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Abstract Purpose: Manual annotation of gastric X-
ray images by doctors for gastritis detection is time-
consuming and expensive. To solve this, a self-supervised
learning method is developed in this study. The effec-
tiveness of the proposed self-supervised learning method
in gastritis detection is verified using a few annotated
gastric X-ray images.

Methods: In this study, we develop a novel method
that can perform explicit self-supervised learning and
learn discriminative representations from gastric X-ray
images. Models trained based on the proposed method
were fine-tuned on datasets comprising a few anno-
tated gastric X-ray images. Five self-supervised learn-
ing methods, i.e., SimSiam, BYOL, PIRL-jigsaw, PIRL-
rotation, and SimCLR, were compared with the pro-
posed method. Furthermore, three previous methods,
one pretrained on ImageNet, one trained from scratch,
and one semi-supervised learning method, were com-
pared with the proposed method.

Results: The proposed method′s harmonic mean
score of sensitivity and specificity after fine-tuning with
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the annotated data of 10, 20, 30, and 40 patients were
0.875, 0.911, 0.915, and 0.931, respectively. The pro-
posed method outperformed all comparative methods,
including the five self-supervised learning and three pre-
vious methods. Experimental results showed the effec-
tiveness of the proposed method in gastritis detection
using a few annotated gastric X-ray images.

Conclusions: This paper proposes a novel self-supervised
learning method based on a teacher-student architec-
ture for gastritis detection using gastric X-ray images.
The proposed method can perform explicit self-supervised
learning and learn discriminative representations from
gastric X-ray images. The proposed method exhibits
potential clinical use in gastritis detection using a few
annotated gastric X-ray images.

Keywords Deep learning · Medical image analysis ·
Gastric X-ray examination · Self-supervised learning

1 Introduction

Gastric cancer is one of the most severe malignant tu-
mors worldwide, with the fifth highest incidence and
third highest mortality rates [1]. The prevalence of gas-
tric cancer is declining globally, nonetheless varying across
regions [20]. The percentage of people who develop gas-
tric cancer is higher in Eastern Asia than in other re-
gions. Among the predisposing factors of gastric can-
cer, chronic gastritis is considered the leading risk fac-
tor [27]. Therefore, we focus on chronic gastritis in this
study.

Chronic gastritis is considered the first step of gas-
tric mucosal changes, leading to gastric cancer. There-
fore, gastritis screening has been used for identifying
patients with the risk of gastric cancer [11]. Different
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methods to evaluate gastritis exist, for example, double-
contrast upper gastrointestinal barium X-ray radiogra-
phy, upper gastrointestinal endoscopy, and serum anti-
H. pylori IgG titer [26]. Among such methods, the screen-
ing of gastric X-ray images is still the most simple
and widely used method, and thus, it is suitable for
mass screening in East Asia. However, diagnosis re-
quires technical knowledge and time for screening. Computer-
aided diagnosis (CAD) systems that automatically an-
alyze gastric X-ray images and provide supporting in-
formation for physicians can overcome these problems.

With the development of supervised learning based
on deep convolutional neural networks (DCNNs) [10],
significant progress has been achieved in medical im-
age analysis [23]. Gastritis detection from gastric X-ray
images with high reliability using DCNN-based CAD
systems has been proven in our previous studies [26].
Similar to most medical image analysis studies, our pre-
vious methods are based on supervised learning, and
therefore, their performance depends on a large number
of manually annotated gastric X-ray images [9]. How-
ever, generating the annotations of complex gastric X-
ray images typically requires expert knowledge. Thus,
it is expensive and time-consuming [28]. Consequently,
the scarcity of expert-level annotations is one of the
main limitations impacting real-world applications in
gastritis detection.

In recent years, self-supervised learning has been
extensively researched [19]. Unlike supervised learning
that requires manually annotated labels, self-supervised
learning benefits from image characteristics (e.g., color
and texture) without the manual annotation of labels [8].
Subsequently, a model trained with self-supervised learn-
ing can be used to fine-tune the gastric X-ray image
dataset. As fine-tuning after self-supervised learning re-
quires only a small portion of annotated data, a fea-
sible solution is provided for insufficient data anno-
tations in gastritis detection. For example, a previous
study [5] predicted the rotation degrees of images, and
the study [22] learned discriminative representations by
playing a jigsaw game on images. Because these meth-
ods are designed for ordinary images, they cannot learn
sufficient discriminative representations from gastric X-
ray images.

Herein, we propose a novel self-supervised learning
method based on a teacher-student architecture for gas-
tritis detection using gastric X-ray images. We present
cross-view and cross-model losses that enable explicit
self-supervised learning and learn discriminative rep-
resentations from gastric X-ray images. Experimen-
tal results show that the proposed method achieves a
high detection performance for gastritis detection using
only a few annotations. To the best of our knowledge,

this is the first study to prove the effectiveness of self-
supervised learning in the field of gastritis detection
using gastric X-ray images.

Our contributions are summarized as follows:

– We propose a novel self-supervised learning method
for learning discriminative representations from gas-
tric X-ray images.

– We realize high detection performance on a complex
gastric X-ray image dataset with only a few anno-
tations.

2 Methods

2.1 Gastric X-ray image preprocessing

The resolution of the patient-level gastric X-ray im-
ages in our dataset is 2,048 × 2,048 pixels. Further,
the dataset contains only a few images. To fully use the
semantic information of the gastric X-ray images, we
divide each patient-level image into patches and manu-
ally annotate them with the following three labels:

– O: patches outside the stomach (outside patches),
– N : patches extracted from negative (non-gastritis)

X-ray images inside the stomach (negative patches),
– P: patches extracted from positive (gastritis) X-ray

images inside the stomach (positive patches).

Figure 2 shows examples of patient-level gastric X-ray
images. As shown in the figure, the stomach without
gastritis (Figure 2-(a)) includes straight folds and uni-
form mucosal surface patterns. Conversely, the stomach
with gastritis (Figure 2-(b)) has non-straight folds and
coarse mucosal surface patterns. Figure 3 illustrates the
examples of divided gastric X-ray image patches. Fig-
ure 3-(a) illustrates outside patches in O. Figure 3-(b)
displays negative patches in N . Figure 3-(c) shows pos-
itive patches in P.

2.2 Self-supervised learning

An overview of the proposed method is shown in Fig. 1.
The teacher-student architecture comprises two networks
with the same structure, where the weights of the teacher
network are an exponential moving average of the weights
of the student network [25]. Encoder fθ, projector pθ,
and predictor gθ belong to the student network. En-
coder fψ and projector gψ belong to the teacher net-
work. The teacher-student architecture is designed for
learning discriminative representations (e.g., gastric folds
or mucosal surfaces) from gastric patches.

Given an input gastric X-ray patch x, two trans-
formations t1 and t2 are randomly sampled from the
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Fig. 1 Overview of the proposed method. Our method minimizes (1) a cross-view loss between the gastric features of two views from
the student network and (2) a cross-model loss between the gastric features of the same view from the teacher-student networks. MLP
represents multilayer perceptron.

(a) (b)

Fig. 2 Examples of patient-level gastric X-ray images: (a) neg-
ative image and (b) positive image.

distribution T to generate two views v1 = t1(x) and
v2 = t2(x). These transformations are combined with
standard data augmentation methods such as cropping,
resizing, flipping, and Gaussian blurring, which can in-
crease the diversity of gastric features. The view v1
is transmitted into the encoder fθ and transformed by
the projector gθ in the student network. Accordingly,
the view v2 is transmitted into the encoder fψ and
transformed by the projector gψ in the teacher network,
where z′2 is the obtained gastric feature. One copy of v2
is transmitted into the student network for calculating
the final loss. Further, predictor pθ is used to transform
two views to gastric features q1 and q2 in the student
network. The predictor pθ and projectors gθ, gψ are
MLP with the same structure [2]. Since the computed
gastric features are high-dimensional, MLP aims to re-
duce the dimensionality of the gastric features for fast
learning.

Finally, self-supervised learning is performed by re-
ducing the distance between the gastric features from
the student network and reducing the distance between

(a)

(b)

(c)

Fig. 3 Examples of patches: (a) outside patches in O, (b) nega-
tive patches in N , and (c) positive patches in P.

the gastric features from the teacher-student networks.
Cross-view loss. The cross-view loss defined by the
following equation compares the representations of gas-
tric features from the student network, which penalizes
gastric features for different views from the same net-
work:

Lcross-view = ||q̂1 − q̂2||22

= 2− 2 · ⟨q1, q2⟩
||q1||2 · ||q2||2

,
(1)

where q̂1 = q1/||q1||2 and q̂2 = q2/||q2||2 represent the
normalized gastric features of v1 and v2 from the stu-
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dent network, respectively.
Cross-model loss. The cross-model loss defined by the
following equation compares the representations of the
same view from the teacher-student networks, which pe-
nalizes gastric features for the same view from different
networks:

Lcross-model = ||q̂2 − ẑ′2||22

= 2− 2 · ⟨q2, z′2⟩
||q2||2 · ||z′2||2

,
(2)

where ẑ′2 = z′2/||z′2||2 represents the normalized gas-
tric features of v2 from the teacher network. The pre-
dictor is only used in the student network to render
the teacher-student architecture asymmetric, which can
prevent learning from collapsing [6]. The consistency
among views from the teacher-student networks enables
learning discriminative representations (e.g., gastric folds
or mucosal surfaces) from the gastric patches. The
weights of the student network (θ) are updated by mini-
mizing the total loss. The total loss Lθ,ψ and optimizing
process are defined as follows:

Lθ,ψ = Lcross-view + Lcross-model, (3)

θ ← Opt(θ,∇θLθ,ψ, α), (4)

Opt and α represent an optimizer and the learning
rate, respectively. The weight-updating process of the
teacher network (ψ) is defined as follows:

ψ ← τψ + (1− τ)θ, (5)

where τ represents the degree of moving average. The
teacher network is not updated using backpropagation,
because the stop-gradient operation prevents the col-
lapse of self-supervised learning [3]. Implementing self-
supervised learning, the encoder of the student network
(fθ) can learn sufficient discriminative representations
from the gastric patches and can be used for fine-tuning
and gastritis detection.

2.3 Fine-tuning and gastritis detection

After network training using self-supervised learning,
we fine-tune the encoder of the student network (fθ)
with only a few annotated images, which can reduce
the labor of doctors labeling. In the test phase, we
also divide the patient-level gastric X-ray images into
patches, as described in Section 2.1. Thereafter, we load
the divided patches into the fine-tuned DCNN model
and predict the labels of these patches. Subsequently,
we calculate the number of patches estimated as Ñ and
P̃. We do not count the number of patches estimated
as Õ because these patches outside the stomach are

Fig. 4 Details of the partitioned datasets used in the present
study. SSL represents the self-supervised learning process.

not related to the final gastritis detection. Finally, we
estimate the label of a patient-level gastric X-ray image
as follows:

ytest =

{
1 if P̃

Ñ + P̃ ≥ σ
0 otherwise

, (6)

where Ñ and P̃ represent the number of estimated neg-
ative and positive patches, respectively. σ represents a
threshold that can be adjusted according to different
experimental conditions. If ytest = 1, the estimated la-
bel of a patient-level gastric X-ray image is positive,
and the estimated label is negative if ytest = 0.

3 Experiments

3.1 Dataset

In this study, the medical data were provided by The
University of Tokyo Hospital in Japan [26]. The medical
data include gastric X-ray images of 815 patients sub-
jects (240 positive and 575 negative). The resolution of
these gastric X-ray images is 2,048 × 2,048 pixels. Each
image has a ground truth label (positive/negative), de-
termined based on the diagnostic results of an X-ray
inspection and endoscopic examination. We used 200
patients′ images (100 positive and 100 negative) as the
training set and the rest as the test set. As shown in
Section 2.1, we first divided the gastric X-ray images
into patches. The patch size and sliding interval were
set to 299 and 50 pixels, respectively, as described in
our previous study [9]. The patches in the training data
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Table 1 Comparison with different self-supervised learning methods.

10 patients 20 patients 30 patients 40 patients
Method Sen Spe HM Sen Spe HM Sen Spe HM Sen Spe HM

PM 0.957 0.806 0.875 0.964 0.863 0.911 0.936 0.895 0.915 0.964 0.901 0.931
CM1 0.950 0.739 0.831 0.964 0.771 0.857 0.921 0.863 0.891 0.907 0.928 0.918
CM2 0.964 0.758 0.849 0.907 0.920 0.913 0.807 0.956 0.875 0.964 0.861 0.910
CM3 0.721 0.806 0.761 0.943 0.507 0.659 0.879 0.743 0.805 0.864 0.737 0.795
CM4 0.607 0.735 0.665 0.929 0.316 0.472 0.879 0.440 0.586 0.886 0.632 0.738
CM5 0.707 0.274 0.395 0.521 0.617 0.565 0.407 0.762 0.531 0.479 0.861 0.615

Table 2 Comparison with our previous methods. “-" represents there are no results reported in [18].

Method 10 patients 20 patients 30 patients 40 patients 200 patients
PM 0.875 0.911 0.915 0.931 0.954
CM6 0.860 0.870 - - 0.922
CM7 0.382 0.759 0.435 0.870 0.954
CM8 0.348 0.477 0.563 0.644 0.876

Table 3 Hyperparameters of the proposed method.

Parameter Value
Epoch 80
Batch size 256
Learning rate (α) 0.03
momentum 0.9
weight decay 0.0004
moving average (τ) 0.996
mlp hidden size 4096
projection size 256
View size 128
Threshold (σ) 0.5

were annotated as O, N , and P by a radiological tech-
nologist. Note that if the area inside the stomach in the
patch was less than 1%, the patch was annotated as O.
If the area inside the stomach in the patch was greater
than 85%, the patch was annotated as N or P. We dis-
carded the rest of the patches in the training data. The
number of obtained O, N , and P patches were 48,385,
42,785, and 45,127, respectively.

The obtained 200 patients′ patches were used as the
training set for the self-supervised learning process, and
their label information was not used. We split the 200
patients′ patches into 120 and 80 patients′ patches (half
positive and half negative) as the training and vali-
dation sets, respectively, for the fine-tuning process.
Thereafter, we randomly selected 10, 20, 30, and 40
patients′ patches (half positive and half negative) from
the training set as the fine-tuning sets of the fine-tuning
process. Details of the partitioned data used in this
study are shown in Figure 4.

3.2 Implementation

For distribution T, we used sequential data augmen-
tation methods for random view generation, including
cropping, resizing, flipping, and Gaussian blurring [15,
16]. ResNet50 [7] was used as the encoder. The opti-
mizer used in the present method was the SGD opti-
mizer, whose learning rate α, momentum, and weight
decay were 0.03, 0.9, and 0.0004, respectively. We per-
formed 80 epochs in the self-supervised learning pro-
cess. Hyperparameters of the proposed method are
shown in Table 3.

In the fine-tuning process, we used the weights of the
trained encoder in the student network (fθ) as initial
weights. We assume that the effect of self-supervised
learning is positively correlated with the final gastri-
tis detection performance. To verify the effectiveness of
the proposed method (PM), we compared it with the
following methods. CMs 1–5 are several self-supervised
learning methods. CMs 6–8 are our previous methods.
CM1. We used the weights of the trained encoder of
SimSiam [3] as initial weights for the fine-tuning pro-
cess.
CM2. We used the weights of the trained encoder of
BYOL [6] as initial weights for the fine-tuning process.
CM3. We used the weights of the trained encoder of
PIRL [21] based on the jigsaw pretext task as initial
weights for the fine-tuning process.
CM4. We used the weights of the trained encoder of
PIRL [21] based on the rotation prediction pretext task
as initial weights for the fine-tuning process.
CM5. We used the weights of the trained encoder of
SimCLR [2] as initial weights for the fine-tuning pro-
cess.
CM6. A semi-supervised learning method based on tri-
training [18].
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CM7. A supervised learning method based on transfer
learning [9].
CM8. We used random weights (trained from scratch)
as initial weights for the fine-tuning process.

We performed self-supervised learning and fine-tuned
the trained encoder on all four fine-tuning sets. In all
the experiments, we selected the model that exhibited
the highest accuracy on the validation set and tested
gastritis detection performance on the test set of 615
patients′ data. Note that the settings of SimSiam and
BYOL used in our experiments were strictly the same
as those in the PM. The settings of PIRL and SimCLR
used in our experiments were based on the suggestions
in the original papers [2,21]. We used the same settings
in the fine-tuning process across all the experiments.

In the test phase, we experimentally set the thresh-
old σ to 0.5 for realizing a high gastric detection per-
formance. We used sensitivity (Sen), specificity (Spe),
and harmonic mean (HM) as the evaluation metrics.

Sen =
TP

TP + FN
, (7)

Spe =
TN

TN+ FP
, (8)

HM =
2× Sen× Spe

Sen + Spe
, (9)

where TP, TN, FP, and FN represent the number of
true positive, true negative, false positive, and false neg-
ative, respectively. As Sen and Spe exhibit a tradeoff
relationship, we consider HM as the final evaluation
metric.

3.3 Results

The experimental results are shown in Table 1 and 2.
Table 1 shows the patient-level gastritis detection re-
sults after fine-tuning with the annotated data of 10,
20, 30, and 40 patients in the experiments. According to
Table 1, the PM outperforms other comparative meth-
ods in terms of gastritis detection. The PM′s HM score
of sensitivity and specificity after fine-tuning with the
annotated data of 10, 20, 30, and 40 patients are 0.875,
0.911, 0.915, and 0.931, respectively. The average HM
scores of the PM are greater than those of the other
self-supervised learning methods (CMs1–5) with 0.034,
0.021, 0.153, 0.293, and 0.351 on four randomly selected
training sets, respectively. Experimental results showed
that our method achieves a high gastritis detection per-
formance with only a few annotations, which can sub-
stantially reduce the number of manually annotated la-
bels required.

Table 2 shows the patient-level gastritis detection
results after fine-tuning with different numbers of the
annotated data patients for comparison with our previ-
ous methods. For semi-supervised learning based on tri-
training, we directly use the results reported in [18] for a
reasonable comparison. As per Table 2, our method not
only drastically outperforms previous methods with a
small amount of annotated data but also achieves excel-
lent detection performance as the number of annotated
data increases.

4 Discussion

4.1 Contributions to clinical fields

Different methods are available for the evaluation of
gastritis: double-contrast upper gastrointestinal barium
X-ray radiography, upper gastrointestinal endoscopy,
and serum anti-H. pylori IgG titer [26]. Among such
methods, the screening of gastric X-ray images is still
the most simple and widely used method, and thus, it
is suitable for mass screening in East Asia. However,
the number of clinicians who can perform radiological
diagnosis is decreasing owing to diverse inspection ap-
proaches [24]. Therefore, the introduction of DCNN-
based CAD systems is expected in gastritis detection.

As shown in our previous studies, gastritis can be
detected from gastric X-ray images with high reliabil-
ity by DCNN-based CAD systems [26]. Similar to most
medical image analysis studies, our previous methods
are based on supervised learning [9]. The performance
of our previous methods depends on a large number
of manually annotated gastric X-ray images. Generat-
ing annotations of complex gastric X-ray images typi-
cally requires expert knowledge. Thus, it is expensive
and time-consuming [28]. The proposed self-supervised
learning method addressed this challenging problem and
achieved a high detection performance with only a few
annotated gastric X-ray images. The method can re-
duce the labor required for annotating gastric X-ray
images. Although our research focuses on gastric X-ray
images, we expect that the findings and methodology
of this study can be applied to other types of medi-
cal images such as laparoscopic, endoscopy, and com-
puted tomography images. Furthermore, because the
self-supervised learning process is task-agnostic, we can
also apply the trained encoder to other tasks, such as
few-shot learning, semantic segmentation, and anomaly
detection.

Our research has several limitations. The experi-
mental data used in this study were obtained from a sin-
gle medical facility, which could affect the robustness of
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our method. Several studies have shown that additional
data enable increasing the representation learning per-
formance in self-supervised learning [28]. In the future,
we will explore the effect of data from multiple med-
ical facilities on self-supervised learning. Our previous
study [12,14,17] about dataset distillation can improve
the effectiveness and security of medical data sharing
among different medical facilities, which fits well with
self-supervised learning.

4.2 Contributions to technical fields

Early self-supervised learning methods usually learn dis-
criminative representations based on pretext tasks. For
example, the study [5] predicts the rotation degrees of
images, and discriminative representations were learned
by playing a jigsaw game on images [22]. Because these
pretext tasks are monotonous and not complex, suffi-
cient discriminative representations cannot be learned
from images [19]. PIRL [21] proposes combining the jig-
saw or rotation pretext task with learned invariant rep-
resentations, outperforming supervised learning in cer-
tain tasks.

Recently, several self-supervised learning methods
have achieved excellent performance on the large-scale
natural image dataset ImageNet [4]. Specifically, Sim-
Siam [3] and BYOL [6] perform self-supervised learning
by directly reducing the distance between the represen-
tations of two views from the Siamese networks. These
methods are efficient for processing gastric X-ray im-
ages with high-resolution and complex semantic infor-
mation. Therefore, we propose a novel self-supervised
learning method based on a teacher-student architec-
ture (a variant of the Siamese networks) for gastritis de-
tection using gastric X-ray images. We introduce cross-
view and cross-model losses, which can perform explicit
self-supervised learning and learn discriminative repre-
sentations from gastric X-ray images [13]. To the best
of our knowledge, this study is the first to prove the
effectiveness of self-supervised learning in the field of
gastritis detection using gastric X-ray images. Exper-
imental results show that the PM can achieve a high
patient-level detection performance in gastritis detec-
tion with only a few annotations.

5 Conclusion

We propose a novel self-supervised learning method
based on a teacher-student architecture for gastritis de-
tection using gastric X-ray images. We present cross-
view and cross-model losses that enable explicit self-
supervised learning and learn discriminative represen-

tations from gastric X-ray images. The experimental
results showed that the proposed method achieved a
high patient-level gastritis detection performance with
only a few annotations.
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