requires months to 

years to recover its strength. Marc et al. (2015) examined pre-, co-, and post-seismic 

landslides in four regions that experienced intense earthquakes with moment magnitudes 

of 6.6–7.6; they found that the occurrence rates of post-seismic slides were higher than 

pre-seismic rates until 0.7 ± 0.2 to 3.8 ± 0.9 years after the events. They concluded that 

this period was attributable to the intensity of the earthquakes and the recovery of 

hillslope strength. The number and size of post-seismic slides are usually much smaller 

than co-seismic slides (Marc et al., 2015), while they can still cause further disasters and 

disrupt safe and prompt restoration work in the affected area. Therefore, although co-

seismic slides are usually a major concern from the perspective of disaster mitigation and 

management, the susceptibility of post-seismic slides also must be appraised immediately 

after an earthquake. 
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Susceptibility to post-seismic slides is considered related to the changes in soil structure 

and topographical features caused by an earthquake (Khattak et al., 2010; Massey et al., 

2014; Korup et al., 2007). Changes in soil structure (e.g., soil decompaction and increased 

porosity) are difficult to measure directly over a wide area, while topographical features 

(e.g., formation and dilation of open cracks) are recognizable by field surveys and/or on 

aerial photographs or topographical maps derived from airborne light detection and 

ranging (LiDAR) surveys. Hence, in Japan, the distribution of seismic cracks is currently 

mapped immediately after a major earthquake using these techniques (https:// 

www.gsi.go.jp/common/000145493.pdf). However, because the effects of such 

earthquakes often cover a vast area, the work itself is time-consuming and labor-intensive. 

In addition, image interpretation can vary according to operator skill and experience. The 

use of a reliable index that can digitally represent the distribution of seismic cracks could 

help to quickly and objectively locate slopes that are susceptible to further landslides in 

an emergency after a major earthquake. Cracks that are several meters in length can be 

expressed using a surface texture filter calculated from 1- and 2-m digital-elevation 

models (DEMs) based on LiDAR survey data (Kasai et al., 2009; Kasai, 2021). Assuming 

that soil masses with more concentrated cracks are more exposed to the earthquake and 

subsequently weaken, the index should also consider their spatial density, using the 
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surface-texture filter. 

 

Here it should be noted that not all seismic cracks represent local slope instability. Some 

are formed only as a result of ground displacement, and can close over time as soil 

accumulates at the bottom of the crack. While it is usually recommended to monitor 

slopes where open cracks are clustered carefully after a major earthquake (Owen et al., 

2008), the relationship between crack distribution and the occurrence of post-seismic 

slides has rarely been assessed, and it remains poorly understood. In addition, a field 

report concerning post-seismic slides after the Kumamoto earthquake (Mw 7.0) in April 

2016 in Japan indicated that crack distribution should be considered together with angle 

and curvature of the slope in the context of slope strength (Seismic Crack Counterplan in 

the Tateno District: SCCTD, 2019). Here, the inclusion of an index representing clusters 

of seismic cracks as one of several conditioning factors (tectonics, lithology, climate, 

hydrology, topography, vegetation, etc.) in a statistical model would enable evaluation of 

the relevance of cracks and other factors to post-seismic slides (Reichenbach et al., 2018; 

Lee et al., 2018). For example, the WoE method allows correlations between classes of 

factors and landslide occurrence to be determined (Bonham-Carter, 1994; Regmi et al., 

2010). The RF method can also estimate the importance of each factor with respect to 
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landslide occurrence. 

 

Statistical models for landslide susceptibility have been widely applied to co-seismic 

slides, but only a few have been applied to post-seismic slides (Gnyawali et al., 2020). 

Gnyawali et al. (2020) showed that susceptibility to co-seismic landslides during the 2015 

Gorkha earthquake was positively correlated with post-seismic landslides triggered by 

rainfall. That is, slopes severely impacted by the earthquake were more likely to collapse 

later. However, as in their study, the spatial resolution of the datasets commonly used in 

the models is often too coarse (e.g., ≥30 m) to reflect the local slope instability, which is 

essential for assessing the likelihood of post-seismic slides (SCCTD, 2019). For example, 

peak ground acceleration (PGA) and peak ground velocity are commonly employed to 

express seismic intensity, but spatial resolution is dependent on the distance between 

observation stations, which introduces uncertainty into susceptibility models (Nowicki 

Jessee et al., 2018; Tanyaş et al., 2019). Incorporating topographic features, such as 

ridges, where seismic waves are likely to be amplified (Jafarzadeh et al, 2015), together 

with an index that can reliably represent clusters of cracks that highlight local slope 

instability, is expected to contribute to improve the accuracy of susceptibility models for 

post-seismic landslides. 



7 

 

 

This study proposes a new index, DCI. The index represents the spatial density of seismic 

cracks and can be used to identify slopes vulnerable to landslides after a major earthquake. 

The study was conducted over a 6-km2 area in the Aso region of Kyushu, Japan which 

was struck by the 2016 Kumamoto earthquake (Figure 1(a)). First, we evaluated the 

association of DCI values with post-seismic landslides, together with other relevant 

factors, using the WoE and RF methods. Then, we assessed whether inclusion of the DCI 

improved the performance of the model for evaluating susceptibility to landslides after 

an earthquake. The WoE, RF, and LR models were applied, which are widely regarded as 

reliable methods to assess landslide susceptibility (Brenning, 2005; Budimir et al., 2015). 

Finally, the current problems and possibilities for use of the DCI were considered for 

future applications in identifying slopes at risk of sliding immediately after a major 

earthquake. 

 

Study area 

The study area is located on the flank of the caldera wall of the Aso volcano and ranges 

in elevation from 181 m to 853 m (Figure 1(a)). According to the Aso Volcano Geological 

Map (1:5,000) (Ono and Watanabe, 1985), this area is entirely covered with pyroxene 
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andesite lava. Weathered andesitic lava covered with a thin layer of topsoil is distributed 

from the ridge to the nick line (Ishikawa et al.,2016a). Below the line, bedrock outcrops 

composed of andesite with joints occur on steep cliffs, sometimes with tuffaceous 

conglomerate. Colluvial slopes continue below the cliffs. These lithological features were 

largely similar across the study area, with local variations. In terms of vegetation, the 

entire area is covered with aged Cryptomeria japonica, Quercus salicina and Castanopsis 

sieboldii. The area is wet, with an annual rainfall average of 2,770 mm from 1989 to 2019 

recorded at the Tateno observatory station operated by the Ministry of Land, 

Infrastructure, Transport and Tourism (MLIT) (Figure 1(b), http://www1.river.go.jp/cgi-

bin/Site Info.exe?ID=109091289912020). 

 

Landslides caused by the 2016 Kumamoto earthquake 

The epicenter of the 2016 Kumamoto earthquake was 21 km southwest of the study area 

(Figure 1(a)), and the focus depth was 12 km (https://www.data.jma.go.jp/svd/eqev/data/ 

2016_04_14_kumamoto/index.html). The maximum PGA of 1,791.3 cm/s2 was observed 

at a location 9.7 km west of the study site (https://www.data.jma.go.jp/svd/eqev/data/ 

kyoshin/jishin/1604160125_kumamoto/index2.html). Landslides induced by the main 

shock spread toward the northeast along the strike of the Futagawa Fault (https:// 
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www.gsi.go.jp/common/000143459.pdf). In the study area, 291 co-seismic landslides 

were detected based on our interpretation of aerial photographs and LiDAR-derived 

images taken by the Kyushu Regional Development Bureau of MLIT in January 2013 

and in April 2016 (immediately after the earthquake). Many seismic cracks were observed 

at intervals of ≤ 1 m in some places after the main shock (Ishikawa et al., 2016a). They 

were also visible in the LiDAR images. According to a field report by the Japan Society 

of Erosion Control Engineering (JSEC), most cracks were < 2 m deep, and there was no 

indication that surface flow was intensively supplying water to the ground through the 

cracks.  

 

Ishikawa et al. (2016b) examined a series of aerial photographs (Geospatial Information 

Authority of Japan: GSI) taken between immediately after the main quake and July 2016 

and found that most of the post-seismic slides in the area were caused by rainfall rather 

than the aftershocks that continued for 2 weeks along the Futagawa Fault 

(https://www.data.jma.go.jp/svd/eqev/data/2016_04_14_kumamoto/kumamoto_over1.p

df). First, intensive rainfall on April 21 (126 mm per day at the Tateno observatory station, 

Figure 2) induced several debris flows by remobilizing sediment that had collapsed during 

the earthquake and remained on the slopes. Continuous rainfall from June 19 to 29 (946 
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mm in total, with a daily maximum of 247 mm, red band in Figure 2) then caused multiple 

shallow translational landslides (maximum depth < 4 m). Some of these landslides 

subsequently triggered debris flows. However, rainfall of this magnitude is not 

exceptional in the region and usually does not cause landslides. For example, the last 

rainfall event that induced shallow landslides and debris flows was in July 2012, when 

the station recorded a maximum daily rainfall of 407 mm and a total of 924 mm over 2 

weeks. Therefore, it was presumed that the ground strength remained weaker than usual 

at 2 months after the earthquake. 

 

According to the SCCTD (2019), the topographical characteristics of the slopes where 

post-seismic slides were induced by the June rainfall event were steep, in the range of 40–

50°. They were situated along a longitudinally convex feature (e.g., nick lines) and were 

horizontally concave. Clusters of seismic cracks were also recognized on the slopes. 

Notably, the basin area of the slope, a factor that is generally associated with the water 

concentration, did not appear to be related to post-seismic slide occurrences. Few 

landslides have been reported in the area, despite occasional heavy rains since July 2016. 

It was observed that sediment had begun to accumulate in the bottoms of cracks that 

formed on the flat tops of ridges and gentle slopes (Ishikawa et al., 2016b). 
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This study considered landslides that were mainly caused by reduced ground strength 

related to the main shock and excluded debris flows. While studies of post-seismic slides 

have often included debris flows induced by remobilization of loose sediment deposits 

generated by the earthquake (e.g., Fan et al., 2018), they were excluded because their 

occurrence is heavily dependent on the concentration of runoff water. However, because 

the type of landslides targeted could cause subsequent debris flows, the detection of 

slopes at risk will also aid estimates of the likely locations of debris flows. 

 

Landslide Inventory 

An inventory of co- and post-seismic landslides was compiled based on aerial 

photographs and LiDAR survey data acquired simultaneously in January 2013 and in 

April and August 2016 (Figure 1(b)). The data for August were provided by the National 

Research Institute for Earth Science and Disaster Prevention, NIED. Co- and post-seismic 

slides were mapped as polygons, after confirming that the topographic features and 

elevation of the area had changed apparently from the previous survey (> 1 m). Because 

this study investigated the effect of seismic cracks on post-seismic slides, the areas of 

landslide initiation were targeted for analysis; sediment transfer and deposition zones 

were excluded. These zones were also identified from images and elevation changes. The 

total number of post-seismic slides extracted was 196, with an average area of 165 m2. 

 

In the study area, there were slopes that appeared to be moving slowly from shallow 

depths. They were not included in the inventory because of difficulty confirming their 
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actual movement. In particular, they were shaded by trees in the aerial photographs, the 

spatial density of ground-survey points in the LiDAR data was insufficient to create 

detailed and clear images, and/or the change in elevation between surveys was sufficiently 

small that it could be considered a survey error. 

 

Model analysis 

Conditioning factors 

Topographic, seismic, and meteorological factors were selected to construct landslide 

susceptibility models, as follows. 

 

Topographic factors 

Factors commonly used to assess landslide susceptibility (i.e., slope angle, plan and 

profile curvatures, slope aspect, and the composite topographical index [CTI]) were 

chosen together with the DCI. They were calculated using ArcGIS with a 1-m DEM 

derived from LiDAR survey data. For the DCI, two LiDAR data sets were used, one 

from January 2013 and one from April 2016, only the April 2016 dataset was used for 

the other factors. 

 

The DCI 
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The DCI represents the spatial density of seismic cracks. It is derived from a surface 

roughness filter, based on the concept that crack formation is associated with an increase 

in roughness. We applied the standard deviation of slope angle for 3 × 3 cells, σs, proposed 

by Frankel and Dolan (2007), to the filter. Here, a 1-m DEM was sufficient to show cracks 

of several meters length, which are reportedly associated with the occurrence of post-

seismic slides in the study area (Ishikawa et al., 2016a). We assumed that cracks appeared 

in cells where the change in standard deviation from pre- (January 2013) to post- (April 

2016) earthquake (σs chg) was greater than or equal to a threshold value (Cm). The standard 

deviation of the slope angle was sensitive to the number of ground survey points; 

therefore, man-made structures (e.g., roads with steep edges) were excluded from the 

analysis because few points were expected. σs chg was calculated as follows:  

𝜎𝑠 𝑐ℎ𝑔 = 𝜎𝑠 𝑝𝑜𝑠𝑡 − 𝜎𝑠 𝑝𝑟𝑒 (1) 

where σs pre and σs post are the standard deviation of the slope angles in January 2013 and 

in April 2016, respectively. An examination of the spatial distribution of σs chg and the 

locations where seismic ground cracks were identified in the field (Figure 3) and on 

topographic maps generated after the earthquake (Figure 4(a)) indicated that σs chg was ≥ 

2° in 75 % of the locations. This value of σs chg was found in only 3 % of the locations 

where cracks were not identified (Figure 5). Therefore, we set Cm as 2° (Figure 4(b)). 
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Most of the locations with a standard deviation of ≥ 2° coincided with the seismic cracks 

identified in LiDAR-derived images immediately after the major earthquake. However, 

there were also points where these standard deviation values occurred despite the absence 

of apparent cracks. They were mainly false features that appeared because of errors in the 

filtering process from the original to the ground data. After manual correction for those 

points by checking against the aerial photographs, cells with σs chg ≥ 2° were converted 

into points to calculate the point density using a kernel density function for each 1-m cell. 

Here, a distance of 10 m was selected for the bandwidth of the function after examination 

of the correlation between density and the occurrence of post-seismic slides with various 

bands from 5 to 30 m. The density was defined as the DCI (Figure 4(c)).  

 

Importantly, the index reflects both the size and number of cracks produced by the 

earthquake. Therefore, similar DCI values may be present in both a case with many small 

cracks and one with a few long and wide cracks. In this study, the ground was considered 

similarly weakened in both cases, although the strength would differ in reality. This index 

could be improved by collecting the width, depth, and length of a sufficient number of 

cracks to independently reflect their size. Unfortunately this information was difficult to 

obtain because of limited access to the sites. 
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Accuracies of the DCI and DEM 

The reliability of DCI values depends on the accuracy of the DEMs used for their 

calculation. To check the accuracy, 140 stationary points (e.g., roads and buildings) were 

selected in an area of 26 km² that included the study area. This area was chosen to ensure 

that a sufficient number of points could be obtained. The elevation differences at the 

points between the DEMs for January 2013 and those for April 2016 showed that the 

northern side of the Futagawa Fault had moved 1 m northeast and subsided 0.4 m on 

average; the southern side of the fault had shifted 0.7 m southwest and uplifted 0.1 m on 

average. The direction of changes agreed with previous reports that it is a right lateral 

displacement fault with a north-south tension axis and a normal fault component (Asano 

and Iwata, 2016). The amount of change also agreed with previous reports that the 

maximum values of horizontal movement and settlement were both approximately 2 m 

(Moya et al., 2017). Hence, the land on both sides of the fault moved collectively in 

different directions, although the movement was presumed to have minimal effects on the 

values that represented topographic changes. Locally, 10 % of the 81 cells with an angle 

> 30° had an elevation difference of > 1 m (Figure 6), which was consistent with the 

general notion that the vertical accuracy of DEMs tends to decrease with steeper slopes 
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(e.g., Lacroix, 2016). In addition, there were some locations where the spatial density of 

the laser beam reaching the ground surface in the LiDAR survey was low and the distance 

between the ground points was > 1 m (i.e., larger than the DEM resolution), because of 

the steep slopes and dense vegetation. In such cases, the triangulated irregular network 

(TIN) shape used to produce the DEM remained in the images created from the LiDAR 

data. One-quarter (48/196) of the post-seismic landslides were located on these slopes in 

the 2013 image, which may limit the feasibility of properly assessing their relationship 

with seismically induced cracks. Particular consideration was given to these conditions 

when carrying out the analysis and interpreting the results. 

 

Plan and profile curvature (PlC and PrC), slope angle (Slp) and aspect (Asp) 

The plan and profile curvatures, slope angle, and aspect appeared to provide overly 

detailed topographic information using the 1-m DEM; they did not seem to show the 

effects of slope profile on landslide occurrence adequately. Therefore, we averaged these 

values in an area of 10 m2 for each cell and incorporated the results into the model.  

 

The CTI 

The CTI represents potential soil wetness (Moore et al., 1991) and is derived as follows: 
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𝐶𝑇𝐼 =  ln (
𝐴

tan(𝜃)
) (2) 

where A is the contributing drainage area (m2) and θ is the slope angle (°).  

 

Seismic factors: Distance to the Futagawa Fault (DtF) and PGA 

We used two seismic factors in this study: distance to the Futagawa Fault (DtF) and PGA. 

The distribution of PGA was estimated by the natural neighbor method through 

interpolation of a three-dimensional synthetic PGA, recorded at 98 surrounding stations 

established by the Japan Meteorological Agency, JMA and NIED. The closest and farthest 

stations were 3.6 and 117 km from the study area, respectively. Nine stations were located 

within 10 km of the perimeter of the study area. Due to the distance between the stations, 

the PGA was obtained for every 100-m cell and applied to the modeling after the values 

had been resampled for 1-m cells. 

 

Meteorological factors: total rainfall (Rain) 

Most of the post-seismic slides analyzed in the study area were triggered by the rainfall 

from June 19 to 29, 2016 (Figure 2, Ishikawa et al., 2016b). Therefore, the total rainfall 

for the period was selected as a meteorological factor. Its spatial distribution was 
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estimated by the natural neighbor method based on observations at 35 gauging stations 

established by JMA and MLIT, located within 30 km of the Tateno observatory station. 

The estimated values were assigned to each 1-m cell. 

 

Datasets for the landslide susceptibility model 

Ten datasets for modeling were created as follows. Of the 32,303 cells contained in post-

seismic landslides, 70 % (22,612 cells) were randomly selected to train the model and the 

remaining 9,691 cells were used for testing. The same number of 1-m cells contained in 

the landslide polygons was also randomly selected from outside the landslide area; 70 % 

of each group was used for training, while the rest were used for testing. This process was 

repeated 10 times. 

 

Models 

The WoE method 

The WoE method (Bonham-Carter, 1994; Regmi et al., 2010) is a bivariate model that 

allows examination of the correlation between a certain conditioning factor class and 

landslides. The correlation is given by the contrast, C, as follows:  
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𝐶 = 𝑊+ − 𝑊− (3) 

where 𝑊+ and 𝑊− are the positive and negative weights of evidence for a certain class 

in a 1-m cell, respectively, and are given by:  

𝑊+ = ln
𝑃(𝐹|𝐿)

𝑃(𝐹|𝐿)
 (4) 

𝑊− = ln
𝑃(𝐹|𝐿)

𝑃(𝐹|𝐿)
 (5) 

where L is the presence of a landslide, F is the presence of a value within a certain 

conditioning factor class, 𝐿 is the absence of a landslide, 𝐹 is the absence of a value 

within a certain conditioning factor class, 𝑃(𝐹|𝐿) is the probability of a 1-m landslide 

cell with a value within a certain conditioning factor class, 𝑃(𝐹|𝐿) is the probability of 

a cell outside of a landslide containing a value within a certain conditioning factor 

class, 𝑃(𝐹|𝐿) is the probability of a 1-m landslide cell not containing a value within a 

certain conditioning factor class, and 𝑃(𝐹|𝐿) is the probability of a cell outside of a 

landslide not containing a value within a certain conditioning factor class. The 

combination of positive 𝑊+  and negative 𝑊− , or high 𝐶 , implies a positive 

relationship between landslide occurrence and that conditioning factor class, while a 

combination of negative 𝑊+  and positive 𝑊−  indicates a negative relationship. If 

landslide occurrence is independent of the factor class, then 𝑊+ and 𝑊− both equal 0. 

The C values obtained for each conditioning factor were summed for each 1-m cell and 
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used as a landslide susceptibility index for the cell. The range was set to be as equal as 

possible; when the number of cells belonging to a class was small (< 1 % of the total), 

they were merged into subsequent classes to avoid biasing the results. 

 

In this study, we did not perform a pairwise test between two conditioning factors to 

calculate the χ2 statistic, which is commonly used to assess their independence (Bonham-

Carter, 1994; Regmi et al., 2010). Hence, the results obtained using this method were 

interpreted only as a relative index of landslide susceptibility, which was similar to the 

approach used by Lee et al. (2018). The reason for this is as follows. In the test, the C 

value should be relatively high near the feature values associated with the occurrence of 

the landslide; a binary pattern (presence or absence of a landslide) was adopted using 

values higher or lower than the C value. However, this assumption was not true for all 

factors. For example, extremely gentle or extremely steep slopes are less prone to 

landslides because extremely gentle slopes may not provide sufficient driving force for 

the soil mass to move, while extremely steep slopes are not likely to have a well-

developed soil layer that can slide. 

 

The LR method 
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The LR algorithm is expressed by:  

 

𝑦 = logit(𝑃)  = a + b × 𝐷𝐶𝐼 + c × 𝑆𝑙𝑝 + d × 𝑃𝑙𝐶 + e × 𝑃𝑟𝐶 + f × 𝐶𝑇𝐼 + g ×

𝐴𝑠𝑝 + h × 𝐷𝑡𝐹 + i × 𝑃𝐺𝐴 + j × 𝑅𝑎𝑖𝑛    (6) 

 

where P is the probability of landslide occurrence, a, b, c, d, e, f, g, h, i and j are constants 

obtained by regression, and y is the dependent value for landslide occurrence (0 for absent 

and 1 for present). The probability of landslide occurrence is then given by: 

𝑃(𝑦) =  
1

1 + 𝑒−𝑦
 (7) 

 

The variance inflation factor of the included factors ranged from 1.050 to 2.101, and 

multicollinearity was not detected.  

 

The RF method 

RF is an ensemble learning method proposed by Breiman et al. (2001). It has been widely 

applied to landslide susceptibility models in recent years (e.g., Taalab et al., 2018; 

Merghadi et al., 2020). Various studies have shown that it is robust to outliers and noise; 

it is also less prone to overfitting and exhibits both high prediction accuracy and stability 
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(Dou et al., 2019). Furthermore, it can manage large amounts of data and does not require 

any specific normalization or standardization of the variables (Dou et al., 2019). A 

particular advantage is its ability to estimate important conditioning factors used for 

determining the presence or absence of landslides. This is attractive from the perspective 

of disaster prevention because it indicates the factors that should be observed and/or 

monitored in relation to their occurrence. 

 

In the RF method, multiple decision trees are aggregated to perform classification and 

prediction. In a decision tree, the binary data (presence/absence) and variables of 

conditioning factors are in the root node. Then, the tree grows as it splits at each node 

where the variable that most effectively classifies the binary data is selected by the Gini 

index (Breiman et al., 1984). Nodes in the tree continue to be added until there is a single 

response for each terminal. A decision tree alone is a weaker classifier because of its 

heavy dependence on the data set applied. By contrast, the RF method can compensate 

for this weakness by growing diverse trees on the basis of a sub-training data set created 

by resampling (e.g., two-thirds of the training data with replacement by bootstrap 

aggregation), then randomly selecting factors for each node. In this study, we 

implemented the RF method in MATLAB and repeated the process until 500 trees were 
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constructed. Then, the predicted classifications of those trees (1 for presence, 0 for 

absence) were averaged to estimate the probability of a post-seismic slide for each cell. 

 

The accuracy of the RF is evaluated by averaging the “out-of-bag” error for each decision 

tree over the entire forest. Here, "out-of-bag" refers to data that were not selected as a 

sub-training dataset, (e.g., the remaining one-third of the training data). When the model 

is implemented by removing the conditioning factors in sequential order, the factor 

associated with the larger error upon removal is considered more important in the 

classification. This error can be used to rank the factors in order of importance for the 

occurrence of post-seismic slides. 

 

Performances of the models 

The performances of the models with/without use of the DCI were compared based on 

the area under the receiver operating characteristic curve (AUC) for true and false positive 

rates. 

 

Results and Discussion 

Associations of conditioning factors with occurrence of post-seismic slides 
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Contrasts for each factor class (WoE) 

The contrasts for each factor class presented in the WoE models agreed with the 

topographical characteristics associated with the occurrence of post-seismic slides 

reported in SCCTD (2019): steep slopes in the range of 40–50°, convex longitudinally 

(PrC < -2) and concave horizontally (PlC < -2) with the appearance of clusters of cracks 

(DCI > 0.2) (Figure 7). In particular C for a DCI value > 0.4 was the highest among the 

factor classes, along with the 0–100 m of DtF, while the class with a DCI value ≤ 0.2 

(sparse appearance) had a strong negative correlation with post-seismic landslide 

occurrence, following those of slopes < 25° (Figure 7). 

 

The contrasts of DCI classes suggest that the formation of seismic cracks is closely related 

to subsequent landslides in the target area. Their presence is associated with the values of 

other factor classes (Figure 8). The classes generally considered to be affected by intense 

seismic motions, such as a strong PGA (1,050–1,150 cm/s2) and topographical features 

that are likely to appear near ridgelines (i.e., PrC < -4 m-1, CTI < 0, and 40–50° in the 

study area), had a large percentage of cells with DCI values > 0.2 in the dataset and a high 

positive C. By contrast, slopes of < 25° were extensively distributed in the lower part of 

the hillslopes (e.g. Figure 9); in these classes, the percentage of cells with a DCI value > 
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0.2 was very small (approximately 10%, Figure 8). The negative correlation of the class 

above 1,150 cm/s2 with the occurrence of post-seismic slides (Figure 7) seemed to 

contradict the general idea that stronger shaking produces more unstable slopes, whereas 

gentle slopes occupied a large part of the area that experienced the PGA value (Figure 9). 

Although the area also contains slopes in the range of 40–50°, the occurrence of a few 

post-seismic landslides was likely because little or no unstable soil mass remained after 

the main quake. For example, after the Hokkaido Eastern Iburi earthquake in September 

2018 (Mw: 6.6, PGA at max: 967.3 cm/s2, recorded by JMA), which induced more than 

6,000 landslides over an area of 440 km2, few post-seismic slides were observed, despite 

subsequent severe storms and a strong aftershock in February in 2019 (MW: 5.6, PGA: 

807.4 cm/s2, recorded by JMA). This was presumably caused by the almost complete 

removal of unstable soil from the slopes by the 2018 earthquake, rather than a rapid 

recovery of ground strength. 

 

For rainfall, C was positive only for the medium range of 900–950 mm, in which the 

percentage of cells with a DCI value > 0.2 was higher than in other classes (Figure 7). 

This was inconsistent with the general notion that higher rainfall is more likely to induce 

landslides. Therefore, landslides were presumably prone to occur in areas with more 
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seismic cracks, regardless of the amount of rainfall during the June event. 

 

The relationship between the percentage of cells with a DCI value > 0.2 and the contrast 

of the DtF class was less clear than the relationships between other factors (Figures 7, 8), 

while a closer proximity to the fault tended to result in higher contrast (Figure 7). This 

was probably because DtF is merely a factor of distance; its value is strongly dependent 

on other factors involved in landslide processes. Note that the negative C in the class 

above 55°, despite the large percentage of cells with a DCI value > 0.2, was because most 

locations were cliffs and the spatial density of the ground survey points tended to be low 

in the LiDAR surveys. 

 

Importance of each factor according to RF 

The importance of each factor according to RF implied that DCI was the most influential 

factor for post-seismic slide occurrence, followed by slope angle and PGA (Figure 10). 

This is consistent with the strong likelihood or unlikelihood presented by the contrasts of 

these factors (Figure 7). Rain and DtF were ranked as less important than the DCI value, 

slope angle and PGA; although their positive and negative contrasts were similarly large. 

This could be attributed to their lesser involvement in seismic crack formation. 
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Model evaluation 

Figure 11 depicts a landslide-susceptibility map. Slopes that were highly susceptible to 

post-seismic slides were more concentrated along the Futagawa Fault for the WoE and 

LR models in cases without the use of the DCI than in cases in which the index was used. 

There were similar differences in the RF models between cases with and without the use 

of the index, but the differences were much more subtle. 

 

Table 1 shows the average AUC values of the models for all 10 datasets. For the models 

based on the WoE and LR methods, the values were in the range 0.8–0.9, which was 

regarded as excellent performance according to Hosmer and Lemeshow (2000). However, 

the improvement in the models by including DCI values was marginal (2–4 %). In 

contrast, for RF models with and without the index, the values were both > 0.9, indicating 

equally outstanding performance. These results appear to contradict the earlier findings, 

in which both the contrasts and importance values indicated that DCI is a useful index for 

determining the locations of slides after a major earthquake. However, as shown in 

Figures 7 and 8, cracks tended to form densely in specific locations where strong seismic 

waves were likely to have been amplified during the main shock, increasing the landslide 
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susceptibility at these sites. In the models, particularly models based on RF, the absence 

of the index could be sufficiently balanced by successfully reproducing such slopes via 

the combination of PGA (i.e., the approximate intensity of shaking with a coarse spatial 

resolution) with local topographical features that could indicate the locations. In this 

context, the role of the DCI in stressing local slope instability in the models was smaller 

than expected. 

 

However, AUC values alone cannot reveal all of the characteristic differences among 

models. Figure 12 presents examples of landslides, demonstrating that the WoE and LR 

models with the DCI were better able to detect slopes susceptible to post-seismic slides 

than were those models without the index. For example, models that included the index 

successfully detected a small landslide that had been overlooked in our interpretation 

(Figure 12(A)). Landslides also tended to be delineated more clearly by RF models using 

the DCI, as shown in Figure 12(B). Since the DCI is used to represent fine geomorphic 

features, model performance could be more appropriately evaluated using a measure that 

can capture the difference of landslide bodies, such as the error index proposed by Carrara 

(1993), rather than using the AUC as an overall measure. For example, Pokharel et al. 

(2021) used the error index to demonstrate morphological differences of individual 
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landslides between inventories. 

 

Figure 12 also shows that the models with DCI were often overly sensitive to crack 

emergence and overestimated landslide susceptibility. This is considered particularly 

problematic where the DEM did not adequately represent the actual elevation. A major 

limitation regarding the DCI is the uncertainty associated with LiDAR survey data. The 

standard deviation in slope angles is sensitive to the ground point density, which varies 

between surveys depending on vegetation cover, landform, survey instruments, and the 

filtering techniques applied to the original data. A series of LiDAR survey data is required 

to calculate the DCI, and older data often tend to contain higher degrees of uncertainty, 

due to the less-developed survey technology, compared with currently available data. In 

this study, one-quarter (48) of the post-seismic slides were located on slopes that 

maintained the shape of the TIN used to create the DEM in the 2013 image. Fourteen of 

these slides (29 %) contained cells with a DCI value > 0.2, while 91 % of the remaining 

slides (135/148 slides) contained them. Therefore, it is possible that 44 of the 48 slides 

had cracks formed by the main shock. As more accurate LiDAR data become available, 

the advantages of models that incorporate this index may become more pronounced than 

at present. 
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Evaluation of model performance was also influenced by the uncertainty of the landslide 

inventory. In this study, a landslide was defined as land that had subsided ‘noticeably’ 

since the time of the last survey; it was accompanied by the formation or expansion of 

bare ground. However, there were several locations at which possible shallow ground 

motions had occurred that could not be confirmed with available data (Figure 13(a)); they 

might have been successfully detected by the RF model using the DCI. Figure 13 shows 

a slope where the models using the index and changes in aerial images and elevation since 

April implied the possibility of a slide. This slope was not included in the inventory 

because the resolution of this part of the LiDAR data for August was too coarse to 

determine whether a slide actually occurred. The locations of trees in the area also 

appeared to move, but such subtle changes could not provide clear evidence of a slide. 

Thus, unless the response variable is completely "correct," which is likely impossible for 

a landslide inventory, the evaluation of the DCI in landslide susceptibility models must 

be somewhat uncertain. 

 

The lower-than-expected contribution of the DCI to model performance could also be 

related to the geology of the study area, which is characterized by clastic volcanic rocks 
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with joints and an absence of low permeable layers comprising fine materials (e.g., 

tephra) in the subsurface. Although water may penetrate underground through cracks, this 

lithology would not allow it to be retained over time; therefore, induction of further slides 

because of increased pore pressure would be unlikely. This could be why few new slides 

were observed after the rainfall in June, despite repeated heavy rainfall events (Figure 2) 

and the remaining clusters of cracks. The June rainfall event might have removed most 

unstable soil masses that remained on steep slopes; the strength of this mass had been 

considerably weakened by the impact of the main quake, as suggested by dense seismic 

cracks. Amounts of rainfall were not positively correlated with the occurrence of post-

seismic slides, implying that these unstable slopes simply needed a trigger to collapse.  

Hence, while Marc et al. (2015) reported that a decline in landslide occurrence after a 

major earthquake is associated with soil strength recovery and earthquake intensity, it 

would also depend on the unstable mass remaining after the initial earthquake and the 

frequency of rainfall capable of causing that mass to move. In such regions, the DCI can 

represent local slope instability factors resulting from strong seismic motions; the 

inclusion of this index could allow models to perform well using fewer factors than 

conventionally employed to indicate instability. Further research is needed regarding this 

topic. However, we found that one landslide had been moving continuously –this 
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persisted after August– on the central crater hill, where tephra is deposited inside the 

caldera. In this case, the water supply from the cracks created by the main quake may 

have raised the groundwater level due to subsurface layers of low permeability to 

facilitate the movement of soil masses, but further confirmatory investigation is needed. 

If other landslides with similar movements are present nearby, targeting them may also 

emphasize the importance of the DCI in models of post-seismic landslide susceptibility. 

 

Here, it is important to consider whether the DCI is really necessary to evaluate the 

likelihood of landslides after a major earthquake. We recommend using the index as a 

predictor of susceptibility models because the contrast from the WoE analysis and the 

importance value from the RF model indicated a close association of DCI values with the 

occurrence of landslides. Its role in those models might also be more appropriately 

assessed with better quality LiDAR data. However, regardless of improvements to 

LiDAR surveying technology, we will continue to encounter similar data-error issues 

because landslides frequently occur on steep slopes with dense vegetation. In such cases, 

we found that models using machine learning techniques (e.g., RF), which can consider 

the interrelationships of predictors, could provide satisfactory results without counting 

seismic cracks. However, they may fail to account for landslides whose mobilization 
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depends more on increased pore water pressure than on shear stress. This is because, in 

this case, cracks are both the result of ground weakening and the cause of ground 

instability, and are actively involved in post-seismic landslide processes.  

 

Currently, there are no appropriate post-seismic landslide susceptibility models for use in 

areas where a major earthquake has hit. Various models may be developed after the event, 

although it is difficult to apply them to other regions because of different geological, 

topographical, and climatic conditions (Nowicki Jessee et al., 2018). In this situation, the 

DCI proposed in this study will save time and labor to help identify slopes with a high 

risk of sliding by objectively limiting the areas that should be considered immediately 

after a major earthquake. For example, cells with a DCI value > 0.2 covered 0.44 km2, 

which is only 7 % of the entire study area. By excluding gentle slopes < 25°, which are 

probably related to the angle of repose, and steep slopes > 55°, which are mainly cliffs, 

the area of concern was then reduced to 0.33 km2, which included 71 % of the post-

seismic slides. This proportion should improve as the error in the data decreases. In an 

emergency, this simple approach could be used if LiDAR survey data are available for 

the periods before and immediately after the earthquake. 
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Parker et al. (2015) reported that the regions that experienced strong ground shaking 

during a 1929 earthquake in the northwest South Island of New Zealand were associated 

with a higher susceptibility to landslides during a 1968 earthquake in the same area. 

Therefore, the DCI value of each slope after a major earthquake could serve as an 

indicator of landslide susceptibility in the next major earthquake. However, the DCI itself 

requires further improvement to better represent seismic cracks and locate slopes with the 

potential to slide. More field reports must be examined for this purpose. The values 

required for calculation, such as Cm and the bandwidth of the density, may vary among 

regions, reflecting geographical and topographical conditions. Further improvement of 

the index will enable prompt restoration work after major earthquakes and thereby help 

with disaster management in tectonically active areas. 

 

Conclusion 

A strong earthquake induces many open cracks, some of which are caused by ground 

displacement, while others occur on unstable slopes and show signs of subsequent 

landslides. In this study we proposed a new index, the DCI, which represents the spatial 

density of seismic cracks; it can be used to assess their associations with post-seismic 

slides. By introducing the DCI into the WoE and RF models together with other 
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topographic, seismic, and meteorological conditioning factors, we found that this index 

was the most important factor determining the occurrence of post-seismic slides in the 6-

km2 area struck by the 2016 Kumamoto earthquake. However, the performances of the 

WoE, LR, and RF models with the index were only slightly improved compared to their 

use without it, according to the AUC values. This could be related to errors in the LiDAR 

survey data that prevented the proper calculation of DCI values in some locations, 

including one-quarter of the post-seismic slides, and the failure to confirm the presence 

of all landslides, although the models suggested them. Therefore, although we expected 

that the presence of cracks would further accentuate the weakness of the in-situ soil mass, 

we believe that their contributions were underestimated in this case. In addition, the 

combination of features that indicated where open cracks were likely to occur, or 

ridgelines where seismic waves were prone to be amplified, could compensate for the 

absence of the DCI. This compensation was considered possible because the lithology 

consisted mainly of clastic volcanic rocks with joints, which did not retain water from 

cracks to cause further landslides. Therefore, the dense seismic cracks that formed in the 

area were merely evidence of ground weakening related to the earthquake; they did not 

actively promote further slides. The contribution of the index to assessments of post-

seismic slide susceptibility is expected to be different in areas with subsurface layers of 
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low permeability, where water is supplied through cracks and accumulates, raising the 

groundwater table and facilitating soil mass movement.  

 

In summary, this study confirmed the potential of the DCI for evaluating landslide 

susceptibility after a major earthquake, although further investigations are needed. The 

index itself also must be more thoroughly examined, considering various reference values 

for calculations that should vary among regions. Therefore, the future development of the 

index will require the collection and analysis of a wide range of field data. These studies 

will contribute to future disaster prevention programs in tectonically active regions. 
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Table 1: Average AUC values of the datasets calculated for training and testing data with 

and without the DCI for each model. 

Model Training data Testing data 

with DCI without DCI with DCI without DCI 

WoE 0.891 0.868 0.890 0.867 

LR 0.896 0.859 0.895 0.857 

RF 0.999 0.999 0.997 0.997 

§AUC: area under the curve; DCI dense crack index; WoE: weight of evidence; LR: 

logistic regression; RF: random forest. 
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Figure legends 

Figure 1: Study area. (a) Map of the Aso region of Kyushu, Japan. The epicenter of the 

2016 Kumamoto earthquake is indicated by a red cross. (b) Landslides induced in and 

after the 2016 Kumamoto earthquake. The study area is outlined in black. The red dot 

indicates the Tateno observatory station. 

 

Figure 2: Daily rainfall at Tateno observatory station (Figure 1(b)) from April 1 to 

September 30, 2016. The red band indicates the period from 19-29 June. 

 

Figure 3: A seismic crack at the location indicated by a black circle in Figure 4. The crack 

was 60 cm in width and 85 cm in depth. The photograph was taken in December 2019. 

 

Figure 4: An example of earthquake-induced changes in the ground surface. The extent 

of the area is indicated by the white square in Figure 1(b). The location of the lower 

images is shown in the upper images by the white square. (a) Slope maps before and after 

the earthquake, derived from LiDAR survey data. (b) Cells with σs chg ≥ 2. (c) Distribution 

of DCI values. The location of the crack shown in Figure 3 is indicated by a black circle. 

In (b) and (c), the background is the gray-scale slope image in April 2016 and black lines 
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indicate cracks in April 2016. 

DCI: dense crack index. 

 

Figure 5: Box plots of σs chg for locations where cracks were and were not identified. The 

interquartile range is represented by the box. Upper whiskers: 1.5 times the interquartile 

range above the third quartile. Lower whiskers: 1.5 times the interquartile range below 

the first quartile. Outliers are plotted as dots. Crosses are the averages of σs chg and the 

horizontal line represents the median value. 

 

Figure 6: Relationship between slope angle before the Kumamoto earthquake and the 

absolute difference between the DEMs for January 2013 and April 2016. 

 

Figure 7: Contrasts of the conditioning factors and proportion of cells with DCI values > 

0.2 for each factor class.  

DCI: dense crack index; Slp: slope angle; PlC: plane curvature; PrC: profile curvature; 

CTI: compound topographic index; Asp: slope aspect; DtF: distance to Futagawa Fault; 

PGA: peak ground acceleration; Rain: total rainfall. 
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Figure 8: Relationship between the proportion of cells with DCI values > 2 in a class and 

the average contrast value of the dataset. 

DCI: dense crack index; Slp: slope angle; PlC: plane curvature; PrC: profile curvature; 

CTI: compound topographic index; Asp: slope aspect; DtF: distance to Futagawa Fault; 

PGA: peak ground acceleration; Rain: total rainfall. 

 

Figure 9: Enlarged view of a slope map for the area where PGA ≥ 1,150 cm/s2. The area 

is in the blue square in Figure 1(b). 

Slp: slope angle. 

 

Figure 10: Importance values of the conditioning factors that influence the occurrence of 

post-seismic landslides. 

DCI: dense crack index; Slp: slope angle; PlC: plane curvature; PrC: profile curvature; 

CTI: compound topographic index; Asp: slope aspect; DtF: distance to Futagawa Fault; 

PGA: peak ground acceleration; Rain: total rainfall. 

 

Figure 11: Landslide susceptibility maps using dataset 1 obtained with and without DCI 

for the WoE, LR and RF models. 
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DCI: dense crack index; WoE: weight of evidence; LR: logistic regression; RF: random 

forest. 

 

Figure 12: Examples of post-seismic slides (outlined in green). The locations of (A) and 

(B) are indicated by the red and black cross respectively in Figure 11. The landslide shown 

in (A) was overlooked in our interpretation. The locations of (A) and (B) are indicated by 

the red and black crosses, respectively, in Figure 11. The landslide shown in (A) was 

overlooked in our interpretation. (a) Gray-scale slope maps and photographs for April and 

August 2016. (b) Cells in the top 0.06 % for susceptibility level (colored red) identified 

by the WoE, LR, and RF models. The background is the gray-scale slope map for August 

2016. No landslide was found in the red cells located outside the polygons.  

DCI: dense crack index; Slp: slope angle; WoE: weight of evidence; LR: logistic 

regression; RF: random forest. 

 

Figure 13: An example of a possible slide suggested by the RF model with the DCI 

(outlined in pale blue). The location is indicated by the white cross in Figure 11 (RF model 

with DCI). (a) Slope maps and aerial photographs for April and August 2016. (b) Red 

cells are the top 0.06 % of the susceptibility level by the RF model. (c) The difference in 
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DEMs from April to August 2016. 

DCI: dense crack index; Slp: slope angle; RF: random forest. 
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