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Integrating geographical information systems, remote sensing, and machine 
learning techniques to monitor urban expansion: an application to Luanda, 
Angola
Armstrong Manuvakola Ezequias Ngolo a and Teiji Watanabe b

aGraduate School of Environmental Science, Hokkaido University, Sapporo, Japan; bFaculty of Environmental Earth Science, Hokkaido 
University, Sapporo, Japan

ABSTRACT
According to many previous studies, application of remote sensing for the complex and 
heterogeneous urban environments in Sub-Saharan African countries is challenging due to 
the spectral confusion among features caused by diversity of construction materials. Resorting 
to classification based on spectral indices that are expected to better highlight features of 
interest and to be prone to unsupervised classification, this study aims (1) to evaluate the 
effectiveness of index-based classification for Land Use Land Cover (LULC) using an unsuper
vised machine learning algorithm Product Quantized K-means (PQk-means); and (2) to monitor 
the urban expansion of Luanda, the capital city of Angola in a Logistic Regression Model (LRM). 
Comparison with state-of-the-art algorithms shows that unsupervised classification by means 
of spectral indices is effective for the study area and can be used for further studies. The built- 
up area of Luanda has increased from 94.5 km2 in 2000 to 198.3 km2 in 2008 and to 468.4 km2 in 
2018, mainly driven by the proximity to the already established residential areas and to the 
main roads as confirmed by the logistic regression analysis. The generated probability maps 
show high probability of urban growth in the areas where government had defined housing 
programs.
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1. Introduction

Land Use Land Cover (LULC) maps are one of the bases 
representing the dynamic of urban environments 
demanding innovative concepts and techniques to obtain 
spatio-temporal information for urban planning (Cavur 
et al. 2015; Madasa, Orimoloye, and Ololade 2021; 
Huang et al. 2017; Orimoloye and Ololade 2020; Shao 
et al. 2021). LULC classification is proven to be 
a challenging task in remote-sensing-based urban studies 
due to the spectral confusion among features caused by 
complexity and heterogeneity of urban environments 
(Carranza-García, García-Gutiérrez, and Riquelme 
2019; Simwanda and Murayama 2017). Very often, 
a single pixel of a satellite image represents multiple 
cover types generating confusion during classification: 
a mixed pixel problem that depends on the spatial reso
lution of the satellite image and the spatial distribution of 
the cover type (Choodarathnakara, Kumar, and Patil 
2012). The mixed pixel problem is mainly observed in 
sub-Saharan African cities due to the highly complex 
spatial structure of the urban environment, a wide 
range of construction materials (Simwanda and 
Murayama 2017; Huang et al. 2021) along with the 
limited coverage of high-resolution satellite images. 
Although several approaches have been developed to 

resolve the mixed pixel in medium-resolution images, 
obtaining good results is still a “black box” (Trinder and 
Liu 2020). Most of the land-cover information extraction 
algorithms employ pixel-based methods, but when this 
approach is applied using high-resolution images, a “salt 
and pepper” effect is produced, contributing to a bad 
classification result (Huang et al. 2017). Pixel-based 
methods are gaining more attention for research and 
development with the increase of open data available 
on a global scale despite the emerging Very High 
Resolution (VHR) imagery having led to the develop
ment of object-based approaches (Lennert et al. 2019). 
There is no advantage using object-based classification 
over pixel-based classification when only medium-spatial 
resolution images are used (Weih and Riggan 2010; 
Mallinis, Plenioub, and Koutsiasb 2010; Adam, 
Clsapovics, and Elhaja 2016; Tassi et al. 2021). Also, the 
lack of spectral information necessary to discriminate 
spectrally similar pixels enforces the inaccuracy of the 
classification (Weih and Riggan 2010), which can be 
solved by a subpixel-based approach (MacLachlan et al. 
2017). In addition, the selection of the classifier may also 
influence the accuracy of the classification (Cheţan, 
Dornik, and Urdea 2017). All the land-cover information 
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extraction approaches mentioned above mainly resort to 
supervised classification. Supervised classification 
requires training samples and is, therefore, time- 
consuming, and its accuracy depends on the users’ skills. 
Furthermore, external factors, such as the size and quality 
of training samples, usually affect the performance of 
popular classifiers (Yang, X., and D. Shi. 2016; Huang 
et al. 2021). Studies in Remote Sensing (RS) often resort 
to band combinations that highlight features of interest 
(Hurd 2015). However, the land-cover information 
extraction from spectral indexes have also been imple
mented in many studies (e.g. Mwakapuja, Liwa, and 
Kashaigili 2013; Patel and Mukherjee 2015). Spectral 
indices are combinations of spectral reflectance from 
two or more wavelengths that indicate the relative abun
dance of features of interests (Harris Geospatial Solutions 
n.d.a). Classification based on spectral indices (Index- 
based classification) does not require training samples 
and endmembers (Li et al. 2015), reduces spectral con
fusion, and increases spectral contrast among different 
land-use classes (Xu 2007). Index-based classification 
also has some limitations of highlighting one specific 
land-cover type and confusion in discriminating some 
land-cover types (Li et al. 2015). To overcome this pro
blem, Xu (2007) and Mwakapuja, Liwa, and Kashaigili 
(2013), by combining spectral indices, and resorting to 
supervised classification, extracted built-up features, 
vegetation, and water.

The final result of remote-sensing products can 
further be used to solve various problems in society. 
For example, from historical records of satellite 
images, predictive models can be generated based on 
change detection to understand a particular phenom
enon over time, such as urban expansion and its influ
ence in forest cover change and habitat loss. Eyoh and 
Nihinlola (2012), after classifying three Landsat 
images in Lagos, Nigeria from the years 1984, 2000, 
and 2005 using the K-means unsupervised algorithm, 
modeled, and predicted future urban expansion by 
employing logistic regression, considering 10 explana
tory variables: distance to water, residential structures, 
industrial and commercial centers, major roads, rail
way, Lagos Island, international airport, international 
seaport, University of Lagos, and distance to Lagos 
State University. Alsharif and Pradhan (2014), by 
selecting distance to main active economic centers, 
central business district, the nearest urbanized area, 
educational area, roads, and to urbanized areas, east
ing, and northing coordinates, slope, restricted area, 
and population density, as possible drivers of urban 
sprawl, generated probability maps using data from 
1984 to 2002 in the calibration phase and data from 
2002 to 2010 in the validation phase resulting in an 

accuracy rate of 0.86. Achmad et al. (2015) predicted 
LULC for the year 2029 based on Banda Aceh’s 
(Indonesia) spatial plan regulation 2009 and 2029, by 
analyzing a total of seven potential driving factors.. 
population density, distance to central business dis
trict, green open space, historical area, river, highway, 
and coastal area. Traore and Watanabe (2017), inte
grating a Logistic Regression Model (LRM), GIS and 
RS, analyzed and quantified urban growth patterns 
and investigated its relationship with driving factors 
to simulate an urban growth probability map for 
Conakry. The results of the LRM indicated that the 
variables elevation and distance to major roads 
resulted in the best fit and the highest regression 
coefficients.

The synergy between GIS and RS has benefited 
from advances in computing, Global Positioning 
Systems (GPS) and Artificial Intelligence (AI) meth
ods, particularly Machine Learning (ML), allowing 
massive amounts of imagery to be analyzed rapidly, 
outperforming more traditional tools of analysis, 
developed before the Big Data era (Merchant and 
Narumalani 2008; Vopham et al. 2018; Dangermond 
and Goodchild 2020) requiring higher computational 
costs. Cloud-based geospatial processing platforms are 
one of such advances that have been used for reducing 
computational and memory costs since the data is 
stored in the clouds and small portions of the data 
(maps, images) can be accessed upon request, manipu
lated on the fly resorting to built-in programming 
languages and ML algorithms, and the processing is 
done in servers owned by a big tech company or across 
multiple devices distributed around the world. The 
geospatial data-oriented cloud platform Google Earth 
Engine (GEE) has become the first choice for geospa
tial data analyses in different domains (Tamiminia 
et al. 2020; Yang and Huang 2021; Mao et al. 2021; 
Laipelt et al. 2021; Coelho et al. 2021; Junting et al. 
2021) and has been used as a repository and to pro
duce large scale LULC maps (Buchhorn et al. 2020; 
Karra et al. 2021; Gong et al. 2020; Midekisa et al. 
2017) despite its limitations to a small number of 
classification and regression algorithms and inability 
to perform Complex machine/deep learning algo
rithms that need to be performed outside of its envir
onment due to computational restrictions (Amani 
et al. 2020).

Remote sensing allows the collection of data from 
upper space and ML algorithms can help to extract 
knowledge from its products that can later be manipu
lated by overlaying with a cartographic dataset (e.g. 
road, river, sample points) derived from a GIS envir
onment to produce a merged product that can be 
visualized for further interpretation (Merchant and 
Narumalani 2008; Guobin, Krakover, and Blumberg 
2003; Abdollahnejad et al. 2019). ML allows systems to 
learn and improve automatically from experience 
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(Awad and Khanna 2015). Experiments have shown 
that ML algorithms outperform parametric techniques 
for RS studies (with Random Forest (RF) and Support 
Vector Machine (SVM) achieving the best average 
accuracy) but, use, and implementation uncertainties 
limit their usage (Maxwell, Warner, and Fang 2018). 
In this research, to solve the mixed pixel problem, 
a Thematic-oriented Index Combination (TOIC) (Xu 
2007; Mwakapuja, Liwa, and Kashaigili 2013) is imple
mented to improve the discrimination among fea
tures, which is expected to be prone to unsupervised 
classification. Furthermore, ML algorithms are used 
for: (1) classification of the satellite image using 
a memory and computationally efficient unsupervised 
classifier, Product Quantized K-means (PQk-means) 
(Matsui et al. 2017), to evaluate the effectiveness of 
index-based classification for LULC; and (2) regres
sion (logistic regression) to monitor the urban expan
sion of Luanda, the capital city of Angola, for the 
periods of 2000–2008 and 2008–2018, having into 
account factors that may have driven Luanda’s urban 
expansion.

2. Materials and methods

2.1. Study area

Urban growth in Luanda has increased significantly, 
which forced the government to expand its area in 
2011 by altering the political-administrative division 
of Luanda and Bengo provinces (Info-Angola n.d). It 
is now composed of seven municipalities: Cacuaco, 
Belas, Cazenga, Ícolo e Bengo, Luanda, Kissama, and 
Viana (Figure 1). Luanda had an area of 2417 km2 

until 2011, increasing to 18,826 km2 (GPL 
(Government of the Province of Luanda [Governo da 
Província de Luanda]) 2014), a population of 
6,945,386 (INE (National Institute of Statistics 
[Instituto Nacional de Estatística]) 2016a), and 
a projected population of 7,976,907 for the year 2018 
(INE (National Institute of Statistics [Instituto 
Nacional de Estatística]) 2016b).

2.1.2. Urbanization in luanda
From 1948 to 1975, a series of plans failed to regulate 
urban expansion by the capital’s fast growth (Jenkins, 
Robson, and Cain 2002; Viegas 2012). After indepen
dence in 1975, the flow of rural population to the city 
led to a rapid expansion of informal properties. In 
2002, the end of the civil war had led to an increasing 
search for opportunities toward improving living stan
dards. The diagnosis of the city’s urbanization had 
been carried out empirically, and all proposals and 
interventions had been made randomly (Viegas 
2012). A metropolitan plan was approved in 
November 2015 by the Angolan government to be 
developed over the next 15 years starting from 2015 

(IPGUL (Luanda Urban Planning and Management 
Institute [Instituto de Planeamento e Gestão Urbana 
de Luanda]) 2015). The government intended to 
establish extents of 2030 (expected population 
12.9 million) urban area and to impose and enforce 
a new urban boundary and keep sprawl in check.

2.2. Data and methods

The satellite images used in this study were obtained 
from different sources: NASA’s Landsat 5 Thematic 
Mapper (L5 TM), Landsat 7 Enhanced Thematic 
Mapper Plus (L7 ETM +), Landsat 8 Operational 
Land Imager (L8 OLI) (USGS n.d.); ESA’s Sentinel 
1B (S1B) Synthetic Aperture Radar (SAR); and 
JAXA’s ALOS Digital Surface Model (DSM) (JAXA 
n.d.) (Table 1). The date of acquisition was based on 
availability of the satellite data that also depends on 
cloud coverage (trying to select images from the same 
month) that was also crucial for determining the per
iod of study.

2.2.1. Preprocessing and classification
The satellite images were re-projected to the WGS84 
UTM zone 33S projection system, clipped to the 
extent of the study area using vector data and modified 
according to Luanda’s new administrative division 
(mapcruzin n.d; Info-Angola n.d; IPGUL n.d). The 
Sentinel1 SAR images were radiometrically calibrated, 
filtered and, geometrically corrected in SNAP software 
using the sentinel1 toolbox. ALOS DSM (v1.1, v1.2) 
was used as a predictor variable for the LRM and to 
generate the slope raster.

The Landsat images were atmospherically corrected 
in QGIS 2.18. For the year 2018, Fast Line-of-sight 
Atmospheric Analysis of Hypercubes (FLAASH) 
atmospheric correction in ENVI software resulted in 
a better performance of the classifier (see the compar
ison in supplementary material). BQA bands from the 
three Landsat data were used to remove clouds from 
the scenes masking out values higher than 672 for 
Landsat 5 and 7 and 2720 for Landsat 8 according to 
convenience, since getting rid of clouds is paramount 
for the proposed classification approach.

2.2.2. Calculation of spectral indexes from Landsat 
8 data
Five spectral indexes, Normalized Difference Built-up 
Index (NDBI), Moisture Enhancement Index (MEI) 
(Liau 2016), Vegetation Index considering Green and 
Shortwave Infrared (VIGS) (Hede et al. 2015), Dry 
Built-up index (DBI) (Rasul et al. 2018) and an empiri
cal built-up index QzCal were calculated and used as 
input for the unsupervised classification. Additionally, 
SAR data (VV and VH polarized bands) were added to 
improve the classification.

GEO-SPATIAL INFORMATION SCIENCE 3



For the 2018 image, the main initial idea was to 
select a built-up/bareland index, a water index, and 
a vegetation index, to discriminate the four LULC 
classes, having preference to spectral indexes that out
perform conventional spectral indexes: NDBI; MEI 
instead of Normalized Difference Water Index 
(NDWI [Gao 1996]); and VIGS instead of 
Normalized Difference Vegetation Index (NDVI) or 
Soil Adjusted Vegetation Index (SAVI [Huete 1988]) 
(Figure 2(a,b)).

NDBI (Equation (1)) enhances built-up 
/Bareground by applying the difference between 
Short-Wave Infrared (SWIR) and Near-Infrared 
(NIR). 

NDBI ¼
SWIR � NIR
SWIRþ NIR

(1) 

MEI combines three spectral indexes to handle their 
weak differences (Equation (2)). The first two indexes, 
NDWI (McFeeters 1996) and Modified Normalized 
Difference Water Index (Xu 2007, 2008), enhance the 

water category by eliminating vegetation objects 
(higher reflectance in NIR and SWIR1 bands 
(Landsat 8) compared to the Green band while water 
reflects few differences). The third index eliminates 
urban/bareground reflectance by applying the differ
ence between band 1 of Landsat 8 (coastal aerosol) and 
the green band (higher reflectance in the green band 
compared to the coastal aerosol band) while water 
reflects few differences. 

MEI ¼
Green � NIR
Greenþ NIR

þ
Green � SWIR1
Greenþ SWIR1

þ 3

�
Band1 � Green
Band1þ Green

(2) 

Atmospheric and ground-surface conditions, such 
as clouds and soils, often distort NDVI accuracy in 
detecting vegetation (Shishir and Tsuyuzaki 2018). 
SAVI is more sensitive than NDVI in detecting 
vegetation in the low-plant covered areas as low 
as 15%, while the NDVI can only work effectively 
in the area with plant cover above 30% (Xu 2008). 
Given NDVI and SAVI’s limitations, VIGS, 

Table 1. Satellite images used in this study (L = Landsat; S = Sentinel).
Specs L7 ETM + L5 TM L8 OLI S1B ALOS global DSM

Acq. date 2000/06/14 2008/03/24 2018/06/08 2018/06/08&13 2015/05
Ner of scenes 2 2 1 2 5
Path/Row 182/066, 067 182/066, 067 182/066 S009/E013, E014, S010/E012-E014
Acq. Orbit Ascending
frequency C-band 5.4 GHz
Radiometric Res. 8 bits 8 bits 16 bits 10 bits
N/bands 7 8 11 2 1
Polarization/mode VV, VH/ IW
Data product Level 1 GRD
Resolution 30 m rescaled to 10 m 10 m 30 m rescaled to 10 m
Source USGS (n.d) ESA (n.d.b) JAXA (n.d)

Figure 1. Geographic location of the study area.
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developed to discriminate unhealthy from healthy 
vegetation stressed by heavy metals in an area 
covered by thick vegetation, was chosen. VIGS 
combines 1) two spectral indexes, Green-Red and 
NDVI, to discriminate vegetation from other back
grounds; and 2) one spectral index NDWI (Gao 
1996) to discriminate water from other back
grounds (Equation (3)). Since SWIR reflectance is 
sensitive to leaf water content (Hede et al. 2015), 
following the same idea as MEI, there is 
a hypothesis that VIGS in an area with non-thick 
vegetation may enhance vegetation and water cate
gories (higher values) while eliminating urban/ 
bareground (lower values). 

VIGS ¼
Green � Red
Greenþ Red

þ 0:5�
NIR � Red
NIRþ Red

þ 1:5

�
NIR � SWIR1
NIRþ SWIR1

þ 1:5�
NIR � SWIR2
NIRþ SWIR2

(3) 

An experimental unsupervised classification for the 
band combination NDBI, MEI, VIGS is illustrated in 
Figure 3(a). The classified map still had some misclas
sification when discriminating bareground from built- 
up areas (Figure 3(a) in Figure 3). A fieldwork in 
Luanda aimed to visit the misclassified points 
(Figure 3(b,d) in Figure 3(a)) to understand the diver
sity of the surrounding features and how they respond 
to spectral indexes.

Trying to discriminate sand beach from built-up, 
which has been misclassified in the first experimental 
classification, an empirical spectral index was calcu
lated: Quartz and Calcite are principal constituents of 
beaches in tropical and sub-tropical seas (Vincent 1997, 
14). The spectral reflectance for Quartz and Calcite in 
TIR (range 10.6–11.19 µm wavelength for Landsat 8 
TIR1 band) is higher compared to their spectral reflec
tance in SWIR (both, 2.1 µm wavelength, which is 
within the Landsat 8 SWIR2 band range). Based on 
this assumption, the normal difference between 

Figure 2. (a) Spectral index combination. (b) Composite image of NDBI, MEI, and VIGS.

Figure 3. LULC map 2018 from PQk-means algorithm. (a) using the spectral indexes NDBI, MEI, VIGS. (b) using the spectral indexes 
NDBI, MEI, VIGS, DBI, and QzCal. In (a, b) sub-figures a and c show the Sand beach misclassified as built-up, b shows the saline area 
misclassified as built-up, d shows the built-up misclassification in agriculture field. d in Figure (b) shows improved result.
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Landsat 8 TIR1 and SWIR2 bands, here referred to as 
QzCal spectral index (eEquation (4)), was calculated to 
discriminate sand beach from other backgrounds. An 
additional spectral index, dry built-up index (DBI) 
(Equation (5)) (Rasul et al. 2018) was calculated which 
together with QzCal, improved the classification result 
(Figure 3(d)) but built-up class was still misclassified 
(figures (a-c) in Figure 3(b)). 

QzCal ¼
TIR � SWIR2
TIRþ SWIR2

(4) 

DBI ¼ Blue �
TIR1
Blue

þ TIR1
� �

� NDVI (5) 

Since the result was still not satisfactory, 10 m resolu
tion Sentinel-1 C-Bands (VV+VH) were added to 
improve the classification (Corbane et al. 2008; 
Abdikan et al. 2016; Sinha, Santra, and Mitra 2018). 
The reason is to take advantage of the double-bounce 
effect on built-up features from SAR data (Tavares 
et al. 2019). The final selection of spectral indexes 
was based on their performance regarding the diver
sity of spectral reflectance in the study area: NDBI, 
MEI, VIGS, DBI, QzCal, and two sentinel SAR bands 
resulting in 7 input data.

2.2.3. Classification algorithm
For the Landsat 8 OLI image, which provides 
unique specifications, such as radiometric resolu
tion of 16 bits, and the aerosol band that is impor
tant for the calculation of one of the spectral 
indexes, a memory and computationally efficient 
unsupervised classifier, i.e. PQk-means was cho
sen. PQk-means first compresses input vectors 
into memory-efficient short codes by product 
quantization and then clusters the resultant pro
duct-quantized (Pq) codes in the compressed 
domain (Matsui et al. 2017). As with K-means 
(Harris Geospatial Solutions n.d.b), PQk-means 
finds the nearest center from each code and 
updates each center using a proposed sparse vot
ing scheme (Matsui et al. 2017). The optimization 
process consisted of keeping the same dimension 
of the input because the dimension represents an 
odd number (seven input bands) (num_sub
dim = 7); setting the Pq-code to eight bits 
(Ks = 256); quantizing the original dataset 
(7 × 52,535,364-pixel) to only 5,000,000-pixel; 
and finally setting the number of classes to eight, 
a higher number than the expected number of 
classes desired for the classification, that were in 
a later stage merged into four classes.

The resulting PQk-means LULC map was com
pared with classified maps from state-of-the-art 
unsupervised K-means classifier available in python 
scikit-learn library, and supervised SVM classifier 
in ArcGIS Pro. The comparison with the supervised 

approach SVM was performed using the band com
bination NIR, SWIR, and red. For previous Landsat 
mission data (Landsat 7 for the year 2000 and 
Landsat 5 for the year 2008), which lack some 
important specifications mentioned earlier, super
vised Maximum Likelihood Classification (MLC) 
and SVM respectively, were performed in ArcGIS 
Pro, also using the band combination NIR, SWIR, 
and red. The choice of the classifier for each case 
was based on performance when compared to other 
classification techniques (Huang et al. 2018).

2.2.4. Accuracy assessment
The accuracy assessment was conducted in QGIS 
using the Accuracy Assessment of Thematic Maps 
(AcATaMa) plugin (Corredor 2018). Despite being 
easy to use, the AcATama plugin does not provide 
the K coefficient, which is an important parameter 
to test interrater reliability (McHugh 2012). For this 
reason, the confusion matrix tool in ArcGIS Pro was 
used to determine the K coefficient. In total, 160 
stratified random points (40 per class) were gener
ated for the 2000 and 2008 classified images 
(Corredor 2018; Olofsson et al. 2013). For the 2018 
image, 480 stratified random points (120 per class) 
were generated. To the random points generated, 
ground truth labels were assigned through visual 
interpretation having assistance from TOIC (NDBI, 
MEI, and VIGS), true-color composite (red, green, 
and blue) and false-color composite (NIR, SWIR, 
and red) of the same Landsat image used for classi
fication each year (see supplementary material 
Figures 16).

2.2.5. Predictive model (logistic regression)
Different urban growth models consider different 
indicators to predict urban growth phenomena 
(Musa, Hashim, and Reba 2016). No single model 
appears to perform consistently well when applied to 
different geographical locations (Xie et al. 2005). 
Logistic regression empirically uses statistical techni
ques to model the relationship between LULC changes 
and drivers based on historical data (Atak et al. 2014). 
The logit Yð Þ function (Equation (6)), a linear combi
nation function of the explanatory variables was, used 
to carry out the logistic regression model (Li 2017). 

logit Yð Þ ¼ β0 þ
Xn

i¼1
βxi (6) 

where xi is the explanatory variable, βi is the regression 
coefficient to be estimated, and β0 is the intercept.

2.2.5.1. Dependent variable. The LULC classified 
maps of 2000, 2008, and 2018 were used to gener
ate the dependent variables for the models. 
A binary map representing the change in built-up 
during the period 2000–2008 was used as input for 
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the first model (Figure 4(a)). The same procedure 
was used for the model corresponding to the period 
2008–2018 (Figure 4(b)).

2.2.5.2. Independent variables. There is no rule or 
known global formula for selecting land-use drivers 
(Eyoh and Nihinlola 2012; Akinwande, Dikko, and 
Samson 2015). Predictors were selected a priori 
based on previous studies in African cities (Eyoh 
and Nihinlola 2012; Traore and Watanabe 2017), 
the current knowledge of the urbanization pro
cesses in the study area, as well as the results 
from hypothesized driving forces of urban growth 
(Atak et al. 2014).

Seven initial drivers were chosen: (1) popula
tion density (Forum-angonet n.d; INE (National 
Institute of Statistics [Instituto Nacional de 
Estatística]) 2016a; INE (National Institute of 
Statistics [Instituto Nacional de Estatística]) 
2016b), (2) elevation (JAXA n.d.), (3) Slope, dis
tance to (4) the main roads (mapcruzin n.d.), (5) 
residential areas, (6) industrial areas, and (7) pri
mary centers (IPGUL (Luanda Urban Planning 
and Management Institute [Instituto de 
Planeamento e Gestão Urbana de Luanda]) 2015) 
(see supplementary material Figure S5.2), but only 
the first five were selected to generate the models 
(Figure 5).

2.2.5.3. Multicollinearity. Before any regression 
analysis, multicollinearity should be checked. 
Eliminating a variable involved in collinearity runs 
the risk of omitted variable bias (Lesschen, 
Verburg, and Staal 2005). Variance inflation factor 
(VIF) (Equation (7)) is the most widely used diag
nostic for multicollinearity that may be calculated 
for each predictor by doing a linear regression of 
that predictor on all the other predictors and 
obtaining the R2 from the regression (Allison 
2012). VIF determines how much the variance of 
an estimated regression coefficient increases when 

predictors are correlated (Akinwande, Dikko, and 
Samson 2015). A Pearson correlation analysis 
among predictor variables was conducted prior to 
the logistic regression modeling, followed by VIF 
analysis (Tavares 2017). 

VIF ¼
1

1 � R2 (7) 

2.2.5.4 Model evaluation. The coefficient of deter
mination R2 is used as a standard to measure the 
overall strength of a linear regression model, with 
zero indicating a model with no predictive value 
and one indicating a perfect fit (Hu, Palta, and 
Shao 2006). Several goodness-of-fit indexes, also 
known as “pseudo-R2” analogs of R2 as used in 
Ordinary Least-Squares (OLS) regression, exist to 
assess the predictive capacity of the logistic regres
sion model. One such index, McFadden pseudo-R2 

(Equation (8)), is perhaps the most popular 
pseudo-R2 index (Smith and McKenna 2013; 
Williams 2015). 

R2
MF ¼ 1 �

LL Fullð Þ

LL Nullð Þ
(8) 

where LL(Full) is the full-model log-likelihood, and 
LL(Null) is the intercept-only log-likelihood. For two 
models performed on the same data, the greater the 
likelihood, the higher McFadden’s pseudo-R2 (UCLA 
2011).

Another index, Receiving Operating Characteristic 
(ROC), represented by the area under the curve 
(AUC), measures the relationship between expected 
and real changes (Alsharif and Pradhan 2014). ROC 
graphically represents “true positive” and “false posi
tive” classification rates as a function of different clas
sification cutoff values for the predicted probabilities 
resulting from the logistic regression (Smith and 
McKenna 2013).

Figure 4. (a) Binary map representing expansion from 2000 to 2008. (b) Binary map representing expansion from 2008 to 2018.
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3. Results and discussion

3.1. Unsupervised classification

A major challenge in unsupervised learning is eval
uating if the algorithm learned something useful, 
and often, the only way to evaluate its result is to 
inspect it manually (Muller and Guido 2017). 

A comparison of the PQk-means classified map 
with maps from state-of-the-art classification tech
niques, K-means and SVM (see also RF and MLC 
in supplementary material Figure 7.2(a, b)) was 
made by performing accuracy assessment using 
the same ground truth. For the 2018 images, 93% 
and 95% of overall accuracy were achieved 

Figure 5. Independent variables: (a) Population density (2000). (b) Population density (2008). (c) Digital Surface Model. (d) Slope. 
(e) Distance to main roads (2000). (f) Distance to main roads (2008–2018). (g) Distance to residential center (2000). (h) Distance 
toresidential center (2008).
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corresponding to PQk-means and K-means unsu
pervised algorithms, respectively, and from the 
supervised classification, 89%, 87%, and 78% of 
overall accuracy were achieved using SVM, RF, 
and MLC algorithms, respectively (Figures 6(a,b), 
7 and Figure S7.2 in supplementary material; 
Table 2 and Table S2.2 in supplementary material).

The K-means algorithm was also used to validate 
the PQk-means computational efficiency, although 
PQk-means memory efficiency from this comparison 
could not be proved: While K-means took more than 
half a day to classify a large scale 7 × 52,535,364-pixel 

image, PQk-means only took approximately 16 min
utes running on a machine with Intel Core i5 of 
3.3 GHz and 8 GB memory.

Below, the spectral profiles of the four classes, are 
represented in parallel coordinates for the bands, NIR, 
SWIR, red, green (Figure 8(a)), and the spectral indexes 
used in unsupervised classification (Figure 8(b)).

While the first spectral profile only shows the dis
crimination in four bands, the second one shows a more 
diverse feature discrimination. It can easily be seen how 
well the separability was in both spectral profiles. 
Although the second one still has some confusion in 

Figure 6. LULC map 2018 using the spectral indexes NDBI, MEI, VIGS, DBI, QzCal, and two SAR polarized bands. (a) PQk-means 
classification. (b) K-means classification. In Figure (a) and, (b), sub-figure a shows the improved classification of built-up area; 
b shows the improved classification in saline area; c shows the improved classification of built-up in sand beach area; d shows the 
reduced overestimation of built-up in a rough surface area.

Figure 7. LULC map 2018 from SVM algorithm using the Landsat 8 band combination NIR, SWIR1, red (564). (a) underestimated 
built-up area (b) saline area classified as built-up, (c) improved classification of built-up in a sand beach area, (d) overestimation of 
built-up in a rough surface area.
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the SAR polarized bands, it allows us to see the unseen 
in seven dimensions. For the built-up class, false alarms 
on SAR image correspond to areas where backscatter
ing greatly varies, like fields with rough bare soils (sub- 
figure (d) in Figures 6(a,b) and 7) or with high soil 
moisture content. The build-up underestimation in 
the classified maps is essentially related to the presence 
of some low-density urban areas (sub-figure (a) in 
Figures 6(a) and 7) that do not face the radar beam 
and accordingly have a low return signal (Corbane et al. 
2008). A higher underestimation of the built-up class 
can be observed on the SVM map in which only optical 
data were used (sub-figure (a) in Figure 7).

It is common that after improvement methods, 
built-up areas still get confused with everything since 
urban is extremely heterogeneous spectrally (NASA 
(National Aeronautics and Space Administration) 
2017). The goal of this study was not necessarily to 
outperform conventional classification techniques. 
Instead, the interest was to find a solution for the 
spectral confusion of built-up areas in the Sub- 
Saharan African countries and find an alternative for 
the time-consuming supervised classification.

3.2. Supervised classification

Figure 9(a and b) represent the results from the super
vised classification whose accuracy assessment 
resulted in 82% and 93% for the images corresponding 
to the years 2000 and 2008, respectively (Tables 2 and 
3). Let’s clarify that the bareground here referred does 
not correspond to pixels representing exclusively bare
ground. With 30 m resolution satellite images, indivi
dual pixels covering suburban area will represent 
a mixture of buildings, vegetation, and bareground 
(Smith and Hoffmann 2000), and the similarity of 
the spectral reflectance of soil and non- 
photosynthetic vegetation in the Visible-NIR (VNIR) 
spectral region may underestimate regional scale total 
vegetation cover (Gill and Phinn 2008). Bareground 
pixels may contain vegetation but were assigned to the 
class label with the maximum proportion of the pixel 
(Chen et al. 2018). The discrimination of bareground 
and vegetation is probably the drawback of the index- 
based unsupervised classification, which is not a big 
problem for proceeding to the second objective of this 
study focused on built-up class.

Figure 8. (a) Spectral profile Landsat 8 Bands 6, 5, 4, 3. (b) Spectral profile for the five spectral indexes and 2 SAR polarized bands.

Figure 9. (a) LULC map 2000 from MLC. (b) LULC map 2008 from SVM.
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3.3. Built-up area estimation

After classification and assessment of accuracy, the dif
ferent LULC classes were quantified (Table 2; Figure 10 
(a and b)). It is important to clarify that the total study 
area from the different classification results slightly 
differs because of removed clouds’ pixels. Apart from 
the overall accuracy, the user’s accuracy should be paid 
attention to understand which classes resulted in fewer 
false alarms (Cao et al. 2018). The user accuracy of the 
built-up class for 2018 is high and slightly differs among 
the three classification approaches: 97% for PQk-means 
and K-means and 96% for SVM (Table 2).

The estimated built-up area for the year 2000 is 
around 94 km2, while the Atlas of Urban 
Expansion (AUE) of Angel et al. (2016) estimated 
the built-up area to be 171.75 km2 in 2000. The 
AUE differentiates the built-up pixels classified in 
the Landsat imagery into three types: (1) urban, 
when the majority of built-up pixels (50% or 
more) are within the Walking Distance Circle 
(WDC), defined as a circle with area 1 km2 and 
radius 584 m; (2) suburban, (25–50% of built-up 
pixels in their WDC); and (3) rural (less than 25% 
of build-up pixels in their WDC). The threshold for 
this three-fold division is somewhat arbitrary, that 
might be the reason for such a significant difference 
between the classified map for the year 2000, and 

the AUE built-up estimation since the share of 
a class in each pixel within the WDC is not taken 
into account in this study.

For the year 2008, the estimated built-up area is 
around 197 km2 (Figure 11(a)) while the map 
based on Envisat MERIS fine resolution 300 m 
image of 2009 (Figure 11(b)), (Arino et al. 2012) 
estimates 207 km2 (check geodatabase Globcover 
dataset in supplementary material).

For 2018, the estimated built-up area is 
468 km2 (Figure 12(a)) that is comparable with 
the 407 km2 of the 2015/2016 built-up area esti
mated by ESA (2017) on its high-resolution pro
totype map of Africa (Figure 12(b)).

3.4. Logistic regression

The results of the Pearson correlation analysis for the 
models corresponding to the periods 2000–2008 
(model 1) and 2008–2018 (model 2) show a very high 
correlation among the variables of distance to residen
tial areas, to industrial areas, and to the primary center 
(supplementary material Tables 3.2 and 4.2). After 
checking for multicollinearity, some researchers con
sider 2.5 as a threshold for VIF (Allison 2012), and 
others only include values close to 5.0 if the variable in 
case is a suppressor variable, i.e. a variable that is not 

Table 2. Accuracy assessment and quantification of LULC 2000, 2008, 2018 (PQk-means), 2018 (K-means) and 2018 (SVM).
Class User accuracy Area(km2) Percentage (%)

Built-up 0.77–0.70-0.97–0.97–0.96 94.53–198.29-468.37–489.88-441.86 1.80–3.77-8.91–9.32-8.38
Bareground 0.97–0.97-0.95–0.93–0.71 2412.20–1806.52-1682.94–1886.03-2467.11 45.97–34.43-32.03–35.90-47.12
Water 1.00–1.00–1.00–1.0–1.0 148.90–144.90-131.51–130.76-126.29 2.83–2.76-2.50–2.48-2.39
Vegetation 0.67–0.92-0.85–0.92-0.97 2591.39–3097.31-2970.70–2746.84-2218.25 49.38–59.03-56.54–52.28-42.09
Total 5247–5247-5253-5253-5253
O.Accuracy: 0.82–0.93–0.93-0.95-0.89
Kappa 0.76–0.91–0.91–0.94–0.85

Figure 10. (a) Built-up expansion from 2000 to 2018. (b) LULC change quantification.
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correlated with the dependent variable but is signifi
cantly correlated with other independent variables 
improving the overall predictive power (Akinwande, 
Dikko, and Samson 2015). In this study, no suppressor 
variable was found (see supplementary material Tables 
3.2 and 4.2), and satisfactory result was achieved after 
removing two of the three variables with high correla
tion (distance to primary center first and distance to 
industrial areas) (Tables 3 and 4).

Table 3. Correlation of the predictor variables for model 1 
(2000–2008) after removing predictors with high VIF. Road 
for the year 2000 (Rd_2000). Residential area for the year 
2000 (Rsd_2000), DSM, Slope and Population Density for the 
year 2000 (PD_2000).

Rd_2000 Rsd_2000 DSM Slope PD_2008 VIF

Rd_2000 1.00 0.50 –0.30 0.06 –0.18 1.50
Rsd_2008 0.50 1.00 –0.01 0.18 –0.25 1.40
DSM –0.30 –0.01 1.00 0.03 –0.04 1.00
Slope 0.06 0.18 0.03 1.00 –0.04 1.00
PD_2008 –0.18 –0.25 –0.04 –0.04 1.00 1.10

Figure 11. (a) Built-up map 2008, (b) Built-up map 2009 based on Envisat Meris (Arino et al. 2012).

Figure 12. (a) Built-up map 2018 from PQk-means classification, (b) Built-up map 2015/2016 from high-resolution prototype map 
of Africa (ESA 2017).

Table 4. Correlation of the predictor variables for model 2 (2008–2018) after removing predictors with high VIF. 
Road for the years 2008 and 2018 (Rd_2008_2018), Residential area for the year 2008 (Rsd_2008), DSM, Slope and 
Population Density for the year 2008 (PD_2008).

Rd_2008_2018 Rsd_2008 DSM Slope PD_2008 VIF

Rd_2008_2018 1.00 0.53 –0.31 0.06 –0.23 1.60
Rsd_2008 0.53 1.00 –0.01 0.19 –0.30 1.60
DSM –0.31 –0.01 1.00 0.03 –0.03 1.20
Slope 0.06 0.19 0.03 1.00 –0.06 1.00
PD_2008 –0.23 –0.30 –0.03 –0.06 1.00 1.10
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Figure 13. (a) ROC curve of Model 1, (b) ROC curve of Model 2.

Figure 14. (a) Probability map 2008 from model 1. (b) Probability map 2018 from model 2.

Figure 15. (a) The slope in the areas of Maianga and Sambizanga. (b) detail of the corresponding probability map for the year 
2008. (c) detail of population density for the year 2008. (d) detail of population density for the year 2018.
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Both models with pseudo R2 equal to 0.476 (Model 1) 
and 0.36 (Model 2) show a very good fit (Tables 5–6): 
Pseudo-R2 values between 0.2 and 0.4 represent a very 
good fit of the model (Lee 2013).

The AUC shows a very high power for distinguishing 
the two classes (built-up and non-built-up) in model 1 
(97%), while in model 2 it shows a moderate discrimi
natory power (92%) (Figure 13(a and b)). In general, 
ROC curves with an AUC ≤ 75% are not clinically useful, 
and an AUC between 75% and 97% has moderate dis
criminatory power, while a ROC curve with an AUC of 
97% has a very high clinical value (Fan, Upadhye, and 
Worster 2006).

All the P-values lower than 0.05 and its asso
ciated z values greater than 1.96 for positive z and 
less than −1.96 for negative z, show the importance 
of the predictor variables used in the two models in 
explaining urban expansion (Tables 5 and 6), which 
means that the null hypothesis was not satisfied for 
any predictor variable, allowing us to infer that 
urban expansion in Luanda is mainly driven by 
the proximity to (1) already established residential 
areas and (2) to the main roads that are confirmed 
by their higher coefficients in both models (nega
tive relationship with distance to main roads and to 
residential areas).

From the probability maps, especially the one corre
sponding to 2018, areas with a higher probability of 
urban growth can be observed in places where the 
government had defined housing programs: Talatona 
in Camama district, Kilamba Kiaxi, Zango, Cacuaco 
(GPL (Government of the Province of Luanda 

[Governo da Província de Luanda]) 2014; IPGUL 
(Luanda Urban Planning and Management Institute 
[Instituto de Planeamento e Gestão Urbana de 
Luanda]) 2015) and Kilamba (Figure 14(a and b)).

The variable elevation changes from a positive and 
high influence on urban expansion to a negative and 
low influence, while the variable slope changes from 
a negative and low influence to a positive and still low 
influence during the period 2000–2018 (Tables 5 and 
6). This trend might be because during the period 
2000–2008 with a small urban area concentrated 
near the shore (west), where the elevation is low, 
people were more likely to build far from these areas, 
avoiding areas with high densities of people and areas 
at risk most affected by slope such as Sambizanga and 
Maianga from the old administrative division of 
Luanda (Mendelsohn, Mendelsohn, and Nakanyete 
2010) (Figures 14(a) and 15(a–d), having preference 
for already built residential areas near the main roads 
for easy access to services. During the period 2008– 
2018, with the urban growth, inhabitants were forced 
to shape their priorities within the metropolitan area, 
having chosen to fill low elevation and high-risk areas 
(higher slope) rather than already built and populated 
(negative relationship) areas and near the main roads 
(Figures 14(b), 15(a, b and d)).

For the future metropolitan plan, the proposed 
transport network was designated as development 
corridors reserved for new dense and high-quality 
development (Mobility in chain 2015) and is 
expected to become the main driver of the urban 
development since we have confirmed with our 

Table 5. Logistic regression results for model 1 (2000–2008). Const – intercept in the logit function, Coef – coeficient of the 
intercept (in the case of the first value) and the predictor variables, Std.Err – standard error, P>|s| – p value associated with z-score 
z, [025 0.975] – confidence interval; Road for the year 2000 (Rd_2000), Residencial area for the year 2000 (Rsd_2000), DSM, Slope 
and Population Density for the year 2000 (PD_2000).

Coef. Std.Err z P>|z| [0.025 0.975]

Const −2.11 0.02 −100.54 0.0000 −2.15 −2.07

Rd_2000 −16.77 0.09 −170.66 0.0000 −16.96 −16.58
Rsd_2000 −28.13 0.11 −244.64 0.0000 −28.35 −27.90
DSM 7.13 0.05 146.89 0.0000 7.03 7.22

Slope −2.99 0.10 −28.21 0.0000 −3.20 −2.79
PD_2000 −1.69 0.02 −85.68 0.0000 −1.73 −1.65

Table 6. Logistic regression results for model 2 (2008–2018). Const – intercept in the logit function, Coef – coefficient of the 
intercept (in the case of the first value) and the predictor variables, Std.Err – standard error, P>|s| – p value associated with z-score z, 
[025 0.975] – confidence interval; Road for the years 2008 and 2018 (Rd_2008_2018), Residential area for the year 2008 (Rsd_2008), 
DSM, Slope and Population Density for the year 2008 (PD_2008).

Coef. Std.Err z P>|z| [0.025 0.975]

Const 1.09 0.01 103.40 0.0000 1.07 1.12

Rd_2008 –9.81 0.04 –260.87 0.0000 –9.88 –9.73
Rsd_2008 –12.39 0.03 –359.58 0.0000 –12.46 –12.32
DSM –1.57 0.01 –101.44 0.0000 –1.56 –1.54

Slope 0.69 0.05 13.93 0.0000 0.59 0.79
PD_2008 –1.48 0.01 –105.96 0.0000 –1.50 –1.45
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results that government-imposed rules have deter
mined the way the built-up stain looks like today. 
The result of this study will be beneficial for 
environmentalists and urban planners, to under
stand and monitor the urban dynamic since the 
methods can easily be reproduced with new input 
data, and to inspire researchers toward machine 
learning application to GIS/RS.

3.5. Limitations of the study

Data availability has limited the methodology of 
this study to be implemented with previous satel
lite data, for example, the usage of SAR data for 
the years 2000 and 2008. There are commercial 
SAR data providers, but relying on commercial 
datasets can consume monetary resources, since 
it does not guarantee that the data will certainly 
be useful.

Future built-up area expansion could not be 
predicted from the logistic regression because it 
is believed that future prediction may lead to 
errors. This is because urban expansion drivers 
constantly change their predictive power, and 
some drivers can be removed, or new drivers be 
introduced over time. An approach that considers 
previous models, i.e. sequence models such as 
Recurrent Neural Network (RNN), could be 
a better approach for future prediction.

4. Conclusions

The results of this study show that unsupervised 
classification utilizing spectral indexes can effec
tively classify LULC if appropriate spectral indices 
and classifiers are chosen for a specific area. For 
unsupervised LULC classification, the K-means 
algorithm is preferred. However, considering 
a large number of inputs (spectral indexes), PQk- 
means, that to the best of found knowledge, was 
implemented for the first time in RS studies, is an 
alternative selection because it is memory and com
putationally more efficient, and gives good accuracy 
similar to K-means.

The built-up area of Luanda during the period 
2000–2018 was mainly driven by the proximity to 
the already established residential areas and to the 
main roads, with other drivers playing an important 
role in urban expansion when changing from 
a positive to negative influence or vice-versa, as 
a consequence of newly dense built-up areas and 
rules imposed by the government. In future research, 
it would be interesting to see the predictive perfor
mance of the emerging deep learning algorithms such 
as Long Short Term Memory (LSTM) using the same 
approach of this study.
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