
Title	Structural Properties and Biological Activities of Collagens from Four Main Processing By-Products (Skin, Fin, Cartilage, Notochord) of Sturgeon (Acipenser gueldenstaedti)
Author(s)	Meng, Dawei; Wei, Qiwei; Takagi, Yasuaki; Dai, Zhiyuan; Zhang, Yan
Citation	Waste and Biomass Valorization https://doi.org/10.1007/s12649-023-02107-6
Issue Date	2023-04-07
Doc URL	http://hdl.handle.net/2115/91660
Туре	article (author version)
File Information	Manuscript.pdf

1	Structural properties and biological activities of collagens
2	from four main processing by-products (skin, fin, cartilage,
3	notochord) of sturgeon (Acipenser gueldenstaedti)
4	Dawei Meng ^{a*} , Qiwei Wei ^b , Yasuaki Takagi ^c , Zhiyuan Dai ^a , Yan Zhang ^d
5	a Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang
6	Gongshang University, 149 JiaoGong Road, Hangzhou 310012, China
7	b Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs,
8	Yangtze River Fisheries Research Institute, Chinese academy of Fishery Sciences, Wuhan, 430223, China
9	c Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611,
10	Japan
11	d Liangzhu laboratory, Zhejiang University Medical Center, Hangzhou 310058, Zhejiang, China
12	
13	
14	
15	Corresponding author at: Zhejiang Province Joint Key Laboratory of Aquatic Products Processing,
16	Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
17	E-mail addresses: <u>dawei@mail.zjgsu.edu.cn</u> (D. Meng)
18	
19	
20	
21	
22	

Abstract

24	During the processing of sturgeon, large amounts of by-products, such as skin, fin, cartilage, and
25	notochord, are produced. These by-products have not been effectively used, resulting in a serious waste
26	of sturgeon resources. In this study, we aimed to obtain the collagen from these by-products and
27	evaluate the fibril-forming characteristics of the collagen molecules and the antioxidant activity of the
28	collagen peptides. The structural properties of pepsin-soluble collagen were analyzed by SDS-PAGE
29	and FTIR. Collagen fibril-forming characteristics were detected by turbidity assay and SEM
30	observation. The antioxidant activities of collagen peptides were determined by Hydroxyl and ABTS
31	radical scavenging assays. SDS-PAGE results showed that the skin and fin collagens were
32	characterized as type I collagen, and the cartilage and notochord collagens were characterized as type II
33	collagen. Sturgeon type II collagens could only be self-assembled into fibrils at low phosphate ion
34	concentration, whereas sturgeon type I collagens could be self-assembled into fibrils at long range of
35	phosphate ion concentrations. The fibril-forming ability of sturgeon type I collagen was higher than
36	that of porcine type I collagen. The fibril diameter of type I collagen was higher than that of type II
37	collagen. The antioxidant activity of notochord and skin collagen peptides was higher than that of the
38	other two collagen peptides. The results of this study will provide helpful information for the
39	application of sturgeon collagen in the functional food and biomedical material industries. Meanwhile,
40	it will promote the effective use of collagen from different sturgeon by-products.
41	Graphical abstract

23

45	Keyword: S	Sturgeon by-	products; (Collagen;	Structural	properties;	Fibril-formin	g characteris	stics
			,	,		F F		0	-

46 Collagen peptides; Antioxidant activity

47 Statement of Novelty

- 48 In China, more than 16,000 tons of female sturgeon are used for caviar production. After roe retrieval,
- 49 collagen-rich by-products, which are not suit for edible, will be produced during the processing of fish.
- 50 This work was the first to clarify and compare structural properties of collagen extracted from four
- 51 main by-products (fin, skin, notochord, cartilage) of sturgeon in one research. Furthermore, this work
- 52 was the first to discuss the biological properties of sturgeon collagen from high molecular collagen
- 53 fibril and low molecular collagen peptides, respectively. The results of this study will provide helpful
- 54 information of sturgeon collagens in different by-products. Meanwhile, according to its own functional
- 55 characteristics, different collagen will be used reasonably and effectively in a suitable field.
- 56

57 Introduction

58	Sturgeon is an economically valuable fish known for its caviar. Due to overfishing and destruction of
59	the living environment, since 1997 all wild sturgeons have been listed as critically endangered and
60	protected species by the International Union for Conservation of Nature [1]. To meet the demand for
61	caviar and reduce the pressure on wild sturgeon, aquaculture industry has developed rapidly in the past
62	20 years. The total global harvest of farmed sturgeon increased from 18,000 ton in 2003 to more than
63	102,000 ton in 2019 [2]. China is the biggest sturgeon farming and caviar producing country in the
64	world. In 2017, the aquaculture volume of sturgeon in China exceeded 80,000 tons, accounting for 85%
65	of the world's total production; the output of caviar exceeded 100 tons, accounting for 78% of the
66	world's total production [2, 3]. Currently, approx. 20% of China's total sturgeon production is the large

67 females that produces caviar.

68	Russian sturgeon (Acipenser gueldenstaedti) is one of species of sturgeon native to the sea area at
69	the junction of Asia and Europe [4]. In current, it is a commercial sturgeon species accounting for 10%
70	of the annual production of sturgeon in China [5, 6]. The main purpose of Russian sturgeon farming is
71	to produce caviar. Since it takes more than 10 years to obtain roe, Russian sturgeon is more expensive
72	to farm than other fishes, including hybrid sturgeon. After egg retrieval, these large fish bodies (over
73	1.5 meters) are divided into several parts for further processing. During the production process, huge
74	amounts of inedible by-products, such as head, skin, bone, fin, and viscera, are produced. These by-
75	products are not suitable for consumption and represent up to more than 70% of the total fish body. In
76	the past, sturgeon by-products were often discarded as waste or used as material for direct feeding in
77	aquaculture and raising of livestock and fur animals in China. As known, discarding these sturgeon by-
78	products will aggravate the problem of environmental pollution. The lack of efficient use of these by-
79	products other than caviar limits the profitability of aquaculture industry and leads to waste of fish
80	sources. Efficient utilization of these by-products will increase the value of Russian sturgeon, create
81	more economic benefits, and promote the development of sturgeon aquaculture. Meanwhile, it will
82	avoid wasting Russian sturgeon resources. Previous studies have shown that some sturgeon by-
83	products contained a variety of bioactive collagens [7, 8, 9].
84	Collagen is a main structural protein in the connective tissue of living organism [11]. In vivo,
85	collagen interacts with other components, such as proteoglycan and other proteins, to form a stable
86	network of fibrils. This fibrillar structure provides an appropriate growth environment for cells and
87	affects cellular functions [9]. In vitro, fibrillar collagen molecules can self-assemble into fibrils that
88	reassemble native tissue forms under suitable conditions [10]. Due to this special biological property,

89	collagen is widely used as biomedical materials to repair or replace damaged or diseased human tissues
90	and organs. In recent years, with the increasing demand for high value-added utilization of aquatic
91	waste, more and more researches on fish collagen have been conducted [9]. With no zoonotic risks and
92	religious restrictions, fish by-products are considered as a safe natural source of collagen [11, 12]. Our
93	recent studies have reported the biochemical characteristics and fibril-forming properties of collagen
94	from hybrid sturgeon (Huso huso × Acipenser ruthenus) skin, swim bladder, and notochord [7, 8, 13].
95	We found that different tissues contained different types of collagens and that there were significant
96	differences in the fibril-forming ability of collagen in tissues specific. For example, collagen extracted
97	from sturgeon swim bladder and skin was type I collagen, while collagen extracted from sturgeon
98	notochord was type II collagen [7, 8]. Although both swim bladder and skin collagen were type I
99	collagen, the fibril-forming ability and fibril morphology of two collagens were significant different
100	[13]. The <i>in vitro</i> fibril-forming ability is closely related to the application of collagen in biomedical
101	materials. In addition, the morphological characteristics of collagen fibrillar materials, including their
102	diameter, shape, and orientation, have a determining influence on the adhesion, alignment,
103	proliferation, and differentiation of anchorage-dependent cells [14]. Therefore, in order to utilize
104	collagens from different Russian sturgeon by-products, it is necessary to clarify and compare the
105	structural properties and fibril-forming properties of collagens in different tissues. To our knowledge,
106	no previous study has reported the <i>in vitro</i> fibril-forming properties of Russian sturgeon collagens.
107	On the other hand, low molecular collagen peptides attracted high attention of researchers because
108	of their various bioactivities, such as antioxidant, antihypertensive, antimicrobial, anticancer activities,
109	and so on [15]. Due to these bioactivities, collagen peptides are used as functional ingredient additives
110	in health foods and cosmetics. In aerobic organisms, reactive oxygen species (ROS) with a high

111	reaction activity, including hydroxyl radical, superoxide anion radical, hydrogen peroxide, and singlet
112	oxygen, are generated during the metabolism [16]. In general, cellular antioxidases, such as superoxide
113	dismutase, glutathione peroxidase, and catalase, can keep ROS in a state of balance [17]. Ultraviolet
114	irradiation, aging, stress, environmental deterioration, and other reasons can disrupt the balance, and
115	excess ROS in the body can induce enzyme inactivation, polysaccharide depolymerization, DNA
116	cleavage, and cell membrane destruction [17]. Till now, amounts of studies have been conducted on the
117	antioxidant activity of collagen peptides from fish tissues [18]. For sturgeon, some studies have
118	investigated the antioxidant activity of collagen peptides from their skin and cartilage [19, 20].
119	However, there was no study on the antioxidant activity of collagen peptides from notochord and fin.
120	Furthermore, the antioxidant activity of different types of collagen peptides, such as type I and II
121	collagen peptides, have never been compared in previous studies.
122	The aim of this study was to clarify the structural properties of collagen extracted from four main
122 123	The aim of this study was to clarify the structural properties of collagen extracted from four main by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen
123	by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen
123 124	by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen molecules and the antioxidant activity of the four collagen peptides. Firstly, we extracted pepsin-
123 124 125	by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen molecules and the antioxidant activity of the four collagen peptides. Firstly, we extracted pepsin- soluble collagen from the four main by-products of fin, skin, backbone cartilage, and notochord in the
123 124 125 126	by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen molecules and the antioxidant activity of the four collagen peptides. Firstly, we extracted pepsin- soluble collagen from the four main by-products of fin, skin, backbone cartilage, and notochord in the same method. Then, we evaluated <i>in vitro</i> fibril-forming properties of collagen molecules using
123 124 125 126 127	by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen molecules and the antioxidant activity of the four collagen peptides. Firstly, we extracted pepsin- soluble collagen from the four main by-products of fin, skin, backbone cartilage, and notochord in the same method. Then, we evaluated <i>in vitro</i> fibril-forming properties of collagen molecules using turbidity assay and SEM observation. Finally, we compared the antioxidant activities of collagen
123 124 125 126 127 128	by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen molecules and the antioxidant activity of the four collagen peptides. Firstly, we extracted pepsin- soluble collagen from the four main by-products of fin, skin, backbone cartilage, and notochord in the same method. Then, we evaluated <i>in vitro</i> fibril-forming properties of collagen molecules using turbidity assay and SEM observation. Finally, we compared the antioxidant activities of collagen enzymatic hydrolysates using ABTS and Hydroxyl radical-scavenging assays. The results of this study
123 124 125 126 127 128 129	by-products of Russian sturgeon, and to evaluate the fibril-forming characteristics of the four collagen molecules and the antioxidant activity of the four collagen peptides. Firstly, we extracted pepsin- soluble collagen from the four main by-products of fin, skin, backbone cartilage, and notochord in the same method. Then, we evaluated <i>in vitro</i> fibril-forming properties of collagen molecules using turbidity assay and SEM observation. Finally, we compared the antioxidant activities of collagen enzymatic hydrolysates using ABTS and Hydroxyl radical-scavenging assays. The results of this study will clarify the properties of collagen from the four main by-products and promote the efficient

133 Materials and methods

134 Isolation and purification of collagen

- 135 The fin, skin, backbone, and notochord of the Russian sturgeon (Acipenser gueldenstaedti) after
- 136 spawning were obtained from the Sturgeon Biological Technology Co. Ltd. (Xinchang county,
- 137 Zhejiang province, China). The samples were washed with chilled tap water, and lyophilized in a freeze
- 138 dryer (FreeZone 2.5 L, American Labconco Co, Ltd, Kansas City, USA). The fat of backbone cartilage,
- 139 fin, and skin was removed over 24 h in anhydrous ethanol (two solution-changes) at 4 °C, with a
- sample : solution ratio of 1:10 (w/v). Defatted samples and notochord sheath were cut into small pieces
- 141 for collagen extraction. Due to antigenic telopeptides existing at both ends of the collagen molecule,
- acid-soluble collagen may not be suitable for direct use as biomaterials [21]. Pepsin can cleave the
- 143 peptides in the telopeptide region in extraction process [22]. In this study, we focused on pepsin-soluble
- 144 collagen from sturgeon by-products. Isolation and purification progress of pepsin-soluble collagen were
- 145 performed according to the procedures reported by our previous method [8, 23]. Porcine skin and
- bovine cartilage collagens were used to compare the structural properties and biological activities of
- 147 Russian sturgeon collagens. The samples were obtained from Fuyang Jiuxian Beef Slaughtering Co.
- 148 Ltd. (Hangzhou, Zhejiang province, China). The pepsin-soluble collagen extraction method was the
- same as above.

150 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

151 SDS-PAGE was performed according to the method of Laemmli [24]. The lyophilized collagen was

- dissolved in pH 2.0 HCl at a concentration of 1 mg/ml. The collagen samples were mixed at a ratio of
- 153 1:1(v/v) with sample buffer (0.5 M Tris-HCl buffer, pH 6.8, with 4% SDS and 20% glycerol)
- 154 containing 10% β-mercaptoethanol. The mixed solution was boiled for 3 min. Ten micrograms of

- 155 mixture were loaded onto each lane. Electrophoresis was performed at 15 mA for the stacking gel and
- 156 25 mA. Collagen molecule electrophoresis was running with the 8% running gel, collagen enzymatic
- 157 hydrolysates was running with the 15% running gel. After electrophoresis, the gel was stained for 30
- 158 min with a 0.1% Coomassie Brilliant Blue R250 solution and de-stained with a mixture of 20%
- 159 methanol, 5% acetic acid, and 2.5% glycerin.
- 160 Fourier-transform infrared (FTIR) spectroscopy analysis
- 161 FTIR spectroscopy of collagen was recorded with an infrared spectrophotometer (Nicolet iS10, Thermo
- 162 Scientific, Madison, USA). The collagen powder was ground together with potassium bromide (w/w
- 163 1:200), and then pressed into a 1 mm pellet for measurement in the spectra range of 500-4000 cm⁻¹.
- 164 The potassium bromide powder was used as the background.
- 165 Solubility of collagen in different pH
- 166 The solubility of collagen was measured using the method proposed by Atef et al [25]. with a slight
- 167 change. Dry collagen was dissolved in aqueous solutions with different pH (2, 4, 6, 8, 10, 12) to
- 168 3mg/ml. The collagen solution was shake for 12 h at 21 °C. Then, each collagen solution was
- 169 centrifugated at 20,000 $\times g$ for 20 min at 4 °C, the protein concentration of the supernatant was
- 170 measured by Lowry method [26], using bovine serum albumin as a standard. The solubility of collagen
- 171 was defined as the percentage of the collagen concentration in the solution, ie, the solubility of collagen
- at different pH conditions.
- 173 Collagen fibril formation in vitro
- 174 The fibril formation process of collagen was evaluated by the method of Meng et al [8]. Lyophilized
- 175 collagen was dissolved in pH 2.0 HCl solution to 0.3% (w/v). The collagen solution was mixed with a
- 176 Na-phosphate buffer (PB) solution (pH 7.4), having a Na-phosphate concentration of 45, 90, and 180

177	mM. res	spectively	. The collagen	solution/PB ra	tio was set to	1:2(v/v)	. which resu	ilted in a final PB
エ ・・			· · · · · · · · · · · · · · · · · · ·	borteren i D ite		1 .	,	

- 178 concentration of 30,60, and 120 mM, respectively. The mixed solution was place into a quartz cuvette,
- and the subsequent fibril formation at 21°C was monitored by measuring increased turbidity via optical
- absorbance at 320 nm, using a spectral monitor (Evolution 60 s, Thermo fisher scientific, Waltham,
- 181 USA). The fibril formation of skin and fin collagen was monitored for 1 h. The fibril formation of
- 182 backbone and notochord collagen was monitored for 10 h.
- 183 Morphology of collagen fibrils
- 184 The microstructure of fin and skin collagen fibrils was observed using scanning electron microscope
- 185 (SEM; Sigma 500, Carl Zeiss Ltd, Germany), as previously described in Meng et al [8]. Collagen fibrils
- 186 were formed using the same conditions as described above. Sample suspensions were centrifuged at
- 187 20,000 ×g for 20 min at 4 °C to obtain precipitates of collagen fibrils. The fibrils were fixed with 2.5%
- 188 (v/v) glutaraldehyde in phosphate buffer (pH 7.4) for 3 h at room temperature, rinsed with phosphate
- 189 buffer to remove the fixative, dehydrated with a graded series of ethanol solutions, and then soaked in
- 190 two 30-min changes of t-butyl alcohol solution. Finally, collagen fibrils were freeze-dried in a t-butyl
- alcohol solution with a freeze-drying device and coated with gold-platinum using an auto fine coater
- 192 (JFC-1600; JEOL Ltd.). After the SEM observations, digital images of the sample were taken, and the
- diameters of 100 randomly selected fibrils were determined using the software ImageJ. The
- 194 measurements were performed three times using different photographs.
- **Degree of fibril formation**
- 196 The fibril formation degree was determined followed by the method of Zhang et al [7]. After fibril
- formation, the mixture was centrifugated at $20,000 \times g$ for 20 min at 4 °C, the protein concentration of
- 198 the supernatant was measured by Lowry method [26], using bovine serum albumin as a standard. The

- 199 degree of fibril formation was defined as the percentage of the decrease of collagen concentration in
- 200 the solution, which meant the percentage of collagen molecules that formed the fibrils. The fibril
- 201 formation degree was detected after completion of fibril formation for each sample.
- 202 Enzymatic hydrolysis of collagen
- 203 Purified collagens were soaked in distilled water with a sample/solution ratio of 1:60 (w/v) at 60 °C for
- 204 1 h for gelatinization. Papain was used to hydrolyze purified collagens with a concentration of 2.5%
- 205 (w/w) for 4 h at 50 °C. The reaction was terminated by boiling samples for 10 min. The reaction
- solution was filtered with cellulose acetate membrane filter (pore size $0.45 \ \mu m$) remove the
- 207 unhydrolyzed residues. Then, all hydrolysates were lyophilized and stored at -30 °C until use. The
- 208 percentage of dry weight of collagen hydrolysate in comparison with dry weight of the initial collagen
- 209 was calculated as the collagen peptide yield.

210 Hydroxyl scavenging activity of collagen peptides

- Hydroxyl radical scavenging activity was determined according to the method of Pan et al. [27].
- 212 Briefly, a 1,10-phenanthroline solution (1.0 ml, 1.865 mM) was mixed with 2 ml of the sample
- 213 solution, and then FeSO₄·7H₂O solution (1.0 ml, 0.75 mM) was pipetted into the mixture. The reaction
- was initiated by adding 1.0 ml of H_2O_2 (0.01% v/v). After incubation at 37°C for 60 min, the
- absorbance was measured at 536 nm against a reagent blank. The reaction solution without antioxidants
- 216 was used as a negative control, and the mixture without H₂O₂ was used as the blank. Vitamin C (Vc)
- 217 was used as positive control. The hydroxyl radical scavenging activity was calculated according to Eq.
- 218 1:

219 Scavenging activity (%) = $[(As - An) / (Ab - An)] \times 100\%$

220 where As, An, and Ab are the absorbance values at 536 nm of the sample, negative control, and blank

- after the reaction, respectively.
- 222 ABTS radical scavenging activity of collagen peptides
- 223 The ABTS radical scavenging activity was determined by the method of Re et al. [28]. In brief, ABTS
- 224 radical cation was generated by mixing the ABTS stock solution (7 mM) with potassium persulfate
- 225 (2.45 mM). The mixture was left in the dark at room temperature for 16 h. The ABTS radical solution
- 226 was diluted in 5 mM phosphate buffered saline at pH 7.4 to an absorbance of 0.7 at 734 nm. One
- 227 milliliter of diluted ABTS radical solution was mixed with 1 ml of different concentrations of samples.
- 228 Ten minutes later, the absorbance was measured at 734 nm against the corresponding blank. Vc was
- 229 used as positive control. The ABTS radical scavenging activity of samples was calculated according to
- 230 Eq. 2:
- 231 Scavenging activity (%) = $[(Ac As) / Ac] \times 100\%$
- 232 where As and Ac are the absorbances with and without a sample.
- 233 Statistical analysis
- Each experiment was replicated three times. The data of collagen solubility, fibril formation degree,
- and radical scavenging activity were expressed as means \pm standard errors.
- 236 **Results and Discussion**
- 237 SDS-PAGE
- 238 The α-chain pattern of collagens was shown in Fig. 1. Fin and skin collagens (Lane 1 and 2) contained
- 239 two α -chains (approx. 120 kDa and 110 kDa) as the major constitutes and a small amount of β -chain.
- 240 The major α -chains at 120 kDa and 110 kDa were attributed to the α 1(I) or α 3(I), and α 2(I) of type I
- collagen, respectively. The molecular weight of sturgeon type I collagen was a little lower than that of
- 242 porcine skin type I collagen, but they had the similar α -chain pattern (Lane 5). The α -chain pattern of

243	skin collagen in this study was consistent with our previous study on the skin collagen of hybrid
244	sturgeon (Huso huso × Acipenser ruthenus) [8]. The band of α 1(I) in fin collagen was much thicker
245	than that in skin collagen, indicating differences in the molecular structure of fin and skin collagens.
246	Nagai et al. reported that the sea-bass fin collagen was type I collagen, which only contained a single α
247	band [29]. Liu et al. found that bighead carp fin collagen had both $\alpha 1(I)$ and $\alpha 2(I)$ in a ratio of 2.12
248	[30]. It is well known that type I collagen comprises two $\alpha 1(I)$ chains and one $\alpha 2(I)$ chain in a ratio of
249	2:1, and its molecular form is $[\alpha 1(I)]_2 \alpha 2(I)$ [31]. Meanwhile, Saito et al. reported that a heterotrimer of
250	type I collagen containing three non-identical α -chains, $\alpha 1(I) \alpha 2(I) \alpha 3(I)$, was found in the skin and
251	muscle collagen of rainbow trout [32]. Since $\alpha 3(I)$ and $\alpha 1(I)$ had similar molecular weight, they could
252	not be separated by electrophoresis. Low $\alpha 2(I)$ was detected by electrophoresis in SDS-PAGE result
253	indicated that the molecular structure of sturgeon fin collagen might contain more triple helical
254	molecules with α -chain patterns of $\alpha 1[I]_3$, $\alpha 1[I]_2 \alpha 3[I]$, $\alpha 1[I] \alpha 3[I]_2$, and $\alpha 3[I]_3$. Zhang et al. reported that
255	the ratio of $\alpha 1/\alpha 2$ gene expression was higher in the fin than in the skin of Amur sturgeon (Acipenser
256	schrenckii). Although different sturgeon species might have different gene expression, the gene
257	expression results was consistent with the SDS-PAGE results of this study [33].
258	The notochord collagen (Lane 3) contained a single major band at approx. 130 kDa, which was
259	the characteristic of type II collagen α -chain [8]. β -chain was not detected in the notochord collagen. A
260	slight high molecular weight band above major α -chain was presumed to be type IX or XI collagen
261	[34]. The α -chain composition of notochord collagen was consistent with that of bovine cartilage
262	collagen (Lane 6). These results were consistent with the α -chain properties of Bester sturgeon (<i>Huso</i>
263	<i>huso</i> × <i>Acipenser ruthenus</i>) notochord collagen [7]. It suggested that the α -chain pattern of notochord
264	collagen was independent of sturgeon species.

265	The cartilage collagen (Lane 4) contained three α -chains (approx. 130 kDa, 120 kDa and 110 kDa)
266	as the major constituents and a small amount of β -chain. The major α -chain at 130 kDa was attributed
267	to the $\alpha 1(II)$ of type II collagen. The other two α -chains (approx.120 kDa and 110 kDa) were
268	corresponded to $\alpha 1(I)$ and $\alpha 2(I)$ of type I collagen. This result was consistent with the conclusion that
269	type II collagen was the main collagenous component in cartilage tissue [35]. The reason for the
270	presence of type I collagen in backbone was thought to be cartilage ossification. Ossification is a
271	process by which bone form in soft tissues, such as cartilage [36]. Zhang et al. showed that ossification
272	of the spine cartilage was observed in hybrid sturgeon (H. huso × A. ruthenus) [37]. Leprévost et al.
273	also reported that bone was deposited around the spine cartilage of Siberian sturgeon (Acipenser
274	Baerii) [38]. As known, type I collagen constituted approx. 95% of total collagen in bone [39]. The
275	exact proportion of type I collagen in sturgeon backbone was not known from this study. It might be
276	related to the degree of cartilage ossification. Leprévost et al. found that the bone thickness on the
277	cartilage varied with the region of cartilage and the age of sturgeon [38]. In addition, Zhang et al.
278	reported that gene of ascol1a1 (Col I) and ascol2a1 (Col II) were expressed in sturgeon vertebral
279	cartilage [40]. It demonstrated the presence of type I collagen in sturgeon backbone cartilage by
280	molecular analyses. The results of α -chain patterns in this research were consistent with this finding.
281	Mizuta et al. and Luo et al. reported that type I collagen was the major collagenous components in
282	the vertebral cartilage of White sturgeon (Acipenser transmontanus) and Siberian sturgeon (Acipenser
283	baeri) [41, 42]. Liang et al. and Zhu et al. reported that the pepsin-soluble collagens extracted from the
284	cartilage of Hybrid sturgeon (Acipenser schrencki × Huso dauricus) and Amur sturgeon (Acipenser
285	<i>schrenckii)</i> were type II collagen [34, 43]. The differences in α -chain patterns among sturgeon species
286	were thought to be caused by different extraction processes. In our previous study, we found that type

287	II collagen was more difficult to extract than type I collagen by the same extraction method [8]. In this
288	research, we stopped the collagen extraction process until there was no residue in the extract. It allowed
289	complete extraction of type I and type II collagen molecules. Since the purification process of two
290	collagens was same, the pepsin-soluble cartilage collagen purified in this study contained both two type
291	collagens. Furthermore, during collagen purification process, the NaCl concentration used might be
292	another reason for obtaining different types of collagens. Because, during salting out process, different
293	type of collagens could be precipitated in a biological tissue using different concentrations of NaCl
294	[44]. In fact, we found that in the current studies, the NaCl concentrations used to isolate the sturgeon
295	cartilage collagen were all different in these studies [34, 41, 42, 43].
296	FTIR spectroscopic analysis
297	The FTIR spectra was presented in Fig. 2. showing the intact triple helical structure in collagens.
298	According to Plepis et al [45], the ratio of absorbance of amide III to peak between 1400 to 1454 cm ⁻¹
299	wavelength is close to 1.0, indicating that the triple helical structure of collagen is intact. In this study,
300	the ratios of fin, skin, notochord, and cartilage collagen were 0.97, 1.05, 1.01 and 0.99, respectively.
301	The ratios of porcine skin and bovine cartilage collagen were 1.00 and 0.99, respectively. It indicated
302	that the complete triple helical structure was retained in all collagens. Otherwise, the main
303	characteristic absorption peaks of collagen contained amide A, amide B, amide I, amide II, and amide
304	III. The amide A band of fin, skin, notochord, and cartilage collagen was 3326.36, 3290.14, 3293.34,
305	and 3283.22 cm ⁻¹ , respectively. The amide A band of porcine skin and bovine cartilage collagen was
306	3304.35 and 3300.23 cm ⁻¹ , respectively. Muyonga et al. reported that the absorption band of amide A,
307	associated with N-H stretching vibration [46]. The amide B band of fin, skin, notochord, and cartilage
308	collagen was observed at 2931.10, 2947.55, 2933.68, and 2927.90 cm ⁻¹ , respectively. The amide B

309	band of porcine skin and bovine cartilage collagen was observed at 2935.82 and 2933.76 cm ⁻¹ ,			
310	respectively. It was associated with the asymmetrical stretching of CH ₂ . The amide I band frequencies			
311	from 1600 to 1700 cm ⁻¹ were mainly related to carbonyl group stretching vibrations and were			
312	characteristic of the secondary coil structure [47]. The amide I bond of fin, skin, notochord, and			
313	cartilage collagen was observed at 1658.96, 1661.35, 1631.48, and 1633.41 cm ⁻¹ , respectively. The			
314	amide I bond of porcine skin and bovine cartilage collagen was observed at and 1628.50 and 1630.56			
315	cm ⁻¹ , respectively. This observation confirmed the formation of hydrogen bonds between N-H stretch,			
316	where the C-O residues were responsible for stabilizing the triple helical structure [46]. The amide II			
317	and III of fin, skin, notochord, and cartilage collagen were observed at 1453.92, 1452.80, 1547.60, and			
318	1541.81 cm ⁻¹ ; 1239.56, 1239.76, 1238.08, and 1236.15 cm ⁻¹ , respectively. The amide II and III of			
319	porcine skin and bovine cartilage collagen were observed at 1548.20 and 1546.15; 1237.33 and			
320	1237.32 cm ⁻¹ , respectively. The amide II band corresponded to N-H bending vibration, and the amide			
321	III band represented C-H stretching [47]. The FTIR spectra of all collagens were consistent with the			
322	structural properties of collagen.			
323	Solubility of collagen			
324	Collagen molecules have the minimum solubility at their isoelectric point and therefore suitable for			
325	fibril formation in vitro [48]. To discuss the suitable pH condition for fibril-forming, the influence of			
326	pH on collagen molecule solubility was investigated as shown in Fig. 3. For fin collagen (Fig. 3-a), the			
327	highest solubility appeared at pH 2. The solubility significantly decreased with pH value increasing to			
328	6. The minimum solubility of fin collagen appeared at pH value between 6 and 8. It indicated that the			

- 329 isoelectric point of fin collagen was between pH 6 to 8. A slight increase in solubility was found at pH
- values of 8 to 12. When the pH value increased to 12, the solubility of fin collagen was dramatically

331	rose to 63.0%. The reason for the high solubility of collagen on the alkaline side might be due to the pH			
332	being far from its isoelectric point. For skin collagen (Fig. 3-b), it solubilized to a greater extent in the			
333	acidic pH range from 2 to 3. The solubility significantly decreased with pH value increased to 8. The			
334	minimum solubility of skin collagen appeared at pH values between 6 to 8. It indicated that the			
335	isoelectric point of skin collagen was between pH 6 to 8. When the pH value increased to 10, the			
336	solubility of skin collagen rose sharply to 51.1%. It suggested that the solubility of skin collagen was			
337	more sensitive to pH change to alkaline side than that of fin collagen.			
338	Cartilage collagen (Fig. 3-d) solubilized to a greater extent in the acidic pH range from 2 to 3. The			
339	solubility significantly decreased with pH value increasing to 10. The minimum solubility of cartilage			
340	collagen appeared at pH values between 8 and 10. It indicated that the isoelectric point of cartilage			
341	collagen was between pH 8 and 10. When the pH value increased to 12, the solubility of cartilage			
342	collagen was dramatically rose to 78.3%. For notochord collagen (Fig. 3-c), the highest solubility			
343	appeared at pH 2. The solubility of notochord collagen was more sensitive to pH change than that of			
344	cartilage collagen. As pH value increased to 6, the solubility sharply decreased to 0.57%. A slight			
345	increase in solubility was found at alkaline pH values of 8 to 10. It suggested that the isoelectric point			
346	of notochord collagen was between pH 6 and 8. Like cartilage collagen, the solubility of notochord			
347	collagen increased rapidly with increasing pH value to 12. The solubility results indicated that there			
348	were differences in the molecular properties and conformations of the four collagens. Furthermore,			
349	amino acid composition is also a non-negligible factor that affects the protein isoelectric point, which			
350	in turn affects protein solubility [49].			
351	The solubility of collagen with changes in pH may play a crucial role in its extraction method. So			
352	far, many studies have discussed the effect of different pH values from 1 to 10 on type I collagen			

353	solubility [31]. In this study, we found for the first time that the solubility of sturgeon collagen			
354	increased, when the pH was increased to 12. It suggested that part of the collagen molecules could be			
355	dissolved in alkaline solution. In our previous study, we reported that sturgeon collagen was lost during			
356	the alkaline pretreatment [8]. This result was consistent with the results of collagen solubility,			
357	indicating that the alkali-soluble collagen was presented in the sturgeon by-products. Therefore,			
358	although alkaline pretreatment can improve collagen extraction efficiency, the conditions of the			
359	alkaline pretreatment need to be considered to avoid more collagen loss.			
360	Collagen fibril formation <i>in vitro</i>			
361	In general, collagen fibril-forming process is divided into three phases: lag phase (no turbidity			
362	changes), growth phase (turbidity increasing), and plateau phase (turbidity stabilization) [13]. The			
363	progression of fin and skin collagen fibril-forming at different phosphate ion concentrations was shown			
364	in Fig. 4 (a and b). When the phosphate ion concentration of solution was 30 mM, the turbidity curves			
365	of the two collagens were similar, with no lag phase. At 120 mM phosphate ion concentration, the			
366	turbidity of both two collagens did not change. It indicated that collagen fibrils were not formed at 120			
367	mM phosphate ion concentration. The effect of phosphate ion concentration on skin collagen fibril-			
368	forming were consistent with our previous studies [13]. Significant differences between fin and skin			
369	collagen turbidity curves occurred at 60 mM phosphate ion concentration. At this condition, the			
370	turbidity curve of fin collagen contained a long lag phase and a smooth growth phase. The plateau			
371	phase was not observed after 1 h reaction. For skin collagen, after a short lag phase, a steep growth			
372	phase was observed with a rapid increase in turbidity value to near 2. In our previous study, we			
373	demonstrated that high phosphate ion concentration inhibited the fibril-forming of sturgeon type I			
374	collagen [13]. The inhibitory effect of phosphate ion concentration on fin collagen fibril-forming was			

375	more significant than that of skin collagen. During collagen fibril-forming, linear aggregation of			
376	collagen molecules occurred in the lag phase to form subfibrillar units. These subfibrillar units			
377	aggregate laterally in the growth phase to form fibrils [50]. The turbidity curve results indicated that, at			
378	high phosphate ion concentration, fin collagen needed longer time to form subfibrillar units and was			
379	more difficult to self-assemble into thick fibrils than skin collagen. The rate of fibril-forming was			
380	mainly controlled by intermolecular interaction between collagen molecules [51]. The progression of			
381	porcine skin type I collagen fibril-forming at different phosphate ion concentrations was shown in Fig.			
382	4-c. The turbidity changes of porcine skin type I collagen only appeared at 30 mM phosphate ion			
383	concentration. The turbidity increasing of porcine skin type I collagen was much slower than sturgeon			
384	type I collagen. It indicated that the fibril-forming ability of sturgeon type I collagen was higher than			
385	that of porcine skin type I collagen.			
386	Type II collagen took more time to self-assemble into fibrils than type I collagen. Notochord and			
386 387	Type II collagen took more time to self-assemble into fibrils than type I collagen. Notochord and cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As			
387	cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As			
387 388	cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As phosphate ion concentration increased to 60 mM, the turbidity of both two collagens did not change. It			
387 388 389	cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As phosphate ion concentration increased to 60 mM, the turbidity of both two collagens did not change. It indicated that type II collagen could only form fibrils at low phosphate ion concentration compared to			
387 388 389 390	cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As phosphate ion concentration increased to 60 mM, the turbidity of both two collagens did not change. It indicated that type II collagen could only form fibrils at low phosphate ion concentration compared to type I collagen. No lag phase with no changes in turbidity was observed in the two turbidity curves. It			
387 388 389 390 391	cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As phosphate ion concentration increased to 60 mM, the turbidity of both two collagens did not change. It indicated that type II collagen could only form fibrils at low phosphate ion concentration compared to type I collagen. No lag phase with no changes in turbidity was observed in the two turbidity curves. It was because the fibril formation speed was too fast that no lag phase was detected in both two type II			
387 388 389 390 391 392	cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As phosphate ion concentration increased to 60 mM, the turbidity of both two collagens did not change. It indicated that type II collagen could only form fibrils at low phosphate ion concentration compared to type I collagen. No lag phase with no changes in turbidity was observed in the two turbidity curves. It was because the fibril formation speed was too fast that no lag phase was detected in both two type II collagens. The progression of bovine cartilage type II collagen fibril-forming at different phosphate ion			
387 388 389 390 391 392 393	cartilage collagens could only form fibril at 30 mM phosphate ion concentration (Fig. 4 c and d). As phosphate ion concentration increased to 60 mM, the turbidity of both two collagens did not change. It indicated that type II collagen could only form fibrils at low phosphate ion concentration compared to type I collagen. No lag phase with no changes in turbidity was observed in the two turbidity curves. It was because the fibril formation speed was too fast that no lag phase was detected in both two type II collagens. The progression of bovine cartilage type II collagen fibril-forming at different phosphate ion concentrations was shown in Fig. 4-f. The turbidity change trends of sturgeon and bovine type II			

397	reported to have a longer lag phase during fibril formation [10, 52]. Long lag phase might be due to the				
398	different ionic environments in solution. The initial turbidity of cartilage collagen started at 0.53, and				
399	then the turbidity curve increased slowly with reaction time. The final turbidity of cartilage collagen				
400	ended at 0.70. The initial turbidity of notochord collagen was 0.38, and then the turbidity curve rose				
401	rapidly in the first 100 min. After that, the rate of turbidity growth slowed down and the final turbidity				
402	ended at 0.78. The turbidity change trend of notochord collagen in this study was consistent with that				
403	of Bester sturgeon notochord collagen [8]. The difference in absorbance values came from the amount				
404	of collagen added. Comparing to cartilage collagen, the notochord collagen formed fibril with a longer				
405	growth phase. It suggested that the fibril formation speed of cartilage collagen was faster than that of				
406	notochord collagen. Our previous study reported that collagen fibril lateral aggregation occurred during				
407	the growth phase, and the final turbidity value reflected fibril thickness [13]. This result indicated that				
408	the fibril diameter of notochord collagen was larger than that of cartilage collagen. Different				
409	conformations and molecular structures of collagens might be responsible for their different fibril-				
410	forming properties.				
411	Fibril formation degree				
412	The degree of fin and skin collagen fibril formation was assessed after 1 h, and the results were shown				
413	in Fig. 5 (a and b). When phosphate ion concentration was 30 mM, the fibril formation degree of fin				
414	collagen and skin collagen were 93.34 \pm 0.23% and 94.93 \pm 0.11%, respectively. When phosphate ion				
415	concentration was 60 mM, the fibril formation degree of fin collagen and skin collagen were 90.15 \pm				
416	1.07% and 94.05 \pm 0.71%, respectively. At the same phosphate ion concentration, the fibril formation				
417	degree of skin collagen was slightly higher than that of fin collagen. The fibril formation degree of both				

418 two collagens decreased with increasing phosphate ion concentration. This trend was consistent with

419	Bester sturgeon swim bladder and skin type I collagens [13]. The fibril formation degree of skin			
420	collagen at 60 mM phosphate ion in this research was much higher than that of Bester sturgeon skin			
421	collagen [13]. Different species of sturgeon were thought to be responsible for different skin collagen			
422	fibril formation processes.			
423	The degree of notochord and cartilage collagen fibril formation was assessed by 10 h			
424	fibrillogenesis, and the results were shown in Fig. 5 (c). Both notochord and cartilage collagens showed			
425	high fibril formation degree with values of 95.13 \pm 0.15% and 98.32% \pm 0.03%, respectively. It meant			
426	that almost all collagen molecules re-assembled into collagen fibrils after 10 h reaction. The degree of			
427	fibril formation in notochord collagen was consistent with that of Bester sturgeon notochord collagen			
428	[13].			
429	Fibril diameter and morphology			
430	SEM images of fin and skin collagen fibrils formed after incubation for 1 h were shown in Fig. 6, while			
430 431	SEM images of fin and skin collagen fibrils formed after incubation for 1 h were shown in Fig. 6, while the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril			
431	the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril			
431 432	the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril diameter became thicker with increasing phosphate ion concentration in solution. This trend was			
431 432 433	the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril diameter became thicker with increasing phosphate ion concentration in solution. This trend was consistent with the sturgeon swim bladder type I collagen reported in our previous study [13].			
431 432 433 434	the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril diameter became thicker with increasing phosphate ion concentration in solution. This trend was consistent with the sturgeon swim bladder type I collagen reported in our previous study [13]. Increasing the magnification of the SEM observation in this study showed the fibrillar morphology			
431 432 433 434 435	the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril diameter became thicker with increasing phosphate ion concentration in solution. This trend was consistent with the sturgeon swim bladder type I collagen reported in our previous study [13]. Increasing the magnification of the SEM observation in this study showed the fibrillar morphology more clearly than our previous results. At 30 mM phosphate ion concentration, the thick fibrils			
431 432 433 434 435 436	the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril diameter became thicker with increasing phosphate ion concentration in solution. This trend was consistent with the sturgeon swim bladder type I collagen reported in our previous study [13]. Increasing the magnification of the SEM observation in this study showed the fibrillar morphology more clearly than our previous results. At 30 mM phosphate ion concentration, the thick fibrils appeared in both fin and skin collagen fibrils. Many oriented long fibrils were interlaced with thin			
431 432 433 434 435 436 437	the diameter distributions of the fibrils were shown in Fig. 8 (a and b). For both collagens, fibril diameter became thicker with increasing phosphate ion concentration in solution. This trend was consistent with the sturgeon swim bladder type I collagen reported in our previous study [13]. Increasing the magnification of the SEM observation in this study showed the fibrillar morphology more clearly than our previous results. At 30 mM phosphate ion concentration, the thick fibrils appeared in both fin and skin collagen fibrils. Many oriented long fibrils were interlaced with thin fibrils. The mean fibril diameter for fin and skin collagen was 58.0 and 60.7 nm, respectively. At a			

441	fibrillar structure, and the maximum diameter of fin and skin collagen fibrils were 334 and 477 nm,			
442	respectively. The fibril morphology and diameter results suggested that the phosphate ion concentration			
443	had a certain influence on the morphology of sturgeon fin collagen fibrils. However, unlike skin			
444	collagen, fin collagen could not be formed thick fibrillar structure even at high phosphate ion			
445	concentration. Sturgeon fin collagen could only form fine fibrils in vitro. From Fig. 6 (a-1 and a-2 60			
446	mM PB), we found a special dense network structure interlaced with the fibrils and attached to the			
447	surface of the fibrils. These special structures formed steric hindrance and inhibited the aggregation of			
448	collagen fibrils into thick fibrils. It might be the reason for that fin collagen fibrils were much thinner			
449	than skin collagen fibrils. From this study, the exact composition of these dense network structures was			
450	not known. Combined with the discussion in the SDS-PAGE section, we speculated that these special			
451	structures might be composed of other collagens. Histochemistry method and molecular analyses will			
452	be used to demonstrated this hypothesis in our further study. Another characteristic of fibrils under this			
453	condition was that a transverse periodic band pattern structure could be observed on fin and skin			
454	collagen fibrils. It is well known that the 67 nm D-periodic band pattern is the characteristic of the			
455	natural type I collagen fibril in vivo [53]. To investigate whether these periodic band patterns resemble			
456	the structure of native collagen fibrils in vivo, detailed observation of the fibrils using transmission			
457	electron microscopy is required in further studies.			
458	In Fig. 6 (b-2 60 mM PB), the ends of the thick fibrillar structure were clearly observed in the skin			
459	collagen fibrils (as shown by the white arrow). The tip of the fusiform structure consisted of several			

- 460 skin collagen fibrils. The coarse fibrils were formed by random parallel convergence of several fine
- 461 fibrils. This process occurred during the growth phase, and many long fibrils accumulated into thick
- 462 fibrils, resulting in a rapid increase in the turbidity of the solution. Our previous study showed that the

463	thick fusiform structure was found in the swim bladder collagen fibrils at 60 mM phosphate ion			
464	concentration, but the structure of the tip of the fusiform was not observed clearly [13]. In this research,			
465	we increased observation magnification of SEM and clearly observed the structural properties of the			
466	fusiform fibril.			
467	SEM images of the notochord and cartilage collagen fibrils after 10 h of incubation were shown in			
468	Fig. 7. The diameter distributions of the fibrils were shown in Fig. 8 (c and d). The mean fibril			
469	diameters of notochord and cartilage collagens were 52.0 nm and 37.3 nm, respectively. The diameter			
470	distribution of notochord collagen fibrils ranged from 11 to 157 nm. The fibrils with diameters less than			
471	75 nm accounted for 83.3% of the total fibrils. The diameter distribution of cartilage collagen fibrils			
472	ranged from 9 to 127 nm, and the fibrils with diameters less than 50 nm accounted for 77.2% of the			
473	total fibrils. Overall, notochord collagen fibrils contained more thick fibrils than cartilage collagen			
474	fibrils. Weiss et al. reported that type II collagen fibrils in human articular cartilage have diameters in			
475	the range of 40-80 nm [54]. It suggested that the re-assembled fibrils of sturgeon notochord and			
476	cartilage type II collagens had a similar thickness degree to native human cartilage fibrils.			
477	The unordered, net-like appearance of fine fibrils exhibited in both notochord and cartilage			
478	collagen fibrils (Fig 8 a-1 and b-1). Comparing to cartilage collagen fibrils, notochord collagen fibrils			
479	contained more thick fusiform structure interwoven with fine fibrils (white arrows in Fig 8 b-2 and b-			
480	3). These special fusiform structures enable notochord collagen fibrils had a higher fibril diameter			
481	distribution than cartilage collagen fibrils. As shown by white arrows in Fig. 7 b-3, the thick fusiform			
482	structure was formed by the accumulation of many fine fibrils. This result was consistent with the			
483	result of turbidity curve. During the long growth phase of notochord collagen, more fine fibrils			
484	accumulated into thick fibrils. The formation of fibrils with different morphology might be due to the			

485	presence of a small amount of type I collagen in cartilage collagen. In our previous study, we			
486	demonstrated that the amino acid compositions were different between type I and type II collagens [8].			
487	Therefore, the molecular conformations of two types collagens were also different. The formation of			
488	collagen fibrils in vitro was a highly regular self-assembly process. The presence of type I collagen			
489	might cause steric hindrance to the regular self-assembly process of type II collagen molecules. Lapiere			
490	et al. reported that the addition of other collagens reduced the lateral aggregation of type I collagen			
491	fibrils, resulting in the formation of fine fibril networks [55]. Adachi & Hayashi also reported that type			
492	V collagen restricted the growth of type I collagen fibrils to thick fibrils in vitro [56]. To our best			
493	knowledge, till now there was no similar studies on type II collagen fibril formation. Here we			
494	hypothesis that the presence of type I collagen will affect the fibril-forming process and fibril			
495	morphology of cartilage type II collagen. In our further study, pure type I and type II collagens will be			
496	used to demonstrate this hypothesis.			
496 497	used to demonstrate this hypothesis. Yields and molecular distribution of collagen peptides			
497	Yields and molecular distribution of collagen peptides			
497 498	Yields and molecular distribution of collagen peptides Papain was a plant-derived protease for food processing. In our recent study, Li et al demonstrated that			
497 498 499	Yields and molecular distribution of collagen peptides Papain was a plant-derived protease for food processing. In our recent study, Li et al demonstrated that papain hydrolysates of skate cartilage had higher antioxidant activity and lower molecular weight than			
497 498 499 500	Yields and molecular distribution of collagen peptides Papain was a plant-derived protease for food processing. In our recent study, Li et al demonstrated that papain hydrolysates of skate cartilage had higher antioxidant activity and lower molecular weight than other protease hydrolysates (such as trypsin, chymotrypsin, and pepsin) [57]. In addition, papain is			
497 498 499 500 501	Yields and molecular distribution of collagen peptides Papain was a plant-derived protease for food processing. In our recent study, Li et al demonstrated that papain hydrolysates of skate cartilage had higher antioxidant activity and lower molecular weight than other protease hydrolysates (such as trypsin, chymotrypsin, and pepsin) [57]. In addition, papain is comparatively less expensive than the other proteolytic enzymes [57]. Considering the production			
497 498 499 500 501 502	Yields and molecular distribution of collagen peptides Papain was a plant-derived protease for food processing. In our recent study, Li et al demonstrated that papain hydrolysates of skate cartilage had higher antioxidant activity and lower molecular weight than other protease hydrolysates (such as trypsin, chymotrypsin, and pepsin) [57]. In addition, papain is comparatively less expensive than the other proteolytic enzymes [57]. Considering the production efficiency and the cost for large-scale production, we used papain to treat four sturgeon collagens in			
497 498 499 500 501 502 503	Yields and molecular distribution of collagen peptides Papain was a plant-derived protease for food processing. In our recent study, Li et al demonstrated that papain hydrolysates of skate cartilage had higher antioxidant activity and lower molecular weight than other protease hydrolysates (such as trypsin, chymotrypsin, and pepsin) [57]. In addition, papain is comparatively less expensive than the other proteolytic enzymes [57]. Considering the production efficiency and the cost for large-scale production, we used papain to treat four sturgeon collagens in this study. The yields of collagen peptides for fin, skin, notochord, and cartilage were 78.8%, 99.1%,			

- 507 at molecular weight above 24 kDa. It suggested that notochord collagen peptide had more low
- 508 molecular peptides compared to the other three collagen peptides, while cartilage collagen peptide had
- 509 more high molecular weight peptides. Except for notochord collagen peptide, the other three collagen
- 510 peptides had a smearing area on the SDS-PAGE. The smearing area was an aggregate of collagen
- 511 peptides with similar molecular weight. It also indicated that the molecular weight of notochord
- 512 collagen peptide was lower than that of the other three collagen peptides.
- 513 Antioxidant activity of collagen peptides
- 514 Among the ROS generated in an animal body, the hydroxyl radical is the primary active oxygen species
- 515 with the strongest reactivity. Therefore, the scavenging of hydroxyl radicals is one of the most effective
- 516 defense mechanisms of a living body against various diseases. Hydroxyl radical scavenging activity of
- 517 the collagen peptides was summarized in Fig. 10-a. The activities of all collagen peptides increased in
- 518 concentration-dependent manners. At the same concentration, the Hydroxyl radical scavenging activity
- of the four collagen peptides was notochord > skin > fin > bovine cartilage > porcine skin > cartilage.
- 520 The antioxidant activity of notochord collagen peptide was higher than that of Vc, when the sample
- 521 concentration was 5 mg/mL.
- 522 ABTS radical scavenging activity of collagen peptides was shown in Fig. 10-b. All collagen
- 523 peptides showed ABTS radical scavenging activity in a dose-dependent manner. At the same
- 524 concentration, the ABTS radical scavenging activity order of the four collagen peptides was skin >
- 525 notochord > fin > bovine cartilage > cartilage > porcine skin. Although the molecular weight of
- 526 notochord collagen peptide was lower than that of skin collage peptides, the antioxidant activity of skin
- 527 collagen peptide was higher than that of notochord collagen peptides. It suggested that the antioxidant
- 528 activity of collagen peptides was not only related to the molecular weight of peptides. The results of

529 two free radical scavenging activities also showed that the antioxidant activity of collagen peptides was

- 530 directly related to collagen type. Comparing with the other two sturgeon by-products, the skin and
- 531 notochord was more suitable for producing antioxidant collagen peptide.

532 Conclusions

533 The present study was the first to clarify the collagen structural characteristics of collagens, which 534 extracted from four Russian sturgeon by-products. Meanwhile, the biological properties of the four 535 collagens were compared through the fibril formation ability of the collagen molecule and the antioxidant 536 activity of the collagen peptide. The α -chain pattern results indicated that the main collagen of fin and 537 skin was type I collagen, and the main collagen of notochord and cartilage was type II collagen. The 538 solubility results of collagen at different pH suggested that the isoelectric points of the skin, fin, and 539 notochord collagens were approx. in the pH range of 6 to 8. Notochord and cartilage type II collagen 540 could only self-assemble into fibril at low phosphate ion concentration condition, while skin and fin type 541 I collagen could self-assemble into fibril at a wide range of phosphate ion concentration. The fibrillar morphology of type I collagen was more diversified than that of type II collagen. Under the same 542 543 hydrolysis of papain, the molecular weight of notochord collagen peptide was lower than that of the other 544 three collagen peptides. The antioxidant activity of notochord and skin collagen peptide was better than 545 that of the other collagen peptides. Since there is no previous study on the utilization of Russian sturgeon 546 collagen, this study will provide basic data for the application of Russian sturgeon collagen in the food 547 and biomedical material industries. Meanwhile, the effective utilization of collagen will be a feasible 548 way to increase the value of Russian sturgeon by-products.

549 Acknowledgements

550 The authors would like to thank Key Lab of Freshwater Biodiversity Conservation, Yangtze River

- 551 Fisheries Research Institute; Zhejiang Province Joint Key Laboratory of Aquatic Products Processing,
- 552 Zhejiang Gongshang University, for their financial and instrumentation support in the development of
- 553 this study. Thanks for Prof. Yasuaki Takagi of Faculty of Fisheries Sciences, Hokkaido University
- supply to technical support and article modification.

555 References

- 556 1. Birstein, V. J., Bemis, W. E., Waldman, J. R.: The threatened status of acipenseriform species: A
 557 summary. Environ. Biol. Fish. 48, 427-435 (1997).
- 2. Tavakoli, S., Luo, Y. K., Regenstein, J. M., Daneshvar, E., Bhatnagar, A., Tan, Y. Q., Hong, H.:
- 559 Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality 560 Change to Trade and Commercial Mimicry. Rev. fish. Sci. Aquac. **29**, 753-768 (2021).
- 3. Bronzi, P., Chebanov, M., Michaels, J. T., Wei, Q. W., Rosenthal, H., Gessner, J.: Sturgeon meat and
- caviar production: Global update 2017. J. Appl. Ichthyol. **35**, 257-266 (2019).
- 4. Hurvitz, A., Jackson, K., Degani, G., Levavi-Sivan, B.: Use of endoscopy for gender and ovarian stage
- determinations in Russian sturgeon (Acipenser gueldenstaedtii) grown in aquaculture. Aquaculture.
- **270**, 158-166 (2007).
- 566 5. Chen, Y. W., Cai, W. Q., Shi, Y. G., Dong, X. P., Bai, F., Shen, S. K., Jiao, R., Zhang, X. Y., Zhu, X.:
- 567 Effects of different salt concentrations and vacuum packaging on the shelf stability of Russian 568 sturgeon *(Acipenser gueldenstaedti)* stored at 4 °C. Food. Control. **109**, 106865 (2020).
- 6. Meng, D. W., Leng, X. Q., Zhang, Y., Luo, J., Du, H., Takagi, Y., Dai, Z. Y., Wei, Q. W.: Comparation
- 570 of the structural characteristics and biological activities of chondroitin sulfates extracted from
- 571 notochord and backbone of Chinese sturgeon (Acipenser sinensis). Carbohydr. Res. 522, 108685
- 572 (2022).

- 573 7. Zhang, X., Ookawa, M., Tan, Y. K., Ura, K., Adachi, S., Takagi, Y.: Biochemical characterisation and
- 574 assessment of fibril-forming ability of collagens extracted from Bester sturgeon *Huso huso* ×
- 575 *Acipenser ruthenus*. Food. Chem. **160**, 305-312 (2014).
- 576 8. Meng, D. W., Tanaka, H., Kobayashi, T., Hatayama, H., Zhang, X., Ura, K., Yunoki, S., Takagi, Y.:
- 577 The effect of alkaline pretreatment on the biochemical characteristics and fibril-forming abilities of
- 578 types I and II collagen extracted from bester sturgeon by-products. Int. J. Biol. Macromol. 131, 572579 580 (2019).
- 580 9. Strueuli, C.: Extracellular matrix remodelling and cellular differentiation. Curr. Opin. Cell. Biol. 11,
 581 634-640 (1999).
- 582 10. Silver, F. H., Freeman, J. W., Seehra, G. P.: Collagen self-assembly and the development of tendon
 583 mechanical properties. J. Biomech. 36, 1529-1553 (2003).
- 584 11. Kim, S. K., Mendis, E.: Bioactive compounds from marine processing byproducts A review. Food.
- 585 Res. Int. **39**, 383-393 (2006).
- 586 12. Alves, A. L., Marques, A. L. P., Martins, E., Silva, T. H., Reis, R. L.: Cosmetic potential of marine
- 587 fish skin collagen. Cosmetics. **4**, 4040039 (2017).
- 588 13. Meng, D. W., Li, W., Ura, K., Takagi, Y.: Effects of phosphate ion concentration on in-vitro
- fibrillogenesis of sturgeon type I collagen. Int. J. Biol. Macromol. 148, 182-191 (2020).
- 590 14. Curtis, A. S. G., Clark, P.: The effects of topographic and mechanical properties of materials on cell
- 591 behavior. Crit. Rev. Biocompat. 5, 343-362 (1990).
- 592 15. Ahmed, M., Verma, A. K., Patel, R.: Collagen extraction and recent biological activities of collagen
- 593 peptides derived from sea-food waste: A review. Sustain. Chem. Pharm. 18, 100315 (2020).
- 16. Taghvaei, M., Jafari, S.M., Mahoonak, A. S., Nikoo, A.M., Rahmanian, N., Hajitabar, J., Meshginfar,

- 595 N.: The effect of natural antioxidants extracted from plant and animal resources on the oxidative
- 596 stability of soybean oil. LWT-Food. Sci. Technol. 56, 124-130 (2014).
- 597 17. Mahapatra, S., Chakraborty, S., Majumdar, S., Bag, B., Roy, S.: Eugenol protects nicotine-induced
- 598 superoxide mediated oxidative damage in murine peritoneal macrophages *in vitro*. Eur. J. Pharmacol.
- **623**, 132-140 (2009).
- 600 18. Zhao, X. C., Zhang, X. J., Liu, D. Y.: Collagen peptides and the related synthetic peptides: A review
 601 on improving skin health. J. Funct. Foods. 86, 104680 (2021).
- 602 19. Sheng, Y., Qiu, Y. T., Wang, Y. M., Chi, C. F., Wang, B.: Novel antioxidant collagen peptides of
- Siberian Sturgeon (Acipenser baerii) cartilages: the preparation, characterization, and
 cytoprotection of H₂O₂-damaged human umbilical vein endothelial cells (HUVECs). Mar. Drugs.
 20, 325 (2022).
- **20**, *323* (2022).
- 20. Nikoo, M., Benjakul, S., Xu, X. M.: Antioxidant and cryoprotective effects of Amur sturgeon skin
 gelatin hydrolysate in unwashed fish mince. Food. Chem. 181, 295-303 (2015).
- 608 21. Clowacki, J., Mizuno, S.: Collagen scaffolds for tissue engineering. Biopolymers. 89, 338-344 (2007).
- 609 22. Nalinanon, S., Benjakul, S., Visessanguan, W., Kishimura, H.: Use of pepsin for collagen extraction
- 610 from the skin of bigeye snapper (*Priacanthus tayenus*). Food. Chem. **104**, 593-601 (2007).
- 611 23. Meng, D. W., Li, W., Leng, X. Q., Takagi, Y., Dai, Z. Y., Du, H., Wei, Q. W.: Extraction of chondroitin
- sulfate and type II collagen from sturgeon (Acipenser gueldenstaedti) notochord and
 characterization of their hybrid fibrils. Process. Biochem. 124, 180-188 (2023).
- 614 24. Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
- 615 Nature. 277, 680–685 (1970).
- 616 25. Atef, M., Ojagh, S. M., Latifi, A. M., Esmaeili, M., Udenigwe, C. C.: Biochemical and structural

- 617 characterization of sturgeon fish skin collagen (Huso huso). J. Food. Biochem. 44, e13256 (2020).
- 618 26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., R. Randall, J.: Protein measurement with the folin
- 619 phenol reagent. J. Biol. Chem. **193**, 265–275 (1951).
- 620 27. Pan, X., Zhao, Y., Hu, F., Wang, B.: Preparation and identification of antioxidant peptides from
- 621 protein hydrolysate of skate (*Raja porosa*) cartilage. J. Funct. Foods. **25**, 220-230 (2016).
- 622 28. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity
- 623 applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26, 1231-
- 624 1237 (1999).
- 625 29. Nagai, T.: Characterization of collagen from Japanese sea bass caudal fin as waste material. Eur.
 626 Food. Res. Technol. 218, 424-427 (2004).
- 627 30. Liu, D. S., Liang, L., Regenstein, J. M., Zhou, P.: Extraction and characterisation of pepsin-solubilised
- 628 collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys
- 629 *nobilis*). Food. Chem. **133**, 1441-1448 (2012).
- 630 31. Foegeding, E. A., Lanier, T. C., Hultin, H. O.: Food. Chem, ed. by Fennema OR. New York, Marcel
- 631 Dekker Inc, pp. 902-906 (1996).
- 632 32. Saito, M., Takenouchi, Y., Kunisaki, N., Kimura, S.: Complete primary structure of rainbow trout
 633 type I collagen consisting of α1 (I) α2 (I) α3 (I) heterotrimers. Eur. J. Med. Chem. 268, 2817-2827
- 634 (2001).
- 635 33. Zhang, X., Adachi, S., Ura, K., Takagi, Y.: Properties of collagen extracted from Amur sturgeon
- 636 Acipenser schrenckii and assessment of collagen fibrils in vitro. Int. J. Biol. Macromol. 137, 809637 820 (2019).
- 638 34. Liang, Q. F., Wang, L., Sun, W. H., Z. Wang, B., Xu, J. M., Ma, H. L.: Isolation and characterization

639 of collagen from the cartilage of Amur sturgeon *(Acipenser schrenckii)*. Process. Biochem. **49**, 318-

640 323 (2014).

- 641 35. Li, S. W., Prockop, D. J., Helminen, H., Fassler, R., Lapvetelainen, T., Kiraly, K., Peltarri, A.,
- 642 Arokoski, J., Lui, H., Arita, M.: Transgenic mice with targeted inactivation of the Col2 alpha 1 gene
- 643 for collagen II develop a skeleton with membranous and periosteal bone but no endochondral bone.
- 644 Gene. Dev. 9, 2821-2830 (1995).
- 645 36. Medici, D., Olsen, B. R.: The role of endothelial- mesenchymal transition in heterotopic ossification.
- 646 J. Bone. Miner. 27, 1619-1622 (2012).
- 647 37. Zhang, X., Shimoda, K., Ura, K., Adachi, S., Takagi, Y.: Developmental structure of the vertebral
- 648 column, fins, scutes and scales in bester sturgeon, a hybrid of beluga *Huso huso* and sterlet
 649 *Acipenser ruthenus*. J. Fish. Bio. 81, 1985-2004 (2012).
- 650 38. Leprévost, A., Azaïs, T., Trichet, A., Sire, J. Y.: Vertebral development and ossification in the siberian
- 651 sturgeon (Acipenser Baerii), with new insights on bone histology and ultrastructure of vertebral
- elements and scutes. The. Anatomical. Record. **300**, 437-449 (2017).
- 653 39. Viguet-Carrin, S., Garnero, P., Delmas, P. D.: The role of collagen in bone strength. Osteoporosis. Int.
- 654 **17**, 319-336 (2006).
- 40. Zhang, X., Azuma, N., Hagihara, S., Adachi, S., Ura, K., Takagi, Y.: Characterization of type I and II
- procollagen α1chain in Amur sturgeon (Acipenser schrenckii) and comparison of their gene
 expression. Gene. 579, 8-16 (2016).
- 41. Mizuta, S., Asano, C., Yokoyama, Y., Taniguchi, M.: Molecular species of collagen in muscular and
- 659 vertebral parts of white sturgeon Acipenser transmontanus. Fisheries. Sci. 78, 399-406 (2012).
- 42. Luo, Q. B., Chi, C. F., Yang, F., Zhao, Y. Q., Wang, B.: Physicochemical properties of acid-and

- pepsin-soluble collagens from the cartilage of Siberian sturgeon. Environ. Sci. Pollut. R. 25, 3142731438 (2018).
- 663 43. Zhu, L. L., Li, J. W., Wang, Y. C., Sun, X., Li, B. F., Poungchawanwong, S., Hou, H.: Structural
- feature and self-assembly properties of type II collagens from the cartilages of skate and sturgeon.
- 665 Food. Chem. **331**, 127340 (2020).
- 666 44. Sato, K., Ohashi, C., Ohtsuki, K., Kawabata, M.: Type V collagen in trout (Salmo gairdneri) muscle
- and its solubility change during chilled storage of muscle. J. Agri. Food. Chem. **39**, 1222-1225
 (1991).
- 45. Plepis, A. M. D. G., Goissis, G., Gupta, D. D.: Dielectric and pyroelectric characterization of anionic
- 670 and native collagen. Polym. Eng. Sci. 36, 2932-2938 (1996).
- 46. Muyonga, J. H., Cole, C. G. B., Duodu, K. G.: Characterisation of acid soluble collagen from skins
 of young and adult Nile perch *(Lates niloticus)*. Food. Chem. **85**, 81-89 (2004).
- 673 47. Veeruraj, A., Arumugam, M., Balasubramanian, T.: Isolation and characterization of thermostable
- 674 collagen from the marine eel-fish (Evenchelys macrura). Process. Biochem. 48, 1592-1602 (2013).
- 48. Li, Y. P., Douglas, E. P.: Effects of various salts on structural polymorphism of reconstituted type I
- 676 collagen fibrils. Colloids. Surf. B. **112**, 42-50 (2013).
- 49. Patrickios, C. S.: Polypeptide amino acid composition and isoelectric point: 1. A closed-form
- 678 approximation. J. Colloid. Interf. Sci. 175, 256-260 (1995).
- 50. Kalbitzer, L., Pompe, T.: Fibril growth kinetics link buffer conditions and topology of 3D collagen I
- 680 networks. Acta. Biomater. 67, 206-214 (2018).
- 51. Shi, L. F., Tian, H. H., Wang, Y. X., Hao, G. X., Chen, J., Weng, W. Y.: Effect of pH on properties of
- 682 golden pompano skin collagen-based fibril gels by self-assembly in vitro. J. Sci. Food. Agr. 100,

- 683 4801-4807 (2020).
- 52. Birk, D. E., Silver, F. H.: Collagen fibrillogenesis in vitro: comparison of types I, II, and III. Arch.
 Biochem. Biophys. 235, 178-185 (1984).
- 53. Kemp, N. E.: Banding pattern and fibrillogenesis of ceratotrichia in shark fins. J. Morph. 154, 187-
- 687 204 (1977).
- 54. Weiss, C., Rosenberg, L., Helfet, A. J.: An ultrastructural study of normal young adult human articular
 cartilage. J. Bone. Joint. Surg. Am. 50, 663-674 (1968).
- 55. Lapiere, C. M., Nusgens, B., Pierard, G. E.: Interaction between collagen type I and type III in
- 691 conditioning bundles organization. Connect. Tissue. Res. 5, 21-29 (1977).
- 692 56. Adachi, E., Hayashi, T.: In vitro formation of hybrid fibrils of type V collagen and type I collagen
- 693 limited growth of type I collagen into thick fibrils by type V collagen. Connect. Tissue. Res. 14,
 694 257-266 (1986).
- 695 57. Li, W., Kobayashi, T., Meng, D. W., Miyamoto, N., Tsutsumi, N., Ura, K., Takagi, Y.: Free radical
- 696 scavenging activity of type II collagen peptides and chondroitin sulfate oligosaccharides from by-
- 697 products of mottled skate processing. Food. Biosci. 41, 100991 (2021).
- 698

699 Statements and Declarations

- 700 Funding
- 701 This work was partially supported by key laboratory research fund open topics (LFBC1002) from Key
- 702 Lab of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China;
- Fundamental Research Funds for the Provincial Universities of Zhejiang (3090JYN9920001G-307).
- 704 Competing Interests

706 Author Contribution

- All authors had read and agreed with the published version of the manuscript. Dawei Meng:
- 708 Conceptualization, Methodology, Data curation, Investigation, Writing-original draft. Qiwei Wei:
- 709 Supervision. Prof. Yasuaki Takagi: Methodology, Writing-review & Editing. Prof. Zhiyuan Dai:
- 710 Resources. Yan Zhang: Methodology. All authors read and approved the final manuscript.

711 **Data availability**

- 712 Not applicable.
- 713

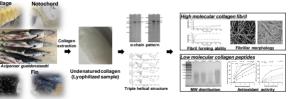
714	Fig. 1 SDS-PAGE of collager	n. M: Molecular weight marke	er: Lane 1: fin collagen:	: Lane 2: skin collagen:

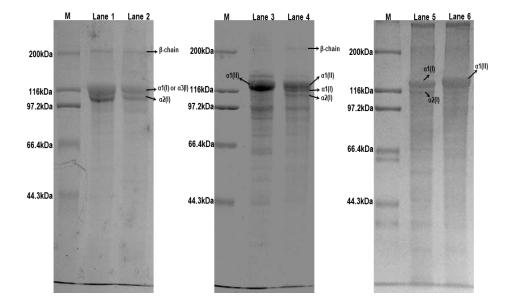
- 715 Lane 3: notochord collagen; Lane 4: backbone cartilage collagen; Lane 5: porcine skin collagen;
- 716 Lane 6: bovine cartilage collagen
- Fig. 2 Infra-red spectra of the sturgeon (a) fin collagen; (b) skin collagen; (c) notochord collagen; (d)

backbone cartilage collagen: (e) porcine skin collagen; (f) bovine cartilage collagen

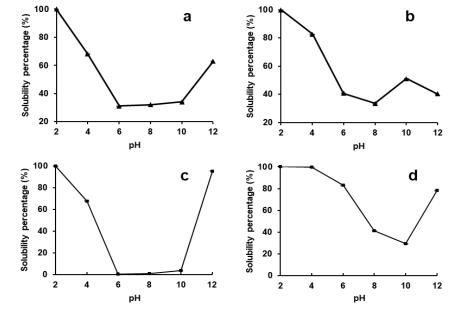
- Fig. 3 Solubility of the sturgeon (a) fin collagen; (b) skin collagen; (c) notochord collagen; (d) backbone
- 720 cartilage collagen at different pH
- 721 Fig. 4 Fibril formation in vitro by (a) fin collagen; (b) skin collagen; (c) porcine skin collagen; (d)
- notochord collagen; (e) backbone cartilage collagen; (f) bovine cartilage collagen measured by
- 723 optical absorbance at 320 nm with different PB buffer concentration (30, 60, 120 mM)
- Fig. 5 The degree of fibril formation of collagen. (a) fin collagen in 30 mM and 60 mM PB buffer; (b)
- skin collagen in 30 mM and 60 mM PB buffer; (c) notochord and backbone cartilage collagen in 30
- 726 mM PB buffer

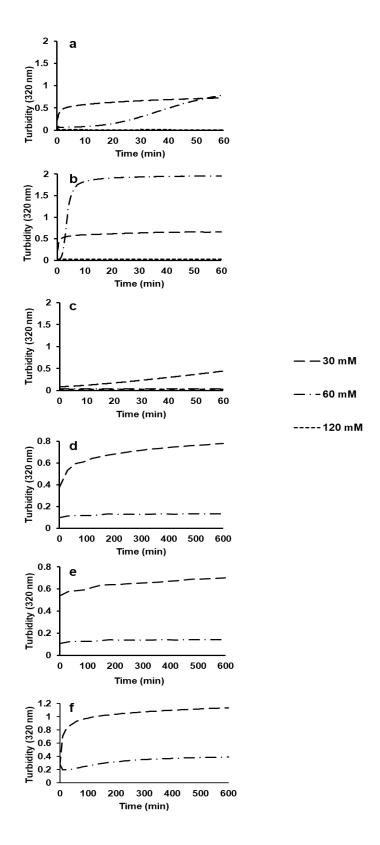
- Fig. 6 Scanning electron micrographs of sturgeon fin and skin collagen fibrils in 30 mM and 60 mM PB
- buffer. (a) fin collagen; (b) skin collagen. Scale bars: (1) 10 μm; (2) 1 μm. White arrow in b-2 60
- 729 mM PB: The fusiform structure at the tip of skin collagen fibril
- 730 Fig. 7 Scanning electron micrographs of sturgeon notochord and backbone cartilage collagen fibrils in
- 731 30 mM PB buffer. (a) notochord collagen; (b) backbone cartilage collagen. Scale bars: (1) 2 μm; (2)
- 732 2 μm; (3) 0.2 μm. White arrow: Thick fusiform structure of notochord collagen fibril
- Fig. 8 Diameter distribution of sturgeon collagen fibril (a) fin collagen fibril in 30 mM and 60 mM PB
- buffer; (b) skin collagen fibril in 30 mM and 60 mM PB buffer; (c): notochord collagen fibril in 30
- 735 mM PB buffer; (d) backbone cartilage collagen fibril in 30 mM PB buffer
- 736 Fig. 9 SDS-PAGE of sturgeon collagen peptides. M: molecular maker; Lane 1: fin collagen peptide; Lane
- 2: skin collagen peptide; Lane 3: notochord peptide; Lane 4: backbone cartilage peptide.
- Fig. 10 Hydroxyl (a) and ABTS (b) radical scavenging activities of collagen peptides.


Four main sturgeon by-products


Cartilage


Skin


Structural characteristics


Biological properties

