
 

Instructions for use

Title Study of Transfer Learning on medical information processing by explainable artificial intelligence

Author(s) 張, 洪健

Citation 北海道大学. 博士(保健科学) 甲第15814号

Issue Date 2024-03-25

DOI 10.14943/doctoral.k15814

Doc URL http://hdl.handle.net/2115/91804

Type theses (doctoral)

File Information Hongjian_Zhang.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


 

 

 

 

 

 

 

 

 

学 位 論 文 
 

 

 

 

Study of Transfer Learning on medical information processing by 

explainable artificial intelligence 

（説明可能な人工知能による医療情報の転移学習に関する研究） 

 

 

 

 

 

 

張 洪健 
 

 

 

北海道大学大学院保健科学院 
保健科学専攻保健科学コース 

 

２０２３年度 

  



- 1 - 

 

Index 

Chapter 1 Background......................................................................................................................... - 3 - 

1.1 Development of Artificial Intelligence ................................................................................ - 3 - 

1.1.1 History of Machine Learning ......................................................................................... - 5 - 

1.2 AI applicated in medical field ................................................................................................ - 7 - 

1.3 Explainable AI ......................................................................................................................... - 11 - 

1.3.1 Difference between XAI(explainable artificial intelligence) and IAI(interpretable 

artificial intelligence) ............................................................................................................... - 14 - 

1.4 XAI in medical field............................................................................................................... - 15 - 

1.5 Development of Natural Language Processing (NLP) ................................................... - 17 - 

1.6 Purpose ...................................................................................................................................... - 19 - 

Chapter 2. Methodology ................................................................................................................... - 21 - 

2.1 Multi-Layer Perceptron (MLP)............................................................................................ - 21 - 

2.1.1 Loss Function .................................................................................................................. - 22 - 

2.1.2 Activation Function ........................................................................................................ - 22 - 

2.2 Convolutional Neural Network (CNN) .............................................................................. - 23 - 

2.2.1 ResNet ............................................................................................................................... - 24 - 

2.3 Class Activation Mapping (CAM) ...................................................................................... - 25 - 

2.4 NLP ............................................................................................................................................ - 28 - 

2.4.1 word2vec .......................................................................................................................... - 28 - 

2.4.2 BERT ................................................................................................................................. - 33 - 

Chapter 3. Pre-trained ResNet model transfer learning on medical text classification ...... - 35 - 

3.1 Background .............................................................................................................................. - 35 - 

3.2 Method ...................................................................................................................................... - 36 - 

3.3 Experiment ............................................................................................................................... - 37 - 

3.4 Result ......................................................................................................................................... - 39 - 

3.5 Discussion ................................................................................................................................ - 43 - 

Chapter 4. Apply Grad-CAM on text classification for visualization of explainability ..... - 45 - 

4.1 Background .............................................................................................................................. - 45 - 

4.2 Method ...................................................................................................................................... - 46 - 

4.3 Result ......................................................................................................................................... - 47 - 



- 2 - 

 

4.4 Discussion ................................................................................................................................ - 49 - 

5. Conclusion....................................................................................................................................... - 51 - 

Reference ............................................................................................................................................. - 53 - 

Acknowledgements ............................................................................................................................ - 57 - 

Appendix .............................................................................................................................................. - 58 - 

A-1 Trainer ...................................................................................................................................... - 58 - 

A-2 Predict ...................................................................................................................................... - 63 - 

A-3 Text Processing ...................................................................................................................... - 66 - 

A-4 Naïve Bayes ............................................................................................................................ - 75 - 

 

  



- 3 - 

 

Chapter 1 Background 

 

1.1 Development of Artificial Intelligence 

In 1956, McCarthy, Minsky, and other scientists met at Dartmouth College in the U.S. 

and put forward the concept of "Artificial Intelligence" for the first time, marking the 

birth of the discipline of Artificial Intelligence and opening the golden age of Artificial 

Intelligence. The world's first chat program, ELIZA, was born in this stage, which can 

match patterns according to set rules based on the user's questions, and then select the 

appropriate answer from a library of pre-written answers. In 1959, the chess program 

written by Arthur Samuel beat the then chess master Robert Nerai, and this program 

will search for all the possible jumps and find the best way to do so. "Reasoning is 

searching" was one of the main lines of research during this period. During the Golden 

Age, McCarthy developed the LISP language, which has become the dominant 

programming language in artificial intelligence for decades. Multilayer neural networks 

and back-propagation algorithms began to appear, and expert systems began to take off. 

However, as scientists overestimated the speed of scientific development, too much 

optimism sparked worldwide skepticism about AI when promises could not be fulfilled 

on time. In 1973, mathematician Rathir presented a study that pointedly pointed out 

that the seemingly grandiose goals of AI were simply unattainable. Artificial 

intelligence fell into its first winter in the 1970s. The biggest problem that arose during 

the Golden Age was the lack of arithmetic power. Many artificial intelligence scientists 

have found that mathematical reasoning, algebraic geometry, and human intelligence, 

computers can be solved with very little computational power, while for image 
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recognition, sound recognition, and free movement, such as human beings who do not 

need to use their brains, relying on instinct and intuition to complete the task, the 

computer needs a huge amount of computation. This conclusion, on the one hand, 

makes people doubt the effectiveness and practicality of early neural networks; on the 

other hand, it also leads to the development of artificial intelligence technology in the 

direction of utilitarianism and pragmatization. Neural network technology, once 

favored, relied excessively on computational power and the amount of empirical data, 

and thus, did not make substantial progress for a long time. 

In 1978, Carnegie Mellon University developed a program XCON that could help 

customers automatically select computer accessories and put it into use in 1980, which 

was a complete expert system containing more than 2,500 rules set, with an accuracy 

of more than 95%, and became a milestone in the new era. Expert systems began to 

exert power in specific fields and led the entire artificial intelligence technology into a 

boom phase. An expert system is a set of computer software that tends to focus on a 

single area of specialization, simulating human experts answering questions or 

providing knowledge to help staff make decisions. On the one hand, it requires human 

experts to organize and enter a huge knowledge base (expert rules); on the other hand, 

it needs to write a program that sets up how to reason based on the questions asked to 

find the answers, also known as an inference engine. Expert systems are limited to a 

small range, avoiding the various difficulties of general-purpose AI. However, expert 

systems are limited in their ability to achieve, are unable to self-learn and update the 

algorithms of their knowledge base, and are becoming increasingly cumbersome and 

costly to maintain. In addition, the problems of expert systems, such as narrow domain, 

lack of common sense knowledge, difficulty in knowledge acquisition, single reasoning 

method, lack of distributed functionality, and difficulty in compatibility with existing 
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databases, were gradually exposed. Thus, it entered the second winter of artificial 

intelligence. Nevertheless, some important achievements have been made during this 

period. 1988, Judea Peel introduced probabilistic statistical methods into the reasoning 

process of artificial intelligence, which had a significant impact on the subsequent 

development of artificial intelligence. 

Between 1993 and 2011 artificial intelligence entered a steady development phase. 

Due to the development of network technology, especially Internet technology, the 

innovative research of AI was accelerated, which prompted AI technology to move 

further towards practicalization.In 1997, IBM Deep Blue supercomputer defeated 

Kasparov, the world champion of chess.After 2008, with the outbreak of mobile Internet 

and cloud computing technology, a historically unimaginable amount of data was 

accumulated, which provided sufficient data for the subsequent development of AI. 

After 2011, owing to big data and improved computer skills, deep learning has been a 

huge success, with accuracy rates exceeding 90%. 

 

1.1.1 History of Machine Learning 

Artificial Intelligence belonged to the developmental period from the 1950s to the 

1970s, and the dominant technique used was deductive reasoning using symbolic 

knowledge-based representation. From the mid-1970s to the 1980s, this belonged to the 

knowledge period, and the dominant techniques were based on symbolic knowledge 

representation and building expert systems by acquiring and utilizing domain 

knowledge. The learning period began in the 1980s, with the dominant techniques being 

symbolist learning and neural-network-based connectionist learning. 

The neural network algorithm, named for a structure that mimics a human neural 
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network, learns by training on data, allowing the construction of a neural network that 

can achieve classification. However, this algorithm was abandoned in the 1970s 

because of the problem of vanishing or exploding gradients as the number of layers 

increased as well as the large amount of data and arithmetic power required, leading to 

poor classification accuracy. Since 2011, significant advances in computer power and 

data volume, as well as improvements in algorithms, have led machine learning into 

the era of deep learning, which has resulted in classification accuracies of more than 

90%, exceeding human discrimination levels. Although deep learning, or neural 

network algorithms, has come a long way away, there is still an unavoidable problem: 

neural network algorithms are black-box algorithms. It is difficult to determine the basis 

of a neural network program's judgments, and it is impossible to modify the reasons for 

those judgments. However, in the medical field, interpretability is a very important 

criterion that makes it difficult to apply deep learning directly to medical inferences. 

Instead, expert systems based on rules and knowledge bases became more popular in 

the 1980s. Expert systems rely on rules and knowledge bases manually entered by 

experts in various fields to reason and provide advice. Therefore, expert systems can 

avoid the problems of neural-network-based algorithms, have better interpretability, 

and can answer the rules on which the judgment is based. However, expert systems 

cannot self-update their knowledge base and are expensive to maintain. Moreover, there 

are many rules that are difficult for humans to organize and put into a knowledge base. 

In addition, the rules that are available are in precise ranges and do not respond 

appropriately to data. 

Decision tree algorithms in machine learning have appeared since the 1960s and 

1970s with the ID3 algorithm proposed by J Ross Quinlan. It can be learned by training 

the data and extracting rules to make inferences on new data. However, the decision 
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tree algorithm is still used in the determination of the exact number, and it is difficult 

to deal with some fuzzy concepts; at the same time, the decision tree algorithm's 

robustness is poor, and it is easy to overcome problems. The Random Forest algorithm, 

a group learning method for decision trees, solves the phenomenon of overfitting that 

ordinary decision trees are prone to and increases the accuracy. This algorithm was 

developed and deduced by Leo Breiman and Adele Cutler and was derived from a 

Randomized Decision Forest proposed by Tin Kam Ho in 1995. The Random Forest 

algorithm solves the overfitting problem but reduces the interpretability of the 

algorithm. 

 

1.2 AI applicated in medical field 

The impact of AI has been widely discussed in the medical literature[1]–[3] . AI can 

be used to develop sophisticated algorithms that "read" features from large amounts of 

healthcare data and then use the knowledge gained to aid clinical practice. AI can also 

be equipped with learning and self-correcting features to improve accuracy based on 

feedback. By presenting the most up-to-date medical knowledge from journals, 

manuals, and specialized programs to provide recommendations for effective patient 

care, AI devices[4] can support clinical decision-making. Furthermore, in human 

clinical practice, AI systems may help reduce unavoidable medical and therapeutic 

errors (i.e., be more objective and repeatable) [2]. In addition, AI systems can process 

valuable knowledge gathered from large patient populations to help make real-time 

inferences about health risk warnings and health outcome estimates[5]. 

With the recent re-entry of AI into scientific and public consciousness, there have 

been new breakthroughs in AI in healthcare, with clinical environments filled with new 
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AI technologies at a breakneck pace. Healthcare has been described as one of the most 

exciting applications of AI. Since the mid-20th century, researchers have suggested and 

built several systems for supporting clinical decisions . Since the 1970s, rule-based 

approaches have achieved many successes and have been recognized as theories for 

interpreting electro-cardiograms, identifying diseases, selecting optimal therapies , 

providing scientific-logical explanations, and assisting physicians in formulating 

diagnostic hypotheses and challenging patient cases. However, rule-based systems are 

expensive and unstable because they require explicit expression of decision rules and, 

like any textbook, manual revision. Additionally, higher-order interactions between 

various pieces of information written by different experts are difficult to encode, and 

the efficiency of the structure is limited by the comprehensive nature of a priori medical 

knowledge [6]. It is also difficult to incorporate an approach that combines 

deterministic and probabilistic reasoning procedures to narrow the appropriate 

psychological context, prioritize medical theories, and prescribe treatments [7]. 

The recent rebirth of Artificial Intelligence is largely due to the aggressive 

implementation of deep learning - including the training of multi-layer artificial neural 

networks (i.e., deep neural networks) on large datasets - to access a wide range of 

labeled data sources . Existing neural networks are becoming increasingly deeper, 

typically greater than 100 layers. Multilayer neural networks can model complex 

interactions between inputs and outputs but may also require more data, processing time, 

or advanced architectural design to achieve better performance. Modern neural 

networks typically have tens to hundreds of millions of parameters and require 

significant computational resources for model training [8]. Fortunately, recent 

developments in computer processor architectures have empowered deep learning with 

the required computational resources. In general, deep learning-based AI algorithms 
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have been developed for image-based classification , diagnosis  prognosis , genomic 

interpretation , biomarker discovery , monitoring via wearable life-record devices , and 

automated robotic surgeries to enhance digital healthcare [9]. Rapid advances in 

artificial intelligence have made it possible to use aggregated health data to generate 

powerful models that automate diagnostics and enable increasingly precise medical 

approaches through the timely and dynamic customization of treatments and targeted 

services with optimal efficacy. 

Although AI promises to revolutionize the practice of medicine, a number of 

technical barriers still exist. Because deep-learning-based approaches rely heavily on 

the availability of large amounts of high-quality training data, care must be taken to 

collect data that are representative of the target patient population. For example, data 

from a variety of healthcare settings, including different forms of bias and noise, may 

result in models trained on data from one hospital not generalizing to another. In the 

case of diagnostic roles with incomplete inter-expert agreement, consensus diagnosis 

has been shown to significantly improve the training efficiency of deep learning-based 

models [10]. Proper data management is important for managing heterogeneous data. 

However, obtaining a high-quality gold standard for identifying a patient's clinical 

status requires physicians to independently and potentially review their clinical results 

repeatedly, which is prohibitively expensive on a population scale.  

The most recent advances in neural networks have been limited to well-defined 

activities that do not require data integration across multiple modalities. Methods for 

applying deep neural networks to general diagnosis and treatment planning are not 

straightforward. Although deep learning has been effective in image detection, 

translation, speech recognition, sound synthesis, and even automated neural 

architecture search, clinical diagnostic and therapeutic tasks tend to require more 
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attention (e.g., to patient interests, beliefs, social support, and medical histories) than a 

limited number of tasks in which deep learning typically excels. In addition, it is not 

clear whether transfer learning methods can translate models learned from a wide range 

of non-medical datasets into algorithms for studying multimodal clinical datasets. This 

suggests that more comprehensive data collection and annotation activities are needed 

to build end-to-end clinical AI programs. 

The design of computing systems for processing, storing, and exchanging EHRs and 

other critical health data remains an issue [11]. Privacy-preserving approaches such as 

federated learning can allow secure sharing of data or models across cloud providers . 

However, creating interoperable systems that meet the requirements of clinical 

knowledge representation is important for the widespread adoption of such 

technologies. However, deep and seamless data integration across healthcare 

applications and locations remains problematic and inefficient. However, new software 

interfaces for clinical data are beginning to be widely adopted by multiple EHR 

providers, such as alternative healthcare applications and reusable technologies on 

rapid health interoperability resource platforms. Most AI previously developed in 

healthcare applications has been performed using retrospective data for proof-of-

concept. Prospective studies and clinical trials are needed to evaluate the efficiency of 

developed AI systems in clinical settings to validate the usefulness of these healthcare 

AI systems in the real world. Prospective studies will help recognize the vulnerability 

of AI models in real-world heterogeneous and noisy clinical environments and identify 

ways to integrate medical AI into existing clinical workflows. 

AI in medicine ultimately leads to safety, legal, and ethical challenges owing to 

medical negligence caused by complex decision support structures [12] and must face 

regulatory barriers. In the event of a medical malpractice lawsuit involving the 
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application of medical AI, the judicial system will continue to provide specific 

instructions regarding which agency is responsible. Healthcare providers with medical 

malpractice insurance must be clear about coverage as healthcare decisions are made 

in part by AI programs. As automated AI is deployed for specific clinical activities, 

standards for diagnostic, surgical, support, and paramedical tasks will need to be revised. 

The functioning of healthcare practitioners will begin to change as different AI modules 

are implemented in the quality of care, and deviations will need to be minimized while 

patient satisfaction must be maximized . 

 

1.3 Explainable AI 

 

Currently, deep learning tools are capable of producing extremely reliable results; 

however, they are often highly opaque and their behavior is difficult to understand, if 

not completely invisible. Even for skilled experts, it can still be difficult to fully 

understand these so-called " black-box models. With the widespread use of these deep-

learning tools, researchers and policymakers can question whether the accuracy of a 

given task outweighs more important factors in the decision-making process. 

As part of attempts to incorporate ethical standards into the design and 

implementation of AI technologies, policy discussions around the world increasingly 

address the need for some form of trustworthy AI, including Effective AI, Responsible 

AI, Privacy-Preserving AI, and Explainable AI (XAI), where XAI seeks to address 

fundamental questions about the fundamentals of the decision-making process, both in 

humans. As AI approaches are used to solve problems in a variety of complex 

policymaking areas, as experts increasingly work with AI-enabled decision-making 
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tools, such as in clinical research, and as people experience AI more often, these 

discussions become more pressing when decisions have significant impacts on real-life 

systems. Meanwhile, research on AI continues to advance steadily. XAI is a dynamic 

field, with many ongoing studies emerging, and a number of new strategies that have a 

huge impact on the development of AI in a variety of ways. 

Although the term is used inconsistently, "XAI" refers to a class of systems that 

provides insight into how AI systems make decisions and predictions. XAI explores the 

reasoning behind the decision-making process, demonstrates the strengths and 

weaknesses of the system, and provides a glimpse into how the system will function in 

the future. By providing easy-to-understand explanations of how AI systems conduct 

research, XAI allows researchers to understand the insights that come from the research 

results. For example, interpretable agent modules can be added to the learning model 

to achieve a more transparent and trustworthy model. In other words, for traditional 

machine or deep learning models, only the generalization error is considered, while the 

addition of an interpretable agent allows for both the generalization error and human 

experience to be considered, leading to validated predictions. By contrast, a learning 

black-box model without an interpretable agent module raises end-user concerns, even 

though the performance of the learning model may be high. Such black-box models 

always cause confusion, e.g., "Why did you do that?" , "Why don't you do this?" , 

"When do you succeed or fail?" , "How do I correct my mistakes?" and "Can I trust 

predictions?" However, XAI-driven models can also be used to make predictions. On 

the other hand, XAI-driven models can provide clear and transparent predictions to 

ensure "I understand why." , "I understand why not." "I know why you succeed or fail." , 

"I know how to correct a mistake." and "I understand, therefore I believe." A typical 

feedback loop for XAI development includes seven steps: training, quality assurance 
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(QA), deployment, prediction, split testing (A/B testing), monitoring, and debugging. 

Various terms are used in research, public, and policy debates to define certain 

desired characteristics of XAI systems, including: 

⚫ Explainability: This implies an understanding of how AI technology works. 

⚫ Interpretability: This explains how decisions are made for a wider range of users. 

⚫ Transparency: This measures the level of accessibility of data or models. 

⚫ Legitimacy: This demonstrates an understanding of the case that supports a 

particular outcome. 

 

In a broad sense, XAI can be categorized as a model-specific or model-agnostic 

method. Furthermore, these methods can be categorized as local or global and can be 

intrinsic or post hoc[13]. Essentially, many machine learning models are inherently 

interpretable, such as linear models, rule-based models, and decision trees, also known 

as transparent or white-box models. However, the likelihood performance of these 

relatively simple models is relatively low. For more complex models, such as Support 

Vector Machines (SVMs), Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Integration Models, we can design model-specific and post-hoc 

XAI strategies for each of them. Common strategies include simplified interpretation, 

architectural modification, feature relevance interpretation, and visual 

interpretation[13]. Obviously, these more complex models can achieve better 

performance, while interpretability decreases. 

Recently, great attention has been paid to model agnostic based approaches that rely on 

simplified proxy functions to interpret predictions[14]. Model-agnostic methods are not 

attached to a specific machine-learning model. In other words, such techniques 

distinguish between predictions and interpretations. Model agnostic representations are 
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usually post hoc and commonly used to explain deep neural networks with interpretable 

agents that can be local or global [15].  

 

Figure 1-1. performance and explainability of often used models 

1.3.1 Difference between XAI(explainable artificial intelligence) 

and IAI(interpretable artificial intelligence)  

Although XAI and IAI have been conflated in many studies, they have been 

distinguished in the literature in various ways.[16], [17] 

The XAI outlines why the choice was made, but does not describe the process by 

which the decision was made. The IAI, on the other hand, outlines how the decision 

was made, but does not explain why the criteria were justified. 

Explainability means that a model and its results can be explained in a way that is 

understandable to humans. XAI allows for the explanation of the learning model and 

analyzes its logical flow by focusing on why the system made the given conclusions. 
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 Interpretability allows users to understand the results of a learning model by revealing 

the rationale for their decisions. 

 

1.4 XAI in medical field 

Although deep-learning-based AI technologies will be used in a new era of digital 

healthcare, challenges remain. XAI can play a key role in development, potentially 

solving small-sample learning problems by filtering out clinically meaningless features. 

In addition, many high-performance deep learning models produce unaided discoveries 

that are incomprehensible to humans. While these models can produce higher 

efficiencies than humans, it is not easy to express intuitive explanations that justify 

model results, define model uncertainty, or derive additional clinical insights from these 

computational "black boxes." In deep learning models, it can be tricky to understand 

what the model sees in clinical data, such as radiographic images. For example, research 

investigations have explicitly stated that being a black box is a "strong limitation" of AI 

in dermatology, as it does not allow for personalized assessment by qualified 

dermatologists that can be used to clarify clinical facts[18]. This black-box design 

presents an obstacle to validate developed AI algorithms. It is necessary to demonstrate 

that a high-performance deep learning model actually recognizes the appropriate 

regions of an image and does not overemphasize unimportant findings. Recent methods 

have been developed to characterize AI models, including visualization methods. Some 

widely used levers include occlusion maps[19], saliency maps[20], class activation 

maps [21], and attention maps [22]. Since the output is an image, localization and 

segmentation algorithms can be more easily interpreted. However, model 

understanding is still much more difficult for deep neural network models trained on 
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non-imaging data rather than images, which is an open question for current ongoing 

research efforts[23]. 

Deep learning-based AI approaches are becoming increasingly popular in medicine, 

with extensive work in automated triage, diagnosis, prognosis, treatment planning, and 

patient management[8]. We can find many open problems in the medical field that have 

inspired clinical trials utilizing deep learning and AI approaches. However, in the 

medical field, interpretable problems are far from theoretical developments. More 

precisely, interpretability in the clinical domain includes factors not considered in other 

domains, including risk and liability [24]. Lives may be at stake when making medical 

responses, and it would be irresponsible to leave these critical decisions to AI 

algorithms without interpretability and accountability . In addition to the legal issues, 

this is a serious vulnerability that could have catastrophic consequences if used 

maliciously. 

Thus, several recent studies have been devoted to exploring interpretability in 

medical AI. More specifically, specific analyses have been investigated, such as chest 

radiographs, sentiment analysis in medicine, and COVID-19 detection and 

classification, which encourages an understanding of the importance of interpretability 

in the medical field. Furthermore, some study[25] argues that a certain degree of opacity 

is appropriate, it is more important for us to provide empirically validated and reliable 

findings than to obsess too much about how to unravel the black box.  

One obvious approach to XAI that many researchers have adopted is to provide 

interpretability to their predictive models. These approaches rely heavily on keeping 

less complex AI models interpretable while improving their performance through 

refinement and optimization techniques. However, such model optimization is not 

always straightforward or a trivial task. 
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1.5 Development of Natural Language Processing (NLP) 

The subject of NLP broadly consists of two main steps: firstly, the representation of 

the input text (raw data) into a numerical format (vectors or matrices), and secondly, 

the design of modeling tasks used to process the numerical data in order to achieve a 

desired goal or objective. The first part of this is known as word embedding and is 

broadly categorized into rule-based, statistical and neural network-based approaches. 

In manual-based techniques, rules and features are derived by experts, e.g., trees, 

graphs, grammar rules, etc. Statistical and mathematical formulas are used to derive 

features. In neural networks, neural models automatically learn features which are 

categorized as context sensitive, context insensitive and pre-trained embeddings. 

The field of NLP started with exact matching techniques in which context-

independent grammars (CFG) are used for analysis. Search engines are mainly based 

on complex nested if-then rules represented by CFG. Further advances led to 

approximate matching, in which errors reaching a specific threshold are ignored. 

However, due to the ambiguity of natural language, using such techniques and 

designing complex rules can be more convenient, time-consuming and error-prone. 

Subsequently, more statistical methods followed these pattern matching approaches. 

As research evolved, statistical methods were sought to focus on the frequency of 

words. Various techniques such as One-Heat Encoding (OHE), Bag of Words (BoW), 

Word Frequency (TF), Inverse Document Frequency (IDF), etc. fall into this category. 

These techniques are easy to implement and improve the accuracy of the model 

compared to grammar-based techniques. However, such representations suffer from 

dimensionality catastrophe and their performance suffers on large-scale datasets due to 
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computational power limitations. Therefore, they need to be more scalable and their use 

is mainly limited to small-scale datasets. 

Dimensionality Reduction Techniques (DRT) are used to overcome the curse of 

dimensionality problem. In these simplification techniques, the key idea is to find a new 

space or coordinate system in which the input data can be represented with fewer 

features, less information loss, and minimal error. Usually, two techniques are used to 

reduce the size. The first method is feature selection and the other is feature 

transformation. In feature selection, top-k items or features are selected based on certain 

criteria or thresholds, while the rest are simply discarded. In feature transformation, a 

linear or nonlinear transformation is applied to the dimensions of the original dataset 

and it is mapped to a lower space with fewer dimensions. In both methods, care is taken 

not to lose any information and to preserve or capture what is in the original data. This 

discrete representation does help in classification and categorization applications. 

However, it performs poorly for tasks such as information retrieval, chatbots, machine 

translation, and language generation, which require a deeper understanding of 

polysemous words or recognizing concepts such as analogies, synonyms, and antonyms. 

These limitations are represented by state-of-the-art representations, called word 

vectors, that are derived using neural networks. 

Embeddings derived from neural networks are mapped to continuous vector spaces 

where each word vector is represented by an array of real numbers. In embeddings 

derived from such continuous vector spaces, the focus is more on computing the 

semantics of individual words by looking at the context in which they occur. The 

technique considers the influence of neighboring words on a given word and how these 

relationships affect the meaning of the word. These new word vectors are contextually 

relevant and can recognize synonyms and antonyms and construct word analogies and 
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categories, which was not possible in earlier approaches. Word vectors capture the 

meanings of words (literal and implicit) and represent them using dense floating-point 

values. They represent semantic and syntactic aspects of words. They are typically 

between 100 and 500 dimensions long. 

In addition, earlier methods required labeling of input data, while the derivation 

model handles the word vector unlabeled data in a self-supervised manner. However, 

more training data is needed to improve the accuracy of word vectors. In these word 

vectors, the rows are the number of words in the corpus and the columns are the number 

of categories, concepts, qualities, etc., where each feature represents some aspect of the 

word. For example, for a word such as "city", the important aspects may be friendliness, 

criminality, sociability, economy, etc. The word vectors can be used for a variety of 

purposes. Because of its precision, if a word embedding vector is added or subtracted, 

a new word vector is created, which implies something semantically. If such a 

"synthetic" vector is plotted on a continuous vector space, it will point to or be close to 

the embedding of a word. Thus, such word embeddings can be used to predict the words 

around them and capture the relationships between them. 

1.6 Purpose 

Due to the black-box problem of deep learning AI, this study proposes a method to 

provide interpretability to medical text processing AI models with greater simplicity 

compared to past text interpretability methods. It makes it possible to increase the use 

of AI on medical text processing tasks to draw informed conclusions without adding 

too much labor consumption for building AI interpretability. 
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Chapter 2. Methodology 

 

2.1 Multi-Layer Perceptron (MLP) 

MLP is the simplest neural network. A multilayer perceptron consists of multiple 

layers of neurons, compared to a linear model, a multilayer perceptron achieves model 

fitting to nonlinearities by adding at least 1 layer of hidden layers and activation 

functions between the input and output layers. The basic structure is shown below in 

Fig. 1 for an MLP that contains only 1 hidden layer. where the layer consisting of nodes 

that are connected to each input and each output is called a fully connected layer. The 

loss function is constructed by comparing the difference between the output of the 

neural network, i.e., the predicted result, and the actual result, as a measure of the 

model's performance during the training process. The smaller the value of the loss 

function, the better the model. The training process of a neural network model is to 

minimize the value of the loss function by constantly updating the parameters in the 

model (automatically or manually) to maximize the model performance. In the training 

process of neural networks, the parameters that need to be adjusted manually are called 

hyperparameters, which need to be determined before a training session is conducted, 

such as the learning rate, the number of epochs, the batch size, and the loss function 

used. The parameters that are constantly updated during the training process are the 

weight matrices between the layers. 
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Figure 2-1 structure of MLP 

2.1.1 Loss Function 

The loss function is used to describe the gap between the predicted and actual results 

of a model. The training objective of machine learning is to find the weights W and 

deviations B to minimize the loss function, and this minimization is usually done using 

gradient descent. Forward propagation and back propagation are used in the training 

process, where the loss is calculated using forward propagation and the weight matrix 

is updated by back propagation of the gradient. The commonly used loss functions are 

cross entropy, mean square error etc. 

 

2.1.2 Activation Function 

Activation functions are a class of nonlinear functions that are applied to the output 
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results of each hidden layer to make the model nonlinear. Commonly used activation 

functions are Sigmoid, tanh, ReLU and so on. Each activation function is shown below. 

 

2.2 Convolutional Neural Network (CNN) 

Image data samples are composed of a two-dimensional data grid, where a pixel point 

is one or more data (depending on the image format), and its data magnitude is larger 

and spatially informative compared to the usual tabular data. Convolutional Neural 

Networks CNNs are a powerful class of models designed to process image data. Models 

based on the architecture of convolutional neural networks have dominated the field of 

computer vision, and almost all applications of image recognition today are based on 

this approach. CNNs are able to utilize the spatial structure information of the image as 

compared to MLPs, while the convolutional structure is able to drastically reduce the 

amount of parameter computation as compared to the fully connected structure.CNN 

networks have a convolution layer and a pooling layer. The convolution layer uses the 

convolution kernel to correlate with the pixel information of the picture, and by moving 

the convolution kernel on the picture, it obtains the local spatial information of each 

position of the picture, and at the same time realizes the compression of the picture 

information. The pooling layer gradually applies the pooling kernel on the basis of the 

convolutional layer to calculate the maximum or tie value of all elements in the pooling 

window. The role of pooling layer is to reduce the sensitivity of the convolutional layer 

to the position, and at the same time reduce the sensitivity to the spatial downsampling. 

The basic calculation of the CNN structure is shown below. 
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Figure 2-2 structure of LeNet 

The figure above illustrates the network structure of LeNet, one of the first 

Convolutional Neural Networks released, which was proposed in 1989 to recognize 

handwritten digits in images[26]. This paper uses this to illustrate the CNN structure. 

2.2.1 ResNet 

The ResNet network architecture was proposed in 2015 by Kaiming He et al[27]. It 

won the ImageNet image recognition competition in 2015 and profoundly influenced 

the design of subsequent deep networks. The core idea of residual networks is that each 

additional layer should more easily contain the original function as one of its elements. 

Due to the introduction of residual blocks, the propagation speed of residual networks 

as well as their effectiveness for overfitting problems has improved favorably. 
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Figure 2-3 ResBlock 

 

2.3 Class Activation Mapping (CAM) 

CAM is an interpretable method for computer vision. It extracts the feature map 

output from the last convolutional layer of the network, and after weighted 

superposition of its channels, the region where its activation values are located is the 

region where the objects in the image are located. By overlaying this superimposed 

feature map on the input image, it is possible to intuitively know where the model is 

focusing its attention when performing classification[28]. However, CAM is only 

applicable to network architectures that have a globally averaged pooling layer and only 

one fully connected layer (the output layer). This led to the Grad-CAM method, which 

has two key elements, 1) an output feature map of the last convolutional layer after the 

input image has been processed by the CNN, and 2) a number of weights associated 
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with the input categories that are consistent with the number of feature map 

channels[29]. The category saliency map can be obtained by multiplying and adding 

the two correspondingly. For the network structure containing multiple fully connected 

layers, CAM cannot be applied because it does not satisfy the second point, and if we 

intend to use CAM, we need to modify the network structure, which not only requires 

additional operations, but also has an impact on the model effect.Grad-CAM, on the 

other hand, chooses to use the gradient information of the feature maps as the weights, 

so that not only does it not need to make additional modifications to the network 

structure, but also can be applied to all the CNNs. Grad-CAM uses the gradient 

information of the feature map as weights, which makes it possible to apply it to all 

CNN network structures without any additional modification. 

 

Figure 2-4 structure which can use CAM 
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Figure 2-5 structure which can not use CAM 

 

The CAM principle is shown in Fig. The feature map output from the last 

convolutional layer of the CNN is three-dimensional:[C,H,W], Let the k channel of the 

feature map can be denoted as fk(x,y) , where x,y are the indexes on the width and 

height dimensions respectively. If the last convolutional layer connects a global average 

pooling layer, and then a fully connected output classification result, the computation 

process of the confidence score (before Softmax mapping) from the output feature map 

of the last convolutional layer to the c category in the output layer can be expressed as: 

      

𝑆𝑐 = ∑ 𝑤𝑘
𝑐 ∑ 𝑓𝑘(𝑥,𝑦)=∑ ∑ 𝑤𝑐𝑓𝑘(𝑥,𝑦)𝑘𝑥,𝑦𝑥,𝑦𝑘  (1) 

Indicates that each output channel of the feature map is first averaged to a value, and 

each channel gets a value, and then these values are weighted and summed to get a 
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number, which is the confidence score of the first class, characterizing the likelihood 

that the class of the input image is the size. 

Indicates that each channel of the feature map is first weighted and summed to obtain a 

two-dimensional feature map (channel dimension collapse), and then this two-

dimensional feature map is averaged to obtain the confidence score of the first class. 

From the derivation of Eq. (1), it can be seen that the global average pooling of the 

feature map, followed by weighted summation to obtain the confidence score of the 

category, is equivalent to the weighted summation of the channel dimensions of the 

feature map, followed by the global average pooling. 

After this equivalent transformation, it highlights the importance of the channel 

weighted sum of the feature map: on the one hand, the channel weighted sum of the 

feature map directly encodes the category information; on the other hand, and most 

importantly, the channel weighted sum of the feature map is two-dimensional, and also 

retains the spatial location information of the image. We can observe the relationship 

between the relative position information in the image and the category information 

encoded by the CNN through visualization methods. Here the channel weighted sum of 

the feature map is called the category activation map. 

 

 

2.4 NLP 

2.4.1 word2vec 

word2vec is a word embedding method proposed by Google's miklov in 2013[30]. 

Word embedding is the representation of words as vectors, which now belongs to the 

basic content of natural language processing. Word embedding includes two realization 
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modes: one-hot and dense. In one-hot mode, for a dictionary of size N, vectors of length 

N will be generated, and the word vector of each word in the article is the vector with 

the corresponding position 1 in the dictionary and the rest of the positions 0. The solo 

heat pattern is easy to construct, but the length of the vectors constructed by it increases 

with the size of the dictionary, and the consumption required for computation is high, 

and at the same time, the word vectors constructed by the solo heat pattern cannot 

accurately express the similarity between different words. Dense patterns solve these 

problems. word2Vec is a class of dense representation patterns. word2vec is a self-

supervised method, which contains two models, skip-gram and continuous bag-of-

words CBOW (Continuous Bag-Of-Words). the CBOW model predicts the center word 

by inputting the peripheral words, and Skip- Gram, on the contrary, predicts the possible 

surrounding words by inputting the center word. 

 

2.4.1.1 Continuous Bag Of Word(CBOW) 

 The data used to train the CBOW model are word vectors of words that are the 

context of a particular word [8], and the output is the word vector of that particular 

word. For example, if the context range is 4 and the specific word is "learning," there 

are 8 context words (4 before and 4 after) (Figure 2-6). The word vectors of these 8 

words are used as input, and the word vector of a specific word is the target word. 
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Figure 2-6 target word and context 

 In the CBOW example in Figure 2-7, the inputs are the eight word vectors and the 

outputs are the softmax probabilities of all words. The training goal is to train the model 

on the sample data so that the softmax probability of the target word is maximized. The 

input layer of the corresponding CBOW neural network model has 8 neurons, and the 

output layer has Vocab Table-sized neurons. The neurons in the hidden layer can be set 

arbitrarily. The Deep Neural Network (DNN) is then used with the Back Proportion 

algorithm to calculate the parameters of the DNN model and the word vector of all 

words. Thereby, when a new request is made, i.e., once the target word with the highest 

probability of correspondence to the other eight words is identified, the front Proportion 

algorithm of the DNN can be executed to identify the word neuron with the maximum 

probability in the softmax activity function. Figure 1-5 shows the structure of CBOW 
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Figure 2-7 structure of CBOW 

 

(2)Skip-Gram 

 On the other hand, the Skip-Gram model is based on the opposite concept of CBOW, 

where the input is a word vector of one specific word and the output is a word vector 

of the word's context (Figure 2-8). In the example shown in Figure 2-6, if the context 

range is set to 4 and the input is the specific word "learning," the output is the 8 words 

in the context. In this Skip-Gram example, the input is the word vector of the specific 

word, and the output is the top 8 words with the highest softmax probability of the word. 

The input layer of the corresponding Skip-Gram neural network model has one neuron, 

and the output layer has Vocab Table-sized neurons. The neurons in the hidden layer 
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can be set arbitrarily. The DNN is then used with the Back Proportion algorithm to 

calculate the parameters of the DNN model and the word vector of all words. Then, 

when a new request is made, i.e., when 8 words are identified that are likely to be the 

context of a word, the DNN's front Proportion algorithm can be run to identify the word 

neuron with the largest probability in the softmax activity function. 

  

 

Figure 2-8 structure of Skip-Gram 

 

 The above is the process of using CBOW and Skip-Gram in a neural network to train 

models or to obtain word vectors. However, Word2Vec does not use these DNN models. 

This is mainly because the time cost of the DNN model processing process is very high: 

the number of words in a Vocab Table is generally said to be at the million-word level 

or higher, and the output layer of the DNN is computationally expensive to calculate 
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the output probability of each word in softmax. Therefore, Word2Vec uses a Huffman 

Tree as a substitute for the neurons in the hidden and output layers. The leaf nodes of 

the Huffman Tree play the role of neurons in the output layer, the number of leaf nodes 

is responsible for the size of the Vocab Table, and the intermediate nodes play the role 

of the hidden layer. 

 

2.4.2 BERT 

BERT is an improved model based on Transformer model proposed by Google in 

2019[31]. It uses the encoder part of Transformer for bidirectional encoding and 

requires minimal architectural changes for most natural language processing tasks. By 

using the pre-trained Transformer encoder, BERT is able to represent lexical elements 

based on their bidirectional context. 

Originally applied to sequence-to-sequence learning on text data, the Transformer 

model has now been generalized to knife a variety of modern deep learning in areas 

such as language, vision, speech, and reinforcement learning[32]. 
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Chapter 3. Pre-trained ResNet model 

transfer learning on medical text 

classification 

 

3.1 Background 

With the recent re-entry of AI into science and public awareness, there have been 

new breakthroughs in AI in the field of healthcare, and the clinical environment is being 

filled with new AI technologies at an extremely fast rate. Nevertheless, healthcare is 

one of the most exciting applications of AI. Since the 20th century, researchers have 

proposed and established multiple systems to support clinical decisions [33]. Since the 

1970s, the rule-based approach has achieved many successes and is now seen as a 

theory that explains electrocardiograms[34], identifies diseases [35], chooses the best 

therapy , provides scientific logical explanations, and assists doctors in formulating 

diagnostic hypotheses and challenging patient cases [36]. However, rule-based systems 

are expensive and unstable because they need to clearly express decision making rules 

and, like textbooks, require manual modifications. In addition, high-level interactions 

among various pieces of information compiled by different experts are difficult to code, 

and the efficiency of the structure is limited by the comprehensiveness of prior medical 

knowledge [6]. It is difficult to combine deterministic and probabilistic reasoning 

procedures to narrow down the appropriate psychological background, prioritize 

medical theories, and prescribe treatment plans; it is also difficult to create a method 
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that combines deterministic and probabilistic reasoning procedures [7]. 

Compared to general text, medical text has features such as mass terminology and 

contains structured text data and free-text data. In the medical textual processing field, 

AI is mainly used to deal with the tasks of text classification, namely entity recognition 

and relationship extraction[37]. During text classification, because of the information 

contained in text data, text classifiers based on deep neural networks have fewer layers 

and their performance is slightly inferior than that of the mature and high-accuracy 

methods of image classifiers. 

 

3.2 Method 

The output of the pre-processing module was fed into the word-embedding mod-ule. 

The word embeddings used were variants of Word2Vec and BERT. These two word-

embedding modes were selected because they represent order-independent and order-

dependent word-embedding modes, respectively. Word2vec takes the form of a bag of 

words, and it is insensitive to the order of the words entered. BERT is an encoder that 

uses a transformer and assumes that the word order of an input sentence has a meaning. 

In the classification module, the output of the word-embedding module was fed into 

a tuned ResNet network. Although ResNet as a CNN architecture has its origins in 

computer vision, where images form the input to the network, it is reasonable to use a 

sequence of word vectors as the input. In a sentence, the relative positions of words 

convey their meanings. This approach is similar to the role played by the pixels in 

conveying information in an image. Therefore, in the pre-processing module used in 

this study, the text was adjusted to a two-dimensional format to make it similar to an 

im-age. In addition, the image content is usually 3-channel (RGB) or single-channel 
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(binary or grayscale) in nature. This study uses word vectors as the input, and each 

element of the word vector is used as the value of a channel, meaning that it will be 

used as the classifier. ResNet is adjusted to ensure that it can accept the channel of the 

number of word vector dimensions (100 and 256 in this study). And this study also used 

the AlexNet and VGG11 as classifiers to perform comparisons. Simultaneously, a one-

dimensional CNN was prepared to classify sentences without text pre-processing to 

compare the effects of the pre-processing module. 

 

3.3 Experiment 

We used the open medical text dataset in Kaggle, which contains 14,438 clinical texts 

divided into five categories. This dataset consists of medical abstracts that de-scribe the 

current condition of a patient. And this dataset was described as a situation in which 

doctors routinely scan dozens or hundreds of abstracts each day as they complete their 

duties in a hospital, meaning that they must quickly pick up on the salient information 

pointing to the patient’s malady. This study used this dataset to classify the class of 

problems described in these abstracts. All of the texts have been tagged. One-fifth of 

the training set was used as the verification set; its categories and quantities are listed 

Table 3-1. 

To better apply the image-processing algorithm, each record in the dataset was 

converted into a 25 × 25 (number of words) format. This size format was used because 

the maximum text length in the dataset was 600; therefore, a size of 25 × 25 = 625 was 

chosen to accommodate all of the text. If the number of words in the text was 

insufficient, the # symbol was used. 
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Table 3-1. Number of reports in each category. 

 Training Validation 

Digestive system 2530 632 

Cardiovascular 1194 299 

Neoplasms 1539 385 

Nervous system 2440 610 

General pathological 3843 961 

 

After using Word2Vec to generate word vectors on the training set without pre-

processing, the window size was 100, and the generated word-vector dimension was 

100. The word vectors of the filled symbols and unrecognized words are set as zero 

vectors. The BERT model uses BERT-mini, with parameters L = 4 and H = 256 denoted 

as the word-embedding method. 

ResNet and 1D CNN were used as classifiers to perform text classification. For 

ResNet, we used ResNet18 with the pre-trained parameters. In addition, each text in the 

25 × 25 format was treated as a picture with several channels in the word–vector 

dimension, that is, the m elements of the word in the jth row and the kth column in text 

i corresponded to the point p of picture i on channel m (j,k). Simultaneously, the model 

was fine-tuned such that the input channel was the word–vector dimension and the 

output size was 5. For the 1D CNN, LeNet was modified into a one-dimensional 

structure. The input text was not formatted as 25 × 25, instead using a one-dimensional 

text vector column, and was filled up to a length of 625. The process used is shown in 

Figure 2. In addition, the Naïve Bayes method of the traditional text classifier was used 

to perform comparison, using tf-idf as the feature extraction, text without word embed-

ding and length padding as the input. 
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Figure 3-1. Process of text classification. 

3.4 Result 

Table 3-3 presents the performance of each model using recall, precision, F1, and 

accuracy as indicators. As the data used in this study were biased in terms of the amount 

of data in each category, weighted recall, precision, and F1 values were used to perform 

the evaluation. The 2D form of ResNet18 using pre-trained parameters and retraining 

on the Kaggle medical text dataset exhibited the best performance, having a weighted 

F1 value of 90.2% and an accuracy rate of 90.9%. Simultaneously, the weighted F1 

values of the traditional text classifier Naïve Bayes model used to perform comparison 

were 42.2% and 47.8%, respectively. And the models of AlexNet and VGG11 did not 

have a good performance, as the accuracy rates were lower than that of Naïve Bayes. 
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Table 3-2. Settings of models. 

 

 

 

 

 

 

 

Models Parameters Value 

Word2vec 

Vector size 100 

Model Skip-gram 

Optimizer Hierarchical softmax 

Window size 100 

Min_count 1 

ResNet18 Learn rate 0.1 

 Loss CrossEntropy 

 Optimizer SGD 

  Weight decay 5e-4 

 Batch size 128 

1 D CNN 

Learn rate 0.1 

Loss CrossEntropy 

Optimizer SGD 

 Weight decay 5e-4 

Batch size 128 

Naïve Bayes Feature extraction Tf-idf 
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Table 3-3. Performance of each model. 

 

Recall 

(Weighted) 

Precision 

(Weighted) 

F1 Score 

(Weighted) 

Naïve Bayes 47.8 62.8 42.2 

Bi-LSTM 74.4 77.9 76.2 

ResNet (Word2Vec) 90.9 91.1 90.2 

1D CNN (Word2Vec) 10.0 1.0 8 

AlexNet (Word2Vec) 32.6 10.6 16.0 

VGG11 (Word2Vec) 32.6 10.6 16.0 

ResNet (BERT) 85.7 87.9 86.8 

1D CNN (BERT) 12.0 2.3 8.7 

 

Table 3-4 lists the differences in the effects of ResNet18 (word embedding through 

word2vec) in different situations. The compared models were as follows: (1) fine-

tuning the input and output layers of ResNet, using the parameters pre-trained on 

ImageNet and re-training the model on the medical text dataset, that is, the model 

shown in Table 2 in this study; (2) only the input and output layers of ResNet were fine-

tuned, and the model was trained using the medical text dataset; (3) the input and output 

layers of ResNet were fine-tuned, and the parameters were pre-trained in ImageNet. 

The above three models selected the model with the best performance in the case of 

Epoch 25. In the case of direct training without using pre-training parameters, the F1 

value was only 40.2%, and the correct rate was only 46%, mainly because it had not 

yet converged at Epoch 25 and the training of the model was insufficient. In the case of 

only using the pre-training parameters of ImageNet, the performance was extremely 

poor (F1 7.7%, accuracy 12.5%) because the parameters were trained using ImageNet 



- 42 - 

 

images, and the input was three channels; this study used data in a 100-channel format 

as the input, which did not match its parameters. 

Table 3-4 Performance of different models on ResNet(Word2Vec) 

 

Recall 

(Weighted) 

Precision 

(Weighted) 

F1 Score 

(Weighted) 

With fine-tuning and pre-

trained parameters 

90.9 91.1 90.2 

With fine-tuning but no pre-

trained parameters 

46.0 42.4 40.2 

Only with fine-tuning 12.5 10.8 7.7 

 

Figure 3-2 shows the training and verification accuracies of the ResNet18 model over 

Epoch 25. The left and right figures show the training and verification processes, 

respectively. The horizontal axis of the training process represents the number of 

iterations, and one epoch of the training process contained 91 iterations. The ResNet18 

model converged and, finally, found an accuracy of over 90% in training and validation. 

 

Figure 3-2. Accuracy of ResNet18 in training and validation. 
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3.5 Discussion 

Kilimci et al. confirmed that deep-learning methods perform better than traditional 

methods in text classification [38]. However, these studies directly applied deep neural 

networks to the text and trained the features obtained via extracting the tf-idf or word 

vector of the text as a feature. This approach means that these black box models have 

low interpretability regarding the conclusions drawn. Some studies directly apply deep 

learning CNN to text classification and achieve a certain degree of interpretability by 

mixing the word’s word vector with the clinical identifier CUI corresponding to the 

word [39]. This study shows that models using deep learning have comparable or even 

better performances than traditional methods. However, the deep learning model 

implemented by mixing word vectors was slightly less intuitive for interpreting the 

results. This study considered converting text information into an image format, which 

was convenient for attaching additional explanation modules, and the interpretation of 

the results was more intuitive [40]. 

In addition, this study explored the transfer learning of ResNet, which is commonly 

used in image processing and text processing, and compared it to traditional text-

processing methods, such as Naïve Bayes and Bi-LSTM. Compared to other deep 

learning networks, ResNet presented a superior performance, as its structure can solve 

the problem of gradient explosion. At the same time, it is compared to the results of 

directly using the 1D CNN in the classifier module to verify the advantages and 

disadvantages of converting the text format into a two-dimensional form. Previous 

studies[41] tended to use a 1D CNN to directly process text sequences. In this study, 

the text is treated as an image format, which makes the performance of the CNN 
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algorithm better. In addition, despite the different image formats, the parameters of pre-

training on ImageNet still contribute significantly to the performance of the model, and 

the ResNet18 model is able to converge within 25 epochs with the use of the pre-

training parameters. Also as argued in [42], pre-training on the corresponding dataset 

plays an important role in improving the model results. And as a limitation, the impact 

of the choice of word embedding methods was not explored in depth in this study, and 

the effect of the types of word embedding methods due to the type of word embedding 

methods and the setting of their hyperparameters on the categorization of medical texts 

in this study needs to be verified in the future. Additionally, this study did not compare 

the performance to those of some state-of-the-art models, but only showed the 

performance of the proposed model and compared it to some classical models. The 

comparison with state-of-the-art models will be demonstrated in a future work. 

  



- 45 - 

 

Chapter 4. Apply Grad-CAM on text 

classification for visualization of 

explainability 

 

4.1 Background 

In Chapter 3, "Chapter 3. Pre-trained ResNet model transfer learning on medical text 

classification", the effectiveness of various types of models for the text classification 

task is compared, and the feasibility of using the model transfer learning, which is 

usually used in image processing, for text processing tasks. The effects of pre-training 

parameters and retraining on the current dataset were also investigated. In this chapter, 

XAI methods are added to the original model to give it interpretability, and XAI is 

categorized into pre and post methods with respect to the order of interpretation relative 

to prediction. The construction of interpretability in the pre-method occurs before the 

prediction, so that the content of the model, the logic of judgment, and the process can 

be known at the time of prediction. It is necessary to construct explanatory contents 

such as knowledge graphs or rule bases before the model is used, and it is also necessary 

to pay attention to the connection with explanatory modules in the model construction. 

In contrast, the posterior approach provides explanations after the model predictions 

are made, so it is usually difficult to show the decision-making process when the model 

arrives at a result, but only the elements that led the model to that result. In contrast, 

posterior methods usually do not require additional construction, and most of them are 

plug-and-play, which makes them less expensive and more generalizable. In post-hoc 
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XAI, gradient-weighted class activation mapping (Grad-CAM) is a visualization 

method. This method provides explainability by visualizing the area on which the 

model focuses when making predictions in the form of a heat map, intuitively showing 

the basis used by the model to make decisions. Compared to the CAM method, this 

method can be applied to various convolutional neural networks (CNN) without 

adjusting the network structure and has better versatility. This approach is now widely 

used in computer vision-related tasks to intuitively obtain model interpretability. 

Therefore, this study considers applying this concept to related word-processing tasks 

to ensure that text-processing tasks can also achieve interpretable visualization. 

This study uses a high-accuracy computer vision algorithm model to transfer learning 

to medical text tasks while simultaneously using the interpretive visualization method 

Grad-CAM to generate heat maps to ensure that the basis for decision-making can be 

provided intuitively or via the model. This study makes the black-box neural network 

model interpretable by attaching the Grad-CAM module to the model and can be 

visualized through the heatmap. In order to generate the heat map, a CNN method is 

required, meaning that this study extracts features from the text by performing word 

embedding and presents the text as an image (the dimensions of the word vectors 

replace the channels of the RGB image).  

 

4.2 Method 

This study used models that are often used in computer vision area to transfer 

learning to text-processing tasks and used the Grad-CAM method to visualize the 

explainability of the model. This study uses the Grad-CAM technology to generate class 

activation maps (thermal phase maps) for a given text and predicted class. Each element 
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of the class activation map corresponds to a token and indicates its importance based 

on the score of a particular class. Class activation maps provide information regarding 

the extent to which a particular token present in an input sentence affects ANN 

predictions. Meanwhile, this study also used SHAP values to explain the contribution 

of each feature to the inputs of the model prediction.SHAP values are derived from 

Shapley values in cooperative game theory, which are used to distribute the gains in 

cooperative games. In machine learning, SHAP provides an interpretable method to 

help humans understand the contribution of each feature to the model prediction.SHAP 

assigns a value to each feature that indicates the degree of influence of that feature on 

the model output, which in this study is the influence of each word in the text. For a 

particular prediction, the SHAP value indicates the contribution of each feature to that 

prediction. The interpretability provided by this contribution is localized, i.e., it 

provides an explanation of the prediction for a single sample.The positivity or 

negativity of the SHAP value indicates whether the feature has a positive or negative 

influence on the model output. 

The model used in this study is the ResNet18 model from Chapter 3 (word2vec word 

embeddings that were retrained on a medical text dataset using the pre-training 

parameters of ImageNet). 

 

4.3 Result 

Figure 4-1 shows an example of a heatmap generated for use in Grad-CAM, 

indicating the regions on which the model focuses when making predictions. The white 

area indicates that the attention of the model is high. Figure 4-2 shows the text 

corresponding to the heat map shown in Figure 4-1. The example shows the prediction 
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of the text of the digestive system and highlights the position on which the model 

focused during the prediction. As shown in the figure, a part of the position that the 

model focused on is “follicular thyroid cancer treated at the Mayo Clinic, 1946 through 

1970.” 

 

Figure 4-1. Example of a heatmap used to predict text of the digestive system. 

 

Figure 4-2. Highlighting the position of the text combined with the heatmap. 

Figure 4-3 demonstrates the SHAP values of the input features (presents each word) 

for the prediction of an article categorized as “General pathological”. The left side of 

Figure 4-3 shows the conceptual image formed by the pixels representing the word 

vectors of the document. Since the word vectors have a dimension of 100, the resulting 

image will also have 100 channels, and thus the image cannot be interpreted as an image 
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in the usual sense, but only as a picture showing the relative positions of the words in 

the original text. The right side shows the SHAP value for each word in the text for each 

output. From output0 to output4, it indicates the SHAP values of each features (presents 

each word) when the model categorizes the text as “Digestive system”, 

“Cardiovascular”, “Neoplasms”, “Nervous system”, “General pathological”. The more 

red portions, the more features that provide a positive contribution; the more blue 

portions, the more features that provide a negative contribution. In this prediction result, 

the correct classification is General pathological, and the graph represented by output4 

is the correctly predicted result, which also has more positive features as expected. 

 

Figure 4-3. The SHAP value of each output 

 

4.4 Discussion 

This study applied ResNet to medical text-processing tasks and demonstrated the 

interpretability of the model using Grad-CAM. In the field of medical texts, Grad-CAM 

has not been used to generate heat maps to achieve interpretable AI. This study used 

Grad-CAM to generate heat maps, which visually present the words to which the model 

pays attention when making predictions and realizes the interpretability of the model. 

In addition, SHAP value was used to assign interpretability to the model, showing how 

each feature of the model contributes to a particular prediction outcome. In the study of 
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[43], SHAP value was used to provide a relative quantitative analysis of model 

parameter selection. In the study of [44], interpretability was provided for the results of 

audio-acoustic processing. In this study, SHAP value was used to analyze the overall 

interpretability of the images. 

Compared to other XAI methods, Grad-CAM can visualize the explainability of a 

model and be easily added to various ANN methods to visualize the model 

interpretation. Other interpretable methods for text, such as knowledge graphs, 

ontology databases, and other interpretable methods used to construct rules, incur 

considerable labor costs in construction and updating. As a post hoc XAI method, Grad-

CAM has a higher degree of freedom, and its structure can be adapted to various ANN 

methods. Even if the model was modified, it could be processed using the same 

procedure. In contrast, Grad-CAM can only provide explainability but not 

interpretability, that is, it can only determine the basis of the results given by the model, 

and it cannot know the reasoning process influencing the results given by the model. 

The limitation of this study is that the explainability provided is relatively qualitative; 

the physicians are able to be informed of the basis for the results given by the AI model, 

however, it is still up to the physicians to make them own judgment as to whether or 

not that basis is reasonable and whether or not the results should be adopted. 

  



- 51 - 

 

5. Conclusion 

This study explores natural language processing of medical text. In Chapter 3, the 

problem of medical text categorization is learned using a pre-trained image processing 

model transfer that treats medical text as an image format for processing. The word 

vector of each word in the medical text is treated as a pixel point in the image, to which 

various types of CNN models are applied and the model effects are compared. 

Traditional natural language processing models are also used to apply directly to the 

medical text, and the modeling effects are compared. In addition, the effects of 1D 

CNNs, which are commonly used for text categorization, were also compared. The best 

results (weighted Recall, weighted F1 score) were obtained by training a ResNet model 

with pre-training parameters on imaged text used in this study. This model architecture 

was then compared between Model A, which used the pre-trained model parameters 

and was retrained using image-formatted text, with Model B, which did not use the pre-

trained model parameters but was retrained using image-formatted text, and Model C, 

which used only the pre-trained model parameters. The result is that Model A has a 

significant effect advantage. This study verifies the feasibility of converting text format 

to image format representation and transfer learning using high-precision image 

processing models. 

In Chapter 4, Grad-CAM, which uses a visual interpretable method, is appended to the 

model to achieve interpretability of the model and to be able to intuitively see what the 

model is basing its conclusions on. This is more intuitive than the usual textual 

interpretable method, and is more convenient to use because it does not require too 

much modification of the model and is less labor-intensive. 
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In this study, the feasibility of processing medical text in the form of images is explored 

through Chapters 3 and 4, comparing the effects with traditional text processing 

methods, and the interpretability of the model and the visualization of the 

interpretability are achieved through the addition of the Grad-CAM module. 
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Appendix 

A-1 Trainer  

import os 

import sys 

import argparse 

import numpy as np 

import torch 

from torch import nn 

from torchvision import transforms,utils 

from torchvision import datasets 

import torchvision.models as models 

from torch.utils import data 

path_add=r'D:/transfer-test/quicktools' 

sys.path.append(path_add) 

import textprocess 

 

#import data 

data_path = 'DATA_PATH'  

#train_img_set,val_img_set = textprocess.get_1Dwv_set(data_path) 

train_img_set = torch.load('train_tensor_list') 

val_img_set = torch.load('val_tensor_list')  

 

#net = nn.Sequential( 

#    nn.Conv1d(100,200,kernel_size=5,padding=2),nn.Sigmoid(), 

#    nn.AvgPool1d(kernel_size=2,stride=2), 

#    nn.Conv1d(200,128,kernel_size=5,padding=1),nn.Sigmoid(), 

#    nn.AvgPool1d(kernel_size=4,stride=2), 

#    nn.Conv1d(128,64,kernel_size=5,padding=1),nn.Sigmoid(), 
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#    nn.AvgPool1d(kernel_size=2,stride=1), 

#    nn.Conv1d(64,16,kernel_size=1),nn.Sigmoid(), 

#    nn.AvgPool1d(kernel_size=2,stride=1), 

#    nn.Flatten(), 

#    nn.Linear(2400,120),nn.Sigmoid(), 

#    nn.Linear(120,84),nn.Sigmoid(), 

#    nn.Linear(84,5) 

#) 

##################################### 

 

net = models.alexnet() 

net.features[0] = nn.Conv2d(100,64,kernel_size=(7,7),stride=(2,2),padding=(2,2)) 

net.features[1] = nn.ReLU6() 

net.features[2] = nn.MaxPool2d(kernel_size=3,stride=2,padding=0,ceil_mode=False) 

net.features[3] = nn.Conv2d(64,192,kernel_size=(3,3),stride=(1,1),padding=(1,1)) 

net.features[5] = nn.MaxPool2d(kernel_size=2,stride=1,padding=0,ceil_mode=False) 

net.features[12] = nn.MaxPool2d(kernel_size=2,stride=1,padding=0,ceil_mode=False) 

net.avgpool = nn.AdaptiveAvgPool2d(output_size=(3,3)) 

net.classifier[1] = nn.Linear(in_features=256*3*3,out_features=4096,bias=True) 

net.classifier[6] = nn.Linear(in_features=4096,out_features=5,bias=True) 

net.classifier[2] = nn.ReLU6() 

net.classifier[5] = nn.ReLU6() 

##################################### 

#net = models.vgg11(pretrained = True) 

#net.features[0] = nn.Conv2d(100,64,kernel_size=(3,3),stride=(1,1),padding=(1,1)) 

#net.features[1] = nn.ReLU6() 

#net.features[2] = nn.MaxPool2d(kernel_size=2,stride=1,padding=0,ceil_mode=False) 

#net.features[5] = nn.MaxPool2d(kernel_size=2,stride=1,padding=0,ceil_mode=False) 

#net.features[10] = nn.MaxPool2d(kernel_size=2,stride=1,padding=0,ceil_mode=False) 

#net.features[15] = nn.MaxPool2d(kernel_size=3,stride=2,padding=0,ceil_mode=False) 
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#net.features[20] = nn.MaxPool2d(kernel_size=2,stride=2,padding=0,ceil_mode=False) 

 

#net.avgpool = nn.AdaptiveAvgPool2d(output_size=(5,5)) 

#net.classifier[0] = nn.Linear(in_features=12800,out_features=4096,bias=True) 

#net.classifier[1] = nn.ReLU6() 

#net.classifier[6] = nn.Linear(in_features=4096,out_features=5,bias=True) 

#net.classifier[4] = nn.ReLU6() 

############################# 

 

#net = models.resnet18(pretrained = False) 

 

#print(net) 

#net.conv1=nn.Conv2d(100,64,kernel_size=(7,7),stride=(2,2),padding=(3,3),bias=False) 

#in_channel = net.fc.in_features 

#net.fc = nn.Linear(in_channel,5) 

print(net) 

 

def init_weights(m): 

  if type(m)==nn.Linear: 

    nn.init.normal_(m.weight,0.01) 

   

net.apply(init_weights) 

 

my_trans = transforms.Compose([ 

     transforms.ToTensor() 

 ]) 

 

#hyperparameter 

EPOCH = 25 

pre_epoch = 0 
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BATCH_SIZE = 128 

LR = 0.1 

device= torch.device('cpu') 

 

classes = ('1','2','3','4','5') 

 

train_iter = data.DataLoader(train_img_set,batch_size=BATCH_SIZE,shuffle=False) 

test_iter = data.DataLoader(val_img_set,batch_size=BATCH_SIZE,shuffle=False) 

 

loss = nn.CrossEntropyLoss() 

trainer = torch.optim.SGD(net.parameters(),lr=LR,momentum = 0.9,weight_decay = 5e-4) 

 

def train_classify(EPOCH,pre_epoch,trainloader,testloader,net,optimizer,criterion): 

  parser = argparse.ArgumentParser(description='Pytorch Training') 

  parser.add_argument('--outf',default='./model/',help = 'folder to output images and model 

checkpoints') 

  args=parser.parse_args() 

  if not os.path.exists(args.outf): 

    os.makedirs(args.outf) 

  best_acc =85 # 

  print("Start Training, ResNet-18!")  

  with open('acc.txt','w') as f: 

    with open('log.txt','w') as f2: 

      for epoch in range(pre_epoch,EPOCH): 

        print('\nEpoch: %d'%(epoch+1)) 

        net.train() 

        sum_loss = 0.0 

        correct = 0.0 

        total = 0.0 

        for i,d in enumerate(trainloader,0): 
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          length = len(trainloader) 

          inputs,labels = d 

          inputs,labels = inputs.to(device), labels.to(device) 

          optimizer.zero_grad() 

          print(inputs.shape) 

          outputs = net (inputs) 

          loss = criterion(outputs,labels) 

          loss.backward() 

          optimizer.step() 

          sum_loss += loss.item() 

          _,predicted = torch.max(outputs.data,1) 

          total += labels.size(0) 

          correct += predicted.eq(labels.data).cpu().sum() 

          print('[epoch:%d,iter:%d] Loss: %.03f | Acc:%.3f%%' 

            %(epoch+1,(i+1+epoch*length),sum_loss / (i+1),100.*correct/total)) 

          f2.write('%03d %05d | Loss: %.03f | Acc:%.3f%%' 

            %(epoch+1,(i+1+epoch*length),sum_loss / (i+1),100.*correct/total)) 

          f2.write('\n') 

          f2.flush() 

 

        print('Waiting Test!') 

        with torch.no_grad(): 

          correct=0 

          total=0 

          for d in testloader: 

            net.eval() 

            images,labels = d 

            images,labels = images.to(device),labels.to(device) 

            outputs = net(images) 

            _,predicted = torch.max(outputs.data,1) 
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            total += labels.size(0) 

            correct += (predicted == labels).sum() 

          print('test accuracy is ：%.3f%%'%(100 * correct/total)) 

          acc = 100.*correct/total 

          print('Saving model ......') 

          torch.save(net.state_dict(),'%s/net_%03d.pth'%(args.outf,epoch +1)) 

          f.write('EPOCH = %03d,Accuracy= %.3f%%'%(epoch+1,acc)) 

          f.write('\n') 

          f.flush() 

          if acc > best_acc: 

            f3 = open("best_acc.txt",'w') 

            f3.write('EPOCH = %d,best_acc =%.3f%%'%(epoch +1,acc)) 

            f3.close() 

            best_acc =acc 

      print("Training Finished, TotalEPOCH=%d"%EPOCH) 

train_classify(EPOCH,pre_epoch,train_iter,test_iter,net,trainer,criterion = loss) 

os.wait() 

 

A-2 Predict 

import sys 

import torchvision.models as models 

from torch.utils import data 

from torch import nn 

import torch 

from torch import Tensor 

import torch.nn.functional as F 

import numpy as np 

 

import cv2 
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from sklearn.metrics import f1_score,recall_score,precision_score 

 

path_add=r'D:/transfer-test/quicktools' 

sys.path.append(path_add) 

import textprocess 

def predict(net,testloader): 

    with torch.no_grad(): 

        correct=0 

        total=0 

        y_predict,y_real = [],[] 

        for d in testloader: 

            net.eval() 

            images,labels = d 

            images,labels = images.to(device),labels.to(device) 

            outputs = net(images) 

            _,predicted = torch.max(outputs.data,1) 

            total += labels.size(0) 

            y_predict.extend(predicted.tolist()) 

            y_real.extend(labels.tolist()) 

            correct += (predicted == labels).sum() 

 

        print('predict result is：{predict}\n, real category is ：

{real}\n'.format(predict=y_predict,real=y_real)) 

        average = 'weighted' 

        print('\nweighted precision:',precision_score(y_real,y_predict,average=average), 

        '\nweighted recall   :',recall_score(y_real,y_predict,average=average), 

        '\nweighted f1_score :',f1_score(y_real,y_predict,average=average)) 

        print('test accuracy is ：%.3f%%'%(100 * correct/total)) 

#hyperparameter 

BATCH_SIZE = 16 
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device = torch.device('cpu') 

 

#import data 

data_path = 'D:/transfer-test/kaggle_data'  

#train_img_set,val_img_set = textprocess.get_wvi_set(data_path,get_train=False) 

val_img_set = torch.load('val_tensor_list') 

 

#change the format to dataloader 

test_iter = data.DataLoader(val_img_set,batch_size=BATCH_SIZE,shuffle=False) 

 

#import model 

net=models.resnet18() 

paras = torch.load('./model_res18/net_025.pth') 

#net = models.alexnet() 

#paras = torch.load('./model_alex/net_024.pth') 

 

#finetuning 

net.conv1=nn.Conv2d(100,64,kernel_size=(7,7),stride=(2,2),padding=(3,3),bias=False) 

in_channel = net.fc.in_features 

net.fc = nn.Linear(in_channel,5) 

 

net.load_state_dict(paras) 

 

#net.features[0] = nn.Conv2d(100,64,kernel_size=(7,7),stride=(2,2),padding=(2,2)) 

#net.features[1] = nn.ReLU6() 

#net.features[2] = nn.MaxPool2d(kernel_size=3,stride=2,padding=0,ceil_mode=False) 

#net.features[3] = nn.Conv2d(64,192,kernel_size=(3,3),stride=(1,1),padding=(1,1)) 

#net.features[5] = nn.MaxPool2d(kernel_size=2,stride=1,padding=0,ceil_mode=False) 

#net.features[12] = nn.MaxPool2d(kernel_size=2,stride=1,padding=0,ceil_mode=False) 

#net.avgpool = nn.AdaptiveAvgPool2d(output_size=(3,3)) 
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#net.classifier[1] = nn.Linear(in_features=256*3*3,out_features=4096,bias=True) 

#net.classifier[6] = nn.Linear(in_features=4096,out_features=5,bias=True) 

#net.classifier[2] = nn.ReLU6() 

#net.classifier[5] = nn.ReLU6() 

 

#net.load_state_dict(paras) 

print(net) 

#net = nn.Sequential( 

#    nn.Conv1d(100,200,kernel_size=5,padding=2),nn.Sigmoid(), 

#    nn.AvgPool1d(kernel_size=2,stride=2), 

#    nn.Conv1d(200,128,kernel_size=5,padding=1),nn.Sigmoid(), 

#    nn.AvgPool1d(kernel_size=4,stride=2), 

#    nn.Conv1d(128,64,kernel_size=5,padding=1),nn.Sigmoid(), 

#    nn.AvgPool1d(kernel_size=2,stride=1), 

#    nn.Conv1d(64,16,kernel_size=1),nn.Sigmoid(), 

#    nn.AvgPool1d(kernel_size=2,stride=1), 

#    nn.Flatten(), 

#    nn.Linear(2400,120),nn.Sigmoid(), 

#    nn.Linear(120,84),nn.Sigmoid(), 

#    nn.Linear(84,5) 

#) 

 

#predict 

predict(net,test_iter) 

 

A-3 Text Processing 

import os 

import sys 

import argparse 
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import numpy as np 

import torch 

from torch import nn 

from torchvision import transforms,utils 

from torchvision import datasets 

import torchvision.models as models 

from torch.utils import data 

from IPython import display 

from pprint import pprint 

from gensim.models import word2vec 

def txt_loader(input): 

  item = open(input,'r',encoding='utf-8').read() 

 

  return item 

 

def txt_split(loader_in):   

 

  txt_list=[] 

  for txt in loader_in.dataset: 

    txt = list(txt) 

    txt[0] = txt[0].rstrip() 

    txt[0] = txt[0].replace('\n','') 

    txt[0] = txt[0].split(' ') 

    txt_list.append(txt) 

 

  return txt_list 

 

def get_tag(loader_in):   
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    tag_list=[] 

    for txt in loader_in.dataset: 

        txt = list(txt) 

        tag_list.append(txt[1]) 

 

    return tag_list 

 

def get_wvi_set(data_path,get_train=True,get_val=True): 

 

 my_data = datasets.DatasetFolder(data_path,loader=txt_loader,extensions="txt",transform=None)  

 n_val = int(len(my_data)/5) 

 n_train = len(my_data)-n_val 

 print(n_val,n_train) 

 train_set,val_set = data.random_split(my_data,[n_train,n_val])  

 train_loader = data.DataLoader(train_set,batch_size=2,shuffle=True) 

 val_loader = data.DataLoader(val_set,batch_size=2,shuffle=True) 

 

 val_txt_list = txt_split(val_loader) 

 train_txt_list = txt_split(train_loader) 

 val_tag_list = get_tag(val_loader) 

 train_tag_list =get_tag(train_loader) 

 

 model=word2vec.Word2Vec.load('C:/Users/zhj/wvmodel_vkg.model') 

 

 wv=[] 

 zero_vector = [] 

 vector_image_train=[] 

 vector_image_val=[] 

 wv_d = model.wv.vector_size 

 for i in range(0,wv_d): 
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   zero_vector.append(0) 

 

 b=np.empty([25,25,100]) 

 train_data=list() 

 test_data=list() 

 train_img_set=[] 

 val_img_set=[] 

 

 if get_train==True: 

  for train_txt in train_txt_list: 

   for word in train_txt[0]: 

 

    if word == '#':  

     wv.append(zero_vector) 

    else: 

     c=[] 

     for i in range(0,wv_d): 

      c.append(model.wv[word][i]) 

     #print(c) 

     wv.append(c) 

 

   tmp = [wv.copy(),train_txt[1]] 

   vector_image_train.append(tmp) 

   #print(tmp) 

   wv.clear() 

 

  print(len(vector_image_train)) 

  for text in vector_image_train: 

   b = np.array(text[0]).reshape(25,25,100) 

   #print(b) 
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   train_data.append(b.copy()) 

   #test_data = test_data.reshape(25,25,100) 

   b.fill(0) 

  #test_data = test_data[0].reshape(25,25) 

  #test_data=test_data.reshape(25,25) 

  train_data=np.array(train_data) 

  train_data=torch.tensor(train_data,dtype=torch.float32) 

 

  train_data = train_data.permute(0,3,1,2) 

 

  print(train_data[0]) 

  print(train_data.shape) 

  print(len(train_data)) 

 

  for i,train_img in enumerate(train_data): 

   tmp = [train_img,torch.tensor(train_tag_list[i])] 

   train_img_set.append(tmp) 

   #print(len(train_img_set)) 

   #print(train_img.shape) 

 

  

 if get_val == True: 

  for val_txt in val_txt_list: 

   for word in val_txt[0]: 

 

    if word == '#':  

     wv.append(zero_vector) 

    else: 

     c=[] 

     for i in range(0,wv_d): 
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      c.append(model.wv[word][i]) 

     #print(c) 

     wv.append(c) 

 

   tmp = [wv.copy(),val_txt[1]] 

   vector_image_val.append(tmp) 

   #print(tmp) 

   wv.clear() 

 

  print(len(vector_image_val)) 

  for text in vector_image_val: 

   b = np.array(text[0]).reshape(25,25,100) 

   #print(b) 

   test_data.append(b.copy()) 

   #test_data = test_data.reshape(25,25,100) 

   b.fill(0) 

  #test_data = test_data[0].reshape(25,25) 

  #test_data=test_data.reshape(25,25) 

  test_data=np.array(test_data) 

  test_data=torch.tensor(test_data,dtype=torch.float32) 

 

  test_data = test_data.permute(0,3,1,2) 

 

  print(test_data.shape) 

  print(len(test_data)) 

 

  for i,val_img in enumerate(test_data): 

   tmp = [val_img,torch.tensor(val_tag_list[i])] 

   val_img_set.append(tmp) 
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 return train_img_set,val_img_set 

def get_1Dwv_set(data_path,get_train=True,get_val=True): 

 my_data = datasets.DatasetFolder(data_path,loader=txt_loader,extensions="txt",transform=None)  

 n_val = int(len(my_data)/5) 

 n_train = len(my_data)-n_val 

 print(n_val,n_train) 

 train_set,val_set = data.random_split(my_data,[n_train,n_val])  

 train_loader = data.DataLoader(train_set,batch_size=2,shuffle=True) 

 val_loader = data.DataLoader(val_set,batch_size=2,shuffle=True) 

 

 val_txt_list = txt_split(val_loader) 

 train_txt_list = txt_split(train_loader) 

 val_tag_list = get_tag(val_loader) 

 train_tag_list =get_tag(train_loader) 

 model=word2vec.Word2Vec.load('wvmodel_vkg.model') 

 wv=[] 

 zero_vector = [] 

 vector_image_train=[] 

 vector_image_val=[] 

 wv_d = model.wv.vector_size 

 for i in range(0,wv_d): 

   zero_vector.append(0) 

 

 b=np.empty([625,100]) 

 train_data=list() 

 test_data=list() 

 train_img_set=[] 

 val_img_set=[] 

 

 if get_train==True: 
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  for train_txt in train_txt_list: 

   for word in train_txt[0]: 

 

    if word == '#': 

     wv.append(zero_vector) 

    else: 

     c=[] 

     for i in range(0,wv_d): 

      c.append(model.wv[word][i]) 

     #print(c) 

     wv.append(c) 

 

   tmp = [wv.copy(),train_txt[1]] 

   vector_image_train.append(tmp) 

   #print(tmp) 

   wv.clear() 

 

  print(len(vector_image_train)) 

   

  for text in vector_image_train: 

   b = np.array(text[0]).reshape(625,100) 

   #print(b) 

   train_data.append(b.copy()) 

   #test_data = test_data.reshape(25,25,100) 

   b.fill(0) 

  #test_data = test_data[0].reshape(25,25) 

  #test_data=test_data.reshape(25,25) 

  train_data=np.array(train_data) 

  train_data=torch.tensor(train_data,dtype=torch.float32) 
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  train_data = train_data.permute(0,2,1) 

  print(train_data[0]) 

  print(train_data.shape) 

  print(len(train_data)) 

  for i,train_img in enumerate(train_data): 

   tmp = [train_img,torch.tensor(train_tag_list[i])] 

   train_img_set.append(tmp) 

 if get_val == True: 

  for val_txt in val_txt_list: 

   for word in val_txt[0]: 

 

    if word == '#':   

     wv.append(zero_vector) 

    else: 

     c=[] 

     for i in range(0,wv_d): 

      c.append(model.wv[word][i]) 

     #print(c) 

     wv.append(c) 

 

   tmp = [wv.copy(),val_txt[1]] 

   vector_image_val.append(tmp) 

   #print(tmp) 

   wv.clear() 

 

  print(len(vector_image_val)) 

  for text in vector_image_val: 

   b = np.array(text[0]).reshape(625,100) 

   #print(b) 

   test_data.append(b.copy()) 
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   #test_data = test_data.reshape(25,25,100) 

   b.fill(0) 

  #test_data = test_data[0].reshape(25,25) 

  #test_data=test_data.reshape(25,25) 

  test_data=np.array(test_data) 

  test_data=torch.tensor(test_data,dtype=torch.float32) 

  test_data = test_data.permute(0,2,1) 

  print(test_data.shape) 

  print(len(test_data)) 

 

  for i,val_img in enumerate(test_data): 

   tmp = [val_img,torch.tensor(val_tag_list[i])] 

   val_img_set.append(tmp) 

 

 return train_img_set,val_img_set 

 

A-4 Naïve Bayes 

#coding: utf-8 

import torch 

from torchvision import transforms,utils 

from torchvision import datasets 

from torch.utils import data 

import matplotlib.pyplot as plt 

from pprint import pprint 

from gensim.models import word2vec 

import os 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.naive_bayes import MultinomialNB 
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def txt_loader(input): 

    item = open(input,'r',encoding='utf-8').read() 

 

    return item 

 

def txt_split(loader_in):   

 

    txt_list=[] 

    for txt in loader_in.dataset: 

        txt = list(txt) 

        txt[0] = txt[0].rstrip() 

        txt[0] = txt[0].replace('\n','') 

        #txt[0] = txt[0].split(' ') 

        txt_list.append(txt[0]) 

 

    return txt_list 

 

def get_tag(loader_in):   

 

    tag_list=[] 

    for txt in loader_in.dataset: 

        txt = list(txt) 

        tag_list.append(txt[1]) 

 

    return tag_list 

 

def naivebayes(): 
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    my_data = 

datasets.DatasetFolder('DATA_PATH',loader=txt_loader,extensions="txt",transform=None) 

    n_val = int(len(my_data)/5) 

    n_train = len(my_data)-n_val 

    print(n_val,n_train) 

    train_set,val_set = data.random_split(my_data,[n_train,n_val])  

    train_loader = data.DataLoader(train_set,batch_size=2,shuffle=True) 

    val_loader = data.DataLoader(val_set,batch_size=2,shuffle=True) 

 

 

    x_train=txt_split(train_loader) 

    x_val = txt_split(val_loader) 

    y_train=get_tag(train_loader) 

    y_val = get_tag(val_loader) 

 

    tf=TfidfVectorizer() 

    x_train=tf.fit_transform(x_train) 

    x_val=tf.transform(x_val) 

 

    mlt=MultinomialNB(alpha=1.0) 

    mlt.fit(x_train,y_train) 

    y_predict = mlt.predict(x_val) 

    print(y_predict) 

    score= mlt.score(x_val,y_val) 

    print("accuracy is ：",score) 

if __name__ == '__main__': 

    naivebayes() 
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